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Abstract

Many algorithms require the tuning of parameters in order to achieve optimal performance. Usually the best values of
these parameters depend on both the particular conditions under which the experimental data have been acquired and the kind
of information that we aim to obtain. The performance of an algorithm can be measured by means of numerical observers
called Figures of Merit (FOMs). Usually there are no analytical formulas expressing the dependence of the FOMs on the
parameters, but the nature of such dependence can be observed by the use of computational experiments. This article proposes
a methodology for assigning values to the algorithmic parameters in the presence of a high number of FOMs. A multiobjective
optimization framework is provided that identifies a set of optimal parameter values whose performance, from several points
of view based on the initial FOMs, is statistically indistinguishable. This methodology is illustrated by applying it to the
three-dimensional reconstruction (using an algebraic reconstruction technique) of single particles in electron microscopy.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of tuning parameters of algorithms arises
in many applications including image processing[1,2], ma-
chine learning[3], statistics[4], numerical methods[5], etc.
The problem is usually stated as one of finding a set of pa-
rameters that optimizes one or several objective functions.
Sometimes the objective functions are provided analytically,
but more typically they are expressed in terms of Figures of
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Merit (FOMs) that measure the usefulness of the algorithm
for obtaining some specific information when applied to a
given data set.
In such a case, good values of the parameters can be iden-

tified by simulation experiments in which the algorithm is
applied, with some values of the parameters, to a represen-
tative data set and the dependence of the usefulness of the
output on the parameter values is evaluated using the FOMs
[6]. In the last sentence the phrase “representative data set” is
very important. The range of good values of the parameters
is usually dependent on the experimental conditions under
which the data are obtained. This is illustrated for example
in Ref. [7]. There, the problem of reconstructing a three-
dimensional model of a macromolecule from projection im-
ages acquired by an electron microscope is addressed. The
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reconstruction algorithm used has a free parameter called
relaxation parameter. It is shown that for some level of
noise in the data collection the optimal value (for some
FOM) of the relaxation parameter is around 0.020 while
for a higher level of noise it is around 0.015 (see plots
1a and 1b in Ref.[7]). However, even for a particular set
of experimental conditions, there is an infinite ensemble of
data sets which may be produced and, so, the reliability of
the simulation experiments for specifying the values of the
parameters mandates a proper sampling of this ensemble.
Inappropriate selection of algorithm parameters can lead

to incorrect conclusions, as is shown in Ref.[8]. In that
work, a blurring in the vertical direction (related to a pre-
ferred particle projection orientation) was found. However,
it can be avoided by a proper selection of the values of the
parameters used in the reconstruction process, as is demon-
strated in Ref.[9].
The major novelty in this paper is a treatment of the

general approach indicated above in the presence of a large
number of FOMs. This is motivated by the fact that the
output of an algorithm may be used for achieving a number
of different (and different kind of) tasks and it is desirable
to select the parameters in such a way that performance
is satisfactory from the combined point of view of all the
FOMs. Notice that if only one task must be addressed, a
single FOM would be measured and the problem loses its
multiobjective nature.
This problem can be formulated as one of multiobjective

optimization for which many algorithms have been devised
[10,11]. However, we are unable to make use of them for
the following reasons: some of the algorithms need objec-
tive functions that are expressed by a formula in the param-
eters, for us the number of FOMs is high (around 30) as
compared to the two or three usually dealt with by the stan-
dard multiobjective optimization algorithms, the FOMs for
a given combination of parameters are randomly distributed
due to the random noise present in the data set, the FOMs are
evaluated by time-consuming simulation experiments (this
in practice excludes methods based on genetic algorithms),
and the solutions sought by us are not any Pareto optima
(this concept is defined below) while many of the exist-
ing multiobjective optimization techniques are specially de-
signed with that criterion in mind. The method we propose
in the following provides a statistically based optimization
framework that is applicable to the specifics of our problem.
Our procedure can be briefly described as follows. For

each simulation (a specific choice from the ensemble of
data sets and a specific choice of the parameters) a vector
is formed whose components are the values of the various
FOMs. A dimensionality reduction is performed on these
vectors by identifying a more compact set of FOMs, called
principal trends, that are linear combinations of the origi-
nal ones. Then a least-squares curve is fitted to the average
of the trends (an average is used since no a priori informa-
tion is available about the relative importance of the origi-
nal FOMs). The maxima of this curve are marked. Finally,

optimal intervals of the parameters are computed that, in a
statistical sense that will be made clear below, capture the
optima of the principle trends.
A secondary novel contribution in our paper is the fol-

lowing. As we have discussed already, our basic approach
is appropriate for identifying optimal ranges of the param-
eters for one set of experimental conditions (this situation
will be referred to asintra-experimentin the rest of the pa-
per). In what follows, we will also discuss what we call
inter-experimentanalysis. By this we mean the investiga-
tion of what aspects of the experimental conditions actually
influence the optimal range of parameters and, if there is
such an influence, the mathematical nature of its form. (For
example, one can ask for some analytic expression that ap-
proximately indicates the dependence of the upper limit of
the optimal range of some parameter on the level of noise
in the data.) We use analysis of variance (ANOVA) to iden-
tify the aspects of the experimental conditions that influence
the optimal range and nonlinear regression to find analytical
expressions for such an influence. The formulas so obtained
can be used to predict optimal ranges of the parameters for
additional experimental conditions without explicitly simu-
lating them.
Avcibas et al.[12,13] proposed a statistical multivariate

