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Resumen (castellano) 
 

En este proyecto se van a diseñar e implementar en el gestor de flujos de Scipion, nuevas 

funcionalidades para el análisis de la dinámica de ciertos grupos de proteínas mediante la 

inclusión dentro de la herramienta de Scipion de las posibilidades que ofrece ProDy. Otro 

software cuyo fin es este tipo de análisis. El lenguaje de programación en el que se realizará este 

proyecto es Python ya que es el lenguaje en el que se concibieron inicialmente estos dos 

programas. 

En bioinformática existen distintos tipos de modelados y análisis que son muy útiles para 

conocer el comportamiento de ciertas moléculas presentes en la mayoría de seres vivos. Alguno 

de estos modelados son el modelado gaussiano de redes y la descomposición del dominio 

dinámico. El modelado gaussiano nos permite analizar el comportamiento en el espacio de 

ciertas moléculas y sus interacciones con estímulos físicos. Por su parte la descomposición del 

dominio dinámico de moléculas nos permite agrupar los resultados obtenidos en el modelado 

gaussiano para conocer los diferentes comportamientos dinámicos de los diferentes sectores 

dentro de la propia molécula. Este tipo de análisis se puede realizar a través de las diferentes 

funciones programadas en ProDy pero, sin embargo, algunas de sus funcionalidades quedan 

lejos del alcance de aquellos usuarios que no tengan un avanzado nivel en Python. Es por ello 

que el objetivo principal de este trabajo será el crear un entorno adaptado a cualquier tipo de 

usuario sin necesidad de que éste tenga que tener conocimientos avanzados de programación. 

Con el objetivo de comprobar que los resultados obtenidos a lo largo del proceso de diseño 

son los correctos, se procederá a recopilar información científica y académica sobre una serie de 

proteínas (AMPAR, NDMAR y ubiquitina) para realizar una simulación de uso de nuestro 

programa y cotejar los resultados obtenidos con la información científica recopilada. Para poder 

analizar estas proteínas en concreto, tendremos que acceder a la base de datos PDB por sus 

siglas en ingles Protein Data Bank, con el objetivo de descargar los archivos que modelan las 

diferentes moléculas a analizar para poder incluirlas dentro de nuestro programa. 

 

Palabras clave 
 

Scipion, gestor de flujos, dinámica, ProDy, Python, software, modelado gaussiano de redes 

(GNM), descomposición de dominio dinámico, herramientas, AMPAR, NDMAR, ubiquitina, pdb, 

neurotransmisor, estructura molecular. 
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Abstract (English) 
 

In this project, new functionalities for the analysis of the dynamics of certain groups of 

proteins, will be designed and implemented in the Scipion workflow engine by the including some 

of the possibilities that ProDy, another software whose objective is the analysis of the dynamics of 

proteins, offers. This Project will be developed entirely in Python as it is the language in which 

these two programs where initially conceived.  

In bioinformatics, different types of modelling and analysis exist that are very useful in order 

to get to know the behaviour of some certain molecules which are present in the majority of the 

living beings. Some of this models are the Gaussian Network Model and the Dynamic Domain 

Decomposition  

The Gaussian Network Model (GNM) lets us analyse the behaviour in space of some 

certain molecules and their interactions with physical stimuli. For its part, the dynamical domain 

decomposition of molecules, let us group the obtained results in the Gaussian Network Model to 

get to know the different dynamic behaviours of the different sectors inside the molecule itself. 

These kinds of analysis can be done thanks to the different functions programmed in ProDy. 

Nonetheless, some of its functionalities remain far beyond the reach of researchers who do not 

have an advance programming level in Python. That is why the main objective of this project is to 

create a work environment adapted to any kind of user without it being necessary to have 

advanced knowledge in programming. 

In order to make all the checks of the obtained results along the design process, have 

collected scientific and academic  information about some proteins (AMPAR, NDMAR y ubiquitin) 

so as to make a simulation of a case of use of our program and compare that with the collected 

scientific information. To be able to analyse these proteins in detail requires access to the Protein 

Data Bank (PDB) to make downloads of the files that contain experimental models of the different 

molecules to be analysed so to include them in our program.  

 

Keywords 
 

Scipion, workflow, dynamics, ProDy, Python, software, Gaussian network model (GNM), 

dynamical domain decomposition, tools, AMPAR, NDMAR, ubiquitin, pdb, neurotransmitter, 

molecular structure. 
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1.  Introduction 

1.1  Motivation 

Recent times have shown us the importance of having efficient tools so as to be capable of 

analysing biological, molecular, and atomic structures so as to be able to study how these 

biological microstructures interact with ourselves or with their own environment. Setting the 

example of the covid-19 pandemic, thanks to tools like the one developed in this project, 

humankind was able to prevent new virus strains, and has been able to develop the vaccines 

against it. In essence, computing and the huge advances we have witnessed in the past few 

years, are a fantastic way to help in getting a deep knowledge about these molecular structures.  

Programming is something I always liked, and this project seemed to be a challenge the 

first time I heard about it. As is obvious, I had learned nothing about biology or biochemistry 

during the degree, so getting into a project like this, arises out of my own intention of using the 

knowledge acquired during the degree of telecommunications engineering in such an important 

(but at the same time unknown to me) field of biochemistry.  

The tools used in this project (Scipion and ProDy) already existed and are commonly used 

by scientists all over the globe, but I played my part in developing new functionalities into this 

environment. Because, as I learned in these four years, no matter how good a program or a tool 

is, you can always add new functionalities to it in order to make it better.  

1.2  Objectives 

The main objective of this project is to offer the people interested in studying the behaviour 

of certain molecules an efficient and intuitive tool to do it. Particularly, aimed to implement a 

functionality using some of the functions that already existed in ProDy (and some new ones that 

we have included into Scipion) that enable us to make a GNM (Gaussian Network Model) 

analysis. The work will be developed in the following way: 

• Making the code able to make all the calculations needed for the GNM analysis 

using the functions packed in the ProDy repository. 

 

• Add to the scipion-em-prody repository the necessary changes and the new 

functions needed to make the most efficient GNM analysis. 

 

https://www.linguee.es/ingles-espanol/traduccion/knowledge+acquired.html
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• Integrate this ProDy functionality with the Scipion workflow engine and make a 

friendly interface so anyone can use it, even those users that do not know many 

things about programming. 

Among my personal objectives, the main ones are to understand more deeply the kind of 

analysis that the scientist does for some specific molecules and learn more about how to 

integrate and expand code that already exists. In fact, the collaborative coding using GitHub, has 

been one of the key elements in the developing of this project. Making use of the skills I have 

obtained in Python during the degree is also an important objective for me. 

1.3  Structure of the report 

This report will be structured in the following chapters: 

• Chapter 1: Introduction.  Talking about the general concepts. It includes the motivation 

and the main objectives of the project. 

 

• Chapter 2: State of the art.  In this chapter the current situation of programs and 

technologies like those developed will be explained.  Also, I will be talking about the main 

influences of the code developed, and go more deeply into the explanation of the analysis 

implemented (GNM and Dynamical Domain Decomposition). 

 

• Chapter 3: Design and implementation.  This chapter’s objective is to make an 

explanation of the way the functionalities have been developed  

 

• Chapter 4: Tests and Results.   In this chapter we will see an example of use of the tool 

with the AMPAR (PBD: 3kg2) and the NMDAR (PDB: 4PE5) molecules whose GNMs 

analysis have been done already, in order to check whether the results obtained are the 

correct ones. 

