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The experimental process of collecting images
from macromolecules in an electron microscope is
such that it does not allow for prior specification of
the angular distribution of the projection images.
As a consequence, an uneven distribution of projec-
tion directions may occur. Concerns have been
raised recently about the behavior of 3D recon-
struction algorithms for the case of unevenly dis-
tributed projections. It has been illustrated on ex-
perimental data that in the case of a heavily uneven
distribution of projection directions some algo-
rithms tend to elongate the reconstructed volumes
along the overloaded direction so much as to make
a quantitative biological analysis impossible. In an-
swer to these concerns we have developed a strat-
egy for quantitative comparison and optimization
of 3D reconstruction algorithms. We apply this
strategy to quantitatively analyze algebraic recon-
struction techniques (ART) with blobs, simulta-
neous iterative reconstruction techniques (SIRT)
with voxels, and weighted backprojection (WBP).
We show that the elongation artifacts that had been
previously reported can be strongly reduced. With
our specific choices for the free parameters of the
three algorithms, WBP reconstructions tend to be
inferior to those obtained with either SIRT or ART
and the results obtained with ART are comparable
to those with SIRT, but at a very small fraction of
the computational cost of SIRT. © 2001 Academic Press

Key Words: 3D reconstruction algorithms; algo-
rithm optimization; algorithm comparison; collec-
tion geometry.

1. INTRODUCTION

In 3D reconstruction from projections the distri-
bution of projection directions (expressed in the co-
ordinate system fixed to the experimental object) is

called the collection geometry. Knowledge of the col-

1 
lection geometry is crucial for the reconstruction
process. The Projection Theorem (Herman, 1980)
allows us to identify regions of the Fourier space in
which there is no information regarding the Fourier
transform of the object under study (missing cones,
missing wedges, . . . ).

A number of data collection strategies are possible
in the field of 3D electron microscopy (3DEM) of
biological macromolecules. If a low-resolution refer-
ence volume is available, a fruitful approach is to
collect untilted field micrographs from which a wide
range of different views can be obtained. By direct
comparison of the experimental images with the
reference volume, their directions of projection can
be determined and then input to a 3D reconstruction
algorithm (Frank, 1996). A shortcoming of this ap-
proach is that depending on the characteristics of
the specimen and of its preparation for microscopy,
the number of images corresponding to the different
projection directions may vary quite significantly
among the different directions. An experimental sit-
uation of this type was first investigated by Boisset
et al. (1996) and de Haas et al. (1996) in their studies
of the giant hemoglobin of Lumbricus terrestris and
of the human a-2 macroglobulin. Indeed, the strong
differences that they observed in the performance of
the different reconstruction methods, as well as the
marked discrepancies between the results obtained
in an unevenly distributed situation and an evenly
distributed situation, have been the primary moti-
vation of the present study. Similar problems were
encountered in a number of cases concerning cylin-
drical particles (e.g., CCT chaperonin, molluscan ho-
mocyanins) oriented mostly in their circular top
views within the ice layer and were overcome either
by a careful interactive selection of the particles in
the digitized micrographs or by taking additional

tilted-specimen images.
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2 SORZANO ET AL.
In principle, nothing worse than a reconstruction
with anisotropic resolution was initially expected for
the case of the experimental situation described in
the previous paragraph. However, this is not the
observation reported by Boisset et al. (1998), who
howed qualitatively that some reconstruction algo-
ithms used in the field tend to elongate the pro-
uced volumes along the overabundant projection
irections while others do not.
Furthermore, the oversampling of some projection

irections is becoming an important issue for single-
article 3D reconstruction, as most high-resolution
rojects require the collection of large untilted-spec-
men image sets at specific defocuses. This trend in
he data collection is triggered by the necessity to
orrect for the contrast transfer function of the mi-
roscope and requires the collection of at least 10
imes as many images. However, an even distribu-
ion of orientations is hard to obtain for single par-
icles observed under such experimental conditions
nd all 3D reconstruction algorithms need to be
horoughly tested. This issue is particularly impor-
ant for low-symmetry objects such as cylindrical
tructures with Cn or Dn point-group symmetries,
hich are among the most common shapes found in

oluble biological macromolecular assemblies (e.g.,
haperonins, proteasomes, helicases, extracellular
espiratory pigments) and in membrane-associated
roteins solubilized with detergents (e.g., calcium
elease channel, plant photosystem complexes, a-la-

trotoxin, and pore-forming toxins).
In this work we develop a quantitative approach

to study this phenomenon extending the analysis of
Boisset et al. (1998) to algebraic reconstruction tech-
niques (ART) with blobs (Marabini et al., 1998), si-
multaneous iterative reconstruction techniques
(SIRT) (Penczek et al., 1992), and weighted back-

