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Abstract

Computational approaches for predicting protein-protein interfaces are extremely useful for understanding
and modelling the quaternary structure of protein assemblies. In particular, partner-specific binding site
prediction methods allow delineating the specific residues that compose the interface of protein com-
plexes. In recent years, new machine learning and other algorithmic approaches have been proposed
to solve this problem. However, little effort has been made in finding better training datasets to improve
the performance of these methods. With the aim of vindicating the importance of the training set compi-
lation procedure, in this work we present BIPSPI+, a new version of our original server trained on carefully
curated datasets that outperforms our original predictor. We show how prediction performance can be
improved by selecting specific datasets that better describe particular types of protein interactions and
interfaces (e.g. homo/hetero). In addition, our upgraded web server offers a new set of functionalities such
as the sequence-structure prediction mode, hetero- or homo-complex specialization and the guided dock-
ing tool that allows to compute 3D quaternary structure poses using the predicted interfaces. BIPSPI+ is
freely available at https://bipspi.cnb.csic.es.
� 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).

Introduction

Protein-protein interactions (PPIs) play a pivotal
role in most biological processes and thus,
understanding how PPIs occur is an important
step towards elucidating how these processes
take place in cells and organisms. Studying the
biochemical underpinnings behind PPIs can be
better approached from a structural perspective.

Experimental techniques such as X-ray
crystallography, nuclear magnetic resonance or
cryo-electron microscopy are capable of solving
the 3D structure of PPIs, in many cases, reaching
atomic resolutions. However, these techniques are
expensive, time-consuming, and they cannot keep
pace with the amount of interactomic data that
every year is generated. As a result, many
computational approaches have been developed

Web Server

0022-2836/� 2022 The Authors. Published by Elsevier Ltd.This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/). Journal of Molecular Biology 434 (2022) 167556

mailto:ruben.sanchez-garcia@stats.ox.ac.uk
mailto:ruben.sanchez-garcia@stats.ox.ac.uk
mailto:carazo@cnb.csic.es
https://twitter.com/cossStock
https://twitter.com/JM_Carazo
https://doi.org/10.1016/j.jmb.2022.167556
https://bipspi.cnb.csic.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jmb.2022.167556


to complement experimental methods and provide
PPIs details at different levels of granularity.
In recent years, many computational methods

have been designed to characterize PPIs when
different levels of molecular information are
available. For instance, protein docking methods
can predict the full 3D structure of the PPI
conformation when structural data of the
interacting participants are available.1–5 When pro-
tein atomic models are not available, new deep
learning methods have been highly successful pre-
dicting the tertiary structure of proteins.6,7 However
quaternary structure prediction is more challenging
and although initial steps have been conducted in
that direction, they are computationally demanding
and still require from manual intervention.8 As an
alternative, lower granularity predictions can be
computed fully automatically with less computa-
tional requirements. For instance, some methods
can predict what protein regions or amino acids
pairs might be involved in the interaction using
sequence information.9–12 Another family of
approaches predicts protein binding sites using
sequence or structural information.13–18 One of
such approaches is partner-specific binding site
prediction.19–22 Contrary to conventional binding
site prediction (non-partner specific), which aims
to predict all the residues of a given protein that par-
ticipate in any interaction, partner-specific methods
seek to identify those residues that are involved in a
particular PPI. Since proteins tend to interact with
many distinct partners23 and the involved interfaces
can be quite different, partner-specificity is a conve-
nient feature when studying a particular PPI.
Partner-specific predictors were firstly proposed

by Ahmad and Mizaguchi19 and, since then, many
more have been developed.20,24–30 Most of these
methods aim to predict pairs of interacting residues,
each belonging to a different protein partner, using
machine learning algorithms trained over datasets
derived from atomic models of protein complexes.
Although several algorithmic approaches have
been proposed, little emphasis has been made on
the dataset used for training and developing these
approaches. Thus, most, and especially the
recently published partner-specific predictors, have
been limited to small datasets, mainly the different
versions of the Protein-Protein Docking Bench-
mark.16,19,20,25 Indeed, to the best of our knowl-
edge, only the works of Meyer et al. and
Townshend et al. tried to build datasets for this par-
ticular problem, yet their impact on performance
was not analysed in detail.24,27 More importantly,
only a single strategy for dataset compilation was
considered.
In this work, we present BIPSPI+, a new version

of our partner-specific binding site predictor that
illustrates how a carefully selected training dataset
can severely improve machine learning-based
methods performance. BIPSPI+, as the original
version,21 can be employed to predict the binding

sites of two interacting proteins given either their
sequences or their structure. The new version
offers a novel mode that can be used in those cases
in which only the structure of one of the partners is
known, exhibiting better performance than the
sequence-only version. Additionally, the new
approachwas trained independently to predict bind-
ing sites for hetero- and homo-dimer cases. Overall,
BIPSPI+ outperforms the original version in all stud-
ied datasets irrespectively of the input type, being
especially worth noting the improvements for
homo-complexes predictions.
In addition to offering better performance, the

BIPSPI+ web server has been upgraded to
include a new guided docking option that employs
PatchDock2 on BIPSPI+ predictions used as
restraints. As a result, BIPSPI+ can now provide
both binding site prediction and atomic models for
the PPIs. To our knowledge, our method and the
Ahmad and Mizaguchi one are the only partner-
specific predictors available through web servers,
and only ours allows the users to directly perform
guided docking from the predictions.
BIPSPI+ web app is publicly available at https://

bipspi.cnb.csic.es and as a stand-alone tool at
https://github.com/rsanchezgarc/BIPSPI.
Methods
BIPSPI is a machine learning-based partner-

specific binding site predictor trained on
structurally solved protein assemblies deposited in
the PDB.31,32 The training set consists of interacting
and non-interacting residue pairs obtained from the
3D structure of protein complexes using a distance
threshold criterion. BIPSPI+ is an upgraded version
of the BIPSPI v1 web platform that implements
three new major features: a new input mode (se-
quence & structure), complex-type stratification
(homo-complex vs hetero-complex mode), and an
optional step of guided Protein-Protein Docking
(PP-docking). The following section briefly presents
these new features, summarized in Figure 1. For a
complete description of the method, we refer the
reader to the Supplementary Material section 1.