 

• Chapter 5: Conclusions and future work.   I will check whether the objectives described 

in chapter 1  have been achieved. It will also be discuss which are the perspectives for 

programs like Scipion and ProDy and some possible future work to be done after this 

project. 
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2.  State of the art 

2.1  Introduction 

All the work that has been done through the years on ProDy has allowed researchers to 

make their work in a more efficient way since all the calculations for complex molecules can now 

be done by a computer in seconds to minutes. The problem was that, despite the fact that ProDy 

has some useful tools that can be used almost by any user, for some important functionalities, 

there was not  an intuitive interface for those researchers that were not really into programming, 

until a few years ago when the main developers started making more friendly interfaces such as 

the DynOmics webserver [1] and more recently a plugin for Scipion. Hongchun Li and James 

Krieger were the main players in this process. 

The best way to use Scipion is by installing it on a Linux distribution (e.g., Ubuntu). This can 

be a pain in the neck for users that have not ever used this operating system because it works 

slightly differently than Windows, which is the most used operating system. Nevertheless, you can 

install the tool on Windows using a WSL (Windows Subsystem Linux), but this is even more 

complicated than installing it on a simple Linux distribution currently running on a device. 

However, the instructions from the documentation on the main website of Scipion are extremely 

useful and will work even for the less advanced users. 

So, in summary, Scipion has many plugins that are integrated in its environment and work 

in an efficient way. Some of those plugins, for example, can  perform sophisticated analyses of 

images of biological molecules from electron microscopy or make a 3D animation of molecular 

movements or display some 2D results such as graphs. ProDy, for its part, work also as a Scipion 

plugin, and can display many results of the dynamic behaviour of some certain molecules from 

modelling them with elastic networks. The main modelling, I have worked on, is the GNM 

(Gaussian Network Model) and the dynamical domain decomposition, which is obtained from the 

GNM results, but I have also inspired myself on the existing code for the ANM (Anisotropic 

Network Model).  

2.2  The Scipion environment  

The first thing I had to do before starting this project was installing Scipion (version 3). 

Despite the fact that installing it on a native Linux operative system was the easiest option, I 

decided to install it on a Windows Subsystem for Linux (WSL) so it would be less intrusive for the 

rest of the work that I do on my computer. The process is remarkably similar to the installation 

described on the Scipion webpage [2] 
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The only difference is that the interface would not work as it would on a native Linux. We 

need to install an Xserver such as MobaXterm and after configuring it properly, use its own 

command window to display the Scipion interface.  

One more thing I had to deal with the first time that I tried to make Scipion work, was that I 

have not got an NVidia card on my pc so, although the install documentation says that I must 

install CUDA, I just ignored that part as Scipion is not using CUDA in most of the cases. 

After installing Scipion and the required plugins, (see below) it is ready to work. . It creates 

an environment with various Python packages including the three core Scipion ones – scipion-em 

(pwem), scipion-pyworkflow, and scipion-app – and others for the plugins and their dependencies 

such as NumPy, SciPy and Biopython, which are also common dependencies of other packages 

such as ProDy. 

For this project, I also needed to download and install ProDy and its plugin. One can do that 

from the command line or from the Scipion plugin manager. To complete the installation, I made  

use of the following commands: 

 

git clone git@github.com:scipion-em/scipion-em-prody.git 

scipion3 installp -p ./scipion-em-prody –-devel 

I installed the developer version of the plugin scipion-em-prody as I was going to make 

changes to the source code of the plugin. This downloads and installs ProDy itself too, which I 

also did using the development version as I made changes to it as well. From this procedure, the 

directory /scipion-em-prody is created and inside it you can find a README where more 

commands like the one mentioned above are detailed. 

In the figure 2.2.1 we can see the display of the Scipion Plugin manager and the necessary 

plugins installed for this particular project. For example xmipp is necessary not only for ProDy but 

for Scipion to work. The way of installing these plugins is the same as that  described for ProDy 

except for xmipp whose installation guide is described on the Scipion website. 
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FIGURE 2.1: Scipion Plugin manager 

Most of these plugins are for different software developed by different developers that 

actually do not need Scipion to be executed. But thanks to Scipion we can integrate all this 

software to work together and use the results of different programs to get more complex results in 

a more efficient way [3]. Installed Xmipp [4], ChimeraX [5]  and ContinuousFlex [6] as well as 

ProDy [7] of course. I also manually installed VMD [8] , which doesn’t have a Scipion plugin but is 

important for analysing ProDy and ContinuousFlex results and can be used by Scipion for that. 

2.3  ProDy Project 

As explained in the main website of ProDy [7]. It is a free and open-source Python package 

for protein structural dynamics analysis and some associated programs. The ProDy API 

(Application Programming Interface) was released in 2011 in order to provide a unified 

environment for the dynamical analysis of proteins or molecular structures [9]. It was updated in 

2014 and a new module was added for sequence evolution analysis (Evol) [10]. The Normal 

Mode Analysis (NMA) and these tools including the Gaussian Network Model where available 

already on the first API version. A lot of work has been done for the upgrading of ProDy, resulting 

in the recent release of version 2.0, and it has seen wide utilization with more than 2 million 

downloads and 150.000+ unique website visits [11]. 

ProDy primarily works with atomic structure files, which are usually obtained from the 

Protein Data Bank (PDB) the files from this data base have been obtained through physical 

experiments. They can be retrieved using its ID, its sequence or from a local directory. The 

outputs of the program instances depend on the analysis done, there can be sequences, normal 

modes, ensembles or plots thanks to the use of Python libraries such as NumPy, SciPy and 

Matplotlib. For this project it have been used Matplotlib. ProDy is also capable of generating NMD 

files for the visualization tool NMWiz (Normal Mode Wizard) [7] which is a plugin for VMD [8]. We 
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can also use TCL scripts that are written on the Scipion side to give VMD instructions without 

NMWiz as used in the part of the Dynamical domain decomposition to display the results. 

The ProDy workflow is illustrated in the following scheme (Figure 2.2): 

  

2.4 Gaussian Network Modelling (GNM) 

At a molecular level, many biological phenomena occur within the scale of nanoseconds to 

miliseconds. Predicting the movement of a certain molecule could be a hard task, specially if we 

wanted to make a simulation, because most of this simulation would not be longer than a few 

microseconds. The elastic network models (in which GNM is included), would provide us a longer 

time-scale behaviour of the macromolecules. 

The Gaussian network model (GNM) is a representation of a biological macromolecule as 

an elastic network model so it would be easier to understand and study the mechanical aspects of 

its dynamics. That is, thanks to the GNM analysis we can focus on how the different forces that 

act over the molecule make it “move” through space [12]. However, this is an incomplete 

definition of what really happens. It only considers forces within the molecule and but we need to 

bare in mind that there are essentially random collisions and thermal fluctuations driving the 

molecule to move at all. Nevertheless, such models have been shown to reproduce 

experimentally observed dynamic properties, showing that internal contacts are sufficient to 

predict the motions that happen in response to collisions and thermal energy 

The GNM analysis, is rooted in the elastic network (EN) theory, better known as the 

statistical mechanical theory of elasticity, where other methods such as Anisotropic Network 

FIGURE 2.2: Workflow in ProDy 
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Model (ANM) are also included. Specifically, in GNM we have the assumption of Gaussian and 

isotropic fluctuations which means that we will get 1D results. 