rojection (WBP) (Radermacher, 1992). For this pur-
ose, we define a methodology for quantitative com-
arisons and apply it to the specific case of unevenly
istributed projections. This methodology (similar to
hat proposed by Matej et al. (1994, 1996) but with
ome modifications) performs a fair comparison be-
ween algorithms following a task-oriented ap-
roach. Each reconstruction algorithm is first ad-
usted so that its performance is optimized and then
he results obtained by the different algorithms are
ompared. A random set of realizations of a para-
etric family of computer-generated objects (so-

alled phantoms), projected according to the desired
ollection geometry and reconstructed with opti-
ized parameters, is used for the comparison. A
umber of quantitative measures of goodness are
aken for each reconstruction and, finally, a statis-
ical comparison of the merits of the different recon-

truction algorithms is performed.
2. MATERIALS AND METHODS

In this section we develop the objective comparison strategy to
be used in this work. This approach rests on the assumptions that
the “true” object to be reconstructed is known and that the mea-
sures of quality of algorithm performance should be defined in
terms of the similarity of the reconstruction to the true object.
These measures of quality are tailored to well-defined and prob-
lem-specific tasks and are quantified through numerical observ-
ers commonly referred to as Figures of Merit (FOMs). In such an
approach, the work must be based on data sets whose 3D struc-
ture is known. In the present study we use geometrical phantoms
and quantum mechanical simulations. Our goal is a fair compar-
ison of algorithms, so our measures must be as independent as
possible from any particular phantom and/or noise realization
used during the simulations.

Typically, there are a few (maybe just one) adjustable param-
eters that must be specified for a 3D reconstruction algorithm. In
our work we optimize this set of parameters for each particular
type of angular distribution. This is done by letting one of the
FOMs be a training FOM and selecting the parameters of an
algorithm so that this training FOM is maximized for each par-
ticular family of phantoms, noise, and directions of projections.
Considering that the training FOM represents just one of the set
of the measures of quality in which we are interested and that the
simulations are only an approximation of the experimental real-
ity, we devised a method that provides, instead of a unique set of
optimum parameter values, a set of regions that contains them.
Our evaluation process proceeds by generating a large set of
projection simulations, performing the reconstruction with ran-
domly picked parameters from their optimal regions, calculating
a battery of FOMs on the reconstructed volumes, and, finally,
providing a statistical comparison over the set of reconstructions
obtained from all the algorithms under study.

2.1. Collection Geometry Representation

In the coordinate system attached to the particle to be recon-
structed, a projection direction can be represented by a unit
vector that is anchored at the origin and points into the upper
half-space and that is parallel to the direction of electrons that
generated that projection. All such unit vectors lie on a hemi-
sphere. A collection geometry can be illustrated by a display of
small triangles attached to the ends of the unit vectors represent-
ing all the projection directions (called a “topology sphere” by
Boisset et al. (1998)). An even distribution of projections is char-
acterized by a constant distance between nearest triangles. No-
tice that, except for a few exceptions, it is not possible to distrib-
ute evenly a given number of unit vectors. However, a fairly good

FIG. 1. Top (a) and side (b) views of the topology sphere
corresponding to an even distribution of projection directions.
approximation can be achieved as is shown in Figs. 1a and 1b.
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3EFFECT OF OVERABUNDANT PROJECTIONS ON 3D RECONSTRUCTION
2.2. Parameter Selection

Most reconstruction algorithms require the specification of a
number of parameters. Some of these may be considered fixed, in
the sense that a given value has been found appropriate for them,
based either on some prior knowledge or on general consider-
ations. However, there are other parameters, referred to as free
parameters, whose selection is considered to be dependent on the
particular specifications of the problem at hand. In this work, we
are considering two clearly distinguishable types of collection
geometry: the case of an even distribution of projection directions
and the case of a highly uneven distribution. Therefore, our first
goal is to specify the free parameters of the different reconstruc-
tion algorithms that will be tested for each of these two types of
collection geometry.

A FOM is a measure of the similarity (from some particular
point of view) between the object to be reconstructed (a “phan-
tom”) and its reconstruction from projection data. For any partic-
ular ensemble of phantoms and data collection methodology, we
wish to select the free parameters of an algorithm so as to max-
imize the expected value of some Training Figure of Merit
(tFOM). We do this training experimentally. We first explain our
approach in the case of only one free parameter.