approach in the presence of multiple of FOMs in the con-
text of steganalysis similar to the first stages (although with
different statistical techniques) of our intra-experiment anal-
ysis. One of the goals of in these two papers, as well as in
ours during the intra-experiment phase, is to condense as
much information as possible into a few number of FOMs
(referred to as supermetrics in Ref.[12]). The steps to pro-
duce these representative FOMs can be summarized as: (1)
remove the non-relevant FOMs, (2) cluster the remaining
FOMs and (3) build a representative FOM. The detection
of non-relevant FOMs is done by Avcibas et al. and in this
paper using ANOVA. Avcibas et al. cluster the remaining
FOMs using self-organizing maps (SOMs) while we use hi-
erarchical classification. Finally, Avcibas et al. build their
supermetrics using linear regression while we employ prin-
cipal component analysis for this task. However, our final
goal (optimization of an algorithm performance) is different
and, therefore, our intra-experiment case performs a further
step of interval selection using Student’st-tests.
We illustrate our methodology by applying it to the al-

gebraic reconstruction technique with blobs (ART)[14] as
it is used in 3D electron microscopy (3D EM). 3D EM is
an experimental technique for obtaining the 3D structure of
biological macromolecules[15,16]. Projection images are
acquired using an electron microscope and ART produces a
spatial Coulomb potential distribution of the particle under
study. Previously published approaches to parameter selec-
tion for ART [6,9,17–20]tune the parameters according to
one particular FOM. However, the selection of a single train-
ing FOM produces a bias in the parameter choice, since the
optimization process only regards one aspect of the recon-
structed volume. This can be observed in Ref.[9], where a
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wide optimal range for the reconstruction algorithm’s relax-
ation parameter was found, but some of the reconstructions
were clearly inferior to other volumes reconstructed using a
relaxation parameter picked from that same “optimal” range.
This is related to the fact that the training FOM used in that
work was unable to detect these differences (while they can
be captured by other FOMs). Therefore, the proposed mul-
tiobjective optimization methodology provides a mean for
selecting the parameters considering all possible points of
view expressed by an inclusive FOM set.
In Section 2 we establish the problem framework: a gen-

eral overview of the two optimization problems to be solved
as well as the necessary background for the particular case
of 3D reconstruction in electron microscopy are provided.
Section 3 describes our optimization algorithm for the intra-
experiment and inter-experiment problems. Results obtained
by applying these algorithms to the particular case of the
ART+blobs in 3D EM are presented as the different algo-
rithmic steps are introduced. Finally, Section 4 discusses the
results and draws important parameter-selection rules spe-
cific to the reconstruction algorithm used as an example.

2. Problem description

In this section, a general overview of the problem to be
solved, as well as of its specific particularization to the case
of 3D EM of single particles, is presented.

2.1. General overview

2.1.1. Intra-experiment (minor changes)
The problem addressed by an “intra-experiment” opti-

mization can be formulated as follows: which are the val-
ues of the parameters of a given algorithm that achieve a
certain trade-off among a set of different quality measures
(FOMs) under various experimental conditions? This prob-
lem is called intra-experiment because the experimental con-
ditions are fixed while some random nature of the experi-
ment (minor changes) is considered.
To answer this question a number of simulation experi-

ments are run following the general methodology proposed
in Ref. [6], which can be outlined as follows. First a number
of tasks are defined; these, in the case of 3D EM, should
be related to the type of information that we intend to ex-
tract from the reconstructed volume. Then several realiza-
tions from a statistically defined set of phantoms (in the
case of 3D EM, artificial volumes) are created. These phan-
toms must resemble, in some way, the real objects of in-
terest. After that, the algorithm under study is run several
times varying randomly the set of noise variables (i.e., those
variables that cannot be controlled in a real-life experiment)
and using each time a different set of parameters. In the
case of 3D reconstruction, the process is simulated by pro-
jecting the phantoms and making a 3D reconstruction from
the simulated data. Finally, the degree of accomplishment

of the defined tasks is measured using numerical observers
called FOMs. These FOMs compare the input of the simu-
lation process (the phantoms) with its outputs (in the case
of 3D EM, the reconstructed volumes). Several FOMs can
be defined to measure the usefulness of the reconstruction
for various tasks.
Let us now consider a fixed set of experimental condi-

tions. Letedenote a specific choice from the corresponding
ensemble of data sets andf denote a specific choice of the
parameters. We use�(e, f ) to denote the vector whose com-
ponents are the values of the various FOMs for thise andf .
Let�(f )= (�1(f ),�2(f ), . . . ,�n(f )) be the average overe
of �(e, f ); this is an approximation of the expected value of
�(e, f ) for a fixedf . We seek anf which “optimizes”�(f ).
One possible interpretation is to find the Pareto-optimal set
of thosef that are not inferior to any other choice of the
parameters (a pointf1 is inferior to f2 if and only if, for
1� i�n, �i (f1)��i (f2) and, for somei, �i (f1)<�i (f2)).
However, for our kind of problem, it is usually the case
that all reasonable choices of the parametersf are Pareto-
optimal (see Section 3.1). It seems appropriate to select
among thesef only those that lead to a certain compromise
value in all objective functions. Such solutions are known in
the literature asmiddlingsolutions and are typically avoided
by existing algorithms[11]. Our solution is presented in
Section 3.1.

