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Abstract 
Image processing in three-dimensional electron microscopy (3D-EM) is characterized by 

large amounts of data, and voluminous computing requirements. Here, we report our first 
experience with grid computing in this area. We present an interface between grid computing 
middleware and our image processing package Xmipp. The efficacy of this approach was 
illustrated with an Xmipp application for estimation of the contrast transfer function. In 
addition, we report our experience with grid computing in the development of a novel image 
refinement algorithm based on maximum likelihood principles. Its extensive CPU-
requirements might have seriously hampered the algorithm development, if not for the far-
reaching resources of grid computing. Our results suggest that electron microscopy image 
processing may be particularly well suited for grid computing.  
 
 
1. Introduction 

Three-dimensional electron microscopy (3D-EM) may yield valuable information about 
the 3D structure of large macro-molecular complexes at medium-low resolution. To increase 
the low signal-to-noise ratios, large numbers of experimental images need to be averaged. 
Nowadays, typically (ten) thousands of images are recorded, while future studies at even 
higher resolutions may routinely comprehend hundreds of thousands of images. Since many 
years, these large quantities of experimental data have tightly linked 3D-EM image 
processing to high-performance computing. Parallel computing was introduced in the field 
well over a decade ago [1, 2], and nowadays cluster computing plays an important role in 3D-
EM data processing. For electron tomography, which studies larger biological specimens in 
the sub-cellular range, grid computing has already been reported [3, 4]. But, so far the use of 
grids in 3D-EM has been limited.  

Over the past eight years, our group has been developing a program package for single-
particle 3D-EM image processing called Xmipp [5]. Whereas up to now its approach to high-
performance computing has been based on MPI (message passing interface) implementations 
of the most time-consuming algorithms, current efforts have also addressed grid computing. 
In this paper, we report our initial experiences with grid computing using Xmipp. First, we 
present our approach to provide the experimentalist with a familiar interface to run standard 
Xmipp applications on these novel computing resources. Second, we present how grid 
computing speeded up considerably the development of a novel image processing algorithm 
and how parallelization using grid computing may greatly improve its practical use.  
 
2. An Xmipp-interface to the grid: CTF-estimation as a test case  

The main goal of this part of our work is to implement an interface that allows the 
experimentalist to run standard Xmipp applications on grid computing resources, with 



minimum changes in the user-interaction. For this purpose, we created a specific (C++-) 
class in Xmipp that serves as an interface to the grid. Grid-related data transfer (publication, 
replication, etc.) as well as job management (submission, status report etc.) are handled using 
LCG2-middleware tools, which among others are based on Globus GT2 and Condor. The 
new Xmipp class receives information regarding the input data for the task at hand, the 
corresponding Xmipp executable, and the resulting output data. With this information, the 
relevant LCG2-middleware job-description language (JDL) file and three shell scripts that 
make calls to the LCG2 tools are created. Upon calling the Xmipp program on the user front-
end (the local machine), a daemon is launched. This daemon locally executes the first script, 
which publishes the input data and the (statically compiled, i.e. stand-alone) Xmipp 
executable in the grid. Subsequently, the daemon submits the JDL-file to the grid resource 
broker machine, also using standard LCG2-middleware tools. Upon arrival at the working 
node (the remote machine), the second script is executed. This script takes care of retrieving 
the input data and the Xmipp executable on the remote machine, executing the program and 
publishing the resulting output data. Meanwhile, at the local machine the daemon checks for 
the proper execution of the job at regular intervals. If the job is aborted, the daemon re-
submits it, until successful completion of the job. Then, the third script is executed on the 
local machine, retrieving the output data and deleting all temporary files, including those 
published in the grid. In this way, all the overhead related to job submission to the grid as 
well as input/output data transport is handled automatically. From the user perspective, the 
Xmipp application is invoked in the same way as its standard implementation, but for an extra 
flag indicating that the application should be run on the grid.  

We tested this approach with a routine Xmipp application that requires relatively large 
amounts of computing time: estimation of the contrast transfer function (CTF) from 
digitized electron micrographs. The electron microscope introduces aberrations in the 
imaging process that can be described by this CTF. If high-quality reconstructions are to be 
obtained, these aberrations need to be estimated (and subsequently corrected) for all 
micrographs. Since the estimation is independent for each of the typically tens to hundreds of 
recorded micrographs, this task is particularly well-suited for parallelization using grid 
computing. Each estimation for a test set comprising 100 micrographs required approximately 
8 hours of CPU on a single (Intel 2.6 GHz) processor. Consequently, for this data set the total 
computation time on one machine would amount to more than a month. Automatically 
launching all processes to the EGEE-grid, the entire calculation could be performed 
overnight.  
 
3. Grid computing at the development and application stages of a novel 
algorithm for image refinement. 

Our ongoing developments of novel algorithms require ever-increasing computing 
resources. A recent example is maximum-likelihood (ML) image refinement [6]. This novel 
algorithm for alignment of structurally heterogeneous data sets requires extensive amounts of 
CPU time, which might have seriously limited its development, if not for the availability of 
grid computing resources. The tests that were used to develop protocols and to optimize 
parameter values for this algorithm comprised different types of data and were repeated 
multiple times in order to obtain statistically relevant results. Whereas these tests would 
require one month on a single CPU, they could be performed overnight using EGEE-grid 
computing resources. For the entire development of the ML algorithm, we estimate to have 
submitted more than 1,000 jobs to the EGEE-grid during a period of less than two months, 
using in total almost two years of CPU-time! Clearly, calculations of this size would have 



seriously limited the speed of our investigations, if not for the resources provided by grid 
computing.  

For normally sized experimental data sets, the extensive amounts of CPU time required 
may limit the practical use of ML image refinement. Therefore, we explored the possibility of 
(a coarse-grain) parallelization by separately processing multiple subsets of the experimental 
images on different nodes in the EGEE-grid. Although within a single iteration image subsets 
can be processed independently, the ML algorithm requires that the results of all subsets 
should be combined to provide the starting point for the next iteration. We developed shell 
scripts to automatically submit calculations for all image subsets and to retrieve and combine 
the results after each iteration. In this way, using 12 processors of our local Alpha-cluster we 
were capable of speeding up the calculations almost 12-fold, i.e. we obtained a parallelization 
efficiency of almost 100%. The same protocol was then tested on the EGEE-grid, using 25 
CPUs. In this case, parallelization efficiencies of up to 60% were obtained. This decrease in 
parallelization efficiency is explained by the fact that every iteration required (relatively slow) 
submission and data retrieval for 25 separate jobs. Still, the refinement of an experimental 
data set requiring almost two months on a single CPU could be performed in approximately 4 
days. These efficiencies may be further improved using a (finer-grain) MPI-implementation 
of the algorithm, which could be run on multiple processors of a single site in the grid, thus 
eliminating the need of submitting and retrieving the results of so many separate jobs in the 
grid. 
 
4. Discussion 

Our results illustrate that 3D-EM image processing may greatly benefit from the resources 
offered by grid computing. This holds both for submission of routine calculations by 
experimentalists, as for the development of new algorithms by software developers. 
Therefore, grid computing may become an important technological step forward in the history 
of high-performance computing by the 3D-EM community. 
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