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Abstract

Motivation: In recent years, large-scale studies have been undertaken to describe, at least partially,

protein-protein interaction maps, or interactomes, for a number of relevant organisms, including

human. However, current interactomes provide a somehow limited picture of the molecular details

involving protein interactions, mostly because essential experimental information, especially struc-

tural data, is lacking. Indeed, the gap between structural and interactomics information is enlarging

and thus, for most interactions, key experimental information is missing. We elaborate on the ob-

servation that many interactions between proteins involve a pair of their constituent domains and,

thus, the knowledge of how protein domains interact adds very significant information to any inter-

actomic analysis.

Results: In this work, we describe a novel use of the neighborhood cohesiveness property to infer

interactions between protein domains given a protein interaction network. We have shown that

some clustering coefficients can be extended to measure a degree of cohesiveness between two

sets of nodes within a network. Specifically, we used the meet/min coefficient to measure the pro-

portion of interacting nodes between two sets of nodes and the fraction of common neighbors.

This approach extends previous works where homolog coefficients were first defined around net-

work nodes and later around edges. The proposed approach substantially increases both the num-

ber of predicted domain-domain interactions as well as its accuracy as compared with current

methods.

Availability and implementation: http://dimero.cnb.csic.es

Contact: jsegura@cnb.csic.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cellular processes are regulated by an intricate network of protein-

protein interactions (PPIs) that form both transient as well as more

permanent complexes. Different experimental techniques are used

to determine PPIs (Berggard et al., 2007). However, the molecular

details behind the interaction itself are usually not detected and re-

quire other types of assays to be determined. In this context, it is

well-known that protein function is supported by the underlying

structure (Watson et al., 2005) and, thus, solving the structure of

protein complexes is essential for a detailed understanding of their
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function. Still, the amount of interactomics data, and the speed at

which they are produced, is substantially higher than the pace

at which protein structures can be experimentally obtained.

Consequently, the development of computational methods to pre-

dict some of the details behind sets of proposed PPIs is a must.

Lacking experimental structural information about a certain com-

plex, but having that information for its unbound constituent pro-

teins, probably the best approaches fall in the area of protein

binding site prediction (Segura et al., 2011) or protein docking

(Halperin et al., 2002). Nonetheless, most of these methods are only

suitable when the structure of proteins have been solved, at least

partially. This fact has motivated us to focus on the prediction of

some characteristics of sets of PPIs based on non-structural informa-

tion. In this way, we have focused on the important observation that

most proteins are composed of one or more domains connected

by inter-domain regions (Apic et al., 2001; Ekman et al., 2005).

Moreover, many protein interactions involve a pair of their constitu-

ent domains and, thus, how a particular pair of proteins interacts is

strongly driven by their domains (Apic et al., 2001; Gupta et al.,

2010; Itzhaki et al., 2006) (the important case of intrinsically dis-

ordered proteins will be discussed in Section 3.3). Consequently, the

knowledge of domain-domain interactions (DDIs) is of great value

during the analysis of PPIs, helping, for instance, in the identification

of potential binding sites (Desjarlais and Berg, 1992; Moya-Garcia

and Ranea, 2013; Pawson and Nash, 2003).

The question whether PPIs are mediated via a limited set of do-

main pairs has been approached in different works. Several studies

found that some domain pairs were overrepresented in large datasets

of experimentally determined PPIs (Deng et al., 2002; Gomez et al.,

2003; Liu et al., 2005; Ng et al., 2003; Nye et al., 2005; Riley et al.,

2005; Sprinzak and Margalit, 2001). Therefore, the inferred domain

pairs were shared by multiple interactions. Using a different type of

analysis, Itzhaki et al. (2006) studied the relation between structur-

ally derived DDIs and PPI networks of different organisms. Their

statistical analysis proved that the number of PPIs attributed to

DDIs was significantly larger than expected by random. This result

supports the conjecture that PPIs may be driven by a limited cata-

logue of DDIs. However, the fraction of PPIs to which experimen-

tally determined DDIs could be mapped back in 2006 ranged from 6

to 20% in different organisms. Indeed, in this study, we have

observed that the gap between PPIs and experimentally solved DDIs

nowadays remains in a similar proportion, so that current experi-

mental data on DDIs can be mapped to <20% of the PPIs for most

organisms (Section 3.3.2).

Most previous methods to infer DDIs rely on the assumption

that an interaction between a pair of proteins involves at least a pair

of their constituent domains (one from each interacting protein).

