Maximum-Likelihood Refinement of Electron Microscopy Images
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INTRODUCTION

Structural heterogeneity is often a major obstacle in 3D-EM analyses. Maximum-
likelihood (ML) refinement of multiple reference volumes may be a promising
way to deal with the intertwined problems of orientation assignment and
classification of a heterogeneous particle population. The statistical model of the
ML approach not only includes the underlying structures in the data, but also a
formal description of the experimental noise and the distributions of refinement
parameters. For infinitely large data sets, maximizing the likelihood yields less-
biased models than those provided by alternative methods".

A ML approach to (single-reference) 2D-alignment was introduced by Sigworth?.
Application of ML to 3D-reconstruction and classification of icosahedral virus
particles was presented by Yin et al.>. Our group first applied ML to classification
of projections using self-organizing maps*. More recently, we presented a ML
approach to 2D multi-reference refinement®, and a way to speed up the
extensive computations®.

Currently, we are working on ML-refinement of a single 3D-reconstruction, which
will subsequently be extended to include multiple reference volumes.

METHODS
The target function: Log-likelihood

We aim to optimize the logarithm of the probability of observing data set X,
(containing N images X;) given a model with parameter set O (see below).
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The model: Assumptions

1. The images are rotated and translated copies (X;(¢), ¢={, x, y}) of one of K

underlying 2D-structures A, to which white Gaussian noise with std.dev. ¢ is added:

P(X, |k, ¢,0)= (ﬁ]w exP[—iuAk _ZX'Z(MZ ] (2)
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2. The in-plane rotations are uniformly distributed; the origin offsets are distributed
according to a 2D-Gaussian with std.dev. &, centered at the origin; and structures
A, are distributed according to a discrete distribution a;:
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The optimization: Expectation-Maximization’

1. Expectation: Use the current ©®) to calculate a lower bound to L(X|©).
This involves calculating all:
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2. Maximization: maximize the bound by updating all model parameters:
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A. (2D) Multi-reference refinement:
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B. (3D) Volume refinement:

A, are projections in K different directions (R,) of a volume V. A better volume
V1 is obtained by solving the following weighted least-squares problem:
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which is done using a new type of iterative reconstruction techniques.

Besides 4, or V, also update the other parameters in ©: o, ¢, and a,. Then
proceed using ®*) to calculate the lower bound for the next iteration (n+1).
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RESULTS

A. (2D) Multi-reference Refinement
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Figure 1: Five-reference refinement of 7,590 cryo-EM projections (A) of large T-antigen

in complex with an symmetric DNA-probe (B). Unbiased starting models were

obtained by averaging over five random subsets of the unaligned images (C; column 0).

In our experience, ML refinement has been the only method capable of visualizing

the complexed DNA (see D, upper image).
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B. A faster approach

Evaluating Eq. 5 (or 6) for all i, k, and ¢ is expensive! Alternatively, for all (n) we
store those translations (x( y“’)) that yield the highest probability of observing
image X; given reference Ak (Eq 2) Then, for those X;, 4, and y where:

P(X, [y x® y,0")<10 max[P(X [y, x @0

we assume that none of the translatlons will contribute significantly to Eq. 5 (or 6)
and in iteration (nt+1) the corresponding integration over x and y is skipped.

In many cases, this results in a speed-up of the calculations (up to 7-fold), without
notably changing the optimization path. The images shown in Fig 1D were obtained
using this approach in combination with a relatively fine y-sampling of 2°.

C. (3D) Volume Refinement
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Figure 2: Volume refinement (10 iterations) using 5,000 projections of a 6-fold
symmetric phantom representing large T-antigen (A). To all projections white
Gaussian noise was added (SNR ~0.02). The initial reference volume (B) was
obtained by simulating a RCT experiment. ML optimization (fast protocol) yielded a
volume that was less noisy and extended to higher resolution than a conventional
protocol of 5D-orientation assignment based on maximum cross-correlation and
weighted back-projection with arbitrary tilt geometry (C).

22 hrs (wallclock) using 10 CPUs
and the fast approach

DISCUSSION

« Our 2D-results indicate that ML is a powerful tool to classify structural differences
« Preliminary results indicate that ML may also be well-suited for volume refinement

« Current efforts focus on optimization of the 3D-refinement algorithm and its
extension to include multiple reference volumes

« We further note that:
* The 2D-program, its fast variant, and an MPI implementation are available
through our free program package Xmipp® (www.cnb.uam.es/~bioinfo).
* The assumption of independent noise is incorrect for experimental data.
The statistical model in the ML approach may be improved by incorporation
of CTF-introduced dependencies between nearby pixels.



