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Maximum-likelihood Multi-reference Refinement for
Electron Microscopy Images
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A maximum-likelihood approach to multi-reference image refinement is
presented. In contrast to conventional cross-correlation refinement, the
new approach includes a formal description of the noise, implying that it is
especially suited to cases with low signal-to-noise ratios. Application of this
approach to a cryo-electron microscopy dataset revealed two major classes
for projections of simian virus 40 large T-antigen in complex with an
asymmetric DNA-probe, containing the origin of simian virus 40
replication. Strongly bent projections of dodecamers showed density that
may be attributed to the complexed double-stranded DNA, while almost
straight projections revealed a twist in the relative orientation of the
hexameric subunits. This new level of detail for large T-antigen projections
was not detected using conventional techniques. For a negative stain
dataset, maximum-likelihood refinement yielded results that were practi-
cally identical to those obtained using conventional multi-reference
refinement. Results obtained using simulated data suggest that the
efficiency of the maximum-likelihood approach may be further enhanced
by explicitly incorporating the microscope contrast transfer function in the
image formation model.
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Introduction

Electron microscopy is increasingly being used
for structural characterization of large macro-
molecular complexes. In particular, cryo-electron
microscopy, where macromolecules are rapidly
frozen in a thin layer of vitreous ice, has allowed
structural characterization of large biological
assemblies almost in their native state. Due to the
requirement of a low electron dose to minimize
radiation damage, and the low contrast between
biological matter and ice, the recorded images
typically suffer from large amounts of noise.
Especially in high-resolution studies, where close-
to-focus images are recorded, projections with
extremely low signal-to-noise ratios (SNRs) are
relatively common.
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In a pre-processing step, the low signal-to-noise
ratios can be improved by two-dimensional (2D)
averaging over multiple images. Such averaging is
only justified if all images correspond to the same
2D-structure and if their relative rotations and
translations are known. To determine the unknown
orientations, a range of different 2D-alignment
methods is available.1 However, these methods
typically require that the set of images is struc-
turally homogeneous, and it is very common for
electron microscopy datasets to contain more than
one different 2D-structures. Examples of different
2D-structures that may be present within one
dataset are projections of a given molecule from
different directions, projections of different confor-
mations of a given molecule, or even projections of
different molecules in the specimen preparation.
To separate structurally heterogeneous image

sets into homogeneous classes, multiple classifi-
cation methods are at hand.2,3 However, since most
classification methods require that the images are
aligned beforehand, alignment of heterogeneous
sets of images represents a chicken-and-egg
problem. The use of rotational and translational
d.



† To facilitate comparison with the single-reference
case, we use a notation similar to the one used by
Sigworth.17
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invariants is a possible solution to this problem.4,5

But, especially in cases with high noise levels, the
relatively low information content of many of these
invariants may impose problems upon classifi-
cation. An alternative solution is the iterative use
of 2D-alignment and classification methods, which
has been termed “alignment through classifi-
cation”. Multiple variants of this approach have
been reported, employing a range of various
classification and alignment techniques.6–8

A more straightforward approach that intrinsi-
cally combines alignment and classification into a
single, iterative process is multi-reference refine-
ment.9 In multi-reference refinement the complete
set of images is compared to a predefined number
of reference images, which are assumed to rep-
resent the structural diversity among the data. Each
experimental image is aligned with respect to all
references and is assigned to one of them based on a
similarity measure. Averaging over the subsets so
obtained serves to calculate new, improved refer-
ences for the next iteration. This process stops when
no more migration of particles between subsets is
observed and the averages within each subset do
not change any more.

Many different similarity measures for alignment
and classification have been proposed,10–14 and
most of them may be used in multi-reference
refinement. Probably the most widely used simi-
larity measure for multi-reference refinement is
based on a maximum cross-correlation (CC) cri-
terion. A drawback of the employed CC function is
that, due to the high noise levels in EM images, it
typically suffers from many false maxima and the
assignment of orientation and reference may
become incorrect.15 Furthermore, the final partition
into different subsets has been reported to suffer
from a strong dependency on the initial seeds (i.e.
the initial reference images). Especially for particles
with low signal-to-noise ratios, initial preferences in
the starting images may be amplified, leading to
biased results.16,17