One of the first methods was proposed by Sprinzak and Margalit

(2001). In their work, the authors analyzed a particular set of PPIs

looking for domain pairs that co-occurred more frequently in inter-

actions than expected by chance. Later, Deng et al. (2002) used an

expectation maximization algorithm to maximize a certain likeli-

hood function over an observed interactome. Protein interactions

were described in terms of DDI probabilities, and the expectation

maximization algorithm searched for the DDI probabilities that

maximized the likelihood function. This work was extended by

Riley et al. (2005) in their domain pair excluding analysis approach.

Riley et al. method calculates different likelihood scores negating

interactions coming from particular domain pairs. In this way, the

authors improved the performance of previous methods, predicting

interaction between domains based on the differences of the likeli-

hood values when a particular domain pair was excluded. Other

approaches used a parsimony model to find the minimum set of

DDIs that could explain the interactions present in a given PPI map

(Chen et al., 2011). Finally, several methods introduced other types

of data, such as correlated mutation at protein interfaces

(Jothi et al., 2006; Kann et al., 2007), gene ontology (GO) terms

(Liu et al., 2009) or co-evolutionary data (Pazos and Valencia,

2008).

In this work, we describe a new strategy to infer DDIs based on

the topology of a protein interaction network. This approach ex-

ploits the neighborhood cohesiveness (NC) property of small-world

networks (Watts and Strogatz, 1998), analyzing the interactions be-

tween two sets of nodes that contain proteins with a particular do-

main. In this way, we have extended previous definitions of NC,

first calculated on a network node (Watts and Strogatz, 1998), later

on a network edge (Goldberg and Roth, 2003) and in this work

defined over two sets of nodes within the network. Particularly, we

used the meet/min coefficient (Ravasz et al., 2002) to measure the

proportion of interacting nodes between two sets of nodes and the

fraction of common neighbors. Although more sophisticated cluster-

ing coefficients (Hulovatyy et al., 2014) could be used, we will prove

that this simple cohesiveness measure already has enough discrim-

inative power to differentiate between interacting and non-interact-

ing domains. The performance has been tested using a novel

DDI benchmark compiled using 3DID (Mosca et al., 2014) and

Negatome (Blohm et al., 2014) data. We have compared our meth-

odology against the correlated sequence signature (CSS) method

(Sprinzak and Margalit, 2001) and DOMINE predicted data

(Yellaboina et al., 2011), showing that the proposed approach is

competitive with previous methods. Finally, the approach and the

PPI data used during the present development have been integrated

together into a web platform termed DIMERO (Data Integration

for MolEcuar stRucture mOdelling). DIMERO allows both the

evaluation of interactions between domains as well as a direct access

to source data in the form of the PPIs used for the evaluation. In this

way, browsing these PPI data offers the possibility to find additional

information about known interactions involving the domains of

interest, including experimental data, information from prediction

methods and scientific literature.

2 Materials and methods

2.1 The negative sample problem
The lack of experimentally determined non-interacting domain pairs

makes the evaluation of DDI prediction methods a challenging prob-

lem. Typically, positive cases for testing DDI predictions are col-

lected from crystal structures of protein complexes (Jothi et al.,

2006; Liu et al., 2009). However, the negative sampling has been

handled in different ways. Several works compared the distributions

of scores between known interacting domains and random pairs se-

lected from proteins of different cellular compartments (Ben-Hur

and Noble, 2006). Other works measured the fold enrichment be-

tween the number of predicted interactions and the number of pre-

dictions known to be true (Liu et al., 2009). Also, several authors

used PPI datasets to evaluate their DDI predictions (Chen et al.,

2011; Sprinzak and Margalit, 2001); nonetheless, it should be noted

that the negative sampling for PPI presents a similar problem. In this

work, we followed a different approach, using the data collected in

the Negatome database (Blohm et al., 2014). This database is a re-

pository of protein and domain pairs that are unlikely to engage in a

physical interaction. The data are collected by means of data mining

algorithms and filtered by manual curation, minimizing the number

of false negative pairs of the resulting dataset.
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2.2 Data framework
Four different databases were used for developing and benchmark-

ing the here presented DDI scoring system. STRING DB

(Franceschini et al., 2013) was the source of the interactomic net-

works for different organisms. This database offers a large collection

of experimentally obtained, data mined as well as predicted inter-

actions between proteins. For the purpose of this work, only inter-

actions that were annotated as ‘binding’ were considered. The

resulting dataset consisted of 28 888 908 interactions involving

2 135 719 proteins from 1133 organisms. Supplementary Figure S1

in Supplementary Material shows that the distribution and relation

between the number of proteins and interactions contained in the

different networks. Then, for each protein involved in these inter-

actions, its constituent domains were defined in terms of the Pfam

classification (v27) (Finn et al., 2014) and delineated using the

HMMER algorithm (Johnson et al., 2010). Finally, this protein do-

main information was annotated into the interactomic network

nodes, setting up the framework for the assessment of domain

interactions.