Input: sequence-sequence, structure-structure
and sequence-structure modes

BIPSPI v1 could be employed to predict the
interacting residues of two protein structures or
two sequences. BIPSPI+ has been redesigned to
work also for cases in which only the structure of
one of the interacting partners is known. This new
input mode, which we have termed as the
“sequence-structure mode”, employs sequence-
only features to describe the sequence amino
acids of the partner with no atomic model whereas
residues of the other partner of the complex are
described employing all features as in structure-
structure mode. Consequently, the result page for
this mode (Figure 1(j)) is a hybrid of the structure-
structure (Figure 1(i)) and the sequence-sequence
mode (Figure 1(h)) viewers, consisting of a 3D-

R. Sanchez-Garcia, J.R. Macias, C.O.S. Sorzano, et al. Journal of Molecular Biology 434 (2022) 167556

2

https://bipspi.cnb.csic.es
https://bipspi.cnb.csic.es
https://github.com/rsanchezgarc/BIPSPI


viewer for the partner with structure and a sequence
panel for the partner with unknown structure.

Guided docking

BIPSPI+ web platform has been upgraded to
perform an optional step of guided protein–protein
docking using PatchDock2. Thus, after computing
binding site predictions for protein structures, the
user can select, using a threshold slider and a
table with checkboxes, which are the residues that
will be used as restraints for guided docking.
Then, PatchDock is executed with default
parameters. After execution, a results page allows
for interactive visualization of the highest-score
predicted poses as well as downloading the
atomic models and raw files generated during the
docking step (see Figure 1(k–l)).

Homo-complexes and hetero-complexes
datasets

BIPSPI+ was trained on two different datasets,
one dataset consisting only of hetero-complexes
(HEMt) and another dataset containing only of
homo-complexes (HODt), both being more than
one order of magnitude larger than the original

BIPSPI v1 training dataset. Supplementary
Material section 1.1, 1.2 and 2.5 describe these
and other studied datasets. Similarly, the
performance of our method was also assessed
against two testing datasets representing the two
possible types of complexes. Particularly, we
employed the Protein-Protein Docking Benchmark
v5 (Bv5), composed of 230 hetero-complexes and
a custom evaluation benchmark, which we termed
HOe (Homo-complexes evaluation), composed of
223 homodimers. Since the HOe dataset contains
only complexes in bound state, performance could
be overestimated when using structural features,
but since comparison against BIPSPI v1 was also
carried out on this dataset, improvement
conclusions could be considered robust.
Moreover, it is important to notice that the model
trained on sequence-based features only is not
affected by this problem and thus, its performance
estimation is reliable.

Results

BIPSPI+ usage

BIPSPI+ can be employed to obtain partner-
specific binding site predictions for protein

Figure 1. BIPSPI+ execution options. The protein complex to be predicted can be either a homo-complex (a) or a
hetero-complex (b). Depending on the availability of atomic models, BIPSPI+ can be executed under different modes.
The sequence-only mode is used if none of the structures is known (c and e), results being displayed in the Seq-Seq
viewer (h). For the case of heterocomplexes in which only one of the structures is available (g), the sequence vs
structure mode is used and the results are displayed in the Seq-Struct viewer (j). Finally, if the structure of the
monomer is either known for homo-complexes (d) or the structure of the two interacting partners is known for hetero-
complexes (f), the full structure mode is used instead. In this case, results are displayed in the Struct-Struct viewer (i),
in which the structure of the two interacting partners, or two copies of the monomer, are shown. From this viewer, it is
possible to execute guided docking, selecting the subset of residues to be employed as constraints (k). Docking
results are displayed in the Docking viewer (l).
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complexes. First, the user needs to select the
oligomerization state of the PPI as homo-complex
or hetero-complex (Figure 1(a and b),
Supplementary Figure 1). Then, the user needs to
provide either a sequence or an atomic model for
the monomer in the homo-complex case (Figure 1
(c and d), Supplementary Figure 1) or for both
interacting partner in the hetero-complex case
(Figure 1(e–g), Supplementary Figure 1). The 5
different oligomerization types and input types
combinations (homo-sequence, homo-structure,
hetero-sequence-sequence, hetero-sequence-
structure, and hetero-structure-structure) are
processed by 5 different models trained on the
same types of data as the input.
After calculations, binding site predictions are

displayed in one of the three different types of
viewers depending on the input type (Figure 1(h–
j)). In each of the viewers, the predicted interface
residues with a score greater than the selected
threshold are highlighted on the input sequences
or structures (Figure 1(h–j)). Thresholds can be
changed using a slider that displays the expected
precision for the predictions given the current
value of the threshold.21 For easiness of visualiza-
tion, homo-complexes results are displayed using
the same graphical interface in which two exact
copies of the input monomer and the predictions
are displayed as independent partners.
Finally, for the case of homo-complexes with

structure or heterocomplexes with structures for
both partners, it is possible to launch a guided
docking job using as restraints the binding site
residues predicted by BIPSPI at different
thresholds (Figure 1(k), Supplementary Figure 3)
or a custom subset of them, by checking the
ignore checkbox of some of the residues with
scores above the selected threshold. Once the
residues to be used as restraints are selected, the
docking calculations are carried out, and the
highest score docking results are displayed in the
Docking viewer, in which the user can visually
inspect or download the proposed models
(Figure 1(l), Supplementary Figure 4).