2.1.2. Inter-experiment (major changes)
The intra-experiment optimization addresses the problem

of optimizing the algorithm parameters under fixed experi-
mental conditions. However, if the latter are changed (major
changes) the optimal algorithm parameters will be different.
Two questions arise at this point: what are the experimental
variables having an effective influence on the optimal algo-
rithm parameters? And, is it possible to establish a model
of the dependency of the optimal algorithm parameters with
the experimental variables?
The answer to the first question is a well-established field

of the multivariate statistical analysis. It is called “experi-
ment design”[21] and, in particular, we will make use of the
technique known as MANOVA[22]. The second question
is handled by nonlinear regression analysis[21–23].

2.2. 3D electron microscopy

The objective of 3D EM is to elucidate the 3D struc-
ture of a macromolecular complex under study based on its
projection images that have been acquired by an electron
microscope. These images are the input to a reconstruction
algorithm [24] that produces a reconstructed volume. The
objective functions in this problem are related to the fidelity
and resolution achieved by the reconstruction.
As discussed above, we distinguish between two kinds

of changes in the experimental variables: we may think of
them asmajorandminor. In practice, experimental variables
may differ in a major way from each other; for example, in
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the number of projections, in the typical size of the particle
to be reconstructed, in the desired number of voxels in the
reconstruction (either because of a change in the sampling
rate or because of a real size difference in the particle being
reconstructed), in the sample preparation technique (cryomi-
croscopy or negative staining) that mainly affects the corre-
lation structure of the noise, in the microscope defocus, as
well as in the data collection geometry (random conical tilt,
single axis series, uniform angular coverage, etc.)[15,16]. It
is not our aim to solve the parameter optimization problem
for situations that involve major changes of the experimen-
tal variables (inter-experiment case). Rather, our attitude is
that different ranges of the parameters are likely to be op-
timal in the presence of major changes of the experimental
variables. On the other hand, if an ensemble of data sets
contains only minor changes in the experimental variables
(small differences in particle size, in the level of noise, or
in the angular distribution of projections), then it is reason-
able to search for a single optimal range (intra-experiment
situation).
The simulation process that we present in this paper for

this problem takes a phantom volume (a protein known at
atomic resolution), makes projections of it and applies the
reconstruction algorithm with various values of one of its
parameters. The FOMs compare the discrepancy between
the reconstructed volume and the phantom. Our aim is to
find an optimal range of the parameter in the presence of
multiple FOMs.

2.3. ART: one of the approaches to 3D reconstruction

We illustrate our ideas on parameter optimization on a
particular 3D reconstruction algorithm, namely an algebraic
reconstruction technique with blobs (ART+blobs) as is ap-
plied in electron microscopy[14]. This method is a series
expansion method[24]; i.e., it is assumed that a volume
f (r ) (r ∈ R3) can be approximated by a linear combina-
tion of a finite set of known basis functionsbj , each one of
which is just the same functionb shifted to one ofJ grid
points (denoted bygj ), as in

f (r ) ≈
J∑
j=1

cj · bj (r )=
J∑
j=1

cj · b(r − gj ) (1)

and the task of the algorithm is to estimate the unknown
coefficientscj . For a review on ART, see Ref.[25]. A con-
sequence of the volume series expansion is an image for-
mation model of the form:

yi ≈
J∑
j=1

li,j cj , (2)

whereyi is theith measurement of the volume to be recon-
structed (that is, a pixel value in the experimental data) and
li,j is the corresponding line integral of the basis function

bj . The valuesyi andcj form aMN-dimensional vector and
a J-dimensional vector, respectively (which we will denote
by y and c), whereN is the number of projections and
M is the number of pixels per projection. Theyi elements
are arranged in such a way that all pixels belonging to a
projection are consecutive.
Following Lewitt [26] and Matej and Lewitt[27] we se-

lect b to be a generalized Kaiser–Bessel window function
(also referred to as ablob) and for the grid points we use a
finite subset of the so-called body-centered cubic grid. Such
a representation was found useful in electron microscopy
applications (see for example Ref.[14]). The specific choice
that we adopted for the blob and the grid is the one referred
to as the “standard blob” in Ref.[28].
Notice thatc is the array of coefficients weighting the

various blob functions. These coefficients are the ones es-
timated by the reconstruction algorithm described below.
However, in order to evaluate the FOMs defined in Section
2.4, we evaluate the reconstructed volume in a set ofvoxels
(little cubes used as basis functions) distributed on a cubic
grid. We use Eq. (1) to convert to voxels the volume ex-
pressed in blobs.
The particular variant of ART that we use as the ba-

sis of our algorithm operates as follows. Starting with aJ-
dimensional zero vector for the estimate ofc, we update this
estimate ofc iteratively. In an iterative step we make use of
data from one projection only; we cycle through all the pro-
jections once in the complete algorithm. The update of the
jth component of the estimate ofc is done as described by

c(k+1)
j

= c(k)
j

+ �

N
(k)
j

(k+1)M∑
i=kM+1

yi − 〈li , c(k)〉
‖li‖2

li,j , (3)

where� is a real number called the relaxation parameter
that controls the magnitude of each update,li is the J-
dimensional vector whosejth component isli,j , 〈·, ·〉 de-
notes the inner product (dot product) between two vectors,

andN(k)
j

is the number ofi’s satisfyingkM + 1� i�(k +
1)M for which li,j is different from 0. The output of the

algorithm iscN .
In this algorithm, the only parameter that is not specified

is the relaxation parameter�. We defined things in this fash-
ion to simplify the illustration of our approach to parameter
optimization. (We could have avoided specifications of pa-
rameters defining the blob and the number of cycles through
the data; this would have resulted in having to optimize all
these parameters simultaneously. Our approach is capable
of doing that, but its description and its illustration would
become more cumbersome.)