The DDI benchmark was constructed using two databases:

3DID (Mosca et al., 2014) and Negatome DB (Blohm et al., 2014).

3DID is a compilation of structurally solved domain interactions

mined from the PDB (Rose et al., 2013). The positive cases were

extracted from this database selecting the domain interactions be-

tween different protein chains of binary complexes. Finally, the

interactions between domains of the same family were rejected. The

resulting dataset contained 1405 Pfam domain pairs; this set will be

referred to as positive domain–domain interaction (PDDI). The

negative samples of the benchmark were gathered from Negatome

DB, using the ‘Manual-Pfam’ set, containing 1453 domain pairs

which, in the context of this work, will be referred to as negative do-

main-domain interaction (NDDI).

2.3 From network topology to DDI scores
Our DDI assessment methodology exploits the NC property of

small-world networks in a similar way to the approach proposed by

Goldberg and Roth (2003). In their work, Goldberg and Roth

defined four variants of a mutual cluster coefficient to measure NC

around edges in a protein network, i.e. interactions. The authors

proved that measurements of NC around network edges (protein

interactions) had higher values than in pairs of proteins for which

there was no evidence of interaction. Therefore, proteins sharing

many neighbors in a PPI network were more likely to interact.

Finally, these metrics were used to predict false interactions in pro-

tein networks derived from high-throughput experiments. Following

a similar strategy, we have extended the meet/min coefficient

(Ravasz et al., 2002) defining two metrics that quantify a cohesive-

ness degree between two sets of nodes within a network. This ap-

proach extends previous works where a mutual cluster coefficient

was defined, first around network nodes (Watts and Strogatz, 1998)

and later on around edges (Goldberg and Roth, 2003). Furthermore,

we prove that these measures can be used to infer DDIs when the se-

lected sets include the network proteins that contain specific do-

mains (Sections 3.1 and 3.2).

The main purpose of this work is the identification of potential

interactions between domain families and its application to explore

protein interactomic data. For that reason, the scores presented in

this section have been expressed as a function of protein domains in-

stead of using a graph-based description.

In this work, a protein interaction network for a particular or-

ganism, as the one shown in Figure 1A, is described as a 3-tuple

P;D; Ið Þ, where P is the set of proteins in the network, D is the set of

all domains in the proteins and, finally, IP� P is the set of PPIs in

the network, being P; Ið Þ an undirected graph.

For a given protein p 2 P, its neighborhood in the network is

defined as the set of nodes that interact with p, thus

N pð Þ ¼ q 2 P; p; qð Þ 2 If g (1)

Let d 2 D be a protein domain, then the network region of d is

defined as the set of nodes (proteins) that contain the domain d and

formally is denoted as

R dð Þ ¼ q 2 P; d 2 qf g (2)

The network surroundings of a domain d is defined by the nodes

that interact with any protein of R dð Þ, thus

N dð Þ ¼ [
p2R dð Þ

N pð Þ (3)

The first proposed metric is the interacting nodes proportion,

noted as cIP dn; dmð Þ. It measures the degree of directly interacting

nodes that exists between two domain regions in the network. This

metric calculates the maximum fraction of elements in the network

surrounding of one domain that intersects with the region of a se-

cond domain

cIP dn; dmð Þ ¼ max
jN dnð Þ \ R dmð Þj
jN dnð Þj

;
jN dmð Þ \ R dnð Þj
jN dmð Þj

� �
(4)

Figure 1B shows that the interacting nodes between two sets of

proteins defined by two domain regions.

The second metric is the common neighborhood proportion; it

measures a degree of NC between two domain regions and it is cal-

culated as the maximum fraction of common nodes between the do-

main surroundings

cNP dn; dmð Þ ¼ max
jN dnð Þ \N dmð Þj
jN dnð Þj

;
jN dmð Þ \N dnð Þj
jN dmð Þj

� �
(5)

Figure 1C represents the common neighbors between two sets of

proteins defined by two domain regions.