Better training data enhances performance

Since the performance of machine learning
methods is severely influenced by the amounts
and quality of the available data, it seems
reasonable to believe that partner-specific binding
site prediction can also benefit from this strategy.
However, obtaining PPI complexes for a training
dataset is challenging. First of all, the total number
of solved complexes represents only a small
fraction of the interactome. For instance, in
humans, less than 10% of the binary interactions
have been structurally solved.33 Second, there are
very few examples for which we know the structure
of both the bound and unbound structure, most of
them contained in the Bv5. While the former prob-
lem cannot be directly tackled until more experi-

mental data is obtained, the importance of the
latter could be not so critical for methods like BIP-
SPI, which integrates both structural and
sequence-based features.21 Consequently, for the
second version of our method, we constructed lar-
ger training datasets that, for the majority of the
complexes, do not contain the unbound version of
the interacting partners. Despite this limitation, as
it is shown in Figure 2 blue and red curves and
described in Supplementary Material section 2.2,
the inclusion of more bound complexes in the data-
set was able to significantly improve results over
BIPSPI v1. Thus, for the Bv5 using structural infor-
mation, we measured a mean ROC AUC for
residue-residue pairs interactions of 0.927 (median
ROC AUC of 0.951) and a ROC AUC of 0.848 for
binding site prediction. The new version increased
both metrics with respect to our original method
(0.905 and 0.823, respectively), achieving state-
of-the-art performance (see Supplementary
Table 5). For a detailed description of the evaluation
approach see Supplementary Material section 1.3.
In addition to the size of the dataset, we also

studied some other parameters that affect the
quality of the data. For instance, we showed (see
Supplementary Material section 2.3 and
Supplementary Figure 8) that the inclusion of
multimers, despite multiple caveats such as
automatic receptor/ligand definition, enhances the
performance of the predictions for predicting both
dimers and multimers. Other studied parameters
are discussed in Supplementary Material section
2.4–5.
Another important challenge when increasing the

size of the dataset is the fact that most of the protein
complexes contained in the PDB correspond to
homo-complexes while the standard testing
dataset, the Bv5, only contains hetero-complexes.
Although the physics behind homo-complexes is
the same that in hetero-complexes, statistical
analysis show that physicochemical features of
hetero- and homo-complex interfaces differ in
many aspects such as contact preference,
composition or hydrophobicity.11 Consequently,
some difference in performance could be expected
depending on the oligomerization state. However,
when we first studied the impact of the oligomeriza-
tion type, the observed difference in performance
for BIPSPI v1 was beyond our expectations, with
a difference in MCC of 0.15 (see Supplementary
Table 1) and important precision drops in the high-
threshold region (high precision and low recall),
the most interesting one for experimental validation
(see Figure 2 left vs right panel). For BIPSPI+ we
included homo-complexes in the training dataset
using two strategies: first, training using two differ-
ent datasets, one for each complex type (HEMt
and HODt) and second, combining HEMt and HODt
into one single training dataset (HEHODt). Supple-
mentary Table 1 and Supplementary Figures 5–6
show that the first strategy offers comparable or bet-
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ter results for all the analysed benchmarks, sug-
gesting that the information extracted by our
method from one oligomerization state is of little
value, if not harmful for the other type. Conse-
quently, in BIPSPI+, the users are required to select
the oligomerization state and the two trained mod-
els are applied accordingly.

Sequence-structure mode

Partner-specific binding site predictors require
sequence information and/or structural data for
both interacting partners as input. So far, existing
methods only consider the symmetric cases in
which either the two structures or the two
sequences are present. However, it is quite
common that only the structure of one of the
interacting protein partners is available (e.g.,
modelling low-resolution regions in cryo-EM maps,
synthetic designs, etc.). Given the fact that
structural data allows for better prediction
performance, the common alternative of
approaching those cases as if only the sequences
were available is not compelling. In order to
overcome this shortcoming, we have developed
for BIPSPI+ the sequence-structure (seq-struct)
mode.
We evaluated the performance of the seq-struct

mode using as evaluation benchmark Bv5 and we
studied how the new mode performed on both the
input provided as sequence and the one provided
as structure (see Supplementary Material
Table 3). As expected, the quality of the
predictions for the seq-struct mode, with an MCC
value of 0.331, lies between the performance of
the model that only employs sequences (MCC of
0.311) and the model that employs structures from

the two partners (MCC of 0.403). For more
details, see Supplementary Results section 2.6).
Figure 3(a) illustrates the benefits of this new

execution mode on 2OZA, one of the protein
complexes of the Bv5 for which we computed the
predictions providing as input either the two
sequences of chains A and B (X in unbound) or
the sequence of the chain B and the structure of
chain A. From direct inspection, it could be noticed
that, when the structure of the studied protein
partner is employed, the quality of the predictions
largely improves. Thus, for chain A, the accuracy
at threshold 0.5 is 0.60 when only the sequences
are employed. However, when the structure of
chain A is employed, accuracy gets boosted to 0.89.

Guided docking

While binding site predictions are invaluable
sources of hypothesis for multiple experimental
scenarios (e.g. mutagenesis experiments), when
possible, 3D atomic models of the protein
complexes offer a much richer description of PPIs.
BIPSPI predictions have been successfully used
as guided PP-docking constraints,34–36 improving
the quality of 3D models. However, guided docking
pipelines tend to be complicated, involving several
computational steps and requiring a good under-
standing of the different tools.37

With the aim of facilitating the generation of 3D
models, we have included a simple guided
docking pipeline based on PatchDock, a rigid
body docking algorithm based on geometric
hashing. Our pipeline simply requires the users to
select a threshold for the binding site predictions
so that the selected residues will be provided to
PatchDock as binding site restraints, limiting the

Figure 2. BIPSPI v1 and BIPSPI+ performance comparison. BIPSPI v1(blue) and BIPSPI+ (red) precision-recall
curves evaluated on hetero-complexes (Bv5, left) and homo-complexes (HOe, right) using as input either the
sequences of the interacting partners (dashed lines) or their structures (solid lines).
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search space to those poses compatible with the
selected restraints. We acknowledge that our
pipeline is simple and, consequently, better results
could be easily obtained using more complicated
pipelines and/or algorithms. However, our
intention was to develop a user-friendly solution to
retrieve fast initial structural models that could
help the users to understand the binding site
predictions.
Despite our pipeline’s simplicity, accurate models

can be obtained in many cases, providing
conformational changes are not severe. Thus,
Figure 3(b), illustrates an example of a 3D model
for the protein complex Subtilisin Carlsberg-
OMTKY3 Complex (PDB code 1YU6,38 chains A
and C respectively) computed using the BIPSPI+
web application. From direct inspection of the fig-
ure, it can be noticed that binding site predictions
for this complex were of high quality, with an impor-
tant part of the binding site accurately predicted.
These accurate predictions ultimately allowed the
docking algorithm to propose a high-ranked solution
(3rd) of medium quality (iRMS 1.5 �A,
DockQ = 0.6439) in a totally automatic fashion.