 

FIGURE 2.3: Schematic representation of nodes in elastic network of GNM [13] 

 

In figure 2.3 we can see a schematic representation of an elastic network studied in GNM. 

Each node of the net usually represents a residue of the protein/molecule [14]. The different 

vectors represented on the image are the equilibrium position (Ri
0 and Rj

0) and distance (R0
ij) 

vectors, and the instantaneous fluctuation (ΔRi and ΔRj) and distance (Rij) vectors. 

 “The Potential Energy of a Gaussian Network Model is defined as the summation of 

harmonic potentials over all unique (i, j)-pairs and is a function of only the square of inter-residue 

distance vector, ΔRij=Ri−R0
j. It can be given in terms of the Kirchhoff matrix for inter-residue 

contacts, Γ ” [13] as in the following equation: 

 

 

where γ is a force constant that is usually uniform for all the connections between nodes 

and Γ is an (NxN) matrix and is defined as:  

 

 Rcut is the cutoff distance, is usually taken as 7.5e-10 m.  
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Hence, we can obtain the GNM normal modes from the diagonalization of the Kirchhoff 

matrix. Their frequency and shape are represented by its eigenvalue and eigenvector, 

respectively. The different modes represent different parameters of the net, for example the 

algebraic multiplicity of zero eigenvalues means that everything is connected and moves as a 

rigid block. Higher eigenvalues are related to more localised motions with lower frequency modes 

showing domain motions of relevance to biological functions and the highest ones showing high 

energy movements of individual residues that may be important for stability.  

The following equation reflexes the value of Hessian matrix (which will be explained later 

that is used in ANM (Anisotropic Network Model)). Here we can see the importance of the slow 

modes as the lowest frequency modes contribute most to the spatial partition function because 

det(H-1) is the product of the reciprocal nonzero eigenvalues of H. 

 [15] 

Key mechanical properties of the protein are related to the inverse of the Kirchhoff matrix, 

which can be approximated by a weighted sum of the contribution of several modes to the 

dynamics is represented with the following equations that refers to the GNM modes in terms of 

the Kth eigenvalue 𝜆𝑘 and K eigenvectors 𝑢𝑘 of Γ 

< ∆𝑅𝑖 · ∆𝑅𝑗 > =  ∑[∆𝑅𝑖 · ∆𝑅𝑗]𝑘

𝐾

=
3𝐾𝐵𝑇

𝛾
 [Γ−1]𝑖𝑗 

[∆𝑅𝑖 · ∆𝑅𝑗]𝑘 =
3𝐾𝐵𝑇

𝛾
[𝜆𝑘

−1 𝑢𝑘𝑢𝑘
𝑇]𝑖𝑗 

The GNM theory does not provide information of the direction of the fluctuations due to the 

isotropic nature of the analysis. Hence, the theory come up with N-dimensional predictions  

(where N is the number of nodes) on the mean-square fluctuation (MSFs) of residues and the  

covariances and cross correlation between the fluctuations [12] by summing the above dot 

product contributions from different modes. This means that we can predict the fluctuations of the 

net by the calculation of the covariance matrix, where the diagonal values are the MSFs. Purely 

Orientational cross-correlations can be obtained by normalising this matrix between -1 and +1.   

  Concluding, lets introduce the main application of this network analysis method. GNM is 

mostly common when analysing proteins. It is remains powerful for predicting the equilibrium 

dynamics of large proteins and their complexes (existing in the PDB). Thanks to its efficiency and 
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robustness, it becomes a remarkably interesting resource that can also be applied to analysing 

chromosomal dynamics, because it can offer a robustly accurate result even when having poor 

resolution data. This is because it is not necessary to have fully accurate data of the spatial 

coordinates of the nodes. When using GNM, it is just necessary to get a contact map of a 

particular system to get its square fluctuations as it is shown in the figure 2.4 [16]. 

 

FIGURE 2.4: Schematic description of GNM [16]  
The contact map is usually calculated from atomic coordinates in the PDB, but can also come from other data such as 

Hi-C data for chromosomes. 

2.5 Dynamical domain decomposition 

The Dynamical domain decomposition consists of grouping regions of similar dynamics 

obtained from domains of GNM modes. This will result on obtaining at least (or approximately) the 

same number of dynamical domains as GNM modes.  

ProDy has already a method that can calculate these domains by spectral clustering [16] 

[17] . The way it is done is quite complex to be explained in detail but basically, after calculating 

the eigenvalues of the GNM modes and (by default) discretizing the calculated matrix of 

eigenvalues we will be splitting the close values of the matrix into different homogeneous groups 

[16]. The main objective in this project is to develop a Scipion method capable to do all the 

necessary steps in order to make the calculations that this ProDy method needs and display the 

results. 
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3. Design and implementation 

3.1  Introduction 

First of all, the entire project will be programmed in python, because is the programming 

language in which both environments (Scipion and ProDy) where created. 

Two new methods have been developed for the Scipion environment GNM and Dynamical 

Domain Decomposition. Although programs doing the calculations needed for both protocols, 

already existed in ProDy, it was necessary to have new protocols inside Scipion to get all the 

outputs, make all the process of calculation and display 3D views easier to take out for an 

average user. 

In order to achieve our goal of making a fully functional program capable of calculating and 

displaying different results for GNM and for Dynamical Domain decomposition we will need to 

structure each of the protocols as following: 

i. Define the params required for the functions used. 

ii. Calculate the modes and write initial files. 

iii. For the GNM case create the matrices used in the modes calculations. 

iv. Compute the files and store the modes and calculations. 

v. Compute some extra calculations (e.g. atoms shift). 

vi. Create the outputs. 

 My main work compromises four files, one for the protocol of GNM, where all the points 

mentioned above will take place, another one for the visualization of the GNM results (viewer), 

one more for the computing of the dynamical domain decomposition and another short file for the 

dynamical domain visualization. 

 Before starting with explanation of the outcome of these methods, I will first go through the 

developing and testing environment as well as the main influences and methods in which the 

development of this new implementation have been based. The ANM (anisotropic network 

modelling) protocol (already existing in the ProDy plugin, scipion-em-prody) has been used as 

inspiration for the development of the GNM protocol. For Its part, the GNM viewer is somewhat 

based in the viewer for comparing normal modes.  

 For the full development of this project, it was necessary to seek for some certain ProDy 

functions and understand their behaviour and the way they were defined and programmed. In this 

section, all the used functionalities will be summed up.  
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It is also important to mention which files from the directory scipion-em-prdy have been 

modified so as to be able to include the new protocols inside the workflow engine of Scipion and 

so the user can access to them from Scipion The main parts are inside the directory prody2, 

which acts as a Python package for the plugin. I modified two  _init_.py files inside (one in 

prody2/protocols and the other in prody2/viewers). In this files we can find the initial definition of 

all the protocols that are linked to Scipion and all its respective viewers. We have just added two 

lines to each of them. For the case of the protocols file we have added the following: 

from .protocol_gnm import ProDyGNM 

from .protocol_domdec import ProDyDomainDecomp  

And for the viewers file we have added these two lines: 

from .viewer_gnm import ProDyGNMViewer 

from .viewer_domdec import ProDyDomainViewer  

The file protocols.conf has also been modified so the user can get the protocol from the 

ProDy shortcut on the left side panel of the Scipion main screen without needing to list or search 

through all the protocols from Scipion. It was necessary to include two lines to this protocol (one 

for GNM and one for the dynamical domains): 

{"tag": "protocol", "value": "ProDyGNM", "text": "GNM NMA"} 

{"tag": "protocol", "value": "ProDyDomainDecomp", "text": "Domain Decomposition"} 

Continuing with the introduction, I will sum up the different types software packages that 

exist inside all the code and the names we are giving to them. Scipion and ProDy are the main 

programs. ProDy is being run by both importing the API library prody in lower case and through 

command-line apps (in our case prody gnm). On the Scipion side, it relies heavily on pwem 

(scipion-em) and pyworkflow (scipion-pyworkflow) as will be explained in section 3.4 below. IN 

particular, we use method inside scipion-em programmed to link the functionalities from ProDy to 

Scipion, called protocols which in the Scipion project display may appear as boxes one after 

another.  