Fig. 1. Network cohesiveness between protein domains. (A) An exemplary

PPI network. In dashed red lines, proteins that define the network region

associated to domain da . In dashed green lines, proteins that define the net-

work region associated to domain db . (B) The PPI network in (A) has been

spatially rearranged while keeping the node connectivity, so that all proteins

of the network region defined by da are placed within the dashed red line and

those associated to db are within the dashed green line. In a solid red area

delineated by a dashed black line, we show those directly interacting nodes

of da contained in the network region of db , the opposite case is shown within

solid green areas. In this example cIP ¼max 2=12; 3=12f g (C) Common neigh-

bors nodes of the proteins in the network region defined by da , encircled in

red, and db , encircled in green, are shown within the solid yellow area. In this

example cNP ¼max 6=12; 6=12f g (Color version of this figure is available at

Bioinformatics online.)
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The metrics presented in this section follow the same principles

as the meet/min coefficient (Ravasz et al., 2002), a broadly used

measure in the context of PPI networks (Goldberg and Roth, 2003;

Li et al., 2011). More sophisticated approaches (Hulovatyy et al.,

2014) could be adapted to calculate cohesiveness between sets of

proteins, potentially leading to more accurate results. However, the

main purpose of this work is to prove that basic measures of NC

have enough discriminative power to differentiate between interact-

ing and non-interacting domains.

2.4 STRING data for the assessment of DDIs
Domain interaction metrics presented in Section 2.3 are calculated

per interactomic network. Therefore, these calculations have to be

extended to multiple interactomic networks from multiple organ-

isms so that, for each one of them, metric values for the particular

domain pairs of that network are obtained. Then, the global score is

computed as the average among all organisms of the values corres-

ponding to each domain pair; thus

s� dn; dmð Þ ¼ 1

jHj
X
o2H

co
� dn; dmð Þ (6)

where co
� dn; dmð Þ is the interacting node proportion (Equation 4), or

the common neighborhood proportion (Equation 5), between do-

mains dn and dm in the interactome o. Note that although averaging

information from multiple organisms certainly led to better per-

formance, metrics cIP (Equation 4) and cNP (Equation 5) computed

on single interactomes already have enough discriminative power in

themselves (Section 3.2 and Supplementary Material, Section S5).

Final assessment was done using established statistical measures

such as Precision, Recall, areas under precision-recall (AUPR) and

receiver operating characteristic (AUROC) curves, the Mathew cor-

relation coefficient (MCC) and the Mann-Whitney-Wilcoxon

(MWW) test, that are presented in detail in Supplementary Material

(Supplementary Section S2).

2.5 Combining the interacting and neighborhood

proportion scores
We combined the interacting nodes proportion score sIP and the

common neighborhood proportion score sNP (Section 2.4) into a sin-

gle binary classifier named the combined proportion (CP). The CP

classifier is based in the following strategy: a domain pair d; d0ð Þ is

classified as interacting if sIP d; d0ð Þ > KIP or sNP d; d0ð Þ > KNP, where

KIP and KNP are two thresholds selected under a certain criteria. For

example, in this work we have used those thresholds that maximises

the MCC of sIP and sNP, respectively (Section 3.1).

This strategy, however, does not explicitly provide a score or

statistical confidence measure. Consequently, in Supplementary

Material (Supplementary Section S3) we present the conventions

used in this work to describe confidence levels as high confident

(HCP), medium confident (MCP) and low confident predictions

(LCP).

2.6 The web application: DIMERO WS
DIMERO WS is a dedicated web platform that integrates the pre-

dicted DDI scores and the CP classifier (Sections 2.4 and 2.5) with

the PPI data used for their calculations. The platform is composed of

a collection of python and JavaScript packages. The server was pro-

grammed in python language using the PDB structural library of

Biopython (Hamelryck and Manderick, 2003). Also, HMMER

(Johnson et al., 2010) was integrated in the server to calculate

the domains of protein sequences based on Pfam classification

(Finn et al., 2014). The client interface was built using the ExtJS

library from Sencha, providing a user-friendly environment where

the information is distributed in different widgets. The web applica-

tion is accessible at http://dimero.cnb.csic.es.

