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Abstract

In the process of three-dimensional reconstruction of single particle biological macromolecules several hundreds, or

thousands, of projection images are taken from tens or hundreds of independently digitized micrographs. These

different micrographs show differences in the background grey level and particle contrast and, therefore, have to be

normalized by scaling their pixel values before entering the reconstruction process. In this work several normalization

procedures are studied using a statistical comparison framework. We finally show that the use of the different

normalization methods affects the reconstruction quality, providing guidance on the choice of normalization

procedures.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Structural biology aims at the acquisition and
analysis of the three-dimensional structure of
biological macromolecules. This information is
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essential to fully understand the molecular ma-
chinery that supports life. Experimentally, the
structural information can be collected using
different techniques such as X-ray crystallography
[1], NMR [2] and electron microscopy (EM) either
as electron crystallography [3], tomography [4] or
single particle reconstruction [5–8].

Single particle reconstructions assume that all
projection images come from a unique specimen.
d.
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However, this is not exactly true since different
projections are taken from different specimens
which are supposed to be structurally identical up
to a certain resolution. Three important issues
have to be solved before entering the reconstruc-
tion process. First, one must be sure that all
projections are from the desired specimen, avoid-
ing projection images where the specimen was
severely damaged or projections of other kinds of
particles [9]. Second, a common geometrical
framework (angular assignment and particle dis-
placement) must be established for all projections
such that every projection image represents a
certain point of view of the same volume [10,
Chapter 5]. Finally, the projection grey values
must be coherent among projections. Usually this
step is carried out by normalization of the image
grey values [8].

A number of normalizing procedures have been
proposed over the years. However, a detailed
analysis of the properties, advantages and dis-
advantages of each one is lacking. This work
explores and compares the different alternatives
appearing in the literature.

The analysis will follow a two-step procedure.
Firstly, the different normalizing procedures will
be analyzed theoretically according to a given
image model and then the analysis will be
validated by experiment simulation. These simula-
tions involve a 3D reconstruction step since it is at
the stage of combining non-compatible projections
where the effect of an improper normalization
should appear more strongly.
2. Normalization procedures

In this section a theoretical analysis of the
normalization step is performed. First of all, an
image formation model is needed. Let Iidðx; yÞ be
the ideal projection of the volume to be recon-
structed along some direction. This ideal projec-
tion has exact density values since it is computed
as the line integral along the volume density. At
this point, we will follow a black-box system-
theory approach, i.e., any transformation that our
ideal image might suffer can be expanded in
Taylor series. A first order approximation of the
relationship between the measured image and the
ideal image is given by

Iðx; yÞ ¼ A½Iidðx; yÞ þ nðx; yÞ� þ B; ð1Þ

where nðx; yÞ is a white Gaussian noise of zero
mean and A and B define a linear transformation.
It should be noticed that this simple model is able
to account for the differences in contrast (through
the A parameter) and background average values
(through the B parameter) among the set of
projections. It must also be pointed out that A

and B need not be the same for all images coming
from the same micrograph and that they are
totally independent. It will be assumed that every
projection image is affected by a particular linear
transformation. Physical differences in the sample
preparation, film development and digitization can
be directly translated into differences in the A and
B parameters. However, it is not our aim in this
paper to point out the exact relationship between
each physical process involved and the linear
transformation coefficients.

Obviously, a more realistic image formation
model should include the correlation between
pixels introduced by the imaging devices. Assum-
ing that the whole imaging system is shift
invariant, a first order description of this correla-
tion is provided by the linear-system theory. The
output of the system is modeled by the convolu-
tion of the system impulse response (or Point
Spread Function, PSF) with the ideal image

Iðx; yÞ ¼AfPSF�½Iidðx; yÞ þ nbðx; yÞ�

þ naðx; yÞg þ B; ð2Þ

where � represents the convolution operation, nb

the noise generated before applying the PSF
(therefore, it is affected by the PSF) and na the
noise generated after the application of the PSF
(not affected by the PSF).

