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DeepEMhancer: a deep learning solution for
cryo-EM volume post-processing
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Cryo-EM maps are valuable sources of information for protein structure modeling. However,

due to the loss of contrast at high frequencies, they generally need to be post-processed to

improve their interpretability. Most popular approaches, based on global B-factor correction,

suffer from limitations. For instance, they ignore the heterogeneity in the map local quality

that reconstructions tend to exhibit. Aiming to overcome these problems, we present Dee-

pEMhancer, a deep learning approach designed to perform automatic post-processing of

cryo-EM maps. Trained on a dataset of pairs of experimental maps and maps sharpened

using their respective atomic models, DeepEMhancer has learned how to post-process

experimental maps performing masking-like and sharpening-like operations in a single step.

DeepEMhancer was evaluated on a testing set of 20 different experimental maps, showing its

ability to reduce noise levels and obtain more detailed versions of the experimental maps.

Additionally, we illustrated the benefits of DeepEMhancer on the structure of the SARS-CoV-

2 RNA polymerase.
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A lmost one decade after the beginning of the so-called
“resolution revolution”, cryogenic electron microscopy
(cryo-EM) has become one of the most versatile tools in

the field of structural biology. Beginning from thousands of
single-particle projection images, cryo-EM workflows are capable
of obtaining three-dimensional (3D) reconstructions of many
macromolecules at “near-atomic” resolution levels. However, the
ultimate goal of the cryo-EM single-particle analysis is not the
obtention of 3D maps but the detailed atomic understanding
through the derivation of atomic models.

During the atomic model building process, raw 3D maps are
rarely employed, as they suffer from loss of contrast at high
resolution1 that makes difficult the detection and interpretability
of residues and secondary structure. Fortunately, loss of contrast
can be alleviated using different contrast restoration algorithms,
which are usually known as sharpening methods. The first
sharpening approach for cryo-EM maps was introduced by
Rosenthal and Henderson1 and their formulation, based on the
global B-factor correction, is still at the basis of the most com-
monly employed sharpening methods, including RELION
postprocessing2,3 or Phenix AutoSharpen4. The principle behind
these algorithms consists in the correction of the raw maps by
boosting the amplitude of their high-frequency Fourier compo-
nents. The strength of the amplitude boost at each frequency
depends on the frequency itself and on a single number, the B-
factor, that measures the global loss of contrast. Thus, although
the different global B-factor-based methods differ in the proce-
dures employed to determine the B-factor that is applied, they
modify the volume globally in a similar manner.

Despite being widely used, global B-factor-based approaches
present an important limitation: they do not consider the dif-
ferences in quality that different parts of the map may present
and they produce density maps that do not correspond to the
scattering properties of biological macromolecules5. Conse-
quently, for the case of maps that exhibit heterogeneous local
resolution, some regions could be undersharpened whereas others
could be oversharpened. Recently, local sharpening algorithms
that alleviate this shortcoming, have been proposed. Thus, the
LocScale6 algorithm uses the information contained in an atomic
model to locally scale up a map. Such transformation is achieved
by means of a sliding window approach in which the amplitudes
of the map region that lay inside the window are scaled up to
agree with the atomic model provided. Following a totally dif-
ferent strategy, the LocalDeblur7 algorithm employs a Wiener
filtering approach that performs local deblurring with a strength
proportional to an estimation of the local resolution, that has to
be pre-computed. Similarly, LocSpiral8 employs the spiral phase
transformation to factorize the volume and then perform a local
enhancement based on the normalization and thresholding of the
amplitudes.

Despite their benefits, current local sharpening approaches
present some drawbacks. Thus, both LocSpiral and LocalDeblur
depend on masks to distinguish the macromolecule from the
noise and LocalDeblur requires also an estimation of the local
resolution of the map. On the other hand, the main strength of
LocScale, its ability to employ the structural information of
atomic models, could also be regarded as its main weakness since
the availability of atomic models limits its applicability.

With the aim of overcoming these shortcomings, in this work,
we present Deep cryo-EM Map Enhancer (DeepEMhancer), a
fully automatic deep learning-based approach that performs cryo-
EM volume post-processing. Deep learning has revolutionized the
field of artificial intelligence and its impact has been felt in many
others including cryo-EM. Deep learning in cryo-EM was first
applied to the problem of particle picking9–11 and since then, it
has evolved to deal with other questions such as map

reconstruction12,13, map segmentation14,15, or local resolution
determination16,17. As in most of those methods, our approach
relies on a convolutional neural network (CNN) that is trained on
massive quantities of data. Particularly, our development, which
follows a simple image super-resolution setup18, exploits the vast
amount of structural information that is contained in the Electron
Microscopy Data Bank (EMDB) database19 in order to mimic the
local sharpening effect of the LocScale algorithm. However,
DeepEMhancer does not require any atomic model to function
and, contrary to previous methods, it also performs automatic
(tight) masking of input maps. Our results show that Dee-
pEMhancer, which works in a fully automatic manner, is able to
largely improve the interpretability of the maps contained in our
benchmark, performing better than classical global B-factor
approaches.

Results
DeepEMhancer is based on an end-to-end U-net architecture20

trained in a supervised manner. Particularly, we implemented a
3D U-net consisting of three downsampling blocks and three
upsampling blocks that process cubic chunks of the input map
(see Supplementary Table 1 for more details). Training was
performed using pairs of input maps and target maps, consisting
of experimental cryo-EM maps and tightly masked LocScale post-
processed maps. Despite other possible alternatives (e.g., Local-
Deblur, etc.) LocScale was chosen as the method to produce
targets because it makes use of atomic model information, which
tends to produce high-quality results. For a complete description
of the data preparation, training, and evaluation processes see the
“Methods” section.

DeepEMhancer performance on the testing set. In order to
assess the quality of DeepEMhancer predictions, we first com-
pared them against the target maps generated by LocScale. Thus,
for DeepEMhancer maps, we measured a median correlation
coefficient of 0.9 against LocScale maps in contrast to 0.6 for
input maps (see Supplementary Fig. 1). Such an important
increase in the correlation coefficient implies that DeepEMhancer
has learned to accurately reproduce the effect of LocScale shar-
pening with one important advantage: no atomic models are
required to employ DeepEMhancer.