3.2 Development Environment 

3.2.1 Windows Subsystem Linux (WSL) and MobaXterm 

I mentioned before that we were using the WSL of Windows to run a Linux Kernel inside of 

the native Windows operating system so it would be less intrusive with the rest of things that the 

user could do in their daily life. This is done thanks to a virtualization of Linux. The way of 

installing the WSL is fully explained in the Microsoft support [18]. As we said before, the way of 

installing Scipion is very similar to that described on its website for a native Linux machine. It is 
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important to make sure of installing everything in a non administrator path. To install everything in 

the Linux home directory is the recommended option. 

The interface of Linux will not work in WSL but its console will do, so if we wanted to display 

anything on Windows, we would need to use an X server. An X server is a graphic system that 

provides a limited Graphical User Interface (GUI) of Linux so almost anything that needs the 

Linux interface can be displayed on any system where the X server is installed. Particularly I have 

been using MobaXterm, and its installation is quite simple (I just needed to download the .exe and 

execute it on windows) [19]. Could then use the MobaXterm’ s terminal. 

A problem that occurred during the configuration of the VMD for the visualizations of 

molecules in the Linux interface of MobaXterm. As it was working on the WSL, the viewer was not 

working at all. So it was necessary to download the program for windows and create a symbolic 

link for the Linux virtual Machine. After that the VMD viewer worked fine. 

3.2.2 Jupyter Notebook and iPython 

Jupyter Notebook is a coding environment that offers the possibility of debugging code 

thanks to its principal feature: It is able to execute the code step by step. It also lets the user to 

save projects as “notebooks” that can be used later or shared for teaching. 

IPython is an alternative to Jupyter. It offers some similar features but it is integrated in the 

IDE terminal and it let us do the main feature of Jupyter Notebook (execute the code step by 

step), but it will only work on the terminal (MobaXterm or VScode) as it is an interactive Python 

terminal. Jupyter in contrast can work in a web browser, such as Mozilla Firefox. [20]. 

Many of the tutorials from ProDy are available as files from Jupyter Notebook. This tool has 

been used to understand more easily the code behind ProDy functionalities. IPython terminals 

have also been used as a way to debug the code implemented. 

3.2.3 Git and GitHub 

Git and GitHub have been main characters in this project. As ProDy and Scipion are public 

domain software which are being developed constantly by many different people is important to 

use the forks and branches environment that GitHub offers in other to work as efficiently as 

possible. This environment consist on a kind of schematical way of uploading the code to the 

repository where different users may create different branches and then merge the work when 

everyone relevant has had the chance to check the code and agree. The bugs on each part of the 

programs keep being solved by the developing community. Thanks to this tool all the developers 

can keep their software completely updated and the development of the code is fluent. In our 
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particular case, all the code has been branched with the scipion-em-prody repository [21] and the 

code in the ProDy repository  has been forked to my own repository (user: RicardoSerr) [22] and 

then branched there.  

It is important to make the distinction between Git and GitHub. Git is a program which is 

installed in the developer computer and that through the command line will be able to upload their 

code to the GitHub repositories which is the biggest Git based repository host. A repository is a 

website where there is code stored. 

During the development of the work, some changes were needed to be done to some of the 

ProDy. Some bugs where fixed, and some implementations  were included in the ProDy 

repository.  

The RMSF calculation and displaying needed to be fully developed. Nonetheless the 

implementation was very simple as it would be the same as for the existing calculation of Square 

Fluctuations and raise it results to 0.5 (taking the square root). With that, we created two new 

functions in the ProDy repository: showRMSFlucts which was added to the plotting.py module 

from ProDy, and calcRMSFlucts that was added to the analysis.py module in the prody/dynamics 

[23]. 

Also the showAtomicLines  needed to be fixed as there were some conflicts when trying to 

plot the Lines as overlaid chains for multiple atom chains. The way of fixing this was very simple. 

It was just needed to make the length of the residues of the atoms to be added one after the other 

[24] 

All the changes done in the GitHub repositories of scipion-em/scipion-em-prody are in the 

appropiatelink to GitHub [25] and all the changes done in the prody/ProDy repository are on the 

corresponding link to GitHub [26] 

3.3  Main influences of the code developed 

3.3.1 The ANM analysis 

The Anisotropic Network Model is used with the normal mode analysis in order to study the 

dynamics of a specific molecule (e.g. a protein). In a normal mode system, all the oscillating parts 

of it move sinusoidally with the same frequency and with a related phase (see below). ANM is 

useful when analysing bio-molecular systems, for example Haemoglobin (Chunyan 2003), 

influenza virus Hemagglutinin A (Isin 2002) or the  Nicotinic acetylcholine receptor (Hung  2005 

and Taly 2005) 

https://en.wikipedia.org/wiki/Nicotinic_acetylcholine_receptor
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Comparing ANM and GNM analysis, both are based on an elastic network model. GNM 

tends to be more accurate when predicting fluctuations than ANM. Nevertheless, GNM is limited 

to the evaluation of its mean squared displacements and cross correlations between fluctuations. 

ANM gives us the opportunity to get a 3D description of the 3N-6 internal modes while evaluating 

internal preferences. 

In short, when calculating both methods, the main difference is that with ANM instead of 

calculating the Kirchhoff matrix as in GNM (described on chapter 2.4) we need the Hessian Matrix 

(Figure 3.1 of second derivatives of the potential. The Hessian will deploy 3N-6 non zero 

eigenvectors which means that we will have minimum 6 non zero normal modes. This is due to 

the properties of the Hessian Matrix, and is translated into having 6 zero modes in ANM. In those 

modes, the system moves as a connected block. Makes sense to have 6 modes because we are 

on a 3D representation and we are having rotation and traslation and this modes are complex 

combinations of this two types of movements.  

 

FIGURE 3.1: Hessian Matrix of the potential V 

We will understand later how the GNM and the ANM protocols work and as they are very 

similar, we will see now the main differences of our GNM code with the already programmed ANM 

protocol. The first one is the obvious, GNM is calculating the Kirchhoff matrix from the 

eigenvalues while ANM is using the eigenvalues to calculate the Hessian matrix, translating this 

into code we can have a look at figures 3.2 and 3.3. We can notice that the calculations of the 

eigenvalues are the same for both cases. 