This simple linear model can handle the micro-
scope aberrations usually modeled in Fourier
space by the contrast transfer function (CTF)
[10, Chapter 2], the low-pass filter usually intro-
duced by the scanner or the CCD camera used to
digitize the images, the band-pass filter sometimes
used by EM practitioners, etc. through the
identification of the proper PSF. The noise model
is also general enough so as to distinguish between
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noise affected by the PSF (correlated noise) and
noise that is not affected (uncorrelated). In this
way, different noise sources can be addressed with
this model: noise due to the electron count
statistics, noise because of the film grain, film
development, quantization noise in the digitiza-
tion, CCD electronic noise, etc. Furthermore, this
noise model with two separate components has
been found useful in the estimation of the CTF in
micrographs [11]. Again, we would like to
emphasize that our aim in this paper is not to
derive specific impulse responses or noise models
for all the image-acquisition steps involved but to
provide a system theory approach to the topic.

The different normalizing methods take the
measured image Iðx; yÞ and produce a normalized
image #Iðx; yÞ: The following five normalizing
procedures, Ni : iAf0; 1; 2; 3; 4g; have been studied
in this work. They are defined as follows:

#I0ðx; yÞ ¼ N0½Iðx; yÞ� ¼ Iðx; yÞ;

#I1ðx; yÞ ¼ N1½Iðx; yÞ� ¼
Iðx; yÞ � avg½bgðIÞ�

avg½bgðIÞ�
;

#I2ðx; yÞ ¼ N2½Iðx; yÞ� ¼
Iðx; yÞ � avgðIÞffiffiffiffiffiffiffiffiffiffiffiffiffi

varðIÞ
p ;

#I3ðx; yÞ ¼ N3½Iðx; yÞ� ¼
Iðx; yÞ � avg½bgðIÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var½bgðIÞ�
p ;

#I4ðx; yÞ ¼N4½Iðx; yÞ� ¼
Iðx; yÞ � avg½bgðIÞ�
avgðIÞ � avg½bgðIÞ�

; ð3Þ

where avgðIÞ and varðIÞ are the average and
variance, respectively, of the set of density values
of the image Iðx; yÞ; and bgðIÞ is the set of
background density values of the image Iðx; yÞ:
In our implementation the background values are
taken from those projection regions where there is
no projection of the volume.

The procedure called N0 corresponds to not
taking any action at all and is included here for
comparison purposes. The methods N1 and N2

correspond to the most widely used approaches in
the field of three-dimensional electron microscopy
[8,12–14]. The method N3 has never been intro-
duced formally before in EM single particle
studies, although it can be easily proved that the
normalization procedure used by Boisset et al. [15]
is reduced to this procedure N3 under the
assumption of a Gaussian noise distribution. N4

corresponds to a new method introduced in this
work.
3. Results

This section starts with a theoretical study of the
different normalization methods under study.
First, the simplistic case in which no CTF is
considered (Eq. (1)) is discussed (Section 3.1),
followed by the more realistic case expressed by
Eq. (2) (Section 3.2). Section 3.3 checks the
assumption of a Gaussian noise distribution using
experimental images acquired with a TEM.
Finally, simulated data have been used in order
to further validate the theoretical study carried
out. The goal is to elucidate the effective accuracy
and robustness of the different normalization
procedures under common microscopy conditions:
the variability of the linear transformation affect-
ing each projection and changes in the CTF
defocus. The simulation results are presented in
Section 3.4.

3.1. Theoretical analysis considering a simple

image formation model

At this point the statistical properties (average
and variance) of the normalized images are
studied. In order to present consistent information
to the reconstruction algorithm, all projection
images taken from a single specimen should have
the same average (providing that all images are of
the same size) while their variances may be
different. If different projection images are sub-
jected to different linear transformations and this
effect is not removed by the normalization
procedure, then the information provided to the
3D reconstruction algorithm would be inconsis-
tent.

We start with the simple image formation model
expressed by Eq. (1), and introduce this model into
the normalization methods. Then, we get the set of
expected values shown in Table 1. For instance, in
this table it can be seen that the average value of
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Table 1

Expected values of the mean and variance for the whole projection and its background using the different normalization procedures