3 Results

3.1 Performance on the DDI benchmark
To assess the power of sIP and sNP scores (Section 2.4) inferring

DDIs, we have compared their distributions on NDDI and PDDI

datasets. To this end, PDDI and NDDI score distributions are repre-

sented using a boxplot schema (Fig. 2, PDDI scores in green and

NDDI scores in red) for the scores sIP (Fig. 2, sIP) and sNP (Fig. 2,

sNP). Figure 2 shows that, in general, score values on PDDI domain

pairs tend to be larger than on the corresponding NDDI set. To con-

firm this observation, we computed the MWW (Supplementary

Material, Section S2) test on PDDI and NDDI distributions for both

scores. In both cases, the MWW test resulted in the rejection of the

null hypothesis (P-value < 0.001) that score distributions for PDDI

and NDDI are both equal.

Also, the performance of the scores was measured in terms of

the precision, recall, AUPR, AUROC and MCC (Supplementary

Material, Section S2). Supplementary Figure S2C in Supplementary

Material shows that the precision-recall curves when the score

threshold to consider a domain pair as interacting is decreased from

1 to 0. Table 1 shows that how the AUPR value for both scores is

greater than 0.49, the AUPR value of a random classification for

PDDI and NDDI benchmark. Also, the AUC value was better than

the expected value of a random classifier (AUC value of 0.5). MCC

measures the quality of a binary classification, in this case between

interacting and non-interacting domains. All the methods achieved a

MCC greater than 0 and, thus, their classification performance was

better than random. The score sIP achieved a maximum MCC of

0.41 when a pair of domains d; d0ð Þ was considered interacting if

sIP d; d0ð Þ > 0:037. For this threshold, the recall and precision were

44.2 and 83.8%, respectively; from 741 domain pairs predicted as

interacting, 621 were true and 120 false. For the sNP score, the best

MCC was 0.43, this value was achieved when a domain pair was

classified as interacting if sNP d; d0ð Þ > 0:45. In this case, the preci-

sion and recall were 48.2 and 83.6%, respectively; from 811 domain

pairs classified as interacting, 678 were true predictions and 133

false. Table 1 shows the precision and recall when the MCC

achieved its maximum value.

Fig. 2. Cohesiveness score distributions for PDDIs and for NDDIs. Score distri-

bution whisker boxplots for several magnitudes are shown: interacting nodes

proportion (sIP ) and common neighbors proportion (sNP ). In red, score distri-

bution for NDDI pairs. In green, score distribution for PDDI cases
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In terms of computational cost, computing the sIP and sNP scores

took close to 20 and 30 min, respectively, using 256 Intel Xeon

CPUs at 2 GHz.

To demonstrate whether the performance of the scores truly de-

pends on the topology of the PPI networks, we applied the same

evaluation process using random interactomes. To this end, we gen-

erated a random network for each organism in STRING employing

the following strategy: networks were constructed using the original

set of nodes and generating an equal number of random interactions

as in the original interactome. Finally, sIP and sNP scores were com-

puted using the random generated interactomes and evaluated on

PDDI and NDDI domain pairs. Supplementary Figure S3

(Supplementary Material Section S4) shows that the distribution of

MCC, AUROC and AUPR for the sIP and sNP scores inferring DDIs

when this process is repeated 103 times. Indeed, the distributions of

these measures are close to a random classification. For example,

none of the tests led to an AUROC greater than 0.506 for the sIP

score and 0.512 for the sNP score. Therefore, the topology of the PPI

networks is an essential contribution for the predictive power of the

proposed scores.

Finally, we used the thresholds that maximized the MCC of the

sIP and sNP scores to set up the CP classifier (Section 2.5). Thus, a

domain pair d; d0ð Þ was classified as interacting if sIP d; d0ð Þ > 0:037

or sNP d; d0ð Þ > 0:45. Table 1 shows that the performance of the CP

classifier when is evaluated on PDDI and NDDI domain pairs. The

CP classifier achieved a MCC of 0.53 with a recall and precision

value of 67.7 and 81.3%, respectively, clearly showing that recall is

increased, while maintaining a similar level of precision when com-

pared with the sIP or sNP scores. Note that AUROC and AUPR can-

not be calculated on a binary classifier.

3.2 Comparison with previous studies
We compared the performance of the sIP, sNP scores (Section 2.4)

and the CP classifier (Section 2.5) inferring DDIs against two previ-

ous studies: The CSSs method proposed by Sprinzak and Margalit

(2001), first, and the predictions stored in DOMINE database

(Yellaboina et al., 2011), second.