We randomly pick a set of phantoms and simulate the projec-
tion data generation. Let m(l) be the mean and s(l) be the
tandard deviation of the values of the tFOM for the reconstruc-
ions of these phantoms when the free parameter has the value l.
ur method approximates the interval of those values of l for
hich the hypothesis that the expected value of the tFOM is

FIG. 2. tFOM versus relaxation parameter at the end of the fi
case (b); the mean tFOM and its standard deviation are plotted.
uneven case (d).
aximal at l cannot be rejected with 99.5% confidence based on t
he experimentally observed means and standard deviations. In
igs. 2a and 2b we show the plot of m(l), as well as the plots of

m(l) 1 s(l) and m(l) 2 s(l), together with the “optimal region”
estimated by our algorithm. The algorithm is based on a Fi-
bonacci search that starts with a large interval that is certain to
include the optimal region and then narrows this interval to a
desired level of accuracy. A similar approach has been suggested
by Matej et al. (1996), but without taking into consideration the
tandard deviations in determining the optimal region.
The extension to the case of two free parameters can be done in

wo different ways: the first consists of selecting an optimal
egion that is an area in the plane, instead of an interval, defined
y the two parameters (see Figs. 2c and 2d); the second, inspired
n Obi et al. (2000), selects different values of l for each iteration;

thus, the l for the first iteration is chosen randomly from the
ptimal region determined by Figs. 2a and 2b, while the free
arameter for the second iteration is optimized following the
rocedure described in this section. This extension procedure can
e applied for any number of iterations.

.3. Phantoms

2.3.1. Analytically generated phantoms. In this paper we deal
ith analytically generated phantoms of the following kind. A

elevant part (in the shape of a box) of space is identified and is
ubdivided into cube-shaped abutting voxels. Some continuous
eometrical objects (in this paper these will be cylinders) are
pecified. A density is assigned to each voxel as follows. Consider
he voxel to be subdivided into eight equal subvoxels and let n be

le through the data for ART in the even case (a) and the uneven
isocurves for SIRT are represented for the even case (c) and the
rst cyc
tFOM
he number of centers of these subvoxels that are inside one of the
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4 SORZANO ET AL.
geometrical objects. Then the density of the voxel is defined to be
n/8. We use V to denote the set of all voxels, F (for foreground) to

enote those voxels whose density is 1, and B (for background) to
denote those voxels whose density is 0.

The phantoms used in this article were designed following the
principles proposed by Marabini et al. (1998). They consist of two
identical cylinders aligned along the Z axis. The position, height,
adius, and separation are random to avoid a possible dependence
f the Figures of Merit used on any of these variables.
2.3.2. Phantoms obtained by quantum mechanical simulation.
s in previous work (Marabini et al., 1997) a phantom that
esembles a real protein complex was constructed for quantum
echanical image simulations. G-actin atomic coordinates (pdb

ntry 1ATN by Holmes et al., 1990) were used to obtain a small
ube of a protein-like atomic distribution (carbon, oxygen, and
itrogen atoms). To obtain spheres as shown in Fig. 3, eight such
mall cubes were put together to form a larger cube from which a
phere is extracted. Twelve identical spheres were then put to-
ether to form the phantom protein complex (Fig. 3). Such atom
istribution phantoms were rotated according to the given collec-
ion geometry and embedded into a distribution of oxygen atoms
ith a density equal to that of water. The final atom distributions
f protein phantom and oxygen atoms were chosen as input for
mage simulations using the program YaMS (Dinges and Rose,
995). The images were simulated by calculating the propagation
f an electron wave through the scattering potentials formed by
he atoms in the distribution. In our present simulations only the
lastic potentials were considered.

.4. Figures of Merit

Various FOMs have been previously proposed both in medical
maging (Matej et al., 1994) and in 3DEM (Marabini et al., 1997).

In this work we put forth a more complete set of FOMs, including
those that evaluate elongations. Two broad families of FOMs
have been developed; we refer to them as structural consistency
measures and structural separability measures.

2.4.1. Structural consistency measures. Structural consis-
tency refers to the correspondence between the voxel values in the
reconstruction and in the phantom. It can be measured using
magnitudes such as absolute errors, squared errors, differences
in the means, differences in standard deviations, and differences
in minimum and maximum values. The region over which these
differences are taken can be the whole volume (for global mea-
sures), the background only, the foreground only, or the regions
around the foreground.

We need to introduce some notation. We use R to denote the
egion over which the FOMs are measured. Inside the region
here are NR voxels, which are numbered from 1 to NR. The value
f the voxel number i of this region is denoted as pR,i, while the

corresponding value in the reconstruction is denoted as rR,i. The
mean voxel value in the region R in the phantom is denoted by
mpR

and in the reconstruction mrR
; spR

and srR
denote the corre-

ponding standard deviations. The maximum voxel value in the
egion R in the phantom is denoted by MpR

and in the reconstruc-
tion by MrR

; mpR
and mrR

denote the corresponding minimal
values. Based on these definitions the following structural con-
sistency FOMs have been developed:

● Mean squared error FOM (a measure of consistency between
voxel values, it gives significantly more importance to large er-
rors):

scL2FOM~R! 5 1 2
1

NR
O
i51

NR SpR,i 2 rR,i

2 D2

.