Image Model Image average Image variance Background average Background variance

Ideal projection Iid m s2 0 0

Projection with noise Iid þ n m s2 þ s2
n

0 s2
n

Measured projection I ¼ AðIid þ nÞ þ B Amþ B A2ðs2 þ s2
nÞ B A2s2

n

N0 #I0 ¼ AðIid þ nÞ þ B Amþ B A2ðs2 þ s2
nÞ B A2s2

n

N1 #I1 ¼
AðIid þ nÞ

B

Am
B

A2ðs2 þ s2
nÞ

B2

0 A2s2
n

B2

N2 #I2 ¼
Iid þ n � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ s2
n

p 0 1 �mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ s2

n

p s2
n

s2 þ s2
n

N3 #I3 ¼
Iid þ n

sn

m
sn

s2 þ s2
n

s2
n

0 1

N4 #I4 ¼
Iid þ n

m
1 s2 þ s2

n

m2

0 s2
n

m2

Table 2

Expected values of the mean and variance for the whole projection and its background using the different normalization procedures

Image Image average Image variance Background average Background variance

N0 mAmþ mB ðm2
A þ s2

AÞðs
2 þ s2

nÞ þ m2s2
A þ s2

B
mB ðm2

A þ s2
AÞs

2
n þ s2

B

N1 mAm
mB

þ
mAms

2
B

m3
B

ðm2
A þ s2

AÞðs
2 þ s2

nÞ þ m2s2
A

m2
B

þ
m2

Am
2s2

B

m4
B

0 m2
As

2
n

m2
B
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the measured image is Amþ B while the average
value in its background is only B:

It can be seen that most of the methods fixes
two of the considered statistics to given values.
For instance, the N2 method sets the image
average to 0 and the image variance to 1, while
the N3 method sets the background average to 0
and the background variance to 1. For each
method, the sets of statistics that are not
fixed (for instance, the background average and
variance for method N2) depend on the
measured image features (the ideal image
average and variance, and the variance of the
added noise).

Any reminiscence of the linear transformation in
the normalized images is understood as the
inability of the normalization method to remove
its effect. However, if the variances of the linear
transformation parameters are small, i.e., if all
projections are subjected to nearly the same linear
transformation, then A and B are nearly constants
and a dependence on A and B in the normalized
images would not result in severe artifacts. In fact,
if all ideal projections were transformed exactly in
the same way, there would not be any need for
normalization.

As is seen in Table 1, normalizations N0 and N1

are not able to remove the effect of the linear
transformation. If it is assumed that all particles
belonging to the same micrograph have suffered
similar linear transformations, then the linear
transformation parameters A and B of each
projection must be similar to the ones in the rest
of the micrograph. We model this fact by assuming
that A and B are two Gaussian random variables
with parameters mA;s

2
A; and mB;s

2
B; respectively. If

the random nature of A and B is considered, then
the statistics of the images normalized using the
methods that are not able to remove the linear
transformation, N0 and N1; must be changed to
those shown in Table 2. In this table it can still be
seen the dependency of the statistics of the
normalized projections on the transformation
parameters.



ARTICLE IN PRESS

C.O.S. Sorzano et al. / Ultramicroscopy 101 (2004) 129–138 133
Let us analyze now the rationale of the methods
that remove the dependence with the linear
transformation. It should be noticed that the ideal
projections share the same image average while
their variance differs from one image to another.
Furthermore, when white Gaussian noise is added
to the perfect projections the background variance
should be that of the added noise, i.e., some
specified constant independent of the whole image
variance. This is not the case of normalization N2

where the image variances are all set to constant
while it is the background noise power the one
depending on the added noise and the ideal
projection variance. However, as is shown in the
simulation experiments, this effect does not sub-
stantially affect the reconstruction quality.

So far, it has been proved that N3 and N4 have
good statistical properties consistent with what is
expected from the ideal case. However, the
following objection on N4 can be stated. Electron
microscopy images usually have very low signal-
to-noise ratios and contrast-to-noise ratios [16].
This fact make the estimation of the difference
between the image and the background sometimes
be negative, although it should always be positive
in the case of ideal projections with additive noise.
This difference estimation is the denominator of
the fraction involved in normalization N4 and,
thus, if it is negative the image contrast is reversed
making the projection useless for 3D reconstruc-
tion.