 

FIGURE 3.2: Calculation of the Hessian matrix in ANM (file: protocol_anm.py) 
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FIGURE 3.3: Calculation of the Kirchhoff matrix in GNM (file: protocol_gnm.py) 

We have mentioned the second difference a few lines above. While ANM will have 6 zero 

eigenvalues, GNM would have one. This is because as the Kirchhoff matrix “is defined as the 

summation of harmonic potentials over all unique (i, j)-pairs” [13] we will always have at least one 

pair of non zero eigenvalues, otherwise it would not make sense to make the calculations for 

GNM.  

 It will be important to take into account the number of non zero eigenvalues in order to 

make the necessary code checks to ensure the accurate and adequate use of this two-network 

analysis and avoid errors.  

 Finally, when picking one of the two models it is important to know the kind of prediction 

that will be done by both. In GNM the distributions of the fluctuations prediction is Gaussian and 

isotropic (there is no variations dependant of the direction measured which means that we will 

not need to consider this parameter)).  

3.3.2 The compare protocol and viewer 

Now we will go through the other main influence of the project which is an already existing 

program inside of the scipion-em-prody (file: viewer_compare.py). This file has been studied 

mainly to understand the handle of matrix files on scipion. These viewer depends on a protocol 

inside ProDy (file: protocol_compare.py) that would compare two sets of normal modes with the 

same number of nodes (Calphas) and degrees of freedom and would calculate different kinds of  

Overlap or spectral overlap within the two sets of modes. Regarding the outputs, this program will 

generate matrices files where all the contact points of the modes will be loaded for being 

displayed. 

3.4 The implementation of GNM 

Now I can finally explain the way in which the GNM analysis tools have been developed to 

work inside Scipion and display the convenient results, and also make a brief explanation on how 

the existing protocol of ANM was working for ProDy. For the development of the file 

protocol_gnm.py the already existing protocol_anm.py has been used as a base for development 

as we explained before. The necessity of making the file of viewer_gnm.py comes because ANM 
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(in fact, every Normal Mode Analysis) is a 3D analysis so it is represented in three dimensions 

and can be represented straight from the protocol using the ProDy modes viewer, which uses the 

VMD plugin NMWiz to read the NMD files and make the representation. This mode viewer also 

work for GNM and is included at the bottom of our display. The Gaussian Network Model results 

requires a 2D analysis so we should do a different viewer for the representation as it happens 

with the protocol compare since we want to plot things like the covariance matrix, as well as 1D 

features such as the mode shape. In this sense, a fast check that need to be done is, whether the 

analysis done is ANM or GNM. We can do this by checking if the data to be displayed is of a 

length 3 times the number of atoms. In that case we will be displaying Normal Mode Analysis. 

File: protocol_gnm.py 

The first thing we need to do for this file is to include all the libraries and functions needed 

for this program to work. There is two important imports here needed to create the parent class of 

the following functions defined in the code. These are pwem and pyworkflow.  

pwem is the library from scipion-em from where we will create the main class of this file (the 

parent class) which is ProDyGNM(EMProtocol). The EMProtocol is imported from 

pwem.protocols. We will also be importing some objects from pwem (AtomStruct, 

SetOfNormalModes, String and EMfile) which are mainly used in the output creations section of 

the code and in the params assignment. The EMlib from pwem (which is actually a link to Xmipp 

when installed as in our case) was also imported and it is used to write metadata in the qualifying 

of the GNM modes. 

Regarding the pyworkflow import, this is used to create the special params from the first 

class of the code (BooleanParam, PointerParam which is used to make the import (point to the 

place of the memory) of the imput structure, and other params like the int or float param). This 

import is important so the scipion-em is able to read correctly the params from the GNM protocol. 

We also have used some utilities such us the makePath function which is used to load the 

calculation of the atom shift. 

Some other imports were also needed like prody and the math library and the os library 

used to create and read from the different paths. It is necessary to mention the meaning of the 

use of the * in the imports this is used so we can get rid of the initial indication of the position of a 

certain function. So for example, if we make the following import: 

from prody import * 

We will not need to name ProDy at the beginning of its functions so for example we could 

just calcCorrelation() instead of prody.calcCorrelation().However, this can sometimes cause 

problems is different libraries have functions or classes with the same or similar names. 
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To conclude with this section, we should explain the structure that our code in Python has. 

We have a class, ProDyGNM and all the functions inside it will be able to access any of the 

properties of the ProDyGNM which at the same times is inheriting from the EMProtocol. In order 

to refer to this common namespace it is uses the self variable, which is one of the common 

conventions for this. 

After assigning all the params and variables for the whole program, we will need also to 

define the functions (steps) that our code will be following in order to make the Scipion workflow 

to run the program. For the case of GNM we will have the following functions which will be 

executed in the following order: 

i. (line 59) def _defineParams(self, form): 

In this part of the code we will just define all the variables that may appear on the displayed 

form of the GNM protocol and that will be passed to the rest of the functions. We are using 

methods from the parent class EMProtocol in order to build the initial form and these also 

determine when and how this function gets executed. This function also  includes the ‘help’ 

messages for that display.  

ii. (line 114) def _insertAllSteps(self):  

In this function, all the steps of the code are assigned an order to run so that protocol knows 

what to do. We will also obtain some inputs values such as the number of modes or files like the 

atomic structure from the previous step that are passed into to these other steps.. 

iii. (line 131) def computeModesStep(self, inputFn, n): 

In this function, we will first get all the files needed and then after calculating the modes file 

(modes.gnm.npz) using an app from ProDy, we will then load the results by using the ProDy 

function loadModel() storing this information in a class attribute (self), self.gnm. As we mentioned 

above, a self variable is used to refer to the main class function in python to which all the methods 

and objects of the code belong. 

This attribute contains its own attributes including he eigenvalues and the eigenvectors. 

That were calculated from different apps of ProDy and then use the functions, getEigvals() and 

getEigvecs() to obtain those results. Then, we can set the Kirchhoff matrix (which was saved in a 

separate file) as an attribute too and restore the eigenvalues and eigenvectors to it using the 

functions setKirchhoff() and setEigens(). In this step, we will also compute the covariances and 

the cross-correlation matrices (which is not done in the ANM protocol).  
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(line 164) covariances = prody.calcCrossCorr(self.gnm[1:],norm=False) 

(line 167) crossCorr = prody.calcCrossCorr(self.gnm[1:]) 

 

It is important to mention that the cross correlation is equals to the covariance matrix but 

normalized and that’s why we are using the same function for both calculation. The reason to 

discard the zero eigenvalues in this method is because the contribution of each mode to the 

covariance is related to 1/eigenvalue and we can't divide by zero. 

 

iv. (line 170) def qualifyModesStep(self, numberOfModes,  

collectivity-Threshold,  

structureEM, suffix=''): 

In this step, we will calculate the collectivity and the related score so to complete the 

modes.xmd file which is necessary for one of the displays, the metadata viewer mode (figure 3.4). 

The implementation of this is not so interesting (it does not change a lot from one protocol to 

other), although is very common in scipion-em-prody and scipion-em-continuousflex.. 

v. (line 231) def computeAtomShiftsStep(self, numberOfModes): 

This function will calculate the atoms shift profile which is the variation of position of 

individual atoms. The operations done in this function are basically a sort of loops to calculate the 

maximum value of a place in the array of computed modes. Once it is calculated you will have to 

deal with the same difficulty as when opening the necessary files in order to write the results. We 

will be writing that results in the maxAtomsShift.xmd The main difference between ANM and GNM 

protocols here is to handle the presence or absence of 3D information.. 

vi. (line 265) def createOutputStep(self): 

Finally the last step would be to create the outputs for Scipion, we will create two objects 

around the matrix files, which will be handled by the viewer GNM, and of course the 

SetofNormalModes which are needed by Scipion in other to handle the results from ProDy. These 

are the output modes. 
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 File: viewer_gnm.py 

Having explained the process of making the GNM calculations, this section focuses on the 

way of showing all the data so it is as useful as possible for the users as well as be done in a 

friendly interface. As we did before, we will explain each of the functions of the code in a sorted 

way. 