CSS approach was designed to find combinations of domain

pairs that occur more frequently than random in particular PPI data-

sets. We evaluated the CSS method scoring the domain pairs of

PDDI and NDDI among the different interactomes of STRING. To

merge the CSS values computed on the different networks we used

the same strategy as proposed in Section 2.4. Also, the same nota-

tion was adopted; thus, cCSSðd; d0Þ denotes the CSS value of two do-

mains calculated on a single interactome and sCSSðd; d0Þ the average

of the cCSS values among different networks. Table 2 shows that the

performance of the sCSS score predicting DDIs on the PDDI and

NDDI datasets. The proposed scores sIP, sNP (Sections 2.4) and the

CP classifier (Section 2.5) achieved better results in terms of MCC,

AUROC and AUPR than the sCSS score (Tables 1 and 2).

To evaluate the power of the cCSS, cIP and cNP metrics inferring

DDIs on single networks, we computed their values on the PDDI

and NDDI datasets using the interactomes of STRING individually.

Thus, the evaluation of the metrics was done for each network of

STRING independently. Supplementary Figure S4 (Supplementary

Material, Section S5) shows that the performance of the metrics pre-

dicting DDIs for the individual interactomes. The figure displays the

relation between the number of interactions contained in the net-

work and the MCC, AUROC and AUPR achieved by the metrics. In

general, the performance of the three metrics improved the more

interactions were contained in the networks. For all interactomes

the best performance in terms of MCC, AUROC or AUPR was

achieved by the cNP metric except for zebrafish and saccharomyces

where cCSS achieved a better MCC. Finally, for all interactomes

none of the metrics cIP, cNP or cCSS achieved a better performance

inferring DDIs than averaging their values over all networks; leading

to the sIP, sNP or sCSS scores (confront Supplementary Fig. S4; Tables

1 and 2).

The second comparison was between the CP classifier and

DOMINE database. This database contains DDI predictions using

seven different methods. The predictions are classified into low, me-

dium and high confident, depending on the number of methods that

confirm a particular DDI and the shared GO terms between the do-

mains. Domain information in DOMINE is based on Pfam classifi-

cation v22. Then, to build a proper and fare benchmark, we filtered

PDDI and NDDI domain pairs selecting only those pairs for which

both domains were defined in Pfam v22. The result was a set of 980

positive cases and 1115 negative cases. Then, for the resulting pairs,

we checked whether they were present in DOMINE or not. If a do-

main pair was present in the database, then it was classified as inter-

acting and scored in terms of low, medium or confident prediction

as defined in DOMINE. On the other hand, those domain pairs that

were not present in the database were classified as non-interacting.

Table 3 shows that the performance of DOMINE when the pre-

dicted interactions are defined by the low, medium or high confident

domain pairs. In all cases the CP classifier achieved a better MCC

Table 1. DDI prediction performance

Score MCC Recall (%) Precision (%) AUROC AUPR

sIP 0.41 44.2 83.8 0.71 0.75

sNP 0.43 48.2 83.6 0.72 0.76

CP 0.53 67.7 81.3 * *

Performance of the interacting nodes proportion score, neighborhood pro-

portion score and CP classifier predicting DDIs for PDDI and NDDI datasets.

First column: interacting nodes proportion (sIP), common neighbors propor-

tion (sNP) and CP classifier. Note that recall, precision, MCC, AUROC and

AUPR are defined in Supplementary Material (Supplementary Section S2).

*These measures cannot be calculated on a binary classifier.

Table 2. DDI prediction performance of CSS approach

Score MCC Recall (%) Precision (%) AUROC AUPR

sCSS 0.37 51.7 75.8 0.68 0.7

Performance of the CSSs method (Sprinzak and Margalit, 2001) predicting

DDIs for the PDDI and NDDI datasets. Note that recall, precision, MCC,

AUROC and AUPR are defined in Supplementary Material (Supplementary

Section S2).

Table 3. Comparison with DOMINEDB data

Score Recall (%) Precision (%) MCC

LC 17.2 86.2 0.25

MC 13.4 96.3 0.26

HC 12.1 96.7 0.25

CP 65.3 82.8 0.55

Performance of DOMINE predictions data and CP when predicting DDIs

for the PDDI and NDDI cases included in Pfam v22 (Section 3.2). The first

column defines the predicted DDIs: low confident or better DOMINE DDIs

(LC), DDIs medium confident or better DOMINE DDIs (LC), high confident

DOMINE DDIs (HC) and CP.
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than DOMINE predictions and, thus, a more accurate classification.