Conclusion

Partner-specific binding site predictions have
proven to be a useful resource in several contexts,
especially for guiding protein-protein docking.
Consequently, new approaches have been
developed in recent times. However, while most of
the new methods make special emphasis on
algorithmic aspects, the crucial impact that
datasets have on performance was not deeply
studied. With the aim of addressing this issue, we
developed BIPSPI+, an improved version of our
original method, trained on carefully selected

datasets of complexes, that exhibit enhanced
performance. While BIPSPI+ outperforms BIPSPI
v1 in all the evaluated benchmarks, it is especially
for the case of homo-complexes when
performance is largely boosted. In addition to
enhanced performance, the BIPSPI+ web
application, freely available at https://bipspi.cnb.
csic.es, has been updated to easily deal with
homo-complexes and also for hetero-complexes in
which only one of the interacting partners is
structurally solved. Finally, the BIPSPI+ web
application offers an optional step of guided
protein-protein docking that can provide users with
complete structural models of the protein
interaction.

Data availability

Precomputed models and results are available at
https://zenodo.org/record/5574182#.
YYhiOrvLfmH. BIPSPI+ web server is available at
https://bipspi.cnb.csic.es/ the predictor code is
available at https://github.com/rsanchezgarc/
BIPSPI.
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Figure 3. BIPSPI+ use cases. a) Sequence-structure mode improvement example. Sequence-only predictions
(blue asterisks) and sequence-structure (green asterisks) predictions on structurally solved residues for Bv5 unbound
complex 20ZA chain X (B in bound). Residues in contact with chain A are marked in red. Predictions above 0.5 score
are marked with stars in blue when using only sequence information for both chain A and X and green when the
structure of chain X is employed alongside the sequence of chain A. b) PatchDock docking model for the Subtilisin
Carlsberg-OMTKY3 Complex (PDB code 1YU6, chains A and C respectively) obtained from BIPSPI+ web server. The
crystallographic structures are depicted in grey for Chain A and green for Chain C whereas the docked model is
depicted in purple.
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1. Supplementary Methods 

1.1. Training datasets 
 

The training datasets employed in this work can be broadly classified into three categories: 
only heterocomplexes datasets; only homocomplexes datasets; and a mixture of the previous 
two types. As only heterocomplexes representative, we compiled a new dataset, termed HEDt, 
consisting of 2,401 bound heterodimers collected from the PDB. Additionally, we extended the 
HEDt dataset to include 1,571 hetero-multimers resulting in the HEMt dataset. It is important 
to notice that, contrary to the case of dimers, when multiple chains are included in the atomic 
models, splitting the complex into its ligand and receptor components is not trivial and, in many 
cases, subjective. At the risk of making mistakes (and introducing noise during training but not 
in evaluation), we simply extracted each of the interacting chains together with the other chains 
that are in contact with each of them. In the case of a shared interacting chain, we assign it to 
one of the partners randomly. Similarly, for the homo-complexes dataset, we have collected 
from PDB 1,981 bound homodimers that constitute the HODt dataset. Finally, the HEHODt 
dataset is composed of the heterodimers included in HEDt and the homodimers contained in 
HODt, thus exhibiting a balanced proportion between homo-complexes and heterocomplexes 
(~8:11). 

For the sequence-structure mode, we generate two training instances for each complex, one 
in which the sequence is available for the ligand and the structure for the receptor and another 
in which the roles are reversed. 

1.2. Dataset compilation 
 

All the protein complexes included in this study, except for the ones comprising Bv51, were 
collected from the PDB database according to the following criteria: 1) resolution better than 
3.5 Å; 2) number of residues structurally determined >50%; 3) sequence length of each chain 
>30 residues; and 4) number of interacting residue pairs >10. 



Due to the fact that some protein families are overrepresented in the PDB, using all available 
protein complexes would result in biased datasets and thus, potentially leading to poor 
performance in machine learning models. For this reason, in order to preserve diversity while 
reducing redundancy, we used a combination of pairs of SCOPe families and sequence-based 
clustering as sampling criteria. In particular, we have grouped protein complexes based on 
their SCOPe families, and within each SCOPe pair group, we have further divided it into 
groups according to sequence identity (95% threshold). Then, we have selected as a 
representative for each of the groups the structure with the best resolution. Protein chains 
lacking SCOPe family classification were grouped based only on sequence identity-based 
clusters using a 30% identity threshold. This threshold may be considered as the limit to 
observe 3D structural similarity between proteins and thus, avoids including a large amount of 
structural redundancy from the null class2. Proceeding in this way, we reduce the redundancy 
introduced by highly-populated SCOPe families and non-classified proteins while preserving 
most of its diversity. 

 

We employed the same definition as in BIPSPI, SASnet, and many other previous 
publications. Consequently, a pair of residues is labelled as interacting if the distance between 
any of their heavy atoms is <6.0 Å. Due to symmetry reasons, when training and/or evaluating 
with homo-complexes, we have corrected the list of interacting pairs to include as positive 
pairs those that are not directly in contact in the structures but that are equivalent to others 
that are in contact. For example, given the homodimer A-B and the interacting residue pair 
A:i-B:j, the pair A:i-B:j should also be considered as positive since residues A:j and B:j and A:i 
and B:i are equivalents. Such correction could be also useful for the case of hetero-complexes 
in which one of the partners is a homo-complex, but it was not considered in this work in order 
to simplify comparisons. 