First, we will import all the necessary libraries from scipion-em and from ProDy as we did in 

the previous described file. This time, pyworkflow and pwem will be also imported. Their libraries 

focused on the visualization are the majority of the imports. One of the most important imports 

being done here is the ProDyGNM class, which will be used as the main target of the program so 

that we get an appropriate viewer.  

We will also be creating the main Class (child) that will inherit from the ProtocolViewer from 

Scipion (parent) and will include some of its properties as we explained above:  

ProDyGNMViewer (ProtocolViewer) 

We will also define the variables and the environments of the program. The principal class 

(self refers to) ProDyGNMViewer and the embedded methods to this class are: 

FIGURE 3.4: Graphical interface for the modes.xmd file 
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i. (Line 63) def _defineParams(self, form): 

As in the previous code, here is where all the params shown in the GUI display are defined. 

The ‘help’ messages are also be defined here as before (figure 3.5). In this method, a lot of the 

params are actually for telling the programs which button was clicked rather than actually having 

a value that is entered. In this part we will group some parameters so the display is more intuitive 

for the user using methods from ProtocolViewer. 

ii. (Line 126) def _getVisualizeDict(self): 

This function, creates a dictionary so the reading of the parameters will be indexed and 

each function can know which kind of param is being used as an argument. Here it will also 

define the output modes and get the atoms from the GNM protocol to handle them in the rest of 

the code. 

iii. (Line 143) def _viewAllModes(self, paramName): 

This method, is for plotting the covariance and cross-correlations matrices for all the 

computed modes of GNM with its own tittle each. We will also set up the VMD view (calling 

createVmdNmwizView) assigning the task to do when the parameter name is 'displayVmd2'. 

 

iv. (line 161) def _viewParam(self, paramName): 

This method will plot the maximum distance profile by using the calculated values in the file 

maxAtomShifts.xmd from the previous code or will display the modes metadata viewer from prody 

that we showed in the figure 3.4. 

 

v. (Line 170) def _viewSQF(self, paramName): 

This function calculates and plots the mean square fluctuation (MSF) and its square root, 

the root mean square fluctuation (RMSF). The MSF represents the average displacement that a 

particle have with respect to its reference position.  

Regarding the coding of the function, we will be displaying these two types of square 

fluctuations from all the computed modes or for a range of them. It will also be displayed an 
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RMSF or MSF for a single mode if in the modes range section both numbers typed are the same 

(that mode number will be plotted in such case). We will need to make some checks in order to 

see which case are we plotting and also to see whether there are enough computed modes to 

plot. It is also necessary to check that the modes are not lower than 2 (to account for having one 

zero mode)  and that the second mode is bigger than the first one (correct range). This is done 

between the lines 170 and 203. The range checks will be done with if instructions and the check 

of the existence of enough modes to compute will be done with try/except instructions. In both 

cases an error message will be displayed in case the user would make any of these mistakes. 

These looks as follows: 

        try: 

            mode1 = self.modes[modeNumber1]  

        except IndexError: 

            return [self.errorMessage("Invalid initial mode number *%d*\n" 

                                    "Display the output Normal Modes to see " 

                                    "the availables ones." % modeNumber1+1, 

                                    title="Invalid input")]  

        if modeNumber1+1 > modeNumber2: 

            return [self.errorMessage("Invalid mode range\n" 

                                      "Initial mode number can not be "  

                                      "bigger than the final one.", title="Invalid 

                                      input")] 

The second part of the method (from line 204 to 245) will make the plotting work. It will just 

check in which scenario the user is (whether they want to plot single or multiple modes) and will 

do it by using the following lines: 

• (line 207) plot = prody.showSqFlucts(self.modes[1:], atoms=self.atoms) 

Here we will be plotting all the modes MSF: 

 

• (line 215) plot = prody.showRMSFlucts(self.modes[modeNumber1], 

atoms=self.atoms) 

Here we will be plotting the RMSF of a single mode (both modes have the same number): 

• (line 218) plot = prody.showSqFlucts(self.modes[modeNumber1:modeNumber2],  
                                         atoms=self.atoms) 

Here we will be plotting the MSF of a range of modes 
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vi.  (Line 224) def _viewSingleMode(self, paramName): 

On a first instance, in this method we were going be displaying just the shape of a single 

mode and we have the option to show it as overlaid curves of different colours for different 

chemical chains forming the subunits of the protein or one after the other with bars underneath to 

indicate them. For doing this it was necessary to modify some files from ProDy in order to fix the 

bug that would not let me plot multiple chains as it was explained in section 3.2.3. 

After doing some tests we found also necessary to make this function able to plot the 

covariance and the cross correlation matrices for a single mode. This was done inside the 

protocol viewerGNM itself just by using the output modes of the main GNM protocol and the 

ProDy functions showCovarianceMatrix() and showCrossCorrelation() but not the generated 

matrix files.  

vii. (line 247) def createShiftPlot(mdFn, title, ylabel): 

This basic function will just create the plot where the atoms shift calculations will be plotted. 

viii. (Line 263) def createDistanceProfilePlot(protocol, modeNumber): 

This will display the maximum distance profile of all the computed modes. And we will need 

to use the last function to be able to display it: 

(line 282) def showDistanceProfilePlot(protocol, modeNumber): 

 

ix. (line 293) def createVmdNmwizView(protocol): 

Finally we will seek for the vmd file so the program is able to plot the modes. Notice that this 

method and the previous 2 (createDistanceProfilePlot() and createShiftPlot()) are not inside the 

main class. NMWiz (Normal Mode Wizard) is another repository from the ProDy universe capable 

of plotting the different modes of an analysis and assigning them colours. It can be downloaded in 

development mode too, but has been a core plugin shipped with VMD since 2014. 

The final result shown bellow in figure 3.5 is what the user would see, and may use in order 

to make all the necessary calculations and get as much important information as possible from 

the GNM analysis. 
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It is structured in three groups of plotting all modes, single mode and range of modes. As I 

mentioned above, this is done thanks to the grouping of parameters in the first step of the viewer 

program and the protocol uses files and packages that have already been built in Scipion. 

 

FIGURE 3.5: GNM viewer interface display in Scipion 

 

3.5 The implementation of the dynamical domain 

decomposition 

As explained above, domain decomposition is used in bioinformatics to group the parts of a 

certain molecule in order to predict its behaviour and dynamical domain decomposition does this 

by using the lower energy GNM modes. In this section of the project we will make all the 

necessary code in two files: protocol_domdec.py and viewer_domdec.py 
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This can be calculated in ProDy by its function calcGNMDomains(). The way my codes 

have been planned is by getting the GNM modes calculated in the previous protocol and use 

them as inputs to this new protocol. After assigning all the variables, and getting the input from 

the user of the number of modes to be used, using the mentioned function the dynamical domains 

modes will be calculated and loaded in the file atoms.pdb. After this, the analysis will be plotted 

out. 