Although reproducing the LocScale-sharpening effect was our
main objective, the ultimate goal of map post-processing is to
simplify the process of atomic model building. With the aim of
studying if DeepEMhancer also contributes to that purpose, we
next explored whether DeepEMhancer post-processed maps were
more similar to the actual atomic models. To do so, we computed,
for all the maps included in the testing set, the Fourier shell
correlation coefficient (FSC) resolution between the input (half
maps average) and post-processed maps against the reference
maps obtained from the atomic models. As it is shown in Fig. 1,
for all the examples included in the testing set, the application of
DeepEMhancer increased the similarity of the input maps with
respect to the references (blue and green bars). Particularly, the
median improvement achieved by DeepEMhancer was ~0.6 Å
(~14% in the frequency domain). Such an important improve-
ment confirms that the maps computed by DeepEMhancer are
more similar to the target maps.

DeepEMhancer post-processing operation performs a non-
linear transformation of the experimental volume that produces a
set of effects that could be broadly classified as masking/denoising
and sharpening-like features enhancement. In order to disen-
tangle the contribution of the different effects, we have also
computed the FSC of the input and post-processed maps using a
tight mask derived from the atomic model. As it can be observed
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in Fig. 1, the FSC resolution obtained for the post-processed maps
tends to be better than the values computed for the input
independently of the mask application (green and red bars vs
orange bar), which implies that the masking effect is of high-
quality, as the resolutions for the unmasked DeepEMhancer
results tend to be better than the ones for the masked input maps.

Comparison with other methods. With the aim of comparing
DeepEMhancer with the commonly employed global B-factor-
based sharpening methods, we repeated the same experiments
using the post-processed maps obtained with the Relion post-
processing algorithm2,3. Before it is important to notice that
contrary to DeepEMhancer, Relion automatic masking is a simple
process, and thus, in order to make the comparison more inter-
esting, we used instead the masks derived from the atomic models.

Still, when we evaluated the FSC for the masked regions, only a
few maps improved, while many others worsened, leading to a
median improvement that was negligible (<0.05 Å) for both FSC
and median DeepRes resolution (see Figs. 2 and 3).

Similarly, and, although it is true that the trend is not as strong
as in the previous experiment, DeepEMhancer also tends to
improve the resolution of the masked regions (Fig. 1, orange vs.
red bars), which supposes an enhancement of the map features.
Leaving aside some problematic examples such as EMD-705521,
that will be discussed in Supplementary Note 1 and Supplemen-
tary Fig. 2, most of the evaluated maps exhibit a non-negligible
improvement in resolution, especially notable when compared to
B-factor-based results (see next section), with a median value of
~0.3 Å.

Alternatively, with the aim of obtaining a complementary
measurement of improvement, we computed the DeepRes local
resolution for the input and post-processed maps. As can be
appreciated in Fig. 2, all test cases treated with DeepEMhancer
improved in terms of DeepRes local resolution, with dramatic
improvements of more than 0.7 Å and a median improvement of

~0.4 Å. Again, those figures, consistent with the FSC-based
measurements, point out that DeepEMhancer is improving the
interpretability of the maps.

We acknowledge that the automatic determination of the
B-factor can lead to less accurate results than if it were manually
selected and it may be the reason behind the poor observed
performance. Thus, we have also included in the comparison the
post-processed maps deposited in EMDB in which the estimation
of B-factor was carried out by the authors. In this case, the
improvement in resolution, with median values of ~0.15 and
~0.1 Å for DeepRes and FSC, respectively, although closer to the
values obtained using DeepEMhancer, are still considerably
inferior (see Figs. 2 and 3). Such a difference in performance
can be partially explained by the ability of local sharpening
methods to deal better with low-quality regions of input maps as
is shown in Supplementary Figure 3 and discussed in Supple-
mentary Note 2.

In the light of these results, we can state that DeepEMhancer
maps tend to be more similar to the atomic models than the ones
obtained using global B-factor-based methods and thus, more
useful for the process of model building. Finally, for the sake of
completeness, we also computed FSC curves to compare our
approach with other state-of-the-art sharpening approaches,
showing that our fully automatic approach produces competing
if no better results for many cases (see Supplementary Note 3 and
Supplementary Figs. 4–9).

Visual inspection of testing maps. The purpose of this section is
to further explore the results obtained with DeepEMhancer for
some of the maps included in the testing set with the aim of
illustrating how the improvements in global quality measure-
ments translate to tangible improvements in the quality of
the maps.

EMD-7099. The EMD-709922 is a high-resolution volume (global
resolution 3.1 Å) of a multidrug resistance ATP-driven pump.

Fig. 1 DeepEMhancer produces maps that are more similar to the atomic
models. Resolution (determined by Fourier shell correlation coefficient,
FSC) between the reference maps obtained from the atomic model and (1)
the input maps (blue), (2) the input maps tightly masked (orange), (3) the
post-processed maps by DeepEMhancer (green) and (4) the post-
processed maps by DeepEMhancer tightly masked (red). EMDB entries are
sorted by published global resolution.

Fig. 2 DeepEMhancer produces better quality maps. DeepRes median
local resolution estimation for (1) the input maps (blue), (2) the post-
processed maps obtained with Relion postprocessing automatic B-factor
(orange), (3) the post-processed maps deposited in EMDB (green) and (4)
the post-processed maps obtained with DeepEMhancer (Red). EMDB
entries are sorted by published global resolution.
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EMD-7099 presents 17 transmembrane helices and, although the
overall quality of the map is excellent, visualizing the trans-
membrane regions is challenging because of the signal that comes
from the lipids. As a result, important parts of the protein are not
traced. Due to the fact that DeepEMhancer was trained to ignore
the signal coming from lipidic layers, this example illustrates the
unique characteristics of DeepEMhancer when applied to mem-
brane proteins. Thus, as can be observed in Fig. 4a–d, Dee-
pEMhancer has been able to suppress the signal coming from the
lipid layer in a much more simple and effective way than
diminishing the threshold in the raw map or the B-factor-based
sharpened maps. The noise suppression effect simplifies the
process of model building, as the researchers do not have to deal
with masks or larger thresholds that make the visualization of
near-to-noise level features more difficult. Yet not only Dee-
pEMhancer produces a noise reduction effect, but also it is able to
enhance some parts of the map that under B-factor-based shar-
pening seem noisy and disconnected. Such improvement,
although observed in several regions of the map, is more
noticeable at the transmembrane region Thus, the most impor-
tant enhancement is depicted in Fig. 4e, f, in which an important
part of the backbone of the protein has been de novo traced
thanks to DeepEMhancer enhancement, that has restored the
densities corresponding to residues A195 to I203 in chain A of
PDB 6bhu. Although it is true that this region was present in the
raw data map, its intensity range was so close to one of the lipidic
layers that after conventional B-factor post-processing, the region
was so damaged that modeling was not possible. On the contrary,
not only DeepEMhancer was able to suppress most of the signal
coming from the lipid layer but also it was able to restore the
density of the region so that it looks smooth and continuous.