2.4. FOMs

It is common to measure the goodness of a reconstruc-
tion by evaluating the average squared error between the re-
construction and the phantom. Callingpi andri the values



C.O.S. Sorzano et al. / Pattern Recognition 38 (2005) 2587–2601 2591

assigned to theith voxels of the phantom and the recon-
struction, respectively, this FOM can be defined as

scL2= 1− 1

NV

NV∑
i=1

(
pi − ri

2

)2
,

whereNV is the total number of voxels in the volume. The
namescL2 comes from the fact that we are measuring the
structural consistencyby evaluating thel2-norm of the error.
However, we could have measured this error only within the
surface defining our region of interest (also called feature
or particle) or outside this surface. In this way, we can get
an idea of how this error is distributed over the volume
(whether it concentrates inside or outside the particle). Two
new FOMs can thus be defined:

scL2(B)= 1− 1

NB

∑
i∈B

(
pi − ri

2

)2
,

scL2(F )= 1− 1

NF

∑
i∈F

(
pi − ri

2

)2
,

whereB is the set of indices of the voxels in thebackground
andF is the set of indices of the voxels within thefeature.
Furthermore, we could be interested in knowing whether the
error outside the reconstructed particle is concentrated close
to the particle or far from it. For this purpose the error can
be weighted according to the distance of theith voxel in
the phantom from the main feature. This distance is referred
to asdi . This FOM should be able to detect extra masses
appearing far from the desired particle, as in

scap= 1− 1

NB

∑
i∈B

di

(
pi − ri

2

)2
.

Much more complicated FOMs can be defined. In Ref.[9]
we presented 24 reasonable FOMs; all of them are used in
this work. In addition, we also considered the correlation
between the two volumes (calledsccorr), the mutual infor-
mation (scinf, this FOM has been widely used as a similar-
ity function for bringing volumes into registration[29]) and
resolution measured as the frequency at which the Fourier
shell correlation (scresol) [30] falls below 0.5 (this is a stan-
dard measure of quality in the 3D EM field). We evaluated
each reconstruction by each of these FOMs, thus obtaining
27 FOMs per reconstruction.

3. Parameter optimization and its results

For the sake of clarity, in the following description of
the optimization procedure, each of its steps is immediately
followed by the experimental results obtained in that step.
In the experiments reported below, we will consider ma-
jor changes in the sampling rate, in the number of projec-
tions, and in the characteristics of noise. In addition, with

Fig. 1. (a) A horizontal slice through one of the phantoms used in
the experiments. (b) One of the noisy projections of this phantom.
(c) Corresponding slice through the reconstruction from the noisy
projections. (d) Three-dimensional display of the noisy reconstruc-
tion: yellow indicates the surface of the reconstruction, the black
wire-mesh indicates the surface of the phantom.

these experimental variables fixed at their various values,
we will illustrate our parameter optimization methodology
under circumstances that allow minor changes in the angu-
lar distribution of the projection directions, the size of the
phantoms, and the noise realization. Section 3.1 shows the
application of the proposed methodology through an exam-
ple of intra-experimentoptimization, while Section 3.2 de-
scribes theinter-experimentanalysis.

3.1. Intra-experiment optimization (minor changes)

Intra-experiment optimization deals with the problem of
selecting optimal parameters for the algorithm performance
for a set of experimental conditions that involves only minor
changes of the experimental variables. Due to these changes,
uncertainties remain even with the choice of a representative
data set, and so rather than selecting a single optimal value
for the parameter of the reconstruction algorithm, a range
of values is chosen. The performance associated with the
values within this range are statistically indistinguishable
from each other. This idea was already suggested in Ref.
[19] and was further developed in Ref.[9].
The data of the example shown in this section corresponds

to the optimization of the ART relaxation parameter when
the ART algorithm is applied to the reconstruction of phan-
toms of size 65× 65× 65, taking 2010 projection images
with white Gaussian additive noise (these parameters cor-
respond to the particular combination of major changes se-
lected for the experimental variables). The phantoms used
were pairs of cylinders of density 1 aligned with the verti-
cal axis (seeFig. 1and, for further details, Ref.[9]). Minor
changes are applied in the cylinders’ size, the angular distri-
bution and the realization of the noise in the projection gray
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levels. In particular, every phantom had four pairs of cylin-
ders vertically aligned. Each pair was vertically separated
by a random distance between 3 and 6 voxels. Each cylinder
had a random radius between 5 and 10 voxels, and a ran-
dom height between 3 and 5 voxels. The projections were
evenly and randomly distributed along all possible direc-
tions. Gaussian noise with standard deviation 9 was added
to the pixel values.
Ten simulations changing the noise parameters (phantom

realization, projection direction set, and noise realization)
were performed for each� in the range from 0.015 to 0.150
in steps of 0.015. Twenty seven FOMs (see Section 2.2)
were computed for every simulation resulting in a table with
100 experiments (rows) and 28 columns: one column with
the relaxation parameter used and 27 with the corresponding
FOM vector.
The proposed optimization methodology is based on sta-

tistical data analysis and it can be summarized as follows:

(1) FOM normalization: Normalize the FOMs so that they
have comparable values.

(2) Removal of irrelevant FOMs: Remove all those FOMs
that cannot detect differences among the various values
of the parameters.