An alternative approach to CC refinement is
based on maximum-likelihood (ML). ML refine-
ment aims at finding the most likely model given
the observed data. This likelihood is measured by
the probability that the observations would be
made, given the current model. This model does
not only consist of the structure(s) to be recovered,
but also includes a formal error model. It can be
shown that, for infinitely large datasets, maximiz-
ing the likelihood yields less biased estimates of the
model parameters than those provided by alterna-
tive methods.18 In the related field of X-ray crystal-
lography, ML approaches have resulted in
significantly improved structure refinement
procedures.19

A ML approach to electron microscopy image
refinement was first introduced by Sigworth for the
alignment problem with a single 2D-reference.20 In
this approach, the parameters describing the rela-
tive orientations of the particles are treated as
hidden variables, which are integrated out in the
likelihood calculation. Instead of taking discrete
decisions based on small differences in CC, prob-
ability-weighted averages over all possible assign-
ments are calculated. The error model for
calculating these probabilities is based on the
assumptions of independent and zero-mean Gaus-
sian noise in the experimental projections. Further-
more, probability calculations include the prior
probability distribution of the alignment para-
meters, assuming random rotations and Gaussian-
distributed translations, centred at the origin.
Using simulated data that complied with these
assumptions, ML refinement was observed to
yield better models with less bias than conven-
tional CC alignment, especially for images with low
SNRs.

Here, we introduce an extension of single-
reference ML image refinement to the multi-
reference case. Furthermore, we report the first
application of ML image refinement to experimen-
tal (cryo-) electron microscopy data. The exper-
imental situation differs substantially from the
theoretical assumptions in the actual implemen-
tation of the ML approach. Aberrations in the
optical system of the electron microscope lead to
artefacts in the imaging process. This results in a
point-spread function (the direct-space equivalent
of the contrast transfer function, or CTF) of finite
width, which gives rise to correlations between the
intensity values of nearby pixels. Consequently, the
assumption of independent noise does not hold for
experimental data. We discuss results obtained with
ML and conventional CC multi-reference refine-
ments of both cryo-electron microscopy and nega-
tive stain data. We will focus on the former type that
due to its high levels of noise represents the more
challenging case, and for whichMLwith its implicit
noise model is expected to be particularly well-
suited. In addition, we use results obtained for
synthetic data with simulated microscope-induced
artefacts to further assess the potential of ML
refinement of electron microscopy images.
Mathematical Background
The multi-reference model

Each image in the observed dataset X is assumed
to be a rotated and translated copy of one of K
underlying structures, to which independent Gaus-
sian noise is added. The data are modelled as
follows:†

XiðfiÞZAki CRi (1)

where Xi2<M is the ith observed image (iZ1,.,N)
of M pixels; Ak2<M is an estimate for the kth (kZ
1,.,K) underlying structure and Aki indicates
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which structure is the correct one for image Xi;
Xi(fi) describes that image Xi is mapped onto a
transformed coordinate system and fi defines the
transformation (both rotation and translation) that
maps the image onto the standard position of Aki ;
Ri2<M are images of independent, zero-mean
Gaussian noise with standard deviation s.

We aim to optimize the likelihood P(XjQ), i.e. the
probability of observing dataset X given a model
with parameter set Q. Maximizing the likelihood is
equivalent to maximizing its logarithm L(XjQ).
Assuming independence between the individual
images, this function can be written as a sum of log-
likelihoods for all images Xi. Furthermore, since the
assignments of ki and fi are mutually exclusive,
the probability of observing one image can be
expanded as a summation over all assignments. The
log-likelihood can thus be written as:
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where P(Xijk,f,Q) is the conditional probability of
observing image Xi, given k, f and Q; and P(k,fjQ)
is the probability density function of k and f.