EMD-4997. The EMD-499723 is a medium-high resolution
volume (4.0 Å) for a murine epithelial anion transporter. As in
the previous example, the overall quality of the map is quite good,
yet it presents lower quality regions. Figure 5a shows an overview
of the published map, displayed at the recommended threshold,
and the map obtained with DeepEMhancer. Although it is true
that both the published map and the post-processed map look
very similar, it is also true that there exist important differences.
Firstly, the map processed with DeepEMhancer is cleaner than
the published one. Serve as an example the removal of the arti-
facts that the published map presents near the elbow of the
complex (see Fig. 5a, red box). More importantly, there can also
be found many regions for which the DeepEMhancer post-
processed volume resolves better the different residues of the
regions. One such example can be found near the N-terminal end
of the protein complex. Thus, as it is shown in Fig. 5b, the
densities that correspond to the strands of the β-sheet are better
separated than in the published volume. It is important to notice
that this better separation is not a consequence of the employed
thresholds, as it is proven by the fact that rising the threshold
makes the densities corresponding to the backbone discontinuous
before the densities for the two strands separate (see Fig. 5b). As a
result, we can affirm that the quality of this region has been
improved by the usage of DeepEMhancer.

Another similar example is displayed in Fig. 5c. In this case,
two non-contiguous aromatic residues, Y361 and H121, seem
connected in the published map. However, when DeepEMhancer
is applied, the densities corresponding to the two residues look
separated while the backbone remains continuous.

Use case EMD-30178 from SARS-CoV-2 RNA-dependent RNA
polymerase. In order to further explore the benefits of the Dee-
pEMhancer algorithm, we analyzed more deeply the post-

processing of EMD-30178 map from Gao24, corresponding to
the SARS-CoV-2 RNA-dependent RNA polymerase. The pub-
lished map presents detailed structure up to 2.9 Å resolution,
however, as is often the case in cryo-EM, the resolution of the
map is highly heterogeneous. We have chosen this map not only
for the importance of this structure in current days but also
because of the fact that the heterogeneous quality of the map
density presents an ideal case for DeepEMhacer software. As it is
shown in Fig. 6a, the application of the algorithm reduces the
noise and improves the consistency and depiction of the map. To
better illustrate these differences, we have chosen two different
regions in chains A and D where the differences between the
published and the DeepEMhancer map can be appreciated
(Fig. 6b and c). While the density in the published map looks
noisy or discontinuous depending on the displayed threshold
(Fig. 6b and c, left and middle panel), the application of the
DeepEMhacer software results in a well-defined continuous
density where the side chains are nicely depicted (Fig. 6b and c,
right panel). This improvement in the map density allowed us to
close the loop between residues in the β-sheet V115 to I132 from
chain D tracing three new residues that were not traced in the
published structure (Fig. 6b). The improvement of the density is
not only applicable to the edges of the map but it can be also
appreciated in its core. Residues H362–L366 in chain A, traced on
the published map were positioned more accurately on the den-
sity after map post-processing (Fig. 6c).

Discussion
The number of deposited high-resolution cryo-EM maps has
soared since the beginning of the ‘resolution revolution’. As a
result, there is an increasing number of atomic models that are
being built using cryo-EM as the primary source of information.
However, building atomic models directly from the raw maps is

Fig. 3 DeepEMhancer produces better results than global B-factor-based
methods. Resolution (determined by Fourier shell correlation coefficient,
FSC) between the reference maps obtained from the atomic model and (1)
the input maps (blue), (2) the post-processed maps obtained with Relion
postprocessing automatic B-factor (orange), (3) the post-processed maps
deposited in EMDB (green), and (4) the post-processed maps obtained
with DeepEMhancer (red). EMDB entries are sorted by published global
resolution.
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generally not possible. Instead, maps are post-processed in order
to enhance the contrast of their high-resolution features.

In this work, we have presented DeepEMhancer, a map post-
processing method based on deep learning. Trained on pairs of
experimental cryo-EM maps and post-processed maps con-
structed with LocScale using atomic models, DeepEMhancer has
learned how to perform a high-quality post-processing operation

that reproduces the effects of masking and local sharpening in an
automatic fashion.

Although it is true that DeepEMhancer could have been
trained on other targets, for instance, the simulated maps
obtained directly from the atomic models, we discarded this
alternative for two reasons. The first reason is that we wanted to
reproduce the state-of-the-art local sharpening effect and not a

Fig. 5 DeepEMhancer results on testing map EMD-4997. a Overview of the published map (B-factor sharpened, shown at the threshold recommended by
the authors), bottom, and the map obtained with DeepEMhancer, top. Red box highlights an artifact that has been automatically removed by
DeepEMhancer. Blue box delimits the region showed in b. b Zoom-in of the region marked with a blue box that contains the β-sheet R7-A10, chains A and
B. The published volume is shown at the recommended threshold and at the threshold at which the backbone begins to look discontinuous. As it can be
appreciated, the DeepEMhancer solution resolves better than the published map of the two strands of the sheet. c Zoom-in of the region centered at chain
B residues H121 and Y361 (colored in magenta). The published volume is shown at the recommended threshold and at the smaller threshold at which the
density that connects the two residues disappears. As it can be appreciated, DeepEMhancer post-processed map resolves better than the published map of
the two residues.