(3) FOM clustering: Cluster all those FOMs showing a sim-
ilar dependency with the parameters.

(4) Cluster dimensionality reduction: Reduce the dimen-
sionality of the clusters obtaining a single representative
of each cluster.

(5) Interval selection: Select an optimal region for the pa-
rameters using the information contained in the cluster
representatives.

The various data analysis steps are described in more detail
below and have been carried out using the program Statistica
[31].

3.1.1. FOM normalization
The different FOMs need not have comparable values and

by normalizing we prevent high values from dominating the
analysis. We are working under the assumption of no a pri-
ori knowledge about the relative importance among FOMs.
One common way to achieve this goal is by normalizing
the input data to become of zero-mean and unit variance
(by subtracting the average of the FOM and dividing by its
standard deviation). This normalization is applied indepen-
dently to the columns of the data table corresponding to the
FOMs. Depending on the data set, it might be necessary to
perform an outlier rejection step before the FOM normal-
ization. In the data used in this example, there were no se-
vere outliers and, therefore, no outlier treatment was done.
However, if outliers turned out to be an important source of
error they might have been removed using a large variety of
techniques ranging from simple stem-and-leaf plots[32] to
complicated robust multivariate detectors[33].

3.1.2. Removal of irrelevant FOMs
For a particular experiment there might be FOMs that do

not provide any information about the optimal performance.
In other words, they do not detect any difference among
the different�’s and should be removed from further anal-
ysis. These irrelevant FOMs can be identified using 1-way
ANOVA studies[22] in which the independent variable is
� and the dependent variable is each one of the FOMs. If
an ANOVA analysis indicates that the independent variable
does not significantly affect the level of the dependent one,
then the corresponding FOM is irrelevant to the particular
experiment.
When this analysis is applied to each of the FOMs in

this example, it reveals that there are four FOMs for which
dependence on� cannot be observed with a significance
greater than 90%. The corresponding columns are removed
from the data table.Fig. 2 shows one of these FOMs, the
line drawn represents a distance-weighted least-squares fit
of the data[34]. It should be noticed that these FOMs are
rejected for this particular study but they may be accepted
for optimization under other experimental conditions.

3.1.3. FOM clustering
It is quite possible that some of the remaining FOMs ex-

press the same kind of information, i.e., that several of them
show the same behavior with respect to the parameter. In
this step we aim at identifying the number of different be-
haviors within the FOMs and at clustering these according
to their behavior. The behavior or tendency of a FOM with
respect to the parameter can be represented in a plot of the
FOM values versus the parameter value. It is interesting to
recognize these groups as different tendencies as they prob-
ably point to different optimal intervals. In order to per-
form this group identification, the different FOM columns
are used as input to a hierarchical classifier[35] and, in this
case, the classification results can be validated by principal
components analysis (PCA)[36]. The output of this step is
a partitioning of the FOMs into clusters according to their
tendency with the parameter. Although the FOMs have been
clustered in this work using hierarchical classification, any
other clustering method or combination of methods could
have been used. The choice of the most appropriate cluster-
ing procedure may be particular to each problem. There is
active research, whose discussion falls beyond the scope of
this paper, on how to estimate the number of clusters in a
data set. There are situations in which the number of clusters
can be easily identified because the clusters are sufficiently
apart. However, this is not always the case and, in most situ-
ations, no matter what algorithm was employed to estimate
the number of clusters, it must be subjectively validated by
the user.
In the example considered in this section, the FOMs can

be grouped into two main classes: those whose value de-
creases with� and those whose value increases with� (see
Fig. 3). These two groups are correctly separated using
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Fig. 2. Plot of thescapFOM (see Section 2.4) for the study described in Section 3.1. The line corresponds to the distance-weighted
least-squares fit of the samples. Notice that the FOM appears to be insensitive to the choice of the parameter.

Fig. 3. Plot of the averages of the two FOM groups identified by hierarchical classification. One of the averages is represented by circles while
the other by squares. To help visualization two continuous curves have been fitted to the data using DWLS[34]. Each circle (respectively,
square) indicates the average FOM in one of the groups for one of the experiments (thus there should be ten circles, respectively squares,
for each value of the free parameter; not all of these are visible, due to overlap.

hierarchical analysis with weighted pair-group average[37]
(seeFig. 4). The existence of two groups is confirmed, in
this case, by PCA whose first factor using varimax rotated
axes[38] accumulates more than 79% of the total variance
(two factors accumulate 87%). The existence of a factor with
so much variance seems to indicate a binary separation of
data.Fig. 5 represents the so-called factor loadings of the
FOMs being clustered. The groups at different levels iden-
tified in the hierarchical classification are marked with the
same type of line on bothFigs. 4and5.
In this particular case, each group has a clear meaning.

The FOMs that increase their value with higher relaxation
factors (for example,scL2(F )) reflect an increase of the
contrast in the macromolecular reconstruction, while those
FOMs decreasing with higher relaxation factors detect an
increase of the noise level in the reconstruction (for instance,
scL2(B)). These two effects of the relaxation factor are well

known within the 3D reconstruction field: if we keep the
relaxation parameter low, then the reconstructions will not
be very noisy but will have a low contrast, on the other hand
if the parameter is high then the contrast is increased at the
price of getting higher noise.