Given k and f, we model each pixel value of the
rotated and translated image Xi(f) as the value of
the corresponding pixel in Ak, to which zero-mean
Gaussian noise with standard deviation s is added
(cf. equation (1)). The probability density function
for each pixel value can thus be expressed as a
Gaussian. Furthermore, we assume independence
between the probability density functions of all
individual pixels j, so that the conditional proba-
bility of observing the entire image given k and f
can be written as a multiplication of M Gaussians:
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where [$]j denotes the jth pixel in an image; and k$k2

is used to indicate the squared norm of an image.
We model the probability density of k by the

estimated proportions ak of the kth structure in the
data (akR0 and

PK
kZ1 akZ1). Assuming that par-

ticle-picking has yielded roughly centred particles
with uniformly distributed rotations, we model the
probability density of f by a two-dimensional
Gaussian distribution centred at the origin. Thereby,
the probability density function of k and f is given
by:
Pðk;fjQÞdf

Zak
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where fZ(qa,qx,qy), with qa being its rotational
component, and qx, respectively qy its translational
components in x and y; x is the estimated standard
deviation in the assumed Gaussian distribution of
residual origin offsets.
Equations (1), (3) and (4) form the underlying

model in our approach. Its parameter set Q thus
consists of: images Ak, standard deviation in the
noise s, proportions of underlying structures ak,
and standard deviation in the origin offsets x. The
optimization task at hand is to find those para-
meters that maximize the log-likelihood as defined
in equation (2).
The EM algorithm

Maximization of the log-likelihood would be
trivial if we knew beforehand the values of ki and
fi for all images. Unfortunately, these are unknown
and the data are thus incomplete. instead, we use
the expectation-maximization (EM) algorithm to
maximize the log-likelihood.21 In the E-step of this
algorithm, a lower bound to the likelihood is built,
based on the current estimates for the model
parameters (Q(n), n being the iteration number).
The best lower bound is given by:
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where P(k,f,jXi,Q
(n)) is the probability of k and f,

given the observed image and the current estimates
for the model parameters. Using Bayes’ theorem,
this probability is calculated by:
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In the subsequent M-step of the algorithm, we
maximize Q(Q,Q(n)) to obtain a parameter set for
the next iteration (Q(nC1)), which increases the
likelihood. For this purpose, we set partial deriva-
tives to each of the parameters equal to zero and
solve for the corresponding variable. For images Ak

we get:
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Similarly, estimates s for the standard deviation
of the noise, and x for the standard deviation in the
origin offsets are calculated as:
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For maximization of Q(Q,Q(n)) with respect to ak,
we introduce a Lagrange multiplier to constrainPK

kZ1 akZ1, yielding the following solution:
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The EM algorithm proceeds by using the newly
derived parameter set (Q(nC1)) to calculate the
lower bound for the next iteration.
Results

We used various types of structurally hetero-
geneous data to validate ML multi-reference refine-
ment and tested its relative performance with
respect to the conventional CC approach.9 The
order in which we present our results is from the
most challenging and biologically relevant to
the more controllable data. We first present results
obtained for a cryo-electron microscopy dataset,
then for a negative stain dataset, and finally for
simulated data of simplified phantom structures.
Both experimental datasets were recorded recently
in the context of our ongoing work on prokaryotic
and eukaryotic helicases. The high levels of noise in
the cryo-electron microscopy data severely limited
the application of conventional alignment and
classification tools, whereas existing tools could be
applied to classify the negative stain data.
Application to cryo-electron microscopy data

Both the ML and CC9 multi-reference refinement
protocols were applied to a cryo-electron
microscopy dataset comprising 7590 projections of
simian virus 40 (SV40) large T-antigen (Figure 1(a)
and Materials and Methods). These molecules
have been previously observed to assemble as
hexamers or as dodecamers,22,23 and for the latter
different lengths and curvatures have been
reported.24,25 The specimen under study here
contained dodecameric large T-antigen molecules
in complex with the origin of SV40 replication. The
107 base pairs long, asymmetric DNA-probe of this
complex was designed to extend 23 base pairs from
one side of the helicase complex (Figure 1(b)). Using
various conventional 2D-alignment and classifi-
cation techniques, no DNA-density was observed
(results not shown).

To avoid any bias in the starting seeds of the
multi-reference refinement, initial estimates Ak

were obtained by calculating the average of
equally sized, random subsets of the unaligned
images. Starting from the same five references, both
ML and CC refinement converged to images that
may be interpreted as straight and bent projections
of dodecamers, as well as projections of hexamers
or disordered dodecamers (Figure 1(c)). Refinement
using seven references yielded a similar picture (not
shown). In this case, both methods yielded two very
noisy references with relatively low probability
weights or numbers of assigned images, suggesting
that five references may be sufficient to reflect the
structural diversity in these data.