Fig. 4 DeepEMhancer results on testing map EMD-7099. a Lateral view of the published map (B-factor sharpened, shown at the threshold recommended
by the authors). b Lateral view of the raw data map obtained from the half maps that was used as input for DeepEMhancer. c Lateral view of the published
map after rising the threshold and removing the small connected components so that the signal coming from the lipids was suppressed. As a collateral
consequence, some densities corresponding to the protein were also lost. d Lateral view of the map obtained with DeepEMhancer. e Zoom-in of the region
marked with a blue box in c. f Zoom-in of the region marked with a blue box in d, in which DeepEMhancer post-processed map, contrary to the published
map, shows the densities corresponding to a missing loop in PDB 6bhu chain A. As a result, the residues A195 to I203 have been de novo modeled (new
residues depicted in yellow, published in green).
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new type of post-processing that could not be compatible with
downstream atomic modeling tools. The other one is empirical:
we obtained better results when targets were produced with
LocScale than when the targets were directly obtained from the
atomic models. As it is discussed in Supplementary Note 4 and
illustrated in Supplementary Figs. 10–13, our neural network
tends to suffer from underfitting when trained on maps derived
from atomic models and thus, the results are blurrier than the
ones obtained when using LocScale maps as a target. One possible
explanation for such behavior could be the fact that, when using
LocScale, the input and target maps, although different, still share
some similar properties such as intensity ranges or local quality,
which are not necessarily preserved when using simulated maps
as targets. As a consequence, it is reasonable to believe that as the
input and target maps become more similar, the training process
should also become easier. For these reasons, we expect that
super-resolution approaches trained on maps derived from
atomic models will only be possible when more powerful models
will be employed at the cost of more powerful computational
resources and larger datasets.

The performance of our algorithm has been assessed using a
testing set of 20 experimental maps that were not used for
training nor during the trial-and-error process required for its
implementation. In all cases, the similarity between the maps
obtained from the atomic models and the experimental maps
improved after the application of DeepEMhancer. Additionally,
we evaluated in detail the performance of DeepEMhancer on two
of those maps, showing that, not only DeepEMhancer facilitates

the visualization of cryo-EM maps, but also that DeepEMhancer
can unveil some details that are not easily recognizable in the
raw maps.

Nevertheless, it is important to highlight that DeepEMhancer is
not the ultimate solution and that different examples will benefit
from considering simultaneously different post-processing tech-
niques. This is of especial importance for some of the cases in
which DeepEMhancer, by dataset scarcity, presents limitations,
for instance, when dealing with uncommon posttranslational
modifications (see Supplementary Note 5 and Supplementary
Figs. 14 and 15).

Another important caveat that all methods intended to
enhance maps need to face is the problem of model validation.
Although the results here presented have been validated using as
ground truth the published models, in real-world scenarios such
ground truth models are not available, and thus, the goodness of
the results should be addressed by the users. To that end, we
recommend trying and comparing different approaches since
orthogonal methods should reveal inconsistencies. On the con-
trary, we discourage users from trying to estimate the resolution
of post-processed maps, as there is no obvious way of doing it
without ground-truth and even in those cases, masking effects
could be challenging (see Supplementary Note 3).

Finally, with the aim of illustrating how beneficial Dee-
pEMhancer could be in real-world scenarios, we have employed it
on a map of the RNA polymerase of the SARS-CoV 2 virus,
improving its quality of the map and the quality of the associated
atomic model.

Fig. 6 Use case EMD-30178 from SARS-CoV-2 RNA-dependent RNA polymerase. a Overview of the published map displayed with two different
thresholds 0.3 (recommended by the authors, left) and 0.5 (middle panel) and processed with DeepEMhacer (right). PDB 7btf is shown in ribbon, red
squares designated the zoomed areas in b panel and blue squares the zoomed areas in c. b Zoom-in and extraction of the density from the 3D
reconstruction of the published map at different thresholds and DeepEMhacer map corresponding to the red squares in a, chain D from residues V115–I132.
Newly traced residues in the DeepEMhancer map are shown in pink. c Zoom-in and extraction of the density from the 3D reconstruction of the published
map at different thresholds and DeepEMhacer map corresponding to the blue boxes.
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Methods
Raw data collection. DeepEMhancer has been trained and evaluated using as
input a subset of cryo-EM maps obtained from the EMDB19 that meet the fol-
lowing requirements: (1) resolution better than 7 Å; (2) have one and only one
atomic model associated; (3) correlation between the atomic model and the map
better than 0.6; and (4) half maps available. As a result, an original list of 415 maps
was compiled. However, this initial list is highly redundant and, in order to avoid
biases in both the training and evaluation procedures, this list was further filtered
to reduce its redundancy (see subsection “Redundancy control”). Finally, after a
visual inspection aimed at removing problematic cases that survived the automatic
filtering procedure, a total amount of 147 maps, with an average reported reso-
lution of 3.8 Å, were selected.

Since the main objective of DeepEMhancer is to perform a sharpening-like post-
processing transformation, it is important to ensure that the maps used in this study
were not previously sharpened. Given the fact that most of the maps deposited in
EMDB are sharpened and many are also masked, we decided to employ only the
half-maps available in EMDB (condition number 4). Due to the lack of an
appropriate searching tool in EMDB and a file name convention, we had to analyze
all the map file names included in the database looking for the substring “half” to
recover the half maps. Full maps were obtained averaging respective half maps.

As learning targets, we employed the output generated by LocScale using as
input the aforementioned maps and their associated atomic models. Additionally,
the output maps were tightly masked using as masks the maps simulated from the
atomic models after a thresholding operation (see Supplementary Note 6 and
Supplementary Fig. 16).

Data preparation. Due to the fact that the monomers (amino acids, nucleotides,
etc.) that compose the macromolecules have fixed size but the deposited maps vary
in voxel size, both the input and the target maps were resampled to 1 Å/voxel size
with the aim of facilitating the learning process. After that, the intensity of each
volume was normalized using the classical cryo-EM approach by which the map
noise statistics are forced to adopt a fixed mean and standard deviation (0 and 0.1,
respectively). Finally, due to GPU memory limitations, the maps were chunked into
64 × 64 × 64 cubes, the maximum size that our computing systems were able to
efficiently manage. As a result, more than 70k volume cubes, including both signal
cubes and noise-only cubes were used for training.