● Mean absolute error FOM (another measure of consistency
between phantom and reconstruction voxel values with the im-

portance of errors proportional to their size):
scL1FOM~R! 5 1 2
1

NR
O
i51

NR

UpR,i 2 rR,i

2 U.
● Mean density value FOM (measures the correspondence be-

ween the density averages over the whole region):

scmFOM~R! 5 1 2
1
2 umpR 2 mrRu.

FIG. 3. 3D reconstructions of a realistic phantom simulated
at the atomic level using an uneven distribution of projection
directions with 3099 projections. From top to bottom: original
phantom, reconstruction with ART, reconstruction with SIRT,
reconstruction with WBP, reconstruction with SIRT using non-
optimal parameters.
● Density standard deviation FOM (checks if the standard
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5EFFECT OF OVERABUNDANT PROJECTIONS ON 3D RECONSTRUCTION
deviation in the phantom is well reproduced in the reconstruc-
tion):

scsFOM~R! 5 1 2 uspR 2 srRu.

● Range FOM (the agreement between the voxel value ranges
in the phantom and in the reconstruction):

scDFOM~R! 5 1 2
1
2 ~uMpR 2 MrRu 1 umpR 2 mrRu!.

Below we report on these FOMs for three different regions: the
whole volume V, the foreground F, and the background B. We
also report on other structural consistency measures that have
been designed so that errors are weighted differently depending
on where they appear.

● Blurring FOM (emphasizes accuracy near the foreground
using a division by di, which is the Euclidean distance of the
center of the ith voxel in the background from the voxel in the
foreground that is nearest to it):

scblFOM 5 1 2
1

NB
O
i51

NB 1
di
SpB,i 2 rB,i

2 D2

.

● New masses appearing FOM (emphasizes accuracy far from the
oreground and should thus be able to detect long elongations):

scapFOM 5 1 2
1

NB
O
i51

NB

diSpB,i 2 rB,i

2 D2

.

● Radon FOM (measures accuracy of averages in horizontal lay-
rs p(k) of voxels, 1 # k # K, and is thus appropriate to detect

vertical elongations):

scrtFOM 5 1 2
1
K O

k51

K

umpp~k! 2 mrp~k!u.

Notice that this measure is equivalent to the comparison of the
Radon transforms of the phantom and the reconstruction along

FIG. 4. Typical histograms of the reconstructed val
the vertical direction. i
2.4.2. Structural separability measures. Structural separabil-
ity is the issue of how well the foreground can be distinguished
from the surrounding background. Foreground/background sepa-
ration cannot be achieved by a simple comparison of voxel density
values since, as Fig. 4 shows, it is common that in a reconstruc-
tion an overlap exists between the distributions of voxel densities
in the foreground and in the background. We have designed a
number of FOMs to measure relevant aspects of foreground/
background separability in the reconstructions of our analytically
generated phantoms.

● Foreground mean separability

We wish to measure the distinguishability of the foreground from
the immediately surrounding background. For this purpose we as-
sociate with each of the two cylinders of the phantom four parts: an
inner shell, a medial shell, an outer shell, and a surrounding back-
ground (Fig. 5 shows these four parts for one of the two cylinders of
the phantom). We intend to investigate the separability of the re-
constructed voxel values in the inner shell (respectively in the outer
shell) from those in the surrounding background.

To do this, let I consist of all the voxels whose center is in the inner
shell of a cylinder, O consist of all the voxels in the foreground whose
center is in the outer shell of a cylinder, and S consist of all the
voxels in the background whose center is in the surrounding back-
ground of a cylinder (as defined in Fig. 5). Assuming that voxel
densities follow a gaussian distribution, a standard measure of
separability of two means can be calculated using a Student’s t test
Vardeman, 1994, pp. 307–311). Thus, we obtain the FOMs

sinFOM 5
umI 2 mSu

Î~sI
2/NI! 1 ~sS

2/NS!
and

hsbrFOM 5
umO 2 mSu

Î~sO
2 /NO! 1 ~sS

2/NS!
.

● Detectability error FOM

This FOM quantifies the error that would have been committed

the foreground and in the surrounding background.
f the foreground were segmented from the background based
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6 SORZANO ET AL.
only on the voxel density values. This measure is evaluated by
calculating dterr, which is the total area under both the histo-
gram of reconstructed voxel values in the background and the
histogram of the reconstructed voxel values in the foreground
after both histograms have been normalized so that the area
under the histogram is unity:

hsdtFOM 5 1 2 dterr.