The first three references from the ML and CC
refinements with five references are grossly related
and may be interpreted as projections of dodeca-
mers. However, important differences of potential
biological relevance were observed between the
results of the two methods. The ML-refined images,
and in particular references two and three, appear
less fuzzy than their CC-refined counterparts. As a
consequence, the ML-refined images may be inter-
preted as a strongly bent projection (reference one)
and more-or-less straight projections (references
two and three), whereas such clear differences are
not appreciated among the CC-refined images.
Furthermore, among the ML-refined references
two different projections of the hexameric subunits
can be distinguished (most clearly in reference two),
while the fuzzy appearance of the CC-refined
images does not allow such a distinction. Another
difference between the results of both methods
concerns density that may be attributed to the
complexed double-stranded DNA. In particular for
reference one from the ML-refinement, relatively
weak, elongated density of 10–15 Å width was
observed to protrude approximately 40 Å from the
lower hexameric subunit. For the CC-refined
projections no such density was observed.

For references four and five, the results of both
methods are less related. References four and five
from the CC refinement may be interpreted as a
projection of a dodecamer and a projection of a
hexamer or a disordered dodecamer, respectively.
For the ML-refinement, reference four may repre-
sent a hexamer or a disordered dodecamer, while
reference five represents an overall gradient in the
(wrapped-around) background density level. Such
a structure was not observed among the CC-refined
images. Detailed analysis of the experimental data
showed that the signal in many images indeed
suffers from a gradient in the background density
(for example the image on the right-hand side of
Figure 1(a)). While these images mainly contribute
to this particular reference in the ML refinement,
they may “pollute” any reference in the CC
refinement, which may explain their relatively
fuzzy appearance.



Figure 1. Application to cryo-electron microscopy data. (a) Three cryo-electron microscopy images of large T-antigen
molecules in complex with the origin of SV40 replication. (b) Schematic representation of a model for the proposed
interaction of large T-antigen dodecamers (isolines) with the asymmetric DNA-probe (rectangle). Large T-antigen
assembles in two hexameric rings around the DNA. The C-terminal and N-terminal domains of the hexameric subunits
are indicated (CTD andNTD, respectively), and the part of the DNA that is protected from proteolysis upon formation of
a complex with large T-antigen is shown in grey. This part also contains the (asymmetric) origin of SV40 replication. The
DNA protruding from the left-hand side of the complex is 23 base pairs long. (c) ML and CC five-reference (ref1-5)
refinement runs. ML refinement was stopped after 89 iterations; CC refinement after 35 iterations. Shown are the initial
seeds of both runs (left column), the ML-refined structures after iterations 1, 2, 5, 10, 20, 50 and 89 (middle block), and
the CC-refined structures after iteration 35 (right column). White numbers in the reference images indicate the
corresponding values for ak (equation (10)) in the ML case, and the relative amount of image assigned to the
corresponding reference in the CC case.
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Application to negative stain data

We also applied ML and CC multi-reference
refinement to a well-characterized, negative stain
electron microscopy dataset. These test data con-
sisted of 2120 top views of Bacillus subtilis bacterio-
phage SPP1 replicative helicase G40P particles
(see Figure 2(a) and Materials and Methods). This
helicase has been reported to assemble in three
quaternary organizations with different rotational
symmetries: a C3, a C6 and an intermediate C3C6
form.26,27 We used self-organizing maps25 of
rotational spectra28 to analyse these data, resulting
in a well-characterized test set comprising only
G40P top views, of which 28% corresponded to the
C3 state, 35% to the C3C6 and 37% to the C6 state.

Again, bias-free seeds for the multi-reference
refinements were obtained by averaging over three
equally sized random subsets of the unaligned
images (Figure 2(b)). For these data, ML and CC
refinement converged to very similar solutions,
starting from the same three references (Figure 2(c)).
Even features in the surrounding background
density of the different structures as obtained by
the two methods showed a strong resemblance
(indicated with arrows in Figure 2(c)). From the
resulting images, the C3, C6 and C3C6 quaternary
states are readily recognizable, although the refined
C3 images exhibit a somewhat elevated sixfold
component.
Test on simulated data