3.1.4. Cluster dimensionality reduction
At this stage the FOM groups may have a relatively

high number of members resulting in a high dimensionality
group (a vector containing all the information gathered by
the FOMs assigned to a cluster has as many components as
FOMs in the cluster). However, since the FOMs are grouped
according to their similarity, the group is formed basically
by some common trends disturbed by “noise.” The goal of
our next step is to reduce as much as possible the number
of components. Eventually, we will reduce all FOMs in a
cluster to a single representative of their behavior.
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Fig. 4. Tree diagram of the FOM hierarchical classification. Three different cut levels reveal the existence of either 5 (dashed line), 3 (dotted
line) or 2 (solid line) groups. Further data exploration reveals that two groups are sufficient for these FOMs.

Fig. 5. Plot of the factor loadings in the first and second PCA factors. The factor loading in a PCA factor indicates how important is that
PCA factor to explain the variance of a particular FOM. The groups identified by hierarchical classification at various levels are marked
with the same line type as inFig. 4.

PCA is well known for its linear dimensionality reduction
properties[39]. Data subtables are formed for each group
with the FOM values corresponding to FOMs belonging
to that group. In the example shown in this section, two
subtables with 100 experiments and 6 and 17 FOMs, respec-
tively, are extracted. PCA is applied to each group indepen-
dently. This analysis finds new basis vectors (called princi-
pal components) in the 6 and 17 dimensional spaces so that
the first principal component accounts for as much of the
variability in the data as possible, and each succeeding com-
ponent accounts for as much of the remaining variability as

possible. The principal components are the eigenvectors of
the covariance matrix of the input data. The corresponding
eigenvalues reflect the amount of variance of the total data
variance explained by each principal component. A com-
mon practice in data dimensionality reduction via PCA is
to select as many principal components as to account for a
certain amount of total data variance.
In the example shown, after analyzing each group sepa-

rately, it can be found that three components on each group
are enough to explain 98% of the total group variance in the
decreasing FOMs group and 94% of the total group variance
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Fig. 6. Plot of the two FOM group representatives (one using circles and the other using squares). To help visualization two continuous
curves have been fitted to the data using DWLS. Their behavior is similar to the average behavior within each FOM group (compareFig. 3).

in the increasing FOMs group. Thus, the number of FOMs
on each group can be safely reduced to three that capture
nearly all the information.
At this stage a second reduction is proposed by combining

the information of the three components according to their
explained variance into a single FOM group representative.
Let us assume that theP first principal components are
needed to account for the selected amount of variance (in
the example, 94%), and that the eigenvectorpci explains a
wi% of the total variance. The FOM group representative
is constructed as

FOMG =
P∑
i=1

wipci .

In this way the number of objective functions is reduced to
the number of distinct FOM tendencies.Fig. 6 shows the
so-combined FOMs for both groups. It can be seen that they
essentially show the average behavior of the FOMs within
their group (seeFig. 3) but with a slightly smaller variance
for each�. Special care must be taken with the sign of the
eigenvectorspci since−pci is also an eigenvector. The sign
of the eigenvectors must be chosen in such a way thatFOMG
minimizes the distance between the group representative and
the represented FOMs.

3.1.5. Interval selection
At this point, we have reduced the problem of selecting

the parameter value achieving a compromise in the algo-
rithm performance as measured by 27 FOMs to only two
opposing objective functions. A multiobjective optimization
searching for the Pareto-optimal solution within these two
objective functions would say that all values of the param-
eters are non-inferior to the rest and, therefore, any value
of the parameter would be valid. However, this is not the
case since if the relaxation parameter is very high or very
low then very noisy or poorly contrasted reconstructions are
obtained.

The goal is to pick one of themiddlingsolutions for which
a reasonable performance is reflected by each of the FOM
groups. For doing so, in the case of the relaxation param-
eter of ART, we found useful to make use of the distance-
weighted least-squares (DWLS) curves[34] fitted to each
of the FOM representatives (seeFig. 6). Since they show
two opposing behaviors, we picked as middling solution the
point where the two DWLS curves intersect.
However, it is not always the case that there are just two

groups with opposing tendencies. For instance, the method
of iterative data refinement (IDR)[40] has been recently
applied in electron microscopy to correct for microscope
aberrations[41,42]. That algorithm also has a relaxation
factor to be optimized. When this was done using the sta-
tistical data analysis approach advocated above, four FOM
groups were identified. In this case, we found useful to sim-
ply average the FOM group representatives producing a new
FOM. Then, we select as the middling point the one that
maximizes the DWLS fit of this new FOM as is shown in
Fig. 7. This idea of aggregating the different objective func-
tions is not new in multiobjective optimization[11].
An alternative procedure for selecting the middling point

in the presence of more than two trends could be to chose
the free-parameter that minimizes the variance of the val-
ues of the trend DWLS fits. (To clarify: for each fixed pa-
rameter value, there are as many DWLS fits as there are
trends, and these values have a variance that changes with
the parameter; we suggest the selection of that value for
the parameter for which the variance is minimal.) Notice
that our criterion of selecting the crossing point of these
DWLS fits when only two trends are present is a particu-
lar case (in which the variance is zero) of this alternative
procedure. The analysis of the distribution of the values of
the DWLS fits at the middling point can also identify those
trends that are particularly benefited or disadvantaged from
the selection of that middling point. In the case of having
outliers in that distribution, the reason of their existence
should be checked. In any case, the selection of the middling



2596 C.O.S. Sorzano et al. / Pattern Recognition 38 (2005) 2587–2601

2

1

0

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

-1

-2

F
O

M
 v

al
ve

Relaxation factor

FOM1

FOM2

FOM3

FOM4

Combined FOM

Fig. 7. Plots of the DWLS curves fitting the four FOM group representatives and the combined average FOM for the IDR application[41,42].

point is situation dependent and must be done under expert
supervision.
Once the middling solution is picked, it is checked

whether the surrounding solutions have a significantly dif-
ferent performance. For each FOM group,G, an interval,
(aG, bG), is constructed (containing the middling point)
formed by all those solutions whose representative FOM is
not significantly different from the representative FOM at
the middling point. For this comparison, Student’st-tests
are performed among the available samples as was done in
Refs. [3,9]. Finally, themiddling interval is defined as the
intersection of all the group intervals. The application of
this criterion to the ART relaxation parameter in the exam-
ple shown in this section gives the interval(0.045,0.075).