Redundancy control. In order to perform the train/test/validation split used to
develop and evaluate our method, it is important to consider that the universe of
proteins is highly redundant and that the EMDB entries are even more redundant.
Serve as an example the case of the ribosome, which supposes ~10% of all EMDB
entries. Thus, in order to avoid an over-optimistic performance estimation, we have
ensured that the train, test, and validation sets are mutually exclusive in the sense
that their intersections are empty under a certain equivalence criterion. Particu-
larly, we consider that two EMDB entries are equivalent if they share one sequence
that belongs to the same 30% sequence identity cluster. Similarly, with the aim of
eliminating potential bias in the evaluation, we have guaranteed that only one
member per cluster is included in testing and validation sets. On the contrary, we
have relaxed our quite strict redundancy control policy in the training set allowing
up to five cluster representatives in an attempt to increase the size of this set. This
decision is founded on the fact that even maps of the same exact protein may
present different statistics due to the intrinsic variability of cryo-EM reconstruction
workflows and thus, limiting their presence in the training set may be difficult for
the generalization of the neural network.

As a result, a list of 107, 21, and 20 maps were used for training, validation, and
testing, respectively. The full list of the EMDB entries used can be found in
Supplementary Note 7 and Supplementary Data 1.

Neural network architecture. We have employed a 3D U-net-like neural
network20 as a regression model for the estimation of post-processed maps. Our
neural network consists of three downsampling blocks and three upsampling
blocks with skip connections. Each block contains three convolutional layers fol-
lowed by group normalization25 and PRelu activation26. The number of filters for
each block is 3 × 32, 3 × 64, and 3 × 128, respectively. Downsampling is carried out
using strided convolution and upsampling is performed via transposed convolu-
tion. See Supplementary Table 1 for additional details.

Neural network training. Our neural network was trained using stochastic gra-
dient descent with a batch size of 8 cubes. Initial learning rate was set to 10−3 and
decreased by a factor of 0.5 when the validation loss did not improve during 5
epochs. As a loss function, a mean absolute error was employed. Data augmen-
tation, consisting of random 90° rotations, gaussian blurring, and patch corruption
was applied to the training data.

Neural network inference. In order to perform volume post-processing, the input
volume is pre-processed as described in the “Data preparation” subsection. Then,
the resized and normalized volume is chunked into overlapping cubes of size 64 ×
64 × 64 with strides of 16 voxels. Each cube is individually processed by the trained
neural network, yielding post-processed cubes. After that, the post-processed cubes

are re-assembled into the final volume averaging the overlapping parts. Finally, the
processed volume is resized to the size of the original volume, thus, showing the
correct sampling rate value.

Evaluation. With the aim of guiding the cross-validation process, we computed the
correlation coefficient between the maps produced by DeepEMhancer and the
maps used as learning targets (masked LocScale post-processed maps). Once the
final model was selected, the quality of DeepEMhancer predictions was assessed
comparing the input and processed maps against the reference maps obtained from
the atomic models. Specifically, we computed the FSC between them and we
estimated the resolution using 0.5 as the threshold. Due to the fact that Dee-
pEMhancer performs a non-conventional post-processing operation, including
masking and enhancement operations, in order to disentangle the two effects, the
FSC was also computed after masking the maps to compare with a tight mask
derived from the atomic model.

As a complementary metric, we also applied DeepRes17 over the input and
processed maps. DeepRes is a deep learning-based local resolution method that,
contrary to others, is sensitive to the sharpening process and thus, it can provide an
alternative estimation of the post-processing effect.

Finally, for comparison purposes, we repeated the FSC and DeepRes
experiments using the Relion postprocessing program2,3. As Relion automatic
masking is very simple, in order to make the comparison more interesting, we
decided to execute the postprocessing algorithm using the mask derived from the
atomic models. Similarly, since the automatic determination of the B-factor can
produce worse results than a manually selected one, in addition to the maps
computed using an automatically determined B-factor by Relion, we also
considered the sharpened map deposited in EMDB.

EMD-30178 map evaluation and atomic model modification. DeepEMhancer
was applied to the half maps deposited in EMDB entry EMD-30178. The published
and post-processed maps were visually inspected using Coot27 and Chimera28, and
chosen regions on the 7btf PDB were newly built or modified using Coot.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All training and testing examples used in this work can be found in the EMDB and PDB
databases. Accessions codes are included in Supplementary Note 7 and Supplementary
Data 1. Post-processed map examples and trained models are freely available at http://
campins.cnb.csic.es/deepEMhancer/examples. Data used during figure preparation is
available in Supplementary Data 2 and 3. All other data are available from the
corresponding authors upon reasonable request.

Code availability
DeepEMhancer is freely available at https://github.com/rsanchezgarc/deepEMhancer and
as an Xmipp protocol for Scipion v3 (https://github.com/I2PC/scipion-em-xmipp).
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Supplementary Table 1: Neural network architecture 

 