To further assess the potentials of ML refinement
and its relative performance with the CC approach,
we tested both methods on synthetic data. A
structurally heterogeneous test set was simulated
by applying 1000 random rotations and translations
to two phantom images of 32!32 pixels (Figure
3(a)). These images were obtained by projection of
phantom structures consisting of six and seven
spheres, respectively. The applied rotation angles
were uniformly distributed and the applied trans-
lations were taken from a Gaussian distribution



Figure 2. Application to negative stain data. (a) Two
negative stain electron microscopy images of replicative
helicase G40P. (b) One example of the three initial
reference images. (c) Structures as obtained using
classification of rotational spectra with self-organizing
maps (SOM), ML or CCmulti-reference refinement. These
images were aligned with respect to a common reference,
and correspond to the three quaternary states of G40P
with different rotational symmetries: C3, C3C6 and C6.
ML refinement was stopped after 32 iterations; CC after
38. White numbers in the reference images indicate the
corresponding values for ak (equation (10)) in the ML
case, and the relative amount of image assigned to the
corresponding reference in the CC case. Arrows are used
to indicate non-relevant features in the background
density, which coincide for the ML and CC-refined
C6-structures. Figure 3. Application to unfiltered, phantom data.

(a) The two phantom images that were used to create
simulated, structurally heterogeneous datasets. (b) Two
examples of rotated and translated copies of the phantom
images to which independent Gaussian noise was added,
resulting in a SNR of 0.07. SNRs were calculated as the
variance of the signal divided by the variance of the
added noise. (c) Average and standard deviation values
of the FOMs (see main text) as obtained for six
independent runs of ML (black) and CC (grey) two-
reference refinements, using unfiltered phantom data
with increasing SNRs. (d) Gallery of structures as
obtained using ML and CC refinement at various SNRs.
Shown are both references (1 and 2) for the third best out
of six ML refinement runs (i.e. close to the median result)
and the same structures as resulting from CC refinement.
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centred at the origin and with a standard deviation
of two pixels. Multiple variations of this test set
were generated by adding different amounts of
independent, Gaussian noise or applying a CTF-
simulated filter (Figures 3(b) and 4(b)).

The quality of the refinement solutions was
assessed in two ways: (i) inspection of the refined
images; and (ii) calculation of a figure-of-merit
(FOM). This FOM, based on the differences in
rotational symmetry of the underlying phantom
images, was calculated as follows:

FOMZ arg max
C6
ref1 CC7

ref2

2
;
C7
ref1 CC6

ref2

2

� �
(11)

where C6
ref12½0; 1� is the sixfold component of the

rotational spectrum28 of reference image number 1,
C7
ref2 the sevenfold component of reference number

2, etc.
In a first experiment, we applied ML and CC
refinement to unfiltered data with increasing
amounts of independent, zero-mean Gaussian
noise (Figure 3). For these data, which are in
accordance with the ML noise model, ML refine-
ment yielded significantly better results than CC.
Although both methods yielded similar solutions
with identical orientations for data with (quadratic)



Figure 4. Application to filtered, phantom data.
(a) Amplitudes of the CTF-filter that was applied to the
phantom data. This filter was estimated for the presented
cryo-electron microscopy dataset, using ARMA models
and subsequent parametric modelling.38 (b) Two
examples of filtered phantom images with SNRs of 0.07.
SNRs were calculated as the variance of the filtered signal
divided by the variance of the filtered noise. (c) Average
and standard deviation values of the FOMs (see main
text) as obtained for six independent runs of ML (black)
and CC (grey) two-reference refinements, using filtered
phantom data with increasing SNRs. (d) Gallery of
structures as obtained using ML and CC refinement
with filtered data at various SNRs. Shown are both
references (1 and 2) for the third best out of six ML
refinement runs (i.e. close to the median result) and the
same structures as resulting from CC refinement.
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SNRs of 0.07 and higher, the background of the
ML-refined images was cleaner than that of the
CC-refined images. The latter was also reflected in a
somewhat higher FOM for these ML-refined
images. Much larger differences were observed at
lower SNRs. In the range of 0.01–0.03, ML still
yielded reasonable to good solutions, while CC
refinement failed. At even lower SNRs neither
method was capable of reaching a satisfactory
solution.
In a second experiment, we investigated the