The medium and HCPs DOMINE had a better precision than the

CP classifier but a lower recall value. When the thresholds (0.32 for

sIP and 0.85 for sNP) for the CP classifier were set up to have a simi-

lar precision as the medium and HCPs of DOMINE (97%), then the

recall of the CP classifier was 23% with a MCC value of 0.35, out-

performing DOMINE predictions.

3.3 DDIs as mediators of PPIs
In this section, we want to analyze quantitatively the increment in

the capacity to assign detailed molecular information at the DDI

level to sets of PPIs, when using the method proposed in this work

as opposed to not using it. The detailed derivations are presented

in Supplementary Material (Supplementary Section S6), extracting

here the main conclusion.

3.3.1 Human interactome analysis

Given a complete interactome, the number of all possible DDIs is

large, creating ambiguities as to the precise molecular mechanisms

involved. As an example, we have considered a subset of all human

interactions compiled in Interactome3D database (Mosca et al.,

2013), formed by those interactions involving multi-domain pro-

teins for which no molecular information is available. The resulting

dataset contained 23 785 interactions. If we now calculate the num-

ber of all possible non-identical pairs of domains involved in these

interactions, we obtain the number of 44 750 different domain pairs.

In turn, the average number of domain pairs per interaction

amounts to 5.4. We now considered CP classifier using the three

thresholds defined in Supplementary Material (Supplementary

Section S3): HCPs, MCPs and LCPs. Table 4 shows that how the

total number of binding domains is reduced when domain pairs are

accepted or rejected with the different thresholds and, thus, how the

average number of ‘allowed’ domain combinations per interaction

decreases, reducing ambiguities.

At this point, we would like to highlight two of the important

limitations of this type of methodologies. First, when several copies

of a particular domain are present in a protein, this type of predic-

tion methods are not able to distinguish which of these copies is

more likely to interact and all of them are scored the same. For ex-

ample, in the dataset analyzed above, we found that 1263 proteins

contained several copies of one domain. These proteins were

involved in 5026 interactions; thus, nearly 25% of the analyzed set

of interactions present ambiguities with respect to the precise do-

main involved in the interaction. Second, it has been estimated that

intrinsically disordered proteins are involved in 49% of human PPIs

(Mosca et al., 2012) and thus, binding regions for these interactions

may not be contained in folded domains.

3.3.2 STRING interactions analysis

We were interested in analyzing what was the proportion of PPIs in

STRING to which structurally solved DDIs could be mapped. To

that end, we considered all DDIs between different protein chains

stored in 3DID and then calculated the proportion for the different

organisms in STRING. Figure 3 (red boxplots) shows these results

using a boxplot diagram for different STRING scores. For all se-

lected scores, the average proportion of PPIs to which DDIs could be

mapped was <20%.

We explored the possibility of using the CP classifier (Section

2.5) to predict new DDIs and, consequently, increase the proportion

of PPIs to which domain interactions could be mapped. Figure 3

(green boxplots) shows that the proportion of PPIs to which the new

predicted set of DDIs can be mapped; in this case the average pro-

portion is >60% for the selected scores. In general, DDI prediction

offers the possibility to extend information derived from structural

data and increase the range of PPI candidates.

3.4 Analysing interactions with DIMERO WS
In this section, we show how DIMERO WS can be used to analyse

the interactions between different proteins. In this example, we have

studied the interactions between the proteins of the apoptosis path-

way defined in the KEGG database (Kanehisa et al., 2014). Nodes

in a KEGG pathway may represent several genes or proteins. In this

study, we have considered all possible interactions when an edge be-

tween two nodes involves multiple protein pairs.

The apoptosis pathway contains 83 proteins and 173 interactions.

We used DIMERO WS to evaluate the potential binding domains

involved in the different interactions of the pathway. In this way,

DIMERO WS computed the CP classifier for all possible domain

binding pairs, classifying them as HPCs, MCPs and LCPs.