The outputs on Scipion consist of two files,.The following code lines are those used to 

generate the outputs of the protocol ProDyDomainDecomp (): 

(Line 94) 

    def createOutputStep(self):         

        fhCmd=open(self._getPath("domains.vmd"),'w') 

        fhCmd.write("mol new %s\n" % self._getPath("atoms.pdb")) 

        fhCmd.write("mol modcolor 0 0 Beta\n") 

        fhCmd.write("mol modstyle 0 0 Beads\n") 

        fhCmd.close() 

 

        outputPdb = AtomStruct() 

        outputPdb.setFileName(self._getPath("atoms.pdb")) 

 

        outputvmd = EMFile() 

        outputvmd.setFileName(self._getPath("domains.vmd")) 

         

        self._defineOutputs(outputStructure=outputPdb, outputvmd=outputvmd) 

 In the first 5 lines it its created the vmd file in which we will include the color mode and the 

style of the molecule drawing that in this case consists of beads (a sort of dots). Then we will 

create the PDB atom struct and the EMfile so we can display the VMDview in the 

viewer_domdec.py. Which after targeting the main protocol ProDyDomainDecomp and the 

pertinent environment, will just make the return of the vmd view as follows: 

  return [VmdView('-e "%s"' % self.protocol._getPath("domains.vmd"))]
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4. Tests and results 

4.1 Introduction 

In this chapter there are some tests of the implemented code. In particular I have made the 

GNM analysis of the AMPA and NMDA glutamate receptors as in the publisehd article: 

Cooperative Dynamics of Intact AMPA and NMDA Glutamate Receptors: Similarities and Subfamily-

Specific Differences [27]. We will try to replicate that study and see if the obtained results are 

congruent and correct. As this study will not be enough to test all the implementations, it will be 

neccessary to make some other analysis that will be detailed later. 

This part will be explained in the form of a tutorial, allowing readers to reproduce the steps 

and use my code more easily. 

First, it will be necessary to create a project inside Scipion to make a real case of work. In 

the following points, it will be explained how to create the complete project and the protocols from 

the ProDy plugin needed to complete the full analysis. Some of the errors in the program (not only 

in our own code but in the whole ProDy project) will also be treated. 

The results will be explained in order to make them easier to understand despite being 

detailed in the article [27]. Such comparisons were performed in the paper by selecting 

corresponding atoms between the two structures but this is beyond the scope of this project. 

To conclude with this point, I will introduce the molecules to be analysed. The glutamate 

receptors molecules, are a type of protein that recognise the excitatory neurotransmitter 

glutamate. This kind of receptors are classified into various types. In particular, the AMPAR (PBD 

structure: 3kg2) and the NMDAR (PDB structure: 4PE5) are classified inside of the ionotropic 

group which are usually cations channels. creating electrical signals relevant for information 

processing, learning and memory. Their inner chemistry is too complex to be explained in this 

report.  

4.2 Creating the Scipion project for the tests 

As we explained in the previous point, we will need to create a whole Scipion project to 

make the test. We will need to use some protocols from the ProDy plugin (and one from pwem) in 

order to make the full analysis of the two molecules. The Protocols used for these tests will be: 

• pwem – import atomic structure 

•  ProDy atom selection 
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• Protocol GNM  

• Protocol Dynamic Domain Decomposition  

• Protocol compare. 

After creating a new Scipion project by opening Scipion and clicking new project, we will 

need to import some new protocols to it as listed above. . These are all listed under the ProDy 

protocols option in the left side panel. 

First is the import atom structure protocol from Scipion itself (provided by the pwem), this is 

needed to, as its own name says, make the import of the pdb file to be read for the protocols that 

follow this one. 

We can see the example for the AMPAR molecule in the figure 4.1. For the NMDAR it 

would be similar we would just need to substitute the atomic structure ID and put the NMDAR 

pdb: 4PE5. 

  

 

FIGURE 4.1: Protocol Pwem for the import of the AMPA molecule 

 For these two cases the seek of the atomic structure done by pwem would be successful, 

but in some cases we would need to go to the pdb data base through the internet 

(https://www.rcsb.org) and download the complete pdb file. Some other times it may be needed to 
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use our own file, those cases are when the file has not been added to the data base yet or when 

we have modified the file for example in a selection or alignment. If this were this the case, we 

would just need to change the import atomic structure from option and select file. After that, we 

can select the path of the downloaded pdb file and the protocol should do the rest of the work. 

The next step is to use the atom selection protocol, this is used to convert the pdb file into 

an atomic file able to be processed by the rest of protocols in ProDy where only the Calphas are 

selected. The display of this protocol is showed in figure 4.2 and after clicking in the  symbol  

from the dialog input structure we would just need to select the pwem import structure of the 

desired molecule. After that just click Execute as the default selection string is fine. 

 

FIGURE 4.2: Protocol Atom selection for the pwem import of the NMDA molecule. 
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The next step is to use the protocol GNM for both of the ProDy atom selection boxes. We 

will compute 40 modes as that’s the number of modes used in the article [27].  By following the 

steps from the previous protocol, we will get a similar dialog and we will just need to pick the 

ProDy atom selection for the particular molecule to be computed. We can select the advanced 

option and it would be great to get rid of the zero if we wanted to, but we need them for dynamical 

domain decomposition. So in this sense every dialog box from the advance display can remain as 

default. (figure 4.3). 

 

FIGURE 4.3: Protocol GNM configuration for the AMPA molecule. 
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Now, we will attach the protocol dynamical domain decomposition to this output of the 

GNM. It would also be interesting to attach the protocol compare to this output. The way of 

including this protocols is exactly the same as in the previous ones. For the dynamical domain 

decomposition we will do two versions of analysis, one for 5 and another one for 20 modes (less 

than in the GNM analysis). If we try to execute a protocol compare attached to this GNM outputs, 

it will not work. The reason for this to happen is because this protocol is not designed to work with 

different number of atoms. It is more oriented to the comparison of the same molecule when 

doing different configurations of analysis (e.g. Different cut-off number or different structural 

state). 

Additionally we will need to include another branch to the project tree for some of the 

analysis/tests of the GNM. As the studies won’t cover all the implementations we have done, we 

will need to include the ubiquitin molecule whose analysis was done in the ProDy tutorial files. 

With all that, the final aspect that our Scipion workflow should have is the one shown in the figure 

4.4: 

 

FIGURE 4.4: Scipion final project for the tests. 

 

4.3 Analysis of the results of GNM in a use case 

In this section I will be analysing the results obtained in the gnm stage of the workflow and 

comparing them to the existing results studied in the article [27] and also in the prody tutorial [28]. 

This way we will be simulating a use case. 

Reading the article I found that most of the analyses are done for the non-zero mode 2. We 

could begin plotting the cross correlation matrix of both molecules for that specific mode, but 
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initially we had configured the code so it would only display the cross correlations of all the 

computed modes. So, after the mentioned changes over the viewer protocol we manage to plot a 

single mode covariance and cross correlation. We can notice that the plots given by our program 

and the ones observed in the article [27] are exactly the same (some little colour variances are 

due to the quality of the images) (figure 4.5).  

 

      

FIGURE 4.5: Obtained Cross-correlation matrices in the article [27]  vs in Scipion  . 