● Vertical resolution FOM

The vertical resolution FOM is based on the one proposed by
arabini et al. (1997). Given the two cylinders in the phantom,

hree planes can be defined, two of them intersecting the cylin-
ers through their centers and the third one between them (see
ig. 6). Let P1 and P2 be the set of voxels in the foreground that

are intersected by planes 1 and 2, respectively. Let P3 be the set
of voxels (necessarily in the background) that are intersected by
plane 3. The vertical resolution measure is the defined as

hsvrFOM 5
mP1 1 mP2 2 2mP3

ÎsP1
2 1 sP2

2 1 4sP3
2 .

3. RESULTS

In this section we report on our experimental
study of the behavior of the three algorithms (in the
cases of even and uneven distributions of projec-
tions), first, using analytical phantoms, then quan-
tum mechanical simulations, and, finally, real data.

The goal of the work with the analytical phantoms
is twofold. On the one hand, it is vital to identify
optimal ranges of the free parameters of the recon-
struction algorithms that are being compared in this
study (ART, SIRT, and WBP). On the other hand, we
seek a set of evaluations using a broad range of
FOMs (those defined in Section 2.4) that indicate the
relative merits of the different methods that are
being compared. After identifying the optimal range
of parameters and carrying out a phantom level
comparison, we apply the reconstruction algorithms
to the other two cases: to data obtained by quantum
mechanical simulation and to the set of data that
was first used by Boisset et al. (1998) in the work on

FIG. 5. Horizontal and vertical central sections of a cylinder.
he effects of an uneven distribution of projection
directions on 3D reconstructions obtained by the
different algorithms.

3.1. Statistical Analysis Performed Using
Analytical Phantoms

Phantoms as described in Section 2.3.1 were gen-
erated with a random center between (25, 25, 25)
nd (5, 5, 5), a random cylinder radius and height
etween 5 and 8, and a random separation of cylin-
ers between 3 and 6. Projections were calculated
or 541 evenly distributed directions (even case) and
000 additional directions that were randomly dis-
ributed on the small sector with a tilt angle of 15°
hown in Fig. 7 (uneven case). Thus, nearly 70% of
he projections are within the overloaded region.
he calculated projected density values as well as
he geometrical information available to the algo-
ithm regarding the location of the projection plane
ere corrupted by noise as it was done by Marabini

t al. (1998). Concisely, zero-mean Gaussian noise
as added with a SNR of around 0.66 for the density
alues, with a standard deviation of 2 pixels for the
enter positions and with a standard deviation of 5°
or the angular locations. The even case is used as a
ontrol study in order to understand better the be-
avior of the reconstruction algorithms under con-
itions of uneven distributions: if FOMs are to de-

FIG. 7. Perspective view of the topology sphere corresponding

FIG. 6. Plane definition for the vertical resolution FOM.
Planes 1 and 2 are orthogonal to the cylinder direction and pass
through the centers of each cylinder. Plane 3 is defined parallel to
1 and 2 and passing through the middle point between the two
cylinders.
to an uneven distribution of projections.
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tect an elongation, we need to know what these
FOMs are in case there is no elongation present.

For the purpose of finding the optimal regions of
free parameters, in this study we selected
scL2FOM(F) to be the tFOM. For each choice of the
free parameters a total of 30 reconstructions were
carried out, changing each time the phantom and
the noise realization. The amount of computation
involved in this approach has been very large, reach-
ing the order of 420 h of a SGI Power Challenge with
MIPS 10 000 at 200 MHz in the case of ART and
1000 h for SIRT.

The results of this search for the optimal region of
free parameters for ART and SIRT are shown in Fig.
2. For ART, the relaxation parameter l was opti-
mized for each cycle through the data, observing
small changes between the training FOM for one
and two iterations; therefore, we did not proceed
with further iterations. The optimal intervals are
also similar for both cycles through the data (even
case: l1 [ [0.015, 0.07], l2 [ [0.1, 0.6]; uneven case:
l1 [ [0.01, 0.78], l2 [ [0.01, 0.7]) although for the
second cycle through the data, the optimal range is
smaller in both cases. Figures 2a and 2b show the
optimal regions in the first cycle through the data
for the case of an even distribution of projection
directions and for the case of an uneven distribution,
respectively.

For SIRT, a combination of two factors, relaxation
parameter and number of iterations, need to be con-
sidered, too. Since previous experience indicates
that SIRT needs a much larger number of cycles
through the data, consideration of computational
cost suggests the use of a constant relaxation pa-
rameter for all iterations. Figures 2c and 2d show
the optimal regions for the even distribution and the
uneven distribution. In both cases, the left boundary
of the optimal region is similar. However, the right
side of the optimal region in the even case is wider
(l 5 1024) than in the uneven case (l 5 1024.5). This
is a consequence of the SIRT implementation in
SPIDER (Frank et al., 1996), which is what we used
in our experiments. A point that must always be
considered in comparisons is that SIRT will typically
require at least an order of magnitude more com-
puter time than either ART or WBP.