relative performance of ML and CC refinement for
data where the assumption of independent noise
no longer holds. To simulate data with noise
characteristics similar to those of experimental
data, we estimated the CTF for the above described
cryo-electron microscopy dataset on SV40 large
T-antigen (Figure 4(a)). The resulting filter was
applied to the phantom data at various SNRs (see
Figure 4(b)). For these filtered data, both ML and
CC refinement required higher SNRs (i.e. O0.08)
than for the unfiltered data (Figure 4(c) and (d)).
Furthermore, the observed superiority of ML over
CC for unfiltered data was reduced, although ML
refinement still yielded better results in the SNR-
range between 0.03 and 0.09. Again, smoother
background densities were observed for the
ML-refined images compared to the CC-refined
ones, but also this difference was not as large as for
the unfiltered data.
Discussion

ML and CC multi-reference refinement

We introduced a maximum-likelihood approach
to multi-reference refinement. This approach aims
at finding the most likely model that describes the
experimental data. This model not only includes the
multiple structures to be refined, but also a formal
description of the noise and of the distributions of
the alignment and classification parameters. The
corresponding target function was derived from the
single-reference case as presented previously.20

Whereas, steepest descent optimization was
applied in the single-reference case, we optimize
our target function by means of the expectation-
maximization algorithm,21 which also addresses
the estimation of the distribution of the different
models as implied by the experimental data.
We compared the ML approach with convention-

al CC multi-reference refinement using a maximum
shift criterion in the translational search. An
alternative way of including prior knowledge
about the origin offsets has been proposed for the
single-reference case and involves introducing a
bias towards the estimated probability density
function of the translations.20 We also tested this
alternative approach for the multi-reference refine-
ments presented here (results not shown). For both
the phantom and the negative stain data, this
yielded practically identical results as obtained
using a maximum shift criterion. However, for the
cryo-electron microscopy data significant improve-
ment over the maximum shift criterion was
obtained, although the results were still inferior to
those obtained using ML. This indicates that part of
the advantage of the ML approach lies in the way
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how prior information about the origin offsets is
handled.
Application to experimental data

Application of ML multi-reference refinement to
cryo-electron microscopy data revealed biologically
relevant differences among large T-antigen projec-
tions that were not observed using conventional
alignment and classification tools. The two major
classes of a ML five-reference refinement showed
strongly bent and (almost) straight projections of
dodecameric molecules. Relatively large differences
were observed between the two hexameric subunits
of the straight projection, while the two hexamers of
the bent projection appeared very similar. Consid-
ering that these images are projections of molecules
with hexagonal symmetry, the different appearance
of the subunits in the straight projection may be
interpreted as a different rotation in the plane of the
image. Such a rotational twist of the hexameric
subunits along the central axis of the molecule was
suggested previously to play a role in the so-called
“iris”-mechanism of DNA unwinding.29 Former
3D-electron microscopy experiments on large T-
antigen dodecamers24 also suggested a rotational
mismatch between the hexameric subunits, but
never with such clarity as observed in the ML-
refined projections. Furthermore, the strongly bent
ML-refined projections showed additional density
that may correspond to the complexed double-
stranded DNA. The appearance of this weak
density, protruding from the C-terminal side of
one of the hexameric subunits, is in agreement with
the expectations based on the asymmetric design of
the DNA probe. In addition, it agrees with the
model for DNA-interaction as based on previous
electron microscopy experiments30 and the crystal
structure of the hexameric C-terminal domain of
large T-antigen.29 CC refinement of the same seeds
yielded images that were more fuzzy and more
similar to each other in terms of curvature. This
suggests that the alignment and separation into
different classes was not as successful as in the ML
refinement and that the resulting images are thus
averages over sub-optimally aligned, different
projections.

The higher SNR of the presented negative stain
dataset allowed analysis by conventional classifi-
cation tools. ML refinement of three references
yielded similar classes as obtained using self-
organizing maps of rotational spectra, validating
the novel approach. However, practically identical
results were obtained using CC refinement. This
indicates that for these data the two approaches
may be nearly equivalent, as is expected from the
theory for data with low levels of noise. That this
may indeed be the case is strengthened by the
observation that even for non-relevant background
densities similar features were obtained with both
methods.