Supplementary Table 1. Neural network architecture  

Layer Type Parent
s 

#Kernel
s 

Stride Kernel 
size 

Output shape 

1 Conv3d+GN+PReLU Input 32 1 5 64x64x64x32 

2 Conv3d+GN+PReLU 1 32 1 5 64x64x64x32 

3 Conv3d+GN+PReLU 2 32 2 5 32x32x32x32 

4 Conv3d+GN+PReLU 3 64 1 5 32x32x32x64 

5 Conv3d+GN+PReLU 4 64 1 5 32x32x32x64 

6 Conv3d+GN+PReLU 5 64 2 5 16x16x16x64 

7 Conv3d+GN+PReLU 6 128 1 5 16x16x16x128 

8 Conv3d+GN+PReLU 7 128 1 5 16x16x16x128 

9 Conv3d+GN+PReLU 8 128 2 5 8x8x8x128 

10 Conv3d+GN+PReLU 9 128 1 5 8x8x8x128 

11 Concat 
+Conv3d_trans 

10 128 2 5 16x16x16x128 

12 Conv3d+GN+PReLU 10 & 7 128 1 5 16x16x16x128 

13 Conv3d+GN+PReLU 12 128 1 5 16x16x16x128 

14 Conv3d+GN+PReLU 13 128 1 5 16x16x16x128 

15 Concat 
+Conv3d_trans 

14 & 4 64 2 5 32x32x32x64 

16 Conv3d+GN+PReLU 15 64 1 5 32x32x32x64 

17 Conv3d+GN+PReLU 16 64 1 5 32x32x32x64 

18 Conv3d+GN+PReLU 17 64 1 5 32x32x32x64 

19 Concat 
+Conv3d_trans 

18 & 1 32 2 5 64x64x64x32 

20 Conv3d+GN+PReLU 19 32 1 5 64x64x64x32 

21 Conv3d+GN+PReLU 20 32 1 5 64x64x64x32 

22 Conv3d+GN+PReLU 21 32 1 5 64x64x64x32 



23 Conv3d_trans 22 16 2 5 128x128x128x16 

24 Conv3d+GN+PReLU 23 8 2 5 64x64x64x8 

25 Conv3d 24 1 1 5 64x64x64x1 

Total number of parameters: 51,119,889 
  



Supplementary Figure 1 

Supplementary Figure 1. Correlation coefficient for the input maps of the testing set 
before (blue) and after (orange) the treatment with DeepEMhancer compared against 
LocScale processed maps. 

  



Supplementary Note 1: Visual inspection of testing maps 

EMD-7055  
The EMD-70551 is a medium resolution volume of the NAIP5-NLRC4-flagellin 
inflammasome. For the purposes of this article, the main interesting aspect of this 
volume is the apparent poor performance of DeepEMhancer according to Main Text 
Figure 1. One of the reasons behind this behaviour is the fact that a mask was applied 
to only three subunits at the last stages of the refinement process. As a result, the 
volume contains signal for both masked and unmasked subunits although their 
intensity levels vary severely. Consequently, our neural network has tried to restore 
both the originally masked and unmasked regions, and thus, the results are not as 
good as in the other cases. However, when the volume is carefully pre-processed in 
order to remove those unmasked subunits while preserving the normalization 
constraints, non-negligible improvements were observed. Secondly, another important 
reason for the poor measured metrics is the fact that the atomic model (PDB 6b5b) was 
obtained by means of rigid body fitting of an homology model instead of being traced, 
thus, the agreement between the atomic model and the density map is far from being 
perfect. As a result, the resolution estimates computed using the atomic model as 
reference are not too accurate. 
Supplementary Figure 2 shows the overall aspect of the post-processed volume 
compared to the raw and the B-factor-sharpened ones. As can be appreciated in 
Supplementary Figure 2 panel A, the map produced by DeepEMhancer is much 
cleaner than the B-factor processed map. More importantly, although the level of detail 
in the core of the protein is similar, in the outer part of the protein, the B-factor 
sharpened map presents broken densities that look continuous in the map obtained 
with DeepEMhancer, thus facilitating the map interpretation.  

Supplementary Figure 2 

 

 
Supplementary Figure 2. DeepEMhancer post-processed volume for EMD-7055.  A, 
overview of the raw data map, the post-processed map and the B-factor corrected 
map. B, zoom-in of a region containing the loop Q514-S533, which looks cleaner and 
better resolved in the DeepEMhancer post-processed map compared to the raw data 
and sharpened maps.  



Supplementary Note 2: Map local quality impact on 
performance 

In order to study how the local quality of the maps impacts the performance of 

DeepEMhancer, we have studied the local quality of the post-processed maps as a 

function of the local quality of the raw maps. Among all possible quality metrics that we 

could have computed, we used the local correlation between the post-processed map 

and the atomic model and between the raw map and the atomic model using a sliding 

window approach. Local resolution was discarded as a quality metric due to the wide 

variety of values found within the testing set. Local correlation was computed using a 

sliding window approach of 7x7x7 (or 5x5x5). 

Supplementary Figure 3 displays the distribution of such correlation values for all maps 

included in the testing set. The maps were post-processed with LocScale (blue), 

DeepEMhancer (yellow) and with global B-factor correction as done in their 

publications (labelled as Published, red). As it is shown in Supplementary Figure 3, the 

three approaches tend to produce results of similar quality for high-quality input regions 

(correlation greater than 0.6). As expected, the quality of the post-processed regions 

decreases as the quality of the input data does, although such reduction is more 

pronounced for the global B-factor correction than for the other approaches, that seem 

comparable for the mid-quality range (correlation between 0.3 and 0.6). Finally, the 

quality of the post-processed maps is quite low for the correlation range between 0.1 

and 0.3, being LocScale post-processed regions substantially better. In light of these 

results, we can state that the results produced by DeepEMhancer are more similar to 

the results produced by LocScale than the ones produced by global B-factor correction, 

and thus, they are better suited for maps of heterogeneous quality. 

  



Supplementary Figure 3 

 

 
Supplementary Figure 3. Sliding window correlation between the post-processed 
maps and the reference (y-axis) and between the raw map and the reference (x-axis) 
using a window size of 5 (top) and 7 (bottom) voxels. Published maps were post-
processed using global B-factor correction. Boxes enclose values between the first and 
third quartile (Q1 and Q3, lower and upper limit respectively). Median values are 
depicted as the horizontal lines within the boxes. Whiskers enclose values between Q1 
- 1.5(Q3-Q1) and Q3 + 1.5(Q3-Q1).  



Supplementary Note 3: FSC curves of the studied maps 

 

This section includes the FSC curves of the post-processed maps computed against 

the reference map derived from the atomic model for the three maps that were 

presented in detail in the main text: EMD-7099, EMD-4997, and EMD-30178 

(Supplementary Figures 4-6). Post-processed algorithms used were LocalDeblur, 

LocScale, AutoSharpen and DeepEMhancer. Please notice that LocalDeblur results 

are making use of the atomic model information for the masks calculation and that 

LocalScale makes use of such information in a direct manner. Consequently, their 

results are expected to be among the best. Nevertheless, DeepEMhancer tends to 

produce results that are similar to the training targets (LocScale-Masked), being of 

especial quality for the EMD-7099 and EMD-30178 cases.  