WBP has a free parameter related to some form of
low-pass filtration. In this work we have used an
implementation based on the development by Rad-
ermacher (1992) for which we had already demon-
strated (Marabini et al., 1998) that the low-pass
filter parameter does not play a substantial role
under the conditions in which the simulations were
done. Low-pass filter parameters within the optimal

region shown in Marabini et al. (1998) have been
selected in the evaluation experiments reported
below.

For evaluation, a series of 120 test reconstructions
with each method (ART, SIRT, and WBP) was per-
formed using the analytical phantoms. The free pa-
rameters used for the 120 tests were randomly
picked from their optimal region using a uniform
distribution (this approach was proposed by Matej et
al., 1996). The performance of ART, SIRT, and WBP
is presented in Tables I and II. Specifically, Table I
presents the mean and standard deviation of the
values of each FOM for each of the three algorithms
under an even and an uneven distribution of projec-
tion directions. Also, the cases in which the algo-
rithm performs significantly better when the num-
ber of projections is larger despite the fact that the
distribution of projection directions was uneven are
indicated by an up-arrow; the cases in which the
results deteriorate when the angular distribution of
projections is not even are indicated by a down-
arrow.

A ranking of the performance of ART, SIRT, and
WBP with respect to the set of FOMs defined in
Section 2.4 is presented in Table II, both for the even
and for the uneven distributions of projection direc-
tions.

3.2. Qualitative Algorithm Comparison

Accurate simulations of the data collection in
3DEM were obtained using the quantum mechani-
cal approach described in Dinges and Rose (1995).
Images for normal EM conditions were simulated for
an artificial protein complex embedded in ice as
described in Section 2.3.2. A large set of projections
(3099) was computed for the same distribution of
projection directions (shown in Fig. 7) as that re-
ported by Boisset et al. (1998) in their study of the
giant hemoglobin of L. terrestris. The following set of
conditions was used in the simulations: elastic im-
age contrast (i.e., no inelastic interactions are taken
into account), 2 mm of defocus, acceleration voltage
120 kV, spherical aberration 2.0 mm, source spread
0.75 eV, aperture 12.0 mrad, focus spread 0.0 mm,
ice thickness 100 nm 6 30 Å. The choices of free

arameters for this experiment were l1 5 0.047,
l2 5 0.03 for ART, and for SIRT two different cases
were considered: the first with a worse choice
(lSIRT 5 5 3 1027, 100 iterations) and the second
with a better choice (lSIRT 5 1025, 100 iterations).
The results of the 3D reconstruction using ART,
SIRT, and WBP are presented in Fig. 3, and they
show effectively the elongation effect obtained with
SIRT with inferior parameters. At the same time,
the nonelongated reconstruction produced by ART
and WBP can be seen to have a small artifact in the

middle of both rings.
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8 SORZANO ET AL.
The second experimental data set used in the
present work for qualitative comparisons corre-
sponds to a series of 3099 images of L. terrestris
extracellular respiratory pigment. These images
were recorded on a Philips CM200 field emission
gun cryoelectron microscope with an acceleration
voltage of 200 kV, a magnification of 63 2403, and a

efocus ranging from 2 to 3.5 mm. For unknown
experimental reasons two-thirds of the particles
were oriented in the vitreous ice layer with their
sixfold symmetry axis perpendicular to the air–wa-
ter interface. Therefore, this experimental data set

