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ABSTRACT

Drug repositioning, using known drugs for treating
conditions different from those the drug was origi-
nally designed to treat, is an important drug discov-
ery tool that allows for a faster and cheaper devel-
opment process by using drugs that are already ap-
proved or in an advanced trial stage for another pur-
pose. This is especially relevant for orphan diseases
because they affect too few people to make drug re-
search de novo economically viable. In this paper we
present NFFinder, a bioinformatics tool for identify-
ing potential useful drugs in the context of orphan
diseases. NFFinder uses transcriptomic data to find
relationships between drugs, diseases and a pheno-
type of interest, as well as identifying experts having
published on that domain. The application shows in a
dashboard a series of graphics and tables designed
to help researchers formulate repositioning hypothe-
ses and identify potential biological relationships be-
tween drugs and diseases. NFFinder is freely avail-
able at http://nffinder.cnb.csic.es.

INTRODUCTION

Drug repositioning or repurposing consists in identifying
and using known drugs that can target diseases other than
those for which they were originally designed (1). Working
with drugs having known properties can significantly reduce
the cost and the time needed to enter into clinical phases.
In the past, most of repositioning has been done by acci-
dent. However, new technologies are allowing the evalua-
tion of more and more existing drugs to check whether they
are suitable to treat different disorders. Two main strate-
gies, drug and disease based, have been adopted to find new
drug–disease interactions (2). Drug-based strategies look

for chemical properties, molecular activity or structure sim-
ilar to other known therapeutic drugs already used to treat a
particular disease in which we are interested. Disease-based
strategies look for diseases showing pathological mecha-
nisms similar to the disease relevant for us. This second
strategy assumes that therapeutic drugs useful treating sim-
ilar diseases might also be effective against our target dis-
ease. The most effective strategies might involve drug- and
disease-based approaches (1). Another strategy addresses
drug repositioning when researching with genetic disorders
showing alterations in gene expression patterns that may be
reverted by drugs. This last approach opens up the doors
to mine the existing gene expression studies related to dis-
eases and drugs, finding relationships between them as a
starting point to drug repurposing. The widespread use of
techniques like DNA microarrays and Next-Generation Se-
quencing to measure gene expression have allowed the cre-
ation of databases containing information about those ex-
pression profiles in different studies with the purpose of cen-
tralizing all such information to show it in a more homoge-
neous way. The most prominent examples of this type of
repositories are NCBI’s Gene Expression Omnibus (GEO)
(3) and EMBL-EBI’s ArrayExpress (4), both containing
>50 000 functional genomics experiments. Other databases
like the Broad Institute’s Connectivity Map (CMap) (5) and
DrugMatrix (6) collect highly specific expression data from
samples treated with drugs and other chemicals, providing
some more direct correlations between the expression pro-
files and the compounds.

There exist methods that use transcriptional data to in-
fer connections between drugs and diseases. CMap, in ad-
dition to hosting a collection of expression data, allows
to query signatures against all its data and, with simple
pattern-matching algorithms very similar to those used in
Gene Set Enrichment Analysis (7), it enables the discov-
ery of functional connections between drugs, genes and dis-
eases. Cha et al. (8) used part of the data contained in CMap
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to extract significant differentially co-expressed gene mod-
ules, associating them to drug response profiles and con-
structing a drug–drug network allowing finding drugs hav-
ing the same target proteins and novel drug relations. In
the Combinatorial Drug Assembler (CDA) (9), the authors
created a system in which up- and down-regulated genes
from a query are processed to perform a signaling path-
way gene set enrichment analysis. Then, a signaling path-
way and drug set enrichment analysis is performed against
the CMap database, and similarities between these analyses
and the one performed to the query are searched. The CDA
program generates lists of drugs showing similar expression
patterns. Finally, other more general tools to perform com-
parisons between gene expression profiles have also been de-
veloped (10,11).

We present NFFinder, a bioinformatics web-based tool
for creating hypotheses in drug repositioning initially devel-
oped in the context of orphan diseases like Neurofibromato-
sis (NF) and later generalized to any other disorder. These
diseases do not usually draw the attention of the pharma-
ceutical industry because they affect only a small percent-
age of the population and this provides little financial in-
centive to develop and commercialize new specific drugs. A
cheaper and faster alternative to the traditional drug dis-
covery pipeline, in which a drug is expected to cost many
hundreds of millions over 10–15 years, is needed in order to
boost the discovery of therapeutics for those rare diseases.