3.2. Inter-experiment analysis (major changes)

The process outlined in the previous section describes a
method for selecting an interval of parameters whose per-
formance is statistically indistinguishable from the optimal
middling performance found in the experiments. However,
this interval is dependent on the particular selection from
the possible choices of the major changes for the experi-
mental variables. In the example of 3D EM applied to sin-
gle particles, some instances of major changes are the data
collection geometry, the particle size or sampling rate, the
number of projection images, and the noise nature. These
variables can introduce a large enough change in the simu-
lated conditions so that the optimal interval computed under
other conditions may be invalid.
Two questions arise from this point: first, given a set

of major changes in the experimental variables, which
ones have an important influence on the optimal interval?
And, second, is the dependency of the optimal interval
predictable? These two questions will be addressed in an

Table 1
Volume size and number of projections simulated

(653, 773) (653,2010) (653,3246)
(973,1153) (973,2999) (973,4844)
(1293,1533) (1293,3988) (1293,6443)

experimental manner by determining the optimal interval
for the relaxation parameter� under various experimental
conditions.
In the case of the relaxation parameter of ART used in 3D

EM, the experimental variables selected for major changes
are the sampling rate, the number of projections and the
noise nature (i.e., its correlation structure). Instead of work-
ing directly on the sampling rate we work with a related
quantity: the size in voxel-units of the reconstructed volume
(for a given volume size, increasing the sampling rate results
in a volume with a higher number of voxels). The volume
size and number of projections were chosen as shown in
Table 1and two kind of gray-level noises were studied: un-
filtered white Gaussian noise (simulated up to the maximum
frequency 0.5) and white Gaussian noise low pass filtered
at a frequency of 0.2. The unfiltered noise gives an image
aspect similar to that experimentally obtained under low de-
focusing and the filtered noise resembles that acquired when
the sample is strongly defocused. In both cases the signal
to noise ratio (SNR) is 0.33. These simulation values were
validated by microscopy experimentalists.
The whole test amounts to 18 different experiments. Each

experiment is treated with the intra-experiment methodology
described in Section 3.1. The optimal interval limits for each
experiment are shown inTable 2.
Once the optimal intervals are determined for each ex-

periment the two questions formulated at the beginning of
this section can be answered.
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Table 2
ART relaxation parameters optimal intervals

Size (voxels) Number of projections Noise �min �max

653 773 Unfiltered 0.060 0.080
653 2010 Unfiltered 0.050 0.070
653 3246 Unfiltered 0.030 0.050
973 1153 Unfiltered 0.060 0.080
973 2999 Unfiltered 0.050 0.070
973 4844 Unfiltered 0.035 0.055
1293 1533 Unfiltered 0.040 0.020
1293 3988 Unfiltered 0.025 0.045
1293 6443 Unfiltered 0.015 0.030

653 773 Filtered 0.050 0.070
653 2010 Filtered 0.055 0.075
653 3246 Filtered 0.030 0.050
973 1153 Filtered 0.055 0.075
973 2999 Filtered 0.050 0.070
973 4844 Filtered 0.025 0.045
1293 1533 Filtered 0.050 0.070
1293 3988 Filtered 0.020 0.040
1293 6443 Filtered 0.015 0.035

The question of which changes have a significant effect
on the optimal interval is addressed by an-way ANOVA
study[22], wheren is the number of experimental variables
with major changes being considered (three, in the example
shown). This analysis can tell which changes have a signifi-
cant influence on the interval limits. Furthermore, it can de-
tect whether the combination of any of two, three, or more
variables affects the interval limits. Those experimental vari-
ables whose changes do not affect the optimal region of the
algorithmic parameter can be dropped in further analysis.
An ANOVA study of the results of the ART relaxation

parameter reveals that the filtered or unfiltered nature of the
noise is irrelevant for the optimal interval selection. How-
ever, the number of projection images and the volume size
have a significant influence on the optimal parameter’s lim-
its. Between these two variables the number of projection
images is responsible for twice as much of the variance than
the volume size. No significant association is found among
any of the three experimental variables.
The question of whether the dependency is predictable

is addressed via nonlinear regression analysis[23]. This
kind of analysis provides information about the validity of a
given nonlinear model of the relevant experimental variables
according to the data. The model itself serves as a heuristic
selection rule for those experimental cases that have not
been simulated as long as they can be reliably “interpolated”
from the cases simulated.
In the example considered, nonlinear regression was used

to establish a model for the upper limit of the optimal in-
terval. Since the interval length is nearly constant due to
the sampling effects in the parameter (we have measured

the function at evenly distributed�’s with a separation of
0.2), the lower limit can be easily computed.Fig. 8 repre-
sents the dependency of the upper limit of the optimal inter-
val of � on the volume size and the number of projections.
Table 3shows the models that we tried, as well as their
fits. R2 is a standard measure of the regression fit and it
represents the amount of variance in the data explained by
the model; therefore, a good fit is reflected by a largeR2