TA
FOM Values for the Three Reconstruction Algorithms

FOM ART

scL2FOM(V) 0.99784 6 0.00026 0.99
0.99771 6 0.00034 0.99

scL1FOM(V) 0.9651 6 0.0020 0.96
0.9645 6 0.0023 0.97

scmFOM(V) 0.9726 6 0.0013 1 0.99
0.9736 6 0.0023 0.99

scDFOM(V) 0.836 6 0.030 0.77
0.819 6 0.045 0.88

scL2FOM(B) 0.99824 6 0.00023 0.99
0.99815 6 0.00028 0.99

scL1FOM(B) 0.9671 6 0.0018 0.97
0.9667 6 0.0021 0.98

scmFOM(B) 0.9692 6 0.0015 0.99
0.9701 6 0.0023 0.99

scsFOM(B) 0.9435 6 0.0064 0.92
0.9392 6 0.0099 0.94

scDFOM(B) 0.658 6 0.031 0.60
0.634 6 0.052 0.69

scL2FOM(F) 0.9847 6 0.0032 0.97
0.9842 6 0.0027 0.97

scL1FOM(F) 0.901 6 0.013 0.86
0.900 6 0.010 0.85

scmFOM(F) 0.916 6 0.017 0.87
0.917 6 0.016 0.86

scsFOM(F) 0.829 6 0.023 0.83
0.821 6 0.021 0.84

scDFOM(F) 0.595 6 0.058 0.57
0.576 6 0.051 0.61

scblFOM 0.99936 6 0.00012 0.99
0.99931 6 0.00015 0.99

scapFOM 0.9867 6 0.0019 0.98
0.9867 6 0.0021 0.99

scrtFOM 0.9719 6 0.0012 0.99
0.9709 6 0.0018 0.99

hsinFOM 85.52 6 29.39 75.65
90.55 6 36.99 88.44

sbrFOM 110.38 6 33.96 94.01
109.39 6 30.29 110.21

sdtFOM 0.999999 6 0.000005 0.99
0.999998 6 0.000008 0.99

hsvrFOM 6.70 6 0.51 5.70
6.34 6 0.64 6.24

Note. Arrows indicate whether the uneven value is significantl
corresponds to a typical case of uneven angular sam-
pling, with overabundant hexagonal top views. In
fact, this was the original data set for which the first
concerns about uneven projection distributions were
raised by Boisset et al. (1998). The angular distribu-
tion and algorithm parameters are exactly the same
as in the previous atomic phantom. An additional
experiment was performed with SIRT in this partic-
ular case: the inferior l (lSIRT 5 5 3 1027), but a
larger number of iterations (1000). Figure 8 shows
the results obtained. The three reconstructions with
the correctly chosen parameters seem to be equiva-
lent, while the two SIRT reconstructions with a non-

I
e Even (Upper Row) and Uneven (Lower Row) Cases

SIRT WBP

0.00087 1 0.99577 6 0.00075
0.00028 0.99554 6 0.00076
0.0098 1 0.9547 6 0.0026 2
0.0038 0.9503 6 0.0030
0.0069 0.9649 6 0.0019
0.0003 0.9645 6 0.0012
0.102 1 0.715 6 0.062 1
0.048 0.848 6 0.015
0.00092 1 0.99632 6 0.00070 1
0.00023 0.99726 6 0.00036
0.0102 1 0.9573 6 0.0023
0.0039 0.9560 6 0.0016
0.0070 0.9622 6 0.0023 2
0.0009 0.9560 6 0.0016
0.0243 1 0.9904 6 0.0114 2
0.0086 0.9438 6 0.0077
0.110 1 0.398 6 0.085 1
0.044 0.667 6 0.027
0.0132 0.9773 6 0.0055 2
0.0074 0.9325 6 0.0085
0.038 0.871 6 0.012 2
0.026 0.749 6 0.017
0.041 0.922 6 0.033 2
0.029 0.751 6 0.019
0.032 0.740 6 0.053 1
0.016 0.875 6 0.008
0.118 0.461 6 0.099
0.059 0.467 6 0.096
0.00021 0.99828 6 0.00057 1
0.00009 0.99914 6 0.00021
0.0091 1 0.9798 6 0.0028 2
0.0020 0.9786 6 0.0008
0.0059 0.9653 6 0.0017 2
0.0006 0.9565 6 0.0016

31.92 24.69 6 9.17 1
27.26 32.35 6 13.63
46.75 54.67 6 26.71
32.79 65.38 6 38.82

0.000008 0.999989 6 0.000023
0.000004 0.999991 6 0.000002
0.66 1 2.89 6 0.46
0.45 2.91 6 0.43

r (1) or significantly worse (2) than the even case.
BLE
in th

775 6
858 6
82 6
90 6
76 6
96 6
8 6
2 6
841 6
930 6
13 6
27 6
45 6
59 6
61 6
83 6
5 6
9 6
40 6
32 6
5 6
9 6
4 6
2 6
4 6
1 6
3 6
7 6
951 6
964 6
70 6
60 6
52 6
71 6

6
6
6
6

9998 6
9999 6

6
6

optimal relaxation parameter appear to be elon-
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gated in the overloaded direction. This elongation
artifact is stronger for the reconstruction done with
a smaller number of iterations.