An interesting point of normalizations N3 and
N4 is that they allow the application of positivity
constraints on the reconstructed volume [17] in the
absence of CTF effects. The ideal volume, the one
from which the ideal projections were taken,
represents the mass density distribution in space,
which is nonnegative. In this situation the projec-
tion of this ideal volume must also be nonnegative.
After adding zero-mean noise the non-negativity
of the projection is no longer true. However, the
projection background must have a zero mean and
the whole image a positive average. After linearly
transforming each projection no statement on the
projection average nor the background one can be
done. Nevertheless, normalizations N3 and N4

take each measured projection back to a stage
similar to that one before linearly transforming:
the image average is positive while the background
is zero-mean. At this stage it can be assured that
the mass density originated from the ideal object
must be positive in the normalized projection. In
particular, when the ART reconstruction algo-
rithm [18] is applied this fact imposes a nonlinear
restriction on the reconstruction process which
allows better reconstructions as is shown in the
Section 3.4 and in [17]. Basically, after presenting
each projection to the reconstruction algorithm, a
new set of equations is imposed for those positions
in the three-dimensional space with negative
values. The new equations force the basis function
combination at those points to be zero.

3.2. Theoretical analysis considering a more

realistic image formation model

If the PSF is considered in the image formation
model (see Eq. (2)), then the expected values of the
average and the variance produced by each
method change slightly to reflect the presence of
the two different noises (one before the PSF, nb;
and another after the PSF, na) and the PSF itself.
Both noises are supposed to be Gaussian with zero
average. Plugging again the image formation
model into the normalization procedures, the
expected values in the whole image and the
background can be computed. These values are
shown in Table 3.

The analogy of the expected values with the case
without considering PSF is obvious and, thus, the
same conclusions can be drawn for the case with
PSF. However, the average value of the PSF
(which corresponds to the component of the
Fourier transform of the PSF at frequency zero),
in principle different for each image, modulates the
average in the measured image and, therefore, the
statistics of the normalized images. Different
projection images may have different averages,
even after normalization (see methods N2 and N3),
if they undergo PSFs with different average. In this
sense, it seems that N4 is the best of the methods.
However if the average of the PSF is null or very
low, this method would not be applicable or would
become highly unstable since the PSF average
appears as a multiplicative factor in the denomi-
nator of the expression of the normalized image.
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On the other hand, methods N2 and N3 rely on
the estimation of the white noise power measured
at the image background. However, the white
noise is now affected by the PSF and, thus, the
output noise power is modified by the shape of the
PSF as can be seen in the corresponding image or
background averages in Table 3. This effect can be
easily corrected just by a multiplicative factor
depending on the area below the square of the PSF
providing a good estimate of the PSF is available.
However, as will be shown by computer simula-
tions, even if no correction for the noise power is
applied, these two methods provide reasonably
good results.

3.3. Analysis of experimental micrographs

To determine the distribution of noise and the
variability of linear transformation parameters A

and B that occur in practice, we studied the set of
experimental cryo-micrographs used by Barcena
et al. [14] in their study of the DnaBC complex. We
started with the assumption that the background
noise was Gaussian.

Given a projection image of size 100 
 100; all
pixels outside a circle centered in the image, of
radius 38 were considered to belong to the
background. The normality assumption on the
background noise was checked using the non-
parametric Kolmogorov–Smirnov test [19, Chap-
ter 14]. The hypothesis that the background noise
was normal was accepted with a confidence of
99%, for the 93% of 8046 analyzed DnaB-C
projections. This figure suggests that the measured
background noise is effectively Gaussian.

We also estimated the distribution of the linear
transformation parameters, A and B: The back-
ground noise was assumed to be the linear
transformation of a Gaussian zero-mean random
process with unit standard deviation ðnmeasured ¼
Anideal þ BÞ: The variance of the bias, B; was found
to be s2

B ¼ 3:7% of its average while the variance
of the multiplicative factor, A; was about s2

A ¼
3:9%:

As for the image averages it turned out that the
34% of the considered projections showed a
background average slightly greater than the
whole image average.
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Fig. 1. Resolution in angstroms achieved by the 3D reconstruc-

tions when the computer-simulated input projections were

normalized by each of the methods considered in this work and

the input projections vary in the linear transformation suffered.