Since the refinement approaches presented are
based on expectation maximization protocols, both
ML and CC multi-reference refinement will con-
verge towards the nearest local maximum in their
target function.21 Therefore, the starting seeds of the
refinement may play an important role in their
convergence. In this context, an interesting obser-
vation was made when using average images of
pre-aligned subsets of the experimental images as
initial seeds for the refinement process (results not
shown). Although pre-alignment of the images may
seem more intuitive than using the averages of
unaligned subsets, both ML and CC refinements
performed significantly worse when starting from
pre-aligned models. In this case, for the cryo and for
the negative stain data, the refinement of different
references yielded rather similar models that did
not reflect the structural heterogeneity in the data.
This indicates that pre-alignment may introduce a
bias in the initial seeds that cannot be easily
removed by either of the two methods. For CC
multi-reference refinement similar observations
have been reported previously,16,17 and apparently
also ML refinement may suffer from bias in the
initial models. However, the results presented here
show that better results are obtained when using
completely unbiased seeds, which can be obtained
by calculating the average image for random
subsets of the unaligned images. In this context
we also note the work of Brink et al.,31 who avoided
bias in the initial seeds of a 3D multi-reference
refinement by application of random perturbations
to one common volume.
Application to simulated data and future
implications

To assess the potentials of ML multi-reference
refinement in more detail, we tested the developed
methodology also on simulated data with different
amounts of noise. For data in agreement with its
assumptions of independent, zero-mean Gaussian
noise, ML multi-reference refinement is clearly
superior to the CC approach. A different picture
was observed for data where the assumption of
independent noise is no longer met. Application of
a CTF-filter, which was estimated for the presented
cryo-electron microscopy dataset, yielded phantom
data with realistic correlations between the pixel
values. In this case, ML still performed somewhat
better than CC refinement, although the benefits of
ML refinement with filtered data were much
smaller than with the unfiltered data. Since the
noise in experimental images is typically filtered,
further enhancement of the efficiency of ML
refinement is expected from the introduction of an
appropriate model for correlated noise. We note
that in the case of correlated noise the assumption of
independency between the probability density
functions of the individual pixels no longer holds,
and that the multiplication of these probabilities in
equation (3) is thus no longer valid. As for the
current ML approach, its benefits for experimental
data are expected to be largest when the corre-
lations between nearby pixel values are small. This
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is in particular the case when close-to-focus images
are recorded.

Further use in the field may demonstrate the
effectiveness of the approaches presented for
different experimental conditions. Therefore, the
ML as well as the CC protocols have been
implemented in the publicly available image
processing package Xmipp†,32 ensuring easy access
for the electron microscopy community. We note
that, besides the importance of the initial references
as described above, the number of references to be
refined is an important variable in these calcu-
lations. This number should be sufficiently high to
reflect the structural heterogeneity in the data, but
not too high, in order to avoid potential refinement
of artefacts. In practice, most cases will require
various runs with different numbers of references,
as were also performed for the presented case on
large T-antigen. Other model parameters, describ-
ing the noise, the origin offsets and the distribution
of different models among the experimental data,
are determined during the optimization process.
This self-learning character and the intrinsic com-
bination of alignment and classification in a single
iterative process make these multi-reference refine-
ment protocols promising candidates for (semi-)
automated approaches to the 2D-analysis of struc-
turally heterogeneous data.3

Finally, we observe that different views of a
3D-structure may be considered as multiple refer-
ences in 2D. Therefore, the methodology presented
may be applied to generate class averages of
different views in an angular reconstitution
approach to 3D-reconstruction.33,34 What is more,
by extension of the theory presented here, the
benefits of 2D-ML refinement may be carried over
to the refinement of (multiple) 3D-structures.
Together with an incorporation of correlated noise
in the ML formulation, this might greatly enhance
the quality of electron microscopy structure
analysis, which is a topic for future research.
Materials and Methods

