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Abstract 
In this work we discuss an improvement of the image-denoising 
wavelet-based method presented by [1]. This method is based on 
the estimation of the signal power at each wavelet scale and the 
proportion between signal and background at each scale. These 
parameters were estimated from the 2nd and 4th moments of the 
wavelet coefficients at the corresponding scale. In this work, we 
explored the use of any combination of the 2nd, 4th and 6th 
moments. We show that the 2nd and 6th moments yield better 
results for the experiments carried out. 

1. Introduction 
Many are the papers addressing the problem of image 
denoising using wavelets. In brief, all these algorithms 
first perform the wavelet transform of the image to 
denoise, then apply some filter to the wavelet coefficients, 
and finally take the inverse wavelet transform to restore 
the denoised image. Most popular wavelet-filtering 
algorithms are based on thresholding [2] or Wiener 
filtering [3]. Bijaoui introduced [1] a Bayesian approach 
to image denoising in wavelet space shown to be superior 
to a number of previous thresholding or Wiener-filtering 
algorithms. The technique needs to estimate the signal 
power at each scale as well as the signal proportion with 
respect to the background. Bijaoui used the 2nd and 4th 
moments of the wavelet coefficients at each scale. The 
rationale for choosing these moments is that low-order 
moments are more reliably estimated than high-order 
ones. A second reason is that the equation system to solve 
is also simpler. We explored the use of the 6th moment. 
This yields more complicated equations and a higher 
number of combinations (the algorithm parameters can be 
obtained either from the 2nd and 4th moments, 2nd and 6th, 
4th and 6th, or 2nd, 4th and 6th). We explored all of them 
and show that the 2nd and 6th is generally a better choice 
for the experiments carried out. We provide a strategy to 
choose between the 2nd and 6th moment solution and the 
2nd and 4th. 

We tested our algorithms on a set of simulated Electron 
Microscopy images as used in single-particle structural 
studies of macromolecular complexes [4]. One of the 

main drawbacks of EM images are their extremely low 
Signal-to-Noise Ratio (around -3dB).  

2. The filtering procedure 
The filtering technique used in this article is based on the 
Bayesian approach proposed by [1]. Let us assume that 
the image formation model is of the form nxy += , 
where x  is the ideal image, n is random independent 
noise, and y  is the measured image. We assume that the 
noise is white and normally distributed. Thus, its 
probability density function (PDF) is given by 
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where N  is the noise variance. Solving the image 
formation model for n , it can be seen that the conditional 
PDF of y  given x  is 
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It is assumed that the PDF of the ideal image can be 
expressed as a mixture of zero-mean Gaussians 

∑=
i

ii SxGxp ),()( α . 

Under these assumptions it can be proved that the PDF of 
the measured image is given by the convolution of both 
PDFs 
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Then, the denoising problem is stated as the Bayesian 
problem of estimating x  from y . The a posteriori PDF 
is given by 
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The filtering is done by taking the a posteriori 
expectation of x  
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The relationship of this filter with classical Wiener 
filtering is given in the article by [1]. 

The previous filter is applied independently to each of the 
scales of the wavelet transform of the measured image, 
i.e., the variable x  is formed by all those wavelet 
coefficients belonging to the same scale. Therefore, each 
scale has its own iα  and iS  parameters while the noise 

power, N , is common to all the scales since the noise is 
assumed to be white. 

The problem now is to estimate the iα , iS  and N  
parameters from the measured images. Bijaoui assumes 
that there is no signal at the finest scale. Therefore, all the 
energy at that scale is coming from the noise term. Under 
this assumption the noise power N  can be estimated 
from that scale and later used for the rest of the scales. 
Bijaoui proposes a robust estimate of N  at the finest 
scale based on a k-σ clipping strategy. 

For the rest of the scales, the original paper affirms that, 
in practical terms, only two Gaussians are necessary to 
model the PDF of the measured wavelet coefficients at a 
given scale 

),(),()1()( NSyaGNyGayp ++−=       (Eq. 1), 

where a  and S  are parameters defining the distribution 
of y . Notice that a  is a measure of the proportion of the 
area occupied by the signal and the area occupied by the 
background and S  is the power of the signal coefficients. 
a  and S  are estimated at each scale through the 2nd 
( 2M ) and 4th-order ( 4M ) moments of the measured 
wavelet coefficients at that scale 
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In order to guarantee the convex nature of the 
combination given by Eq. 1 a  and S  are set to 0 if 

02 <− NM  or if 02
3

4 <− NM . Accordingly, a  is set 

to 1 if 1>a and, in this case, S  is estimated only from 
the variance 2M . It should be noted that the conditions 
imposed in the original article do not cover all the space 
of possibilities since if 
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1>a . An appealing choice in this case would be to set 
S  to 0 and a to 1. However, this choice yields the same 
PDF as 0== aS , i.e., the measured image is 
compound only of noise. 

3. Alternative parameter estimation 
We explored the possibility of using other moments to 
obtain the parameter estimates. In particular we used 
different combinations of the three equations: 
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3.1. Solution for 2M  and 6M  

The solution for S  and a  using the equations of 2M  

and 6M  is  
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or NM <2 , then we set a  and S  to 0. If 0>S  and 
3
26 15MM ≤ , then we set a  to 1, and S  is estimated 

only from the variance 2M . 

 

3.2. Solution for 4M  and 6M  

The solution for S  and a  using the equations of 4M  

and 6M  is 
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 If 2
4 3NM <  or )( 3

42
15

6 NNMM −≤  and 
2

4 3NM > , then a  and S  are set to 0. If 0>S  and 

1>a , then a  is set to 1 and S  is estimated from the 4th 
order moment. 