1.3. Evaluation 

 

The performance for Residue-Residue Interaction (RRI) prediction was measured by 
computing the mean Area Under the ROC Curve (mRAUC) as in many other works. Binding 
site prediction performance was evaluated using several metrics, including the Area Under 
the ROC Curve (RAUC), Matthew’s Correlation Coefficient (MCC), True and False Positive 
Rates (TPR, FPR), and Positive Predictive Value (PPV) (see Sanchez-Garcia et al.3 for more 
details). Violin plots displaying the distribution of RRI ROC-AUC and binding site AUC were 
also computed. 

Hetero-complexes predictions were evaluated using the Protein-Protein Docking Benchmark 
v5 (Bv5), a dataset of 230 hetero-complexes for which both the bound and unbound structures 
are available Bv5. Since we are interested in the performance under different oligomerization 
states, we have also computed the same metrics for two subsets of the Bv5: BM90C4, the 
subset of heterodimers contained in Bv5 and Bv5Mul, the subset of multimeric proteins 
contained in Bv5. 

For the case of homo-complexes, we compiled an evaluation benchmark following the same 
principles as in Bv5 except for the fact that all the complexes employed are dimers in bound 
state. This evaluation benchmark, which we termed HOe, is composed of 223 homodimers.  
Notice that HOe comprises only bound complexes and thus, performance using structural 
information could be overestimated. On the contrary, the performance estimations measured 
using sequence-only features are not affected by this caveat. 

For the sequence-structure mode, since we generated two training instances for each 
complex, evaluation is performed also on the two instances, reporting them independently for 
each partner and also as averages when considering the whole complexes. 



The evaluation process consisted of a 10-fold cross-validation approach between testing and 
training set, i.e. the testing set was divided into 10 subsets of equal size and then, for each 
subset a model was trained removing from the training set any protein that shared a SCOPe 
domain with the particular testing subset. This approach guarantees that the training does not 
contain any information on the tested data.  

1.4. Algorithm 

BIPSPI+ employs the same algorithm that BIPSPI v1 uses, including the same features, model 
and hyperparameters. The main differences with respect to the original version are related to 
the different new input types. First, in version 2 we always apply two stacked models (feedback 
model) independently of the input type provided, whereas originally, this strategy was only 
employed for structural input. Second, for the sequence-structure mode, we employ 
sequence-only features for one of the partners and both structural and sequence-only features 
for the other. Last, for homocomplexes prediction, the algorithm is executed with two copies 
of the same monomer as inputs and the final predictions for the pairs are computed averaging 
the predictions for the same.  

In addition to the aforementioned modifications, the procedure to ensure the independence 
between the training and testing set is also different, since now there are more than one 
complex with the same pair of SCOPe families. Consequently, a grouped ten-fold cross-
validation strategy, using as groups pairs of SCOPe families, was used to prevent cross-
contamination. Proteins with no SCOPe defined are assigned to virtual families according to 
sequence clustering at 30% identity. 

1.5. Data augmentation 

We generated simulated conformations, obtained from the atomic models contained in the 
training sets, as a novel type of data augmentation. Particularly, we randomly sampled poses 
from trajectories generated with the “imc” program of the iMod package5, using default 
parameters. This program performs a Monte Carlo simulation guided by Normal Modes 
Analysis on Internal Coordinates and generates plausible trajectories that begin at the atomic 
model provided. Other alternatives such as Molecular Dynamics or Flexible Docking were not 
considered due to computational limitations but could produce similar results. 

1.6. Method comparison 

For comparison with other methods, we employed the SASNet neural network6 as described 
in the original publication and we trained it on the HEMt dataset since SASNet original 
publication reported performance using Bv5 and our best dataset for Bv5 is HEMt. Moreover, 
due to the fact that SASNet was trained on both the Bv5 and DIPs, a custom dataset, a direct 
comparison between DIPs and HEMt can be conducted. 

 

2. Supplementary Results 

2.1. BIPSPI+ Usage 

 



 
Supplementary Figure 1. BIPSPI+ input page. The user needs to select whether the PPI is a homo-
complex or a hetero-complex (red box). Then, for each interacting partner (or for the monomer in the 
case of homo-complexes), the user needs to provide either the sequence or the structure of the protein 
after selecting the input type using the radio buttons (blue box). Structures can be provided (orange 
box) as either “.pdb” files or be automatically downloaded if a PDB id is provided instead. Sequences 
can be provided (green box) as either “.fasta” files or by directly pasting them into textboxes. 

 
 

 
Supplementary Figure 2. BIPSPI+ results page for structure-structure mode. The structures of the two 
interacting partners are displayed in the blue boxes. Residues with scores higher than the threshold are 
displayed in green in the structure and their scores are displayed in tables (pink box). The threshold, 
that represents the expected precision, can be set using the sliders at the top of the tab (red boxes). 



 

Supplementary Figure 3. BIPSPI+ interface for launching guided docking. By default, all residues with 
scores above the threshold will be used as constraints for guided docking. Thresholds can be modified 
using the sliders on top of the structures (red boxes). Residues above the threshold can be excluded 
by ticking their associated checkbox in the tables (blue boxes). Guided docking will be launched as 
soon as the “Dock with PatchDock''7 button (violet box) is pressed. 

 

 
Supplementary Figure 4. Docking viewer displays the top-10 highest score models. The model currently 
displayed in the 3D viewer (blue box) and highlighted in the scores table (green box) can be selected 
in the drop-down list (red box). The displayed model can be individually downloaded (pink box) or jointly 
downloaded with the other solutions (cyan box). 