The box represents the average value plus/minus a standard

deviation, while the whiskers represent the maximum and

minimum value.
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3.4. Results of computer simulations

In order to establish the robustness and
accuracy of the normalization procedures, simu-
lated experiments were performed. Two different
situations were explored: linear transformation
changes and CTF defocus changes. A phantom
volume of the bacteriorhodopsin [20] was created
at a resolution of 3:5 (A: one-thousand random and
evenly distributed projections were taken from this
volume, and noise was added up to a signal-to-
noise ratio of 0.3. Then the projections were
transformed according to each of the studied
situations: changes in the linear transformation
and changes in the CTF defocus (the details for
these transformations are described below.) Align-
ment and angular noise was also simulated: a
random shift distributed as Nð0; 2Þ pixels was
applied in the X - and Y -directions, and a random
number Nð0; 5Þ degrees was added to the Euler
angles. These projections were normalized using
each of the considered procedures and then
combined into a single 3D reconstruction using a
linear reconstruction algorithm (ART+blobs
[18]). Finally, the reconstruction quality was
assessed using the resolution measure given when
the Fourier shell correlation (FSC) [21] falls below
0.5. It should be noticed that the FSC is a
similarity measure independent of the exact voxel
densities.

For the study of the normalizing accuracy and
robustness in the case of changes in the linear
transformation, the A and B of Eq. (1) were
normally distributed with variances of the 5% of
their respective nominal values. The nominal
values were chosen in accordance to those
encountered in the statistical analysis performed
on the experimental images that we introduced in
the preceding section. Particularly, the nominal
value for A was 139 and for B 547. Thirty
Table 4

Resolution in angstroms achieved by the 3D reconstructions when the

of the methods considered in this work and the input projections var

N0 N1 N2

36:0570:35 32:2070:7 32:9070:7
experiments were carried out for each normal-
ization procedure changing the noise realization
and angular distribution in each one. After
analyzing the FSC it was found that near all
normalizing procedures yielded practically similar
performance (see Table 4 and Fig. 1). As N3 allows
positivity constraints to be imposed on the
reconstructed volume, the comparison has been
extended to the case of normalizing the projection
images using N3 and adding positivity constraints
during the reconstruction process (marked as
N3 þ pos). A statistical comparison of the average
resolution achieved by each method shows that the
hypothesis that N1; N2; N3 and N4 have the same
performance can be accepted with a confidence
greater than 95%. In the same way, N0 and N3 þ
pos show average resolutions that are different to
the ones of N1; N2; N3 and N4 with a confidence
greater than 95%.
computer-simulated input projections were normalized by each

y in the linear transformation suffered

N3 N4 N3 þ pos

32:2070:7 32:5570:7 29:0570:7
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Table 5

Resolution in angstroms achieved by the 3D reconstructions

when the computer-simulated input projections were normal-

ized by each of the methods considered in this work and the

input projections vary in the defocus of the CTF applied

N0 N1 N2 N3 N4 N3 þ pos

50:879:5 59:879:4 44:176:3 47:275:6 47:675:6 37:176:0

Fig. 3. Resolution in angstroms achieved by the 3D reconstruc-

tions when the computer-simulated input projections were

normalized by each of the methods considered in this work and

the input projections vary in the defocus of the CTF applied.

The box represents the average value plus/minus a standard

deviation, while the whiskers represent the maximum and

minimum value.
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EM practitioners sometimes band-pass filter
experimental images in order to get rid of artifacts
caused by the different signal modulations en-
countered [8]. This case can be easily modeled in
our formulation by introducing the appropriate
PSF in the image formation model (see Section
3.2). In order to test the stability of the normal-
izing procedures in this situation, the previous
experiment (random variation of the linear trans-
formation) was repeated when the input images
were high-pass filtered with a cutoff resolution of
117 (A: The resolution achieved by each of the
methods was not significantly different (with a
confidence of 95%) from those obtained when the
images were not filtered except for N0 whose
resolution was 37:9170:5:

For the study of robustness and accuracy under
changes of the CTF defocus, we randomly
changed this parameter within a 10% of its
nominal value (2:75 mm). The formula used for
the CTF implementation is the one given by Zhou
et al. [22] and the plot of the nominal CTF is
represented in Fig. 2. The phantom, collection
geometry and noise applied to the angles and shifts
as well as to the pixel values remain the same as in
the previous experiment. This experiment is
intended to measure the robustness of the pro-
posed normalizing methods with respect to
changes in the CTF profile. The results obtained
are summarized in Table 5 and Fig. 3. It should be
noticed that in this experiment algorithms N1 and
N4 become highly unstable and thus only a few
measures (around 8) are reliably computed from
Fig. 2. Radial plot of the CTF used in the simulations.
the repetition series performed. This instability is
also the reason why N4 þ pos has not been
investigated since in real-life experiments it is not
always guaranteed that N4 is applicable. A
statistical comparison of the average resolution
achieved by each method show that N3 and N4

show no significantly different performance with a
confidence greater than 95%, whereas the rest of
methods have different means with a confidence
greater than 95%.
4. Discussion