4. DISCUSSION

An objective comparison based on FOMs indicates
that, for the particular variants of the algorithms
that we investigated, ART and SIRT outperform
WBP in both cases studied in this work (Table II).
ART and SIRT perform quite similarly, although
Table II seems to indicate that for the uneven case
SIRT tends to behave slightly better than ART (note
that the computational cost of SIRT is more than an
order of magnitude greater than that of ART; this
raises the possibility of improving the performance
of ART by running it longer, but still at a cost much
less than that of SIRT). Also, SIRT shows an im-
provement that is consistent with the fact that the
uneven distribution uses 1000 more projections than
the even distribution, which means that there is
more information and, therefore, the reconstruction
should be better. Nevertheless, WBP shows an un-
stable behavior when changing from the even to the
uneven case: some FOMs improve and others dete-
riorate. As for ART, its performance remains essen-
tially unaffected by the use of additional data, ex-
cept for one FOM that indicates significant

TA
Algorithm Ranking under

FOM

Even case

1st 2nd

scL2FOM(V) ART SIRT
scL1FOM(V) SIRT ART
scmFOM(V) SIRT ART
scDFOM(V) ART SIRT
scL2FOM(B) SIRT ART
scL1FOM(B) SIRT ART
scmFOM(B) SIRT ART
scsFOM(B) ART SIRT
scDFOM(B) ART SIRT
scL2FOM(F) ART SIRT WBP
scL1FOM(F) ART WBP SIRT
scmFOM(F) WBP ART
scsFOM(F) SIRT ART
scDFOM(F) ART SIRT
scblFOM SIRT ART
scapFOM ART SIRT
scrtFOM SIRT ART
hsinFOM ART SIRT
hsbrFOM ART SIRT
hsdtFOM ART SIRT
hsvrFOM ART SIRT

Note. When two methods share a place, it means that neither is
alue even if they are not significantly different.
improvement.
The present study demonstrates that the param-
eter selection used in previous structural studies
(Boisset et al., 1998) using SIRT was not appropri-
ate. The elongation artifact that was reported in the
article cited was explained as the result of giving
more importance to the views in the preferred direc-
tion than to the others. While this intuitive inter-
pretation is probably correct for the early stages of
the algorithm, it is no longer true at the later stages.
Indeed, when SIRT is run with the appropriate re-
laxation parameter, the artifacts do not appear. Fur-
ther, even when using too small values for the re-
laxation parameter—as was done by Boisset et al.
(1998)—by letting the algorithm run for a very large
number of iterations, the artifact fades away. We
conclude that (a) the proper choice of the free pa-
rameters of the algorithms is critical and (b) if the
parameters are well chosen, an overabundant
knowledge of the volume from one direction will not
result in inferior reconstructions.

5. CONCLUSIONS

In this work we have extended our previous task-
oriented evaluation of algorithmic behavior toward
an explicit incorporation of the variance of the Fig-
ures of Merit used to evaluate the various tasks and,
at the same time, a more complete set of Figures of

II
ifferent FOMs and Cases

Uneven case

d 1st 2nd 3rd

P SIRT ART WBP
P SIRT ART WBP
P SIRT ART WBP
P SIRT WBP ART
P SIRT ART WBP
P SIRT ART WBP
P SIRT ART WBP
P SIRT WBP ART
P SIRT WBP ART

ART SIRT WBP
ART SIRT WBP

T ART SIRT WBP
P WBP SIRT ART
P SIRT ART WBP
P SIRT ART WBP
P SIRT ART WBP
P SIRT ART WBP
P ART SIRT WBP
P SIRT ART WBP
P SIRT ART WBP
P ART SIRT WBP

cantly better than the other; however, they are ordered by FOM
BLE
the D

3r

WB
WB
WB
WB
WB
WB
WB
WB
WB

SIR
WB
WB
WB
WB
WB
WB
WB
WB
WB

signifi
Merit has been devised. This methodology has been
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10 SORZANO ET AL.
applied to the assessment of the relative perfor-
mance of three reconstruction algorithms, ART,
SIRT, and WBP, under conditions in which the an-
gular distribution of projection directions has been
either even or uneven. We have shown that previous
reports of SIRT behaving very poorly for the case of

FIG. 8. 3D reconstruction of the giant hemoglobin of Lumbri-
us terrestris using an uneven distribution of projection directions
ith 3099 projections. From top to bottom: reconstruction with
RT, reconstruction with SIRT, reconstruction with WBP, recon-
truction with SIRT using nonoptimal parameters, reconstruc-
ion with SIRT with the same nonoptimal parameter but with
000 iterations.
uneven distribution of projection directions were
based on a nonoptimal choice of the free parameters
of the algorithm (relaxation parameter and number
of iterations). It is thus established that free param-
eters have a strong influence on the final reconstruc-
tion and so it is undoubtedly worthwhile to optimize
them for a particular type of application. Further-
more, we have shown that, for the case of an uneven
angular distribution of projections, both ART and
SIRT outperform WBP when the free parameters
have been properly selected, although ART does so
at a fraction of the computational cost (between one
and two orders of magnitude) required by SIRT.
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