NFFinder tool requires as input a differential analysis ex-
periment consisting of two lists of up- and down-regulated
genes or a list of microRNAs present in the experiment. A
selective query against our database, which contains curated
DataSets from GEO, CMap and DrugMatrix, is performed
to compare the input with the selected signatures from our
database using a method based on the one used in MARQ
(12). The tool returns experiments with similar or opposite
gene profiles, in association with a correlation score and a
statistical significance value. The experiments contained in
our database have been processed with data mining tools
like MetaMap (13) to enrich them with terms related to
drugs, diseases and expert scientists. We have also taken ad-
vantage of the information about drugs and chemical com-
pounds present in CMap and DrugMatrix. Lastly, the re-
sults of the comparison are visually presented in a highly
graphical environment allowing the user to explore, select,
filter and display result views centered in drugs, diseases,
gene expression signatures and expert authors. Depending
on the input genes and the options selected, users will be
able to explore a huge database of experiments with phe-
notype similar or opposite to the input one and to discover
multiple drugs with similar effect or with an opposed profile
to the one’s particular disease.

MATERIALS AND METHODS

As a matching tool of gene expression profiles, NFFinder
is based on a huge internal database containing thousands
of gene signatures tagged with drug- and disease-related
terms (Figure 1, upper panel). NFFinder compares a user’s
input phenotype of interest, in the form of two lists of
up-regulated and down-regulated genes (as Gene Symbols)
or a list of miRNAs present in the experiment, with the

list of NFFinder database gene signatures (Figure 1, lower
panel). As a very computationally demanding task, the pro-
file comparison processing could take up a few hours to fin-
ish depending on the selected matching conditions. Once
NFFinder gets the list of gene signatures similar––directly
or inversely––to the input phenotype, it analyzes the sources
of those signatures to extract a list of experts related to that
phenotype. The retrieved information is presented to the
users as a series of graphics and tables facilitating the explo-
ration of relationships among drugs, diseases and the input
phenotype in search of potential new uses for known drugs.
Figure 1 shows a general overview of how NFFinder works
and the details are exposed in the following subsections.

Signature database construction

In order to build the gene signature databases we mined
three different public databases with transcriptomic data
in them: GEO, CMap and DrugMatrix. We obtained 16
432 gene expression signatures by processing 3254 GEO
DataSets. We used R in order to automatically generate the
gene signatures from the GEO DataSets. With GEOQuery
(14) we loaded each individual DataSet and used Limma
(15) to perform the differential expression analysis between
every pair of classes inside each experimental condition.
We then sorted the genes by their t-value (or fold-change if
there are not enough sample replicates to perform the sta-
tistical analysis) in order to obtain a gene signature. The
direction of the comparison was arbitrarily set unless one
of the classes was identifiable as a control or the condition
was identifiable as a time series. The automatic analysis of
differential gene expression could introduce spurious com-
parisons that the researcher should discard after inspecting
the results. In addition to the GEO DataSets’ signatures,
we added 6100 signatures from CMap and 5288 more from
DrugMatrix for a total of 27 820 different gene signatures.

Drug-related and disease-related terms tagging

Tagging CMap and DrugMatrix signatures with a drug-
related term was a straightforward process given that these
databases contain simple experiments of specific com-
pounds on different cell lines or rat tissues, respectively.
Gene signatures extracted from GEO were more difficult to
catalog automatically since every DataSet contains different
experimental conditions and classes. We solved that prob-
lem by using a third party natural language analysis tool
specialized in biomedical texts: MetaMap (13). MetaMap
uses a knowledge intensive approach based on symbolic,
natural language processing and computational linguistic
techniques.

Feeding the GEO DataSet descriptions to MetaMap we
obtained lists of terms grouped by class. In a first step, we
identified the classes that contained terms related to drugs
or terms related to diseases and conditions. All the terms
found in all GEO DataSet descriptions were filtered dis-
carding those that did not make sense or were not helpful in
our context. The list of meaningless terms was manually cre-
ated after examination of our own results during the tool’s
testing process. Finally, the so-constructed list of terms was
used to tag every gene signature obtained from each GEO
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Figure 1. General schema of NFFinder functionality.