2.2. BIPSPI+ overall performance analysis 

 
Supplementary Table 1 summarizes the results obtained with BIPSPI+ trained on several 
datasets and evaluated in both Bv5 and HOe. From direct inspection, several conclusions can 
be drawn.  
First, the training datasets proposed in this work significantly outperform original BIPSPI v1 
results. Supplementary Table 2 shows the p-values obtained from multiple statistical tests that 



compare the performance of both versions. Additionally, in Supplementary Figure 7, BIPSPI+ 
exhibits far better performance than BIPSPI v1 when sequences are used as input. In that 
case, the improvements are so important that, for the residue-residue interaction (RRI) 
problem, the first and second quartile in BIPSPI+ approximately matched the second and third 
quartile in BIPSPI v1. More importantly, the improvement in RRI results also translate to an 
important improvement in binding site prediction, in which the BIPSPI+ distribution is shifted 
by ~ 1/4 of the interquartile range. For the case of homocomplexes, independently of whether 
the input is a sequence or a structure, a similar improvement is observed. The differences in 
performance for heterocomplexes using structural features are less striking, but still 
statistically significant in all computed tests (see Supplementary Table 2) and visually 
noticeable. Since for all cases the first quartile is the one that varies more between versions, 
this implies that the worse performing examples tend to be better predicted in our new version, 
although improvements are observed for all the range of values. 
  
Second, the stratification of the training data into homo- or hetero-complexes leads to better 
results, as it can be concluded from the facts that 1) when the opposite type of oligomerisation 
dataset is used for training, results severely worsen, and 2) the performance measured when 
using HEHODt is similar or slightly worse than when using their specific counterparts 
(HEMt/HEDt and HODt, see Supplementary Figure 5 and Supplementary Figure 6). 
Additionally, it can also be concluded that the addition of multimers to the dataset has an 
overall positive effect even when the inputs are two sequences and thus, the concept of 
multimer is not naturally modelled.  
In the following subsections, some particular aspects of the dataset will be studied in more 
detail. 
 
Supplementary Table 1. Ten-fold cross-validation performance evaluated on Bv5 and HOe for several 
training datasets.  

Testset Trainset RRI Binding site prediction 

    mRAUC RAUC MCC PPV TPR FPR 

Input type: Sequence 

Bv5 HODt 0.681 0.654 0.157 0.213 0.415 0.210 

  HEDt 0.844 0.751 0.310 0.380 0.415 0.093 

  HEHODt 0.836 0.750 0.300 0.370 0.409 0.095 

  HEMt 0.868  0.786 0.336 0.380 0.473 0.104 

  Bv5 (BIPSPI v1) 0.802 0.753 0.279 0.300 0.482 0.113 

DOCKGR
OUND4 

HEMt 0.831 0.749 0.285 0.325 0.437 0.113 

 Bv5 (BIPSPI v1) 0.814 0.730 0.261 0.304 0.420 0.121 

HOe HODt 0.758 0.695 0.244 0.340 0.607 0.318 

  HEDt 0.706 0.642 0.171 0.284 0.654 0.445 



  HEHODt 0.760 0.695 0.245 0.363 0.525 0.248 

  HEMt 0.721 0.658 0.191 0.325 0.500 0.280 

  Bv5 (BIPSPI v1) 0.656 0.623 0.145 0.285 0.536 0.362 

Input type: Structure 

Bv5 HODt 0.837 0.742 0.276 0.311 0.471 0.143 

  HEDt 0.917 0.826 0.403 0.432 0.541 0.097 

  HEHODt 0.914 0.824 0.396 0.420 0.543 0.102 

  HEMt 0.927 0.848 0.422 0.438 0.573 0.100 

  Bv5 (BIPSPI v1) 0.905 0.823 0.386 0.391 0.5585 0.089 

HOe HODt 0.898 0.830 0.447 0.512 0.655 0.167 

  HEDt 0.856 0.797 0.391 0.446 0.671 0.224 

  HEHODt 0.889 0.825 0.441 0.485 0.693 0.198 

  HEMt 0.870 0.810 0.415 0.454 0.707 0.229 

  Bv5 (BIPSPI v1) 0.805 0.750 0.322 0.409 0.595 0.231 

Notes: 
Bv5        230 hetero-multimers (including dimers)                 
HOe        223 homodimers 
HEDt    2401 heterodimers  
HEMt   3972 hetero-multimers (HEDt + Higher order)   
HODt    1981 homodimers 
HEHODt  4382 heterodimers + homodimers    (HEDt + HODt)  
 

Metrics: 
                 mRAUC: mean ROC AUC 
                RAUC: ROC AUC, all predictions pooled together 
                MCC: Matthews correlation coefficient 
                PPV: Positive Predictive Value 
                TPR: True Positive Rate 
                FPR: False Positive Rate 

 
 
Supplementary Table 2. Statistical tests results comparing BIPSPI v1 and BIPSPI+ ROC-AUCs per 
complex for the residue-residue interaction (RRI) and the binding site prediction problem. 

 Heterocomplexes Homocomplexes 
One-sided Wilcoxon test 

Prediction 
target 

Input type Statistic p-value statistic p-value 

RRI Sequence 22490.5 3.938E-20 20688.5 9.326E-18 
RRI Structure 20152 5.230E-12 23589 5.942E-31 



Binding Site Sequence 20011 1.365E-11 17914 9.253E-09 
Binding Site Structure 18540 9.740E-08 21652 1.041E-21 

One-sided paired t-test 
RRI Sequence 9.647263 5.327E-19 9.834859 1.770E-19 
RRI Structure 6.612167 1.319E-10 12.307265 3.510E-27 
Binding Site Sequence 7.322938 2.048E-12 5.788818 1.200E-08 
Binding Site Structure 5.998334 3.856E-09 9.834859 1.770E-19 

 

 
Supplementary Figure 5. ROC-AUC (RAUC) distribution for binding site predictions for sequence-
sequence mode, trained on HEDt, HEHODt, and HODt and evaluated on HOe (red) and Bv5 dataset 
(blue). 

 



 
Supplementary Figure 6. ROC-AUC (RAUC) distribution for binding site prediction for structure-
structure mode, trained on HEDt, HEHODt, and HODt and evaluated on HOe (red) and Bv5 dataset 
(blue). 