One particular caveat that can seem confusing in our plots is the bounce that the 

curves of LocScale-Masked, DeepEMhancer and to a lesser degree, LocalDeblur 

experiment. Such bounces are caused by the tight mask employed being derived from 

the atomic model used as reference (see Supplementary Figure 7 and 8). Concisely, 

the fact that the maps obtained from the atomic models introduce high frequency 

components due to the nature of the atomic basis functions. Masking the maps equally 

introduces high frequency components due to the convolution of the Fourier transform 

of the map with the Fourier transform of the binary mask (see Supplementary Figure 9). 

As a consequence, the two maps present the same kind of behaviour at high frequency 

thus the correlation causing the bounces in the FSC. However, we want to highlight 

that those bounces, that occur at FSC values <0.3, are not relevant for the comparison 

against the atomic model, which should be done at threshold 0.54. Nevertheless, if the 

bounces are desired to be removed, phase randomization could be applied to the post-

processed map5.  



Supplementary Figures 4-9 

 

Supplementary Figure 4. FSC curves for the maps post-processed with AutoSharpen 
(blue), DeepEMhancer (green), masked LocScale (purple) and LocalDeblur (magenta) 
for the EMD-4997. FSC curves were computed using as reference the map derived 
from the atomic model. 

 
Supplementary Figure 5. FSC curves for the maps post-processed with AutoSharpen 
(blue), DeepEMhancer (green), masked LocScale (purple) and LocalDeblur (magenta) 
for the EMD-7099. FSC curves were computed using as reference the map derived 
from the atomic model. 



 
Supplementary Figure 6. FSC curves for the maps post-processed with AutoSharpen 
(blue), DeepEMhancer (green), masked LocScale (purple) and LocalDeblur (magenta) 
for the EMD-30178. FSC curves were computed using as reference the map derived 
from the atomic model. 
 

  

Supplementary Figure 7. FSC curves for the maps post-processed with LocScale for 
the EMD-4997 not using (golden) the training tight mask and using masks with different 
degrees of tightness (blue, green, purple and magenta sorted by increasing tightness). 
FSC curves were computed using as reference the map derived from the atomic 
model. The degree of tightness is measured as the relative threshold used for mask 
binarization (e.g., LocScale-Masked 0.01 is computed using the binary mask obtained 
using as threshold the percentile 1%) for the maps post-processed with LocScale for 
the EMD-4997 using (blue) and not using (green) the training tight mask. FSC curves 
were computed using as reference the map derived from the atomic model. 



 

 

Supplementary Figure 8. FSC curves for the maps post-processed with LocScale for 
the EMD-4997 (top) and EMD-7099 (bottom) not using (magenta) the training tight mask 
and using the training mask (blue) and the train mask filtered (purple) or dilated (green). 
FSC curves were computed using as reference the map derived from the atomic model. 



 

Supplementary Figure 9. Maps difference for EMD-4997 between DeepEMhancer and 
low-pass filtered DeepEMhancer (A), atomic model and filtered atomic model (B), 
LocScale-Masked and filtered LocScale Masked (C) and experimental map and filtered 
experimental map (D). Border induced artifacts can be observed in panels A-C. 

  



Supplementary Note 4: Target selection impact in model 
performance 

 
DeepEMhancer has been originally trained using as targets tightly masked volumes 
that were sharpened with LocScale. We also tried to train another version using as 
targets simulated maps derived directly from the atomic models. Although the latter 
option seemed to provide more accurate targets, what we found was that our 
implementation was not able to learn in detail how to reproduce such targets. As a 
consequence, the overall performance of DeepEMhancer trained using atomic models 
was inferior to the one trained on post-processed maps. Serve as examples the slices 
shown in Supplementary Figures 10-12 that illustrate how the results obtained with 
simulated targets look blurrier than the ones trained on post-processed maps both in 
training (C) and validation sets (A, B), which indicates severe underfitting. 
Learning curves (Supplementary Figure 13) also indicate that DeepEMhancer was not 
able to accurately reproduce the atomic models targets since the loss function quickly 
plateaus after a small reduction. In light of these evidences, as we are using the same 
inputs and models and the only difference between the experiments is the selected 
targets, we have shown that, at least for our approach, learning to reproduce atomic 
model targets is more difficult than post-processed maps, leading to poorer results 
under our available computational resources and dataset. 

Figure 10 

 LocScale 

 PDB 
Supplementary Figure 10. Central slice of a 64x64x64 cube from the validation set 
entry EMD-6847 processed by DeepEMhancer when trained on masked LocScale 
targets (upper row) and simulated maps derived from PDB (lower row). vol: input 
volume; target: reference volume to be reproduced; pred: volume produced by 
DeepEMhancer. 
 
 
 



Figures 11-13 

 

LocScale 

PDB 
Supplementary Figure 11. Central slice of a 64x64x64 cube from the validation set 
entry EMD-9112 processed by DeepEMhancer when trained on masked LocScale 
targets (upper row) and simulated maps derived from PDB (lower row). vol: input 
volume; target: reference volume to be reproduced; pred: volume produced by 
DeepEMhancer. 

LocScale 

PDB 
Supplementary Figure 12. Central slice of a 64x64x64 cube from the training set entry 
EMD-20986 processed by DeepEMhancer when trained on masked LocScale targets 



(upper row) and simulated maps derived from PDB (lower row). vol: input volume; 
target: reference volume to be reproduced; pred: volume produced by DeepEMhancer. 
 

 
Supplementary Figure 13. Learning curves for DeepEMhancer using as targets 
masked LocScale post-processed volumes (blue and orange) and simulated from 
atomic models volumes (red and green). Both subplots differ only on the scale of the y-
axis.  