DataSet with a set of one or more drug-related terms and/or
a set of one or more disease-related terms extracted from the
semantic analysis of its description. This allowed us to es-
tablish relationships not only between a gene signature and
a group of diseases/drugs, but also among drugs, diseases
and between drugs and diseases. Remark that NFFinder
database does not include a comprehensive list of drug–
disease relationships. Only the drug or disease terms tag-
ging gene signatures from comparisons of samples enclosed

in retrieved GEO DataSets will appear in the lists of drugs
or diseases.

Signature comparison

In order to find signatures in NFFinder’s database that are
similar or opposed to the input, we used a methodology
similar to the one employed by MARQ (12), in which rank
statistics is used to assign a score and a P-value to two
lists of genes: up-regulated and down-regulated. The score
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is computed using a weighted Kolmogorov–Smirnov-like
statistic, obtaining a similarity value normalized from 0 to
100. The significance of such score is determined using a
random permutation test.

miRNA to mRNA translation

As we mentioned earlier, NFFinder takes mRNA or
miRNA data as input but the signature comparison is per-
formed at mRNA level. In order to use miRNA as input,
we need to transform a list of miRNAs up-regulated in
a specific condition into a NFFinder standard mRNA in-
put. With that purpose, we used four different databases of
experimentally verified interactions between miRNAs and
mRNAs (16–19) and a dictionary to translate every miRNA
nomenclatures into miRBase format (20). Since almost ev-
ery miRNA–mRNA interaction found to date is an inhibit-
ing one, from a list of up-regulated miRNAs we could infer
a list of down-regulated genes. Likewise, from a list of down-
regulated miRNAs we could infer a list of up-regulated
genes. With those lists we proceed as described earlier in this
section.

Expert identification

With the aim of promoting collaborations and further re-
search, NFFinder output highlights the authors with expert
knowledge in biological processes potentially related to our
experiment. In order to associate phenotypes with experts
we devised a strategy based on references. We begin with the
list of gene signatures returned by NFFinder related to an
input phenotype of interest. We take those obtained from
GEO DataSets and extract the authors of the papers in the
‘citation’ section of the source DataSet. For every gene sig-
nature associated with a DataSet that cites a paper by a par-
ticular author we increase her or his score by one. In this
way, when NFFinder assigns a score of N to an author it
means that the author has been involved in the experiments
of N gene signatures similar to the input phenotype.

Improvements of NFFinder over similar tools

A common list of differentially expressed genes of gas-
tric cancer ((21) Supplementary Table S2) was submitted
to web-based tools CMap, CDA and NFFinder (inversely
profiled against CMap/DrugMatrix databases) in order
to compare the behavior of these three tools. Supplemen-
tary Table S1 summarizes the results according to CMap
top ranking. The three methods identify four compounds
(LY-294002, Trichostatin A, Tanespimycin and Vorinos-
tat) with significant P-value lower than 0.005. Due to the
multi-signaling pathway association with compounds ac-
complished by CDA, this tool did not find Resveratrol
and Trifluoperazine as significant compounds. However,
CMap and NFFinder, without that constraint, also identi-
fied Resveratrol and Trifluoperazine. Claerhout et al. (21)
determined through gene expression analysis and experi-
mentally validated the histone deacetylase inhibitor Vorino-
stat as a new therapeutic drug for gastric cancer treat-
ment. Although that study proves that CMap, CDA and
NFFinder are suitable tools setting up working hypothe-
ses, NFFinder shows clear improvements over the other

two methods. Concerning the number of profiles to com-
pare, the huge NFFinder database includes not only the
CMap/CDA profiles but also those derived from DrugMa-
trix and curated GEO DataSets. This upgrade of NFFinder
also allows searching not only for drugs but also for diseases
and experts. Dealing with web functionality, NFFinder is
easier to set up and use than CMap/CDA. NFFinder does
not require any registration to submit queries, whereas
CMap does and CDA requires an e-mail address. Un-
like CMap, which constrains queries to specific probes,
NFFinder allows to query the database with gene symbols.
NFFinder gives a clear rank of results including details
from profiles of comparison, whereas CDA web interface
shows only part of results with little additional information.
NFFinder web interface is richer allowing users to examine
results with different interactive tools and displays.