 
Supplementary Figure 7. ROC-AUC distributions for the residue-residue interaction problem (Pairs) or 
the binding site prediction problem (BS) at the complex level, for the complexes contained in HOe 
(Homocomplexes) and Bv5 (Heterocomplexes) predicted using BIPSPI v1 and BIPSPI+ using as 
input sequences (*_Sequence) or structures (*_Struct) 

2.3. Dimers and multimers 

Automatic compilation of large training sets including only biologically feasible complexes is 
not a simple task. Serve as an example the case of an atomic model of a complex that contains 
4 protein chains. If no additional information is available, it might not be trivial to determine 
whether the complex is composed of two dimers interacting or one trimer interacting with a 
monomer. On the contrary, limiting to atomic models of two chains makes automatic 



compilation much simpler, since most of them will represent actual dimeric interactions. With 
the aim of determining the impact of oligomerization number on binding site prediction 
performance, we trained BIPSPI on hetero-dimers only (HEDt) and also on a dataset that 
includes both heterodimers and automatically sampled multimers (HEMt). The first conclusion 
that can be derived from this comparison (see Supplementary Figure 8, dotted vs dashed 
lines) is that, in both cases, the performance predicting dimers (BM90C) is superior to the 
performance predicting hetero-multimers (Bv5Mul). This result is not surprising since the 
number of potential interacting residue pairs in heterocomplexes tends to be much larger and 
also because determining which protein chains are in contact supposes an additional 
challenge. Secondly, we can also observe that the addition of multimers in the training set 
improved the performance of the method for both dimers and multimers, yet the improvement 
was larger in the latter case (HEDt, blue tones vs HEMt, red tones). Those results suggest 
that, despite the fact that automatic multimer processing is not perfect, on average, including 
this data, despite its noise, positively contributes to the predictions. 

 
Supplementary Figure 8. Precision-recall curves for heterodimers and hetero-multimer evaluation. The 
training was performed on HEDt (blue tones) or HEMt (red tones), and performance was recorded for 
the whole Bv5 (solid lines), the dimers subset (BM90C, dashed lines) or the multimers subset (Bv5Mul, 
dotted lines). 

2.4. Performance per complex type 

We examined the performance of BIPSPI+ considering the different types of complexes 
contained on Bv5. 
With respect to the Bv5 difficulty levels (see Supplementary Figure 9), BIPSPI+ exhibits 
similar performance for the easy (rigid-body) and medium difficulty cases when using 
structures as input (median ROC-UAC of 0.86 for binding site prediction in both cases). The 
performance for the difficult cases is considerably worse (median ROC-UAC of 0.83) but is 
still remarkable for an important amount of cases as more than 25% of the difficult 
complexes obtained a ROC-AUC for binding site prediction above 0.9. On the other hand, 
when using sequences as inputs, the degree of variability is much larger and the quality of 
the predictions is more influenced by the difficulty of the complex with median ROC-UAC 
values of 0.82, 0.78 and 0.73 for binding site prediction of easy, medium and difficult 
complexes respectively. It is also worth noting that BIPSPI+ predictions are considerably 
better than BIPSPI v1 predictions, especially for the difficult complexes where the first 
quartile in BIPSPI+ ROC-AUC approximately corresponds to the median value in BIPSPI v1. 



Next, we break down the performance analysis according to the protein-complex type. As it is shown 
in 

 

Supplementary Figure 10, both BIPSPI v1 and BIPSPI+ exhibit their best performance for 
complexes of type antigen-antibody and enzyme-inhibitors, independently of the input type. 
For these two types of protein complexes, BIPSPI+ results (median ROC-AUCs for binding 
site prediction of 0.89 y 0.90 using structures as input) do not tend to outperform the already 
highly accurate BIPSPI v1 results (median ROC-AUCs for binding site prediction of 0.90 y 
0.91 using structures as input). For the rest of complex types, BIPSPI+ outperforms our 
original version, especially, as stated before, when using sequences as input. Despite 
BIPSPI+ improvements, enzyme-substrate and enzyme-regulator complexes together with 
interactions involving receptors are the worst performing categories by a large margin. 



Supplementary Figure 9. ROC-AUC distributions for the complexes contained in Bv5 
according to difficulty levels predicted with BIPSPI v1 and BIPSPI+ using as input either 
sequences or structures. The term Pairs refers to the problem of residue-residue interaction 
prediction while BS refers to the problem of binding site prediction. 



 

Supplementary Figure 10. ROC-AUC distributions for the complexes contained in Bv5 according 
complex types predicted using BIPSPI v1 and BIPSPI+. The term Pairs refers to the problem of 
residue-residue interaction prediction while BS refers to the problem of binding site prediction. AA: 
Antigen-antibody; EI:  Enzyme-inhibitor; ES: Enzyme-substrate; ER: Enzyme-regulatory/accessory 
chain; OG: Complex containing G-protein; OX: Other Complexes; OR: Complex containing Receptor 

2.5. Dataset selection criteria 

Since the new datasets contained protein complexes in bound state, in order to determine 
which should be the properties of the best dataset, we evaluated the performance of different 
datasets using models trained with sequence features and using as the validation dataset the 
subset of dimers contained in the Bv5. For this experiment, we labelled the datasets using a 
6-letter code. The two initial characters indicate the type of interaction: (HE) heterodimers, 
(HO) homodimers or (DM) heterodimers sampled from multimers. The next two letters indicate 
if the dataset redundancy was filtered using SCOP families and group clusters (CL) or only 
SCOP families were considered (NC). Finally, the two last letters indicate if a pair of PDB 
chains could contain the SCOP null family (NF) or not (NN). For example, the dataset 
‘HECLNF’ is composed of heterodimer pairs of chains where each pair has a unique 



combination of SCOP families and group clusters and considers the SCOP null family 
members. 

Supplementary Table 3 summaries the measured performance for the distinct combinations 
of features. The most promising results were further benchmarked in this work. 

Supplementary Table 3. Benchmark BMC90 multiple conditions over sequence features. 