3.3. Solution for 2M , 4M  and 6M  

In this case we are solving three equations for two 
unknowns. Due to the noisy nature of the equation system 
this equation system is likely to be inconsistent. In this 
case we solve the equation system in a Least-Squares 
sense subject to 0≥S  and 10 ≤≤ a . The possible 
solutions for S  for this minimization problem must be 
roots of the following polynomial 
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whereas the corresponding a  is given by 
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The referred polynomial always has two roots such that 
a  is equal to 0. We only consider the real non-negative 
roots such that the corresponding a  is between 0 and 1. 

4. Results 
In order to test the efficacy of the newly proposed 
parameter estimation equations we denoised 600 
projection images (of size 64x64) of the Protein Data 
Bank  [5] model of the bacteriorhodopsin [6] (PDB entry: 
1BRD, see Fig. 1). These projection images were 
computed as line integrals of a voxelized volume created 
from the atom description provided by the PDB model. 
The Xmipp package [7] was used to create these 
projections. We added white Gaussian noise up to a 
Signal-to-Noise Ratio (SNR) of -3dB. These parameters 
yield similar images to those obtained in electron 
cryomicroscopy [4]. An orthonormal wavelet 
decomposition (with Daubechies 12 as wavelet function 
[8]) was employed. We applied the denoising procedures 
in the first four scales ( 4,3,2,1=s ) since further scales 
had too few wavelet coefficients to make reliable 
estimates of the statistical moments. 

In our experiments we observed that real roots of the 
polynomial for the solution of 2M , 4M  and 6M  such 

that 10 ≤< a  should be preferred to those where 0=a  
even if they do not provide the global minimum of the 
minimization problem. Our approach took the aS,  

solution ( 10 ≤< a ) such that the objective function was 
minimum. If such a solution did not exist, then 

0== aS (notice that there are always two solutions for 
which 0=a ). 

 

 

 

Figura 1.  Side and top view of the isosurface of the 
bacteriorhodopsin 

 

Figura 2.  Each row shows a different example of the results for  
cryomicroscopy conditions of the different parameter 

estimation alternatives. From left to right: original image, 
noisy image, image denoised using M2 and M4,  image 

denoised using M2 and M6, image denoised using M4 and 
M6, image denoised using M2, M4 and M6. 

 

Figure 2 shows some examples of the kind of images 
considered as well as of the application of the different 
parameter estimation alternatives. Table 1 shows the 
average SNR for each of the methods and their 
corresponding standard deviations. 

 

 Noisy 
image M2, M4 M2, M6 M4, M6 M2, M4, M6 

Average -2.99 11.22 11.21 8.09 11.31 

Std. Dev. 0.11 1.05 1.48 1.06 1.54 

Figura 3. Average and standard deviation of the SNR in dB  for 
the different proposed parameter estimation equations 

 

Clearly, the denoising performed with 4M , 6M  is 
inferior to the other three. This is visually confirmed in 
Figure 2 where it can be seen that these denoised images 
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are too smooth. The average of the rest of performances 
are statistically undistinguishable with a confidence of 
99.5%. Although, the variance of 2M , 4M  is 

significantly smaller than the ones of 2M , 6M  and 

2M , 4M , 6M  with a confidence of 99.5%. 

In order to improve the SNR of the denoised image we 
propose the following strategy: denoise the input image 
with several parameter estimation procedures; evaluate 
the energy of each output image; then, select as output the 
image with smaller energy. We applied this strategy to 
our experiments with methods 2M , 4M ; 2M , 6M  and 

2M , 4M , 6M . The strategy selected 2M , 4M , 6M  in 
97% of the cases (in 27% of them, the selected image was 
the one with the best SNR). The SNR achieved by 
following the strategy was 11.31±1.54 while the best SNR 

achievable with these three methods was 11.69±0.81. The 
best SNR achievable is defined as the average of the 
maximum of the SNR obtained by each of the parameter 
estimation methods. Since the average performance of 

2M , 4M , 6M  is statistically undistinguishable from the 
other two techniques, not much is gained with respect to 
the case in which 2M , 4M , 6M  is always used for the 
parameter estimation. 

However, if 2M , 4M , 6M  is excluded from the 

comparison and the strategy is applied only to 2M , 4M  

and 2M , 6M  then this strategy selected in 90% of the 
cases the best denoising technique which turned out to be 

2M , 6M  in 74% of them. The SNR achieved by 
following the strategy is 11.64±0.81 which is statistically 
undistinguishable from the best achievable with these two 
methods (11.65±0.80). The improvement with respect 

to 2M , 4M  and 2M , 6M  is significantly different with 
a confidence of 99.5%. 

Summarizing, our experiments showed that 2M , 4M  
was the choice with the smallest variance among the 
available possibilities (using the 2nd, 4th and 6th moments 
of the wavelet coefficients) to estimate the signal 
parameters in a Bayesian denoising framework. However, 
it is not always the one with highest performance. 
Particularly, 2M , 6M  usually shows better performance 
although in a small number of cases it may produce 
solutions that are too smooth. We proposed a simple 
strategy to choose between the results of the current 

2M , 4M  approach and the new one based on 2M , 6M . 

4M , 6M  always produced too smooth output images. In 
our experiments, we checked the effect of selecting the 
output image as the one with smallest variance among the 
output of a set of bayesian denoised images using 
different parameter estimation procedures. We showed 
that this strategy effectively improved the SNR achieved 
if this comparison was performed between the outputs of 

2M , 4M  and 2M , 6M . 2M , 4M , 6M  was excluded 
from the strategy although it produced output images of 
similar quality to the one of the other two procedures. 
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