Large T-antigen purification and electron microscopy

Large T-antigen was expressed and purified as
described.35 A dsDNA fragment comprising the origin
of replication of SV40 (Ori) was produced by PCR
amplification from two primers (oligo-EcoRI 5 0-GAATT
CCCGGGGATCCGGTCGAC-3 0 and oligo-HindIII 5 0-AA
GCTTTCTCACTACTTCTGGAATAGC-3 0), using the
pOR1 plasmid as a template.36 The resulting dsDNA
probe was 107 bp long and included the Ori, as well as an
extension of 23 bp at the AT-rich region side. Double-
hexamer complexes, assembled on the Ori, were formed
as reported previously.24 After vitrification of the speci-
men on carbon-coated grids, images were collected in a
Tecnai G2 field emission gun microscope at a magnifi-
cation of 62,000! and an accelerating voltage of 200 kV.
Micrographs were digitized on a Zeiss-Integraph
† http://www.cnb.uam.es/~bioinfo
(Photoscan TD model) scanner with a 2.2 Å step size.
Down-sampling by linear interpolation yielded a final
pixel size of 4.4 Å. For each micrograph, the CTF was
estimated and corrected by flipping the sign of the Fourier
components. A total number of 7590 particles was
selected and extracted from these micrographs.

G40P purification and electron microscopy

Bacteriophage SPP1 G40P was expressed and purified
as described.37 Glycerol removal was performed by
dialysis against a buffer containing 50 mM Hepes (pH
7.0), 50 mM NaCl, 50 mM MgCl2, 1 mM ATP and 1 mM
dithiothreitol. Subsequently, a 0.7 mM G40P solution was
adsorbed onto carbon-coated holey grids previously
glow-discharged, stained with 2% (w/v) uranyl acetate,
and visualized in a Jeol 1200 EX-II transmission electron
microscope at 60,000! magnification and an accelerating
voltage of 80 kV. Micrographs were digitized in a Zeiss-
Integraph (Photoscan TD model) scanner at a pixel size of
4.1 Å. A total number of 13,475 particles was selected and
extracted from the micrographs. A self-organizing map
algorithm (KerDenSom25) was applied to analyse the
variability among the rotational power spectra28 of all
translationally aligned particles. Discarding all particles
without apparent three or 6-fold symmetry, a final
population of 2120 top views was selected. This test set
comprised all three quaternary architectures as observed
previously for G40P26: 589 particles with C3, 740 particles
with C3C6, and 791 particles with C6 symmetry.

Multi-reference refinement schemes

All subsequent image operations were performed
using the image processing package Xmipp,32 in which
both ML and CC multi-reference refinement protocols
were implemented. ML refinement was carried out by
iterative evaluation of equations (7)–(10); CC multi-
reference refinement9 was performed using a complete
search of all rotations and all translations up to a
maximum allowed shift. Rotations were performed
using bilinear interpolation and rotation angles were
sampled every five degrees. Fast Fourier transforms were
employed to calculate cross-correlations, resulting in
periodic boundary conditions for translations, being
sampled every pixel. Prior to multi-reference refinement,
all images were normalized to average zero and standard
deviation one. Given this normalization, initial estimates
for the standard deviation of the noise in the ML
approach were set to one. Initial values for ak were set
to correspond to uniform distributions of the different
models. Initial estimates for the standard deviation in the
origin offsets were set to two pixels for the G40P and
phantom data, while for the LTA-data a value of ten pixels
was used to reflect an increased uncertainty in particle
picking due to the high levels of noise. The maximum
allowed shifts in the CC refinements were set to 20 pixels
for the LTA data, ten pixels for the G40P data, and six
pixels for the phantom data. Initial reference images were
calculated in a bias-free way by calculating the average of
equally-sized, random subsets of the unaligned images.
Refinements were stopped when, for all references, the
average squared intensity differences resulting in a single
iteration dropped below 0.005% of the average squared
intensity of the image.
The CC algorithm was implemented striving for

maximum resemblance to the ML protocol. This resulted
in an implementation that is sub-optimal in terms of
computing speed, requiring almost as much CPU as the

http://www.cnb.uam.es/~bioinfo
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ML implementation. Required computing times for ML
refinement depend on the quality of the images, and are
of order O(NCK) for N experimental images and K
references, and of order Oð

ffiffiffiffiffi
M

p
log

ffiffiffiffiffi
M

p
Þ for M pixels. For

the 2120 images of 80!80 pixels of the negative stain
dataset, ML refinement of three references took approxi-
mately 1.5 hours/iteration on a 1 GHz Alpha processor.
For the 7590 images of 90!90 pixels of the cryo-electron
microscopy dataset, ML refinement of five references
took approximately 14 hours/iteration. Part of these
calculations was performed in a parallelized fashion.
(Parallelization is straightforward, since within a single
iteration the probability calculations of different
experimental images are independent.)
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