SET ID Dataset 
name 

#Comple
xes 

RAUC MCC PPV TPR ACC FPR SPC NPV 

HECLNF HEDt 2401 0.78 0.38 0.47 0.49 0.83 0.10 0.90 0.90 

HECLNN  875 0.77 0.35 0.43 0.50 0.82 0.12 0.88 0.90 

HENCNF  2069 0.79 0.38 0.44 0.53 0.82 0.12 0.88 0.91 

HENCNN  533 0.76 0.34 0.44 0.44 0.83 0.10 0.90 0.90 

HONCNN HODt 1981 0.67 0.19 0.26 0.48 0.71 0.24 0.76 0.89 

HECLNF+ 
HONCNN 

HEHODt 4382 0.78 0.37 0.45 0.49 0.83 0.11 0.89 0.90 

DMNCNN  2359 0.77 0.36 0.44 0.50 0.82 0.12 0.88 0.90 

DMCLNF HEMt 3972 0.783 0.37 0.44 0.51 0.82 0.12 0.88 0.91 

DMCLNF+ 
HONCNN 

 5953 0.783  0.37  0.46 0.47  0.83  0.10  0.90 0.90 

Metrics: 
                RAUC: ROC AUC, all predictions pooled together 
                MCC: Matthews correlation coefficient 
                PPV: Positive Predictive Value 
                TPR: True Positive Rate 
                ACC: Accuracy 
                FPR: False Positive Rate 
                SPC: Specificity 
                NPV: Negative Predictive Value 

 

2.6. Sequence-structure mode 

We evaluated the performance of the sequence-structure mode using as evaluation 
benchmark Bv5 and we studied how the new mode performed on both the input provided as 
sequence and the one provided as structure (Supplementary Table 4, Partner type seq and 
struct respectively). As expected, the performance for the sequence-structure mode (MCC of 
0.331 for HEDt and 0.279 for Bv5-leave-one-out) lies between the performance of the model 
that employs sequences only (MCC of 0.311 for HEDt and 0.307 for Bv5-leave-one-out) and 
the model that employs structures from the two partners (MCC of 0.403 for HEDt and 0.386 
for Bv5-leave-one-out). More interestingly, although we observed that the improvement in 
overall performance is driven by the enhancement of Residue-Residue Interaction predictions 
(RRI RAUC of 0.874 vs 0.844 for HEDt against Bv5 or 0.844 vs 0.874 in  Bv5-leave-one-out), 
it is the partner for which structural information is available the one that benefits more from the 



improvement, while the sequence-only partner predictions remain comparable to the ones 
obtained in the sequence-only mode (partner type seq-struct vs seq-seq). 
 
Supplementary Table 4. Sequence-structure mode performance summary. 

Trainset Partner type RRI Binding site prediction 

    mRAUC RAUC MCC PPV TPR FPR 

Bv5 mean(seq-
struct, struct-
seq) 

0.851 0.760 0.307 0.363 0.434 0.103 

  seq-struct  0.747 0.284 0.350 0.403 0.102 

  struct-seq  0.784 0.338 0.368 0.503 0.117 

 seq-seq 0.802 0.753 0.279 0.300 0.482 0.113 

 struct-struct 0.905 0.823 0.386 0.391 0.559 0.089 

HEDt mean(seq-
struct, struct-
seq) 

0.874 0.773 0.331 0.403 0.426 0.086 

  seq-struct  0.758 0.309 0.376 0.419 0.095 

  struct-seq  0.790 0.366 0.383 0.543 0.120 

 seq-seq 0.844 0.751 0.311 0.380 0.415 0.093 

 struct-struct 0.917 0.826 0.403 0.432 0.541 0.097 

Notes: 
 

 Partner type refers to which partner is represented as sequence and which is represented as structure. Seq-struct 
refers to the cases in which the evaluated partner is provided as sequence while the other partner is provided as 
structure. The opposite applies to struct-seq 

 
Bv5        230 hetero-multimers (including dimers) 
HEDt    2401 heterodimers  
 

Metrics: 
                 mRAUC: mean ROC AUC 
                RAUC: ROC AUC, all predictions pooled together 
                MCC: Matthews correlation coefficient 
                PPV: Positive Predictive Value 
                TPR: True Positive Rate 
                FPR: False Positive Rate 
                

 

2.7. Comparison to other methods 

Whereas the conclusions so far presented in this work referred only to BIPSPI+, our dataset 
could be used to train other models, possibly improving their performance. As an illustration, 
we have retrained the SASNet6 method using our dataset for hetero-complexes and evaluated 



in Bv5 and we have compared the results obtained using our new proposed dataset compared 
to their proposed dataset DIPs and the original Bv5 leave-one-out. Thus, we measured a 
median ROC AUC for Residue-Residue pair prediction of 0.896, compared to 0.892 for the 
DIPs dataset and 0.876 for Dv5-leave-one-out. 

Since we detected from the learning curves that even with our larger dataset the SASNet 
model would be able to benefit from an even larger dataset, we tried a simple data 
augmentation strategy in which, for each protein complex at training time, we included some 
additional computational conformation for each of the partners. The virtual conformations were 
obtained applying Normal Modes Analysis to the bound crystallographic structures. This 
strategy turned out to be successful, increasing the performance of the SASNet model up to 
a median ROC AUC of 0.935 when 3 computational poses were included for each 
experimental one. Unfortunately, BIPSPI+, which relies heavily on sequence-based 
information and coarse-grained structural information, was not able to benefit from this sort of 
data augmentation. 

Finally, for completeness, we have collected from the literature the reported performance on 
Bv5 of other partner-specific residue-residue prediction methods published before and after 
BIPSPI v1. As displayed in Supplementary Table 5, BIPSPI+ outperforms all them. 

Supplementary Table 5. Reported median ROC AUC for residue-residue interaction prediction using 
Bv5 as test set. 

Method Release year median ROC AUC 

PAIRpred8 (struct) 2014 0.863 

BIPSPI v1 (seq) 2018 0.827 

BIPSPI v1 (struct) 2018 0.937 

BIPSPI+ (seq) 2021 0.905 

BIPSPI+ (struct) 2021 0.952     

SASNet /DIPS6 2018 0.885 

(Liu et al., 2020)9  2020 0.908  

DIPS-Plus10 2021 0.947 
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