NFFinder USE CASE AND OUTPUT DESCRIPTION:
LOOKING FOR DRUGS TO KILL MPNST CELLS

NF is an autosomal dominant disease caused in humans by
deficiencies in one of the neurofibromin genes, NF1 or NF2.
Patients may develop different abnormalities in skin, eyes,
skeleton, cardiovascular, endocrine and nervous systems. In
the peripheral nervous system, disorders typically manifest
as benign neurofibromas that eventually may degenerate to
malignant peripheral nerve sheath tumors (MPNST). NF
has been classified into three distinct types: NF1, NF2 and
Schwannomatosis. The most common one, NF1, occurs in
1:3000 births (22,23) and is considered a rare disease.

Searching for drugs to revert the phenotype of NF pa-
tients to a healthier one constitutes one of the most impor-
tant applications of NFFinder. To illustrate this function-
ality of the tool we looked for antitumor drugs to kill the
MPNST cell line ST88–14 derived from a neurofibromin-
deficient patient.

Case 1 INPUT against drug databases

Up- and down-regulated genes were obtained from microar-
ray analyses comparing MPNST cells versus Normal Hu-
man Schwann Cells (24) (Supplementary Figure S1a Case
1). The list of differentially expressed genes was inversely
profiled against CMap and DrugMatrix databases.

Case 1 OUTPUT

The search with NFFinder retrieved 775 entries containing
391 different compounds. The selection of 30 drugs with
higher score plus the 10 more abundant (four entries or
more in the whole list) resulted in 32 compounds involved
in treating cancer (56%), NF (12%), neurological disorders
(12%), skin-related diseases (12%) and other benign neo-
plasia (3%) (Supplementary Figure S1b Case 1). Forty per-
cent of the total amount of drugs to treat cancer serve to
treat glioblastoma and other nervous system malignancies.
Being effective against glioblastoma (25), Trichostatin A
(TSA) is the best result appearing 133 times in total (17%)
and 23 times among the 30 drugs with higher score (77%).
The histone deacetylase inhibitor TSA, with a wide range
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of epigenetic activities, is considered a multifunctional an-
ticancer drug. Besides glioblastoma, TSA shows effective-
ness against other malignancies such as breast cancer or
esophageal squamous cell carcinoma by blocking cell pro-
liferation and triggering apoptosis (26).

In a recent work with a NF1/SUZ12 null cell line, De
Raedt et al. (27) took advantage of epigenetics to kill MP-
NST cells and to shrink tumors through the combination of
two synergy-acting compounds, PD-0325901 (PD-901) and
JQ1. PD-901 acts as RAS-MEK pathway inhibitor counter-
acting the neurofibromin deficiency. JQ1 compensates defi-
ciencies in SUZ12 or DEE, components of the polycomb
repressive complex (PCR2). The absence of SUZ12 is asso-
ciated with histone modifications that activate gene expres-
sion recruiting bromodomain proteins and other transcrip-
tion factors. JQ1, as a bromodomain inhibitor, promotes
the condensation of chromatine and gene silencing. Muta-
tions or deletions of SUZ12 (or DEE) are usually linked to
ablations in NF1 gene. The double deficiency in NF1 and
SUZ12 cooperates to develop MPNSTs and other types of
tumors. In the cell line ST88–14, also depleted in SUZ12
(logFC = −4.20; adjPVal = 2.16E-20), TSA could be in-
volved, besides in the epigenetic regulation, in the blocking
of the RAS pathway as PD-901/JQ1 does in the 90–8TL
cell line. In fact, TSA inhibits the RAS-regulated pathways
PI3K/Akt and ERK1/2 (26).

To test whether TSA replaces the combination of PD-
901 and JQ1 to kill MPNST cells, we carried out a second
analysis illustrating the application of NFFinder to look for
drugs with similar effect to other compounds already tested.

Case 2 INPUT against drug databases

Differentially expressed genes were obtained comparing
control DMSO treated cells versus PD-901/JQ1 treated
cells (Supplementary Figure S1a Case 2). This independent
gene input was directly profiled against CMap and Drug-
Matrix.