Table 4. Reduction of ‘allowed’ binding domain pairs in Human

interactome

Threshold Number of DDIs Number of PPIs Avg. number of DDI

All 44 750 23 758 5.4

HCP 5483 10 628 2.4

MCP 17 155 19 343 3.2

LCP 24 270 21 584 3.7

Reduction of the number of possible interacting domain pairs that can be

mapped to Human interactions. The first column defines the threshold of CP

used to accept a pair of interacting domains: all pairs are accepted (ALL),

only HCPs, MCPs or better (MCP) and LCPs or better (LCP). The second col-

umn shows that the number of reported binding domain pairs for each thresh-

old, while the third column indicates the number of interactions to which

these reported binding domains can be mapped. Finally, the fourth column

presents the average number of reported binding domains per interaction.

Fig. 3. Fraction of PPIs that can be complemented with predicted information

on DDI. Vertical axis, distribution of the PPI fraction to which some DDIs can

be mapped in the different organisms covered by STRING. Horizontal axis,

score threshold used to filter PPIs in STRING. In red, 3DID data used as source

of DDIs knowledge. In green, CP predictions used as source of DDIs

knowledge
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Additionally, DIMERO WS linked the domain pairs with structural

data when the structure of the interacting domains had been experi-

mentally solved. Finally, Cytoscape (Smoot et al., 2011) was used to

represent the pathway at protein level and to annotate the edges with

the CP predictions (Fig. 4). Protein interactions in the pathway were

colored in terms of their best scored domain pair. In 62 interactions

the method predicted at least one domain pair as HCP (green lines). In

76 interactions the method scored at least one of the domain pairs as

MCP (orange lines). Finally, in 18 interactions the method scored at

least one domain pair as LCP (red lines) and in 11 cases scores were

not considered significant (grey lines). Thus, the CP classifier predicted

binding domains for 90% of all possible interactions in the pathway.

Additionally, the type of line used to draw an edge referred to in-

formation regarding the availability (or lack of it) of experimentally

determined structures. In this way, for 78 interactions of the apop-

tosis pathway, at least one of the possible binding domain pairs can

be mapped to an experimentally solved structure. Interactions be-

tween the proteins of the pathway lead to 297 different binding do-

main pairs. When these pairs were evaluated with DIMERO WS, 29

pairs were classified as HCP, 96 as MCP and 85 as LCP. From the

297 different domain pairs, 22 could be mapped to solved structures

and were involved in 78 interactions, as indicated in the previous

paragraph. It is very interesting to note the behavior of the DDI pre-

diction method on this set of experimentally solved structures. In

this way, four of these pairs were classified as HCP, nine as MCP

and nine as LCP. Thus, none of these pairs were considered to be

below the significance level. An additional observation is that these

22 domain pairs can be classified in 7 homo-interactions and 15 het-

ero interactions, and that hetero-interactions were scored higher

(four as HCP, eight as MCP and three as LCP) than homo-inter-

actions (one as MCP and six as LCP). This different behavior is

related to the fact that the neighborhood proportion measure cannot

be used to compare a set of nodes with itself and, consequently, only

the interacting node proportion can be used in these cases, while

both scores (sIP and sNP) are used for hetero-interactions.

Finally, we analyzed some of the domain pairs classified as HCP

and that were not mapped to solved structures. In this way, we found

some interesting results involving kinase domains and phosphoryl-

ation events. For example, in the interaction between the protein kin-

ase B family members (AKT1, AKT2 and AKT3) and the IKK

complex (CHUK, IKBKB and IKBKG), the kinase-NEMO DDI was

classified as HCP. Although, we cannot ensure this is a real interaction

it is known that the NEMO domain of the IKBKG subunit is phos-

phorylated in other signaling processes (Palkowitsch et al., 2008; Wu

et al., 2006). A similar result was found between the protein kinase B

family and the BAD protein; but in this case there is experimental evi-

dence supporting that AKT1 protein kinase indeed phosphorylates the

Bcl-2_BAD domain of the BAD protein (Koh et al., 2000), although

no atomic structure of this complex has yet been obtained.

4 Conclusions

This work presents a novel application of NC property to infer inter-

actions between protein domains. The approach is suitable for large

scale prediction of detailed molecular information to be further con-

sidered in the understanding of interactomes. In this way, we are

able to assign a significant value to the interaction of pairs of protein

domains involved in a given interaction, filtering the less probable

bindings. With this approach we are able to significantly extend cur-

rent binding information coming from sets of experimentally deter-

mined structures, outperforming previously proposed methods.

Finally, a user-friendly web platform is available at http://

dimero.cnb.csic.es, allowing the use to query about DDIs at the

same that it provides direct access to the data used to calculate the

interaction scores.
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