Normalization is usually performed as a step
that brings all projections involved in a 3D
reconstruction to a common numerical frame-
work. In this way, the numerical values registered
in the images are compatible with the existence of
a volume that generated the projections. A failure
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to meet this situation, i.e., the projection values are
incompatible with the existence of a volume,
would cause a deterioration of the reconstruction
quality. In this work a theoretical study of the
statistical properties of each normalization proce-
dure has been carried out and computational
experiments in order to compare the different
normalizing methods have been run. The simula-
tion experiments included the reconstruction step,
which in this case was performed using the method
known as ART+blobs [18].

The reconstruction resolution has been selected
as a figure of merit reporting on the deterioration
of the reconstruction. It must be noticed that this
figure of merit is independent of the density values
of the reconstruction. This makes a fair compar-
ison among methods since in real-life reconstruc-
tions the exact density values of the volume to
reconstruct is unknown and only relative varia-
tions are informative.

From the theoretical analysis it is clear that not
all normalizing methods are valid in the sense that
some of them do not remove the effect of the linear
transformation (responsible for the changes in
contrast and background average) on the collected
projections. Warnings have been raised on the
theoretical instability of N4 and the inaccuracy of
N1; which indeed appear in the numerical simula-
tions.

The experiment simulating the randomness of
the linear transformation shows that most of the
correcting methods behave similarly (in terms of
resolution achieved). No significant resolution
improvement has been obtained in this case by
applying positivity constraints. The similar perfor-
mance of the normalizing algorithms in these
experiments seems to indicate that most of the
normalizing methods commonly used in electron
microscopy behave robustly as long as the varia-
tion in contrast and background level among
projections is within certain limits (in the simu-
lated case 5% of its nominal value).

However, the experiment changing the CTF
defocus (a 10% of its nominal value) poses a more
challenging problem to the normalizing process
and the results of the normalizing algorithms are
clearly different. A difference in resolution as high
as 22 (A has been achieved in the experiment done
by selecting a more suitable normalizing method.
And this difference in resolution can be signifi-
cantly increased if positivity constraints can be
applied. Actually, they can only be applied if N3 or
N4 are used, and the instability of N4 plays against
it when performing reconstructions with experi-
mental data. Methods in general become more
unstable as is shown by the increase in the variance
of the resolution achieved. Methods N1 and N4

became highly unstable and many of the recon-
structions performed with projections normalized
by these methods showed high density artifacts
spuriously distributed.

Methods N2 and N3 have shown to be robust
and to provide reasonably good results in the two
experiments carried out. Furthermore, N3 is the
only stable method among the studied ones
allowing imposition of positivity constraints on
the reconstructed volume. This constraint has
proved to provide extra information especially
useful in the case of the CTF change, even if the
CTF phase is not corrected. The experiments
carried out use a random evenly distributed set of
projections, but our experience tells us that if the
collection geometry leaves uncovered regions in
Fourier space, then the positivity constraint
constitutes a powerful tool to partially recover
information in the missing region [17].
5. Conclusions

In this paper we have explored the theoretical
and practical implications of different normalizing
methods. We have theoretically shown that
assuming that different projections have under-
gone different linear transformations resulting in
variations among image contrast and background
level, then not all normalizing procedures are able
to remove the effect of the transformation.
However, a study of the actual changes in cryo-
micrographs have shown that these differences are
small, and in this way, the errors introduced in the
3D reconstruction are not significant. A more
complicated problem is faced when the CTF
defocus changes. In this case, a poor selection of
the normalizing procedure can account for a
significant deterioration of the reconstruction as
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measured by the reconstruction resolution. Addi-
tionally, depending on the normalization selected
we may impose positivity constraints on the
reconstructed volume. This constraint has been
shown to be especially useful in the case of
changing the CTF defocus. We recommend using
normalization method N3 with the reconstruction
algorithm ART+blobs. Of the choices studied,
this method seems particularly effective in the
presence of a slowly varying CTF and it allows the
application of positivity constraints. The uncer-
tainty about the exact area under the square of the
CTF curve seems not to be a problem for the use
of N3:
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