Case 2 OUTPUT

NFFinder also retrieved TSA as best result with 67 entries
in total (14%) and 19 entries among the 30 with higher score
(63%). Interestingly, we have found TSA as common best
result using as input independent gene profiles including 20
(Case 1) and 23 (Case 2) genes from RAS pathway signature
(27) (Supplementary Figure S1). This result reinforces that
TSA, with a double effect targeting epigenetic modifications
and RAS pathway, could be an interesting drug to test its
effectiveness to treat MPNST derived from NF1 deficiency.
Moreover, this result shows that NFFinder is a robust and
powerful tool to pose working hypotheses in the context of
therapeutics of NF and other rare diseases. Details of Case
2 analysis and the comparison with Case 1 are shown in
Supplementary Figure S1.

Inspection of GEO database constitutes a complemen-
tary approach to look for drugs. Retrieved GEO experi-
ments involving drugs or diseases with already known ther-
apeutics drive to new hypotheses for drug repurposing.

Cases 1 and 2 INPUT against GEO database

To illustrate the complementary application of NFFinder
looking for drugs, we tested both case gene inputs against
GEO database and details of the retrieved experiments are
shown in Supplementary Figure S1.

Cases 1 and 2 OUTPUT

The number of comparisons that make sense (appropriate)
among samples in GEO accessions varies between 70 and
80% in the 200 results with higher score. Not surprisingly,
most part of comparisons referred to cancer disease (at least
55% in the 200 results with higher score) and two compar-
isons from GDS2736 accession DataSet involved MPNST
cells. A careful examination of individual experiments in-
cluding drugs could suggest any of these compounds as hy-
potheses for therapeutics of MPNST.

We have included a tutorial in the website with the dif-
ferent possible types of applications of the tool that users
can launch and the steps to interpret the results. NFFinder
ranked results from GEO and CMap-DrugMatrix are dis-
played through a friendly interface allowing users to visual-
ize the output from different perspectives such as drugs, dis-
eases, drug–disease interactions and scientific experts (Fig-
ure 2).

TECHNICAL DETAILS

NFFinder was implemented in Python using Django and
Django REST framework for the web application back-end
and the REST web service respectively. NFFinder’s back-
end relies on a PostgreSQL database holding experimen-
tal data as well as job information. The web interface uses
Javascript to create the users’ jobs and track their progress
through the REST API. These jobs, written in Python, are
executed in a dedicated computing cluster that contains six
computing nodes with two Quad-Core Intel Xeon proces-
sors each. Front-end and visualizations of results can be
pulled out once the job is completed to be visualized with
any visualization system. For this project we have used the
dashboards and enhanced data visualization capabilities of
the TIBCO Spotfire R© Analytics platform which have been
made accessible by PerkinElmer.

DISCUSSION

NFFinder is the first web-based application of gene expres-
sion profiles comparison oriented to drug repositioning that
integrates expression data from GEO, CMap and DrugMa-
trix, including terms mined from the related metadata us-
ing MetaMap that can be related through the experiments.
NFFinder application provides a complete environment to
match similar gene expression signatures, to integrate dif-
ferent data sources, and to find potential collaborators, and
thus constitutes a bona fide data scientist enabling plat-
form. There are some limitations attached to NFFinder and
other gene expression signature comparison methods. Re-
mark that reverting a particular gene expression signature
related to a disease with a drug having an opposite signa-
ture is a naı̈ve approach to drug discovery and reposition-
ing, limited only to a subset of the known diseases, and
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Figure 2. Collage of the output results generated by NFFinder. Case 2 gene profile was used as input against databases GEO and CMap-DrugMatrix by
inverse and direct profile matching, respectively. NFFinder provides the following output displays. (a) Ranked table of retrieved results. (b) Aggregated
summary of results. (c) Drugs or diseases related to the experiment results. (d) Heatmaps to visualize the expression of the input genes in the context of
some diseases relevant for users. (e) Interactions between drugs and diseases. (f) List of authors that contributed to the results of a specific search (experts).

has to be complemented by experimental studies to confirm
the hypotheses generated with our tool. In addition, the set
of drugs and diseases included in the databases is limited.
Also, results coming from cell lines could not be always ex-
trapolated to in vivo tissues. Resulting expression profiles,
diseases, drugs, drug–disease interactions and experts from
the field are downloadable as tables. The REST web services
that run the analyses are completely detached from the in-
terface and can also be used to integrate our tool in other
pipelines and visualization platforms.

NFFINDER AVAILABILITY

This application can be freely accessed at http://nffinder.
cnb.csic.es.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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