value. One common way to produce models that account
for interactions between two variables,N (the number of
projections) andS (volume size), is by introducing terms of
the formNS. However, as our previous 3-ANOVA analy-
sis did not detect any significant interaction between these
variables, such terms have not been included in the models
shown.
Rounding the coefficients of modelf1(N, S) in Table 3,

it can be reasonably approximated by

�max = 0.09− 10−6(8N − 6(S − 96)2),

�min = �max − 0.02

which accounts for the 89% of the total variance of the
upper bound of the optimal interval. However, it must be
kept in mind that the validity of this model is restricted to
the particular conditions simulated (volume size from 653

to 1293, a number of projections ranging from 800 to 6000,
and random projection directions uniformly distributed).

4. Discussion

Our described procedure for intra-experiment analysis
provides a methodology for recognizing different FOM ten-
dencies, decreasing the complexity of the FOM optimiza-
tion problem and, finally, finding a trade-off among them.
Multivariate statistics serves as a solid base for this task.
Furthermore, following this methodology one can concen-
trate on the extraction of middling solutions that are usually
avoided by multiobjective optimization methods.
The fact that the measures of the FOMs are noisy forces

us to perform many experiments. Moreover, the cost of each
simulation in computation time is very high. For this rea-
son, common multiobjective genetic algorithms searching
for the whole Pareto optimal set are prohibitive in this con-
text. However, the presented statistical framework provides a
simple way of extracting the performance information from
the data available.
The recognition of statistical associations among variables

is a good feature of this analysis, since it points out which are
the main problem characteristics captured by the different
FOMs. For instance, in the example of ART in 3D EM two
main tendencies have been recognized (one of the FOM
groups is related to the contrast and the other to the noise
in the reconstructions).
The inter-experiment study allows us to identify thosema-

jor changes in the experimental variables that significantly
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Fig. 8. Plot of the dependency of the upper limit of the optimal interval of the ART relaxation factor with the volume size and the number
of projections. The lines correspond to the distance-weighted least-squares fit of the samples. It can be seen in the plots that the volume
size is less important (the variance of the upper limit of the interval is larger) than the number of projections to select the ART relaxation
factor.

Table 3
Models for the upper limit of the ART relaxation parameter

Model Formula R2

Constant 0.074 0
f1(N) 0.0842− 8× 10−6N1.008 0.82
f2(N) f1(N)− 0.391× 10−12(N − 1021)(N − 2697)(N − 4643)(N − 6501) 0.85
f1(N, S) f1(N)+ 5.83× 10−3 − 6× 10−6|S − 95.76|2.12 0.89
f2(N, S) f2(N)+ 5.44× 10−3 − 0.8× 10−6|S − 94.65|2.66 0.92

N stands for the number of projection images andS for the volume size. TheR2 column reflects the fitness of the regression. The first
column shows the name of the model in the second column. These names help to simplify the model formulation, for instance,f1(N, S)

makes use off1(N).

affect the parameters. Furthermore, nonlinear regression can
be applied to establish a model of dependency. However,
the utility of this model is strictly constrained by the ex-
periments actually run and cannot be extrapolated to other
situations that have not been considered.
The optimization of the ART+blobs relaxation factor (as

well as that of the iterative data refinement (IDR) relaxation

factor [42]) demonstrates the validity of our approach. Al-
though visual appearance of reconstructions is too subjec-
tive to form the basis of definitive judgments, we note that
in our opinion the reconstructed volumes using relaxation
factors within the optimal interval showed the best visual
appearance at the same value of the parameter at which the
FOM trade-off (seeFig. 6) is achieved. Previous parameter
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selection approaches in 3D EM reconstruction concentrated
on the optimization of a single training FOM and the para-
dox was found that reconstructed volumes using parameters
with good performance on the training FOM resulted in bad
behavior from the point of view of other FOMs and this was
reflected in inferior visual appearance.
Several important rules for the selection of the ART re-

laxations parameter can be drawn from our experiments, al-
though it should be noted that these ideas may only apply
to the particular test conditions simulated:

• The filtered or unfiltered nature of the additive noise
does not affect the parameter optimal interval. This fact
indicates that we need not distinguish between strongly
and weakly defocused images in 3D EM reconstructions
as far as the selection of the relaxation parameter is
concerned.

• The most important parameter determining the optimal re-
laxation factor is the number of projection images. This re-
sult is logical, since more projections mean more volume
updates and consequently a smaller iterative step should
be used in order to reach an optimal reconstruction.

• The size of the volume being reconstructed is the other
important factor when computing the optimal ART pa-
rameter. In our implementation of ART, the volume side
length is the same as the projection side length. Thus,
increasing the volume side length increases quadratically
the number of equations specified by the projections.
As the number of equations increases the iterative step
should be made smaller in order to reach the same optimal
reconstruction.

5. Conclusions

A methodology for the optimization of algorithmic
parameters when it is possible to make experiments in
which the true solution is known and there exist FOMs to
measure the algorithmic performance has been provided.
This methodology makes extensive use of multivariate
statistical analysis and is capable of recognizing several
FOM tendencies and achieving a trade-off among them.
The approach proposed has been tested in the case of the
optimization of the ART+blobs relaxation parameter. Fi-
nally, a guide has been provided for the selection of the
ART relaxation factor in situations similar to the ones
simulated.
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