Figure 2 from article [27] representing the cross-correlations for the GNM mode 2. (pair of figures A) vs obtained results 

from Scipion of the cross-correlation for GNM mode 2  (pair of figures B) 

We can now move on to the next analysis, in the article [27] the second non-zero GNM 

mode is shown for both molecules as overlaid chains. We can accurately do this on our new 

viewer by typing the number 3 on the box from the single mode analysis of the display, as the 

article is discarding the first mode and we are including it so our numbers are higher by 1. This 

condition is the shame as for the previous test (covariance and cross correlation matrices). We 

can see that the results match perfectly so we could give the check for this analysis and take 

them as correct. 

AMPAR NDMAR 

AMPAR 
NDMAR 

(A) 

(B) 
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FIGURE 4.6: Results obtained from Scipion vs the figure 8B of the article [27]. 

GNM mode 2 for AMPAR and NMDAR showed as overlaid chains. (Scipion results are figures a and b vs Scientific file 

which is figure c) 

For the checking of the mean square fluctuations we will follow the ProDy tutorial of GNM 

[28] and compare the results with that. In the ProDy tutorial, the analysis that has been done is 

the GNM analysis of Ubiquitin (PDB structure: 1aar). This is a small protein which is very common 

in the eukaryotic cells and its function is the  recycling of other proteins. It attaches itself to other 

proteins to mark them for degradation [29] . 

When we first try to make the analysis in Scipion we notice that in the tutorial, the analysis 

is not being done to the whole structure but only for some certain number of atoms as we see in 

figure 4.7 obtained from a simulation in Jupiter notebook. See that the selection is done only for 

the Calphas of the first 70 atoms of the chain A. We can check the ProDy website to see more 

string selections examples [30] as noted in the help of the selection protocol. 

AMPAR NDMAR (A) (B) 

(C) 
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FIGURE 4.7: Desired behaviour to replicate the results of the file [28] programmed on jupyter. 

 

We can implement this in our Scipion project using the prody – atom selection box as in 
figure 4.8: 

FIGURE 4.8: Example of the use of a selection string in Scipion. 

 

The following figures are obtained from our analysis on Scipion and we can see that they 

are exactly the same pictures as in the file [28]. (As the pictures are the same they will not be 

included in duplicate in this report). The tests for the gnm are finished and we can confirm that the 

results are valid. We can now move to the test for the dynamical domain decomposition. 
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FIGURE 4.9: Results Scipion vs ProDy analysis of Ubiquitin. 

First GNM single mode (A), Square Fluctuation mode 1 (B) and Cross-correlation matrix represented as a heat-map (C) 

 

4.4 Analysis of the results of the dynamical domain 

decomposition 

We can end this chapter by detailing the results obtained for the dynamical domain 

decomposition of the two molecules (AMPAR and NMDA). In order to appreciate the different 

results of this kind of analysis, simulations will be done for 20 and for 5 modes. 

The different colour groups that will be drawn represents sectors of the molecule that may 

have similar dynamics. The bigger the number of modes used, the more groups of colours we will 

have and the more difficult will be to simplify the dynamic analysis of the molecule. [17] 

First GNM single mode 

 

 

 

MSF first mode GNM 

(A) 
(B) 

(C) 
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For all the results we can observe that the number of modes in dynamical domain reflects 

the number of sectors of the molecules that would have approximately the same dynamics, so 

this means that the number of colours in the figure will be the same as the number of modes 

analysed. In our case for the 5 modes we should get 5 diferent colours (dynamical domains) and 

for the 20 modes we should have 20 different colours. The results are showed below in figure 

4.10 and 4.11:  

  

FIGURE 4.10: VMD results of the dynamical domains for 5 (left) and 20 modes (right) for NMDAR  

 

 

    

FIGURE 4.11: VMD results of the dynamical domains for 5 (left) and 20 modes (right) for AMPAR 
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5. Conclusions and future work 

5.1 Conclusions 

In this section we will go through the proposed objectives in the chapter 1 and check 

whether they have been achieved. As the way the project was tested was by simulating a case of 

use by replicating some existing studies and checking whether an average user with limited 

notions in programming, would be able to accomplish their study necessities, we can assure that 

the main objective of the project, that I made a friendly environment of the ProDy protocols using 

the Scipion engine, has been successfully achieved. 

Of course, the other two main objectives have been also completed and, linking them with 

the previous one, we can assert that almost any user would be able to make a very complete 

GNM analysis using this tool thanks to all the implementations done. 

While making the study of the actual state of the art, I have assimilated the main concepts 

relating, not only to the GNM analysis, but also to other Normal Modes Models such as ANM, and 

of course the analysis of the dynamical domain decomposition. Thanks to all this acquired 

knowledge I was able to make a deeper analysis on the necessities of the code, so it would solve 

as much of the problems as possible that the final user may receive. 

The understanding of new tools for me like GitHub, it is also a good point to mention. The 

collaborative environment that this kind of workspaces offer has been a very important part of this 

project and it has meant an efficient way to solve the problems with the code and the potential 

errors. 

The complete development of this project was made in a parallel way of working. This 

means that the tests were being done at the same time as the code was being developed in order 

to be able to correct the possible mistakes and to get feedback from every function developed. 

This has let me adapt the necessities that were appearing in some certain stages of development 

by going back to previous codes developed to solve the particular need. 

Concluding, under my point of view, this project is to be considered a very complete and 

solid work, were the need for adaptation and the ability to understand how biological structures 

work have been determinant for its success. The understanding of all this background is due to 

the acquired knowledge of algebra an calculus during the degree that have let me make a quick 

analysis on how the Network Models are conceived.  
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Subjects like Network analysing I and II or Object Oriented Programming have given to me 

the knowledge to be able to complete the coding in Python of this project. The understanding of 

the C language was also helpful but not crucial. Thanks to this project I was given a first contact 

with bioinformatics and computational biophysics and I have been shown the multiples 

possibilities that this field of the technology offers.  

5.2 Future work 

Regarding the future work for this project, we could have the following possibilities in order 

to complete the and improve the implementations done: 

• The development of a formal programmed test: It is very important for this kind of 

projects to make sure that everything works correctly. An important implementation that 

needs to be done in the future is the coding of some formal test that checks that every 

module have been installed correctly. Ultimately, to make a code able to do what we have 

done qualitatively, but automated. Some examples of this exist for other parts such as 

ANM analysis. 

 

• Complete the compare modes pipeline: An interesting implementation that we 

mentioned above would be to make the compare modes protocol able to compare 

different sets of atoms. For example to make the comparison of the mentioned study [27] 

between the AMPA and the NMDA GNM modes or normal modes. This should be 

achievable with multiple existing protocols but they will likely need further development to 

work properly. 

 

• New protocols from ProDy: A good improvement that should be done is the inclusion of 

functionalities from ProDy inside Scipion as we did for the GNM and the dynamical domain 

decomposition but for new ones. ProDy has hundreds of functions for the calculations and 

analysis of the dynamics of proteins. A good example could be the implementation of the 

calculation of the Markovian hitting time and the perturbation response scanning (PRS), 

two methods that use ANM or GNM results to probe signal propagation through these 

networks inside the scipion-em-prody package. It is good to have multiple tools for similar 

analyses in the same framework for comparison and consensus. Other tasks related to 

these could also be included such as averaging results over dynamical domains to 

understand general properties of larger protein complexes as done in a recent study [17]. 

This is a kind of result that could be interesting to have in future updates of this project. 
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