Supplementary Note 5: Dealing with post-translational 
modifications 

 

Cryo-EM maps tend to exhibit heterogeneous local quality, leading to poorly defined 

regions in many macromolecules and consequently, unsolved regions in atomic 

models. This is especially true for the post-translational modifications that many 

residues may exhibit. Consequently, most atomic models do not include them (or only 

partially). Since we are making use of atomic models in the learning process, it is 

expected that our method will not deal well with such modifications. Indeed, we have 

realized that apart from a few glycans, little other examples were present in the training 

set. As a consequence, we have recorded a few successful examples in which glycans 

become more interpretable after DeepEMhancer. For instance, Supplementary Figure 

14 shows one of such examples belonging to EMD-0282. Another successful instance 

can be found in Melero et al6. 

On the contrary when applied to other types of modifications, worse results are 

expected. However, since the training set contained also ligands, which are more 

diverse than residues, we expect that the network will not mask out the densities 

corresponding to the modifications providing their intensity is strong enough. Thus, 

serve as an example the EMD-9374 that contains the modified residue CRO ({2-

[(1R,2R)-1-amino-2-hydroxypropyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-dihydro-1H-

imidazol-1-yl}acetic acid). As displayed in the Supplementary Figure 15, the density 

corresponding to this modified residue looks shorter in the DeepEMhancer map, and 

although it was not totally masked out, it is better represented in the original map. 

Despite this map following the trend we expected, we cannot ensure that it will be the 

case for any possible map and as a consequence, we recommend the users to 

proceed with caution in the regions they expect to find post-translational modification. 

Hopefully, this limitation will be reduced version after version of the program as the 

number of atomic models including post-translational modifications will increase in the 

future, when we will be able to retrain our model in a more representative dataset.  



Supplementary Figures 14 and 15 

 

 

 
Supplementary Figure 14. Published map (bottom) and DeepEMhancer map (top) for 
the EMD-0282 centred at one NAG glycan. 
 



 

Supplementary Figure 15. Published map (bottom) and DeepEMhancer map (top) for 
the EMD-9374 centered at the CRO modified residue.  



Supplementary Note 6: Training targets generation 
workflow 

Atomic models associated with each EMD entry were downloaded from the PDB 
database. Then, as required by LocScale2, we ruled out all entries which contained 
non-refined atomic B-factors. For each atomic model that survived atomic B-factor 
filtering, we computed continuous masks normalizing the simulated volumes that were 
produced with the e2pdb2mrc program from the EMAN-2 suite3 using default 
parameters and the reported resolution. Percentile 95 was selected as threshold in 
order to obtain binary masks. Such tight masks were required during training in order to 
improve convergence since unmasked targets (that would require the network to learn 
how to predict random noise in order to get 0 loss) were producing worse results. 
Atomic models were also supplied as input, together with the average map computed 
from the half-maps, to the prepare_locscale_input.py program (provided in LocScale 
repository), that generated the corrected and reference volume required for LocScale 
execution. LocScale was run using as window size the recommended value of 7 * 
average_map_resolution / pixel_size. Finally, the computed output was masked using 
the aforementioned mask. As a result, we obtained as training targets LocScale post-
processed and masked versions of the input volumes. 

Supplementary Figure 16 

 

 

Supplementary Figure 16. Workflow employed to generate training data for 
DeepEMhancer neural network. 
 

  



Supplementary Note 7: List of EMDB entries used in this 
work 

Train 
 
EMD-0026 
EMD-0038 
EMD-0071 
EMD-0093 
EMD-0094 
EMD-0132 
EMD-0234 
EMD-0244 
EMD-0408 
EMD-0415 
EMD-4288 
EMD-0452 
EMD-0490 
EMD-0500 
EMD-0501 
EMD-0552 
EMD-0567 
EMD-0589 
EMD-0592 
EMD-0665 
EMD-0776 
EMD-10049 
EMD-10069 
EMD-10100 
EMD-10105 
EMD-10106 
EMD-10134 
EMD-10273 
EMD-10279 
EMD-10324 
EMD-10333 
EMD-10418 
EMD-10534 
EMD-10585 
EMD-10595 
EMD-10617 
EMD-20145 
EMD-20146 
EMD-20189 
EMD-20234 
EMD-20249 
EMD-20254 
EMD-20259 
EMD-20270 
EMD-20271 
EMD-20352 
EMD-20521 
EMD-20986 
EMD-21012 



EMD-21107 
EMD-21144 
EMD-21391 
EMD-3661 
EMD-3662 
EMD-3802 
EMD-3885 
EMD-3908 
EMD-4032 
EMD-4073 
EMD-4148 
EMD-4162 
EMD-4192 
EMD-4214 
EMD-4241 
EMD-4272 
EMD-4401 
EMD-4404 
EMD-4429 
EMD-4588 
EMD-4589 
EMD-4593 
EMD-4728 
EMD-4746 
EMD-4748 
EMD-4759 
EMD-4888 
EMD-4889 
EMD-4890 
EMD-4907 
EMD-4917 
EMD-4918 
EMD-4941 
EMD-4983 
EMD-6479 
EMD-7009 
EMD-7041 
EMD-7065 
EMD-7090 
EMD-7334 
EMD-7335 
EMD-7770 
EMD-7869 
EMD-8437 
EMD-8438 
EMD-8911 
EMD-8958 
EMD-8960 
EMD-9111 
EMD-9258 
EMD-9259 
EMD-9891 
EMD-9931 
EMD-9934 
EMD-9935 



EMD-9939 
EMD-9941 
EMD-9695 
 

Validation 
 

EMD-0193 
EMD-0257 
EMD-0264 
EMD-0499 
EMD-10401 
EMD-20133 
EMD-20449 
EMD-20508 
EMD-20849 
EMD-4611 
EMD-4646 
EMD-4733 
EMD-4789 
EMD-6847 
EMD-7133 
EMD-7882 
EMD-8069 
EMD-9112 
EMD-9298 
EMD-9374 
EMD-9664 
 

Test 
 

EMD-0282 
EMD-0311 
EMD-0520 
EMD-0560 
EMD-10365 
EMD-20220 
EMD-20226 
EMD-3545 
EMD-4141 
EMD-4531 
EMD-4571 
EMD-4997 
EMD-5623 
EMD-6952 
EMD-7055 
EMD-7099 
EMD-7127 
EMD-7573 
EMD-8702 
EMD-9610  
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