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Abstract

In this work we discuss an improvement of the image-denoising wavelet-based method presented by Bijaoui [Wavelets, Gaussian
mixtures and Wiener filtering, Signal Process. 82 (2002) 709–712]. We show that the parameter estimation step can be replaced by a
constrained nonlinear optimization. We propose three different methods to estimate the parameters. As in Bijaoui’s original article, two
of them deal with white noise. We show that the resulting algorithms improve the one originally proposed. Our third method extends
the applicability of the denoising algorithm to colored noise. We test our algorithms with images simulating electron microscopy (EM)
conditions as well as experimental EM images.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many are the papers addressing the problem of image de-
noising using wavelets [1]. In brief, all these algorithms first
perform the wavelet transform of the image to denoise, then
apply some filter to the wavelet coefficients, and finally take
the inverse wavelet transform to restore the denoised im-
age. Most popular wavelet-filtering algorithms are based on
thresholding [2], Wiener filtering [3] and Bayesian filtering
[4–7]. In fact, Bayesian filtering in the wavelet space has be-
come the standard in the field and the work of Portilla et al.
[7] represents the current state of the art of the algorithms
employed.

Bijaoui [1] introduced a Bayesian approach to image de-
noising in wavelet space shown to be superior to a num-
ber of previous thresholding or Wiener-filtering algorithms.

∗ Corresponding author. Tel.: +34 91 372 4033; fax: +34 91 372 4049.
E-mail address: coss.eps@ceu.es (C.O.S. Sorzano).

0031-3203/$30.00 � 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.12.009

However, as is shown in this paper, the parameter estimation
step of this algorithm can be substantially improved. As an
alternative, we propose three different methods to estimate
the noise and signal parameters, keeping the Bayesian de-
noising step proposed by Bijaoui [1]. Each method is based
on different assumptions and, ultimately, they solve a linear
equation system in a least-squares sense subject to a number
of reasonable constraints.

We tested our algorithms on a set of simulated as well as
experimental EM images as used in single-particle structural
studies of macromolecular complexes [8]. The final goal
of this kind of studies is to elucidate the three-dimensional
structure of the specimen electron density combining dif-
ferent projection images taken with an electron microscope.
One of the advantages of this technique is the wide range
of specimen sizes that can be studied: from cellular or-
ganelles like the ribosome, to viruses, protein complexes, or
individual proteins. Another advantage, particularly when
dealing with proteins or protein complexes, is that the
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technique does not change the structural conformation, be-
cause macromolecules are not crystallized. This makes the
technique suitable for studies where the quaternary structure
of protein complexes has to be elucidated. The resolution
that can be obtained depends on the quality, quantity and
angular coverage of the projection images.

The main drawbacks of EM images are their extremely
low signal-to-noise ratio (below −3 dB) and the complicated
nature of the electron microscope transfer function [9]. This
function is referred to as contrast transfer function (CTF)
and it must be estimated directly from the micrographs [10].
The shape of the CTF in Fourier space can be described by a
damped sinusoid. However, in a rough approximation it can
be modelled as a low-pass filter. The filtered nature of these
images make Bijaoui’s approach unapplicable. However, we
show that the method can be generalized to address this kind
of images.

Image denoising techniques can be applied in two ways in
EM: first, if the image signal components are not modified,
then denoising techniques can be used before reconstruct-
ing the three-dimensional structure of the macromolecule to
improve the quality of the reconstruction; second, if the im-
age signal components are modified but the result enhances
most of the main features of the particle, then they can be
used to facilitate intermediate processes like bidimensional
alignments, automatic particle picking, etc.

This paper is organized as follows. First, the image denois-
ing procedure based on a Bayesian approach in the wavelet
space is introduced in Section 2. Then, we present our pro-
posed modifications to the parameter estimation step in Sec-
tion 3. Results obtained with simulated as well as experi-
mental data are shown in Section 5. Finally, we discuss the
results and conclude.

2. The filtering procedure

The filtering technique used in this article is based on the
Bayesian approach proposed by Bijaoui [1]. Let us assume
that the image formation model is of the form

y = x + n, (1)

where x is the ideal image, n is random independent noise,
and y is the measured image. We assume that the noise is
white and normally distributed. Thus, its probability density
function (PDF) is given by

p(n) = G(n, N) = 1√
2�N

e−n2/2N , (2)

where N is the noise variance. Solving the image formation
model for n it can be seen that the conditional PDF of y
given x is

p(y|x) = p(n) = G(y − x, N). (3)

It is assumed that the PDF of the ideal image can be ex-
pressed as a mixture of zero-mean Gaussians

p(x) =
∑

i

�iG(x, Si). (4)

Under these assumptions it can be proved that the PDF of the
measured image is given by the convolution of both PDFs

p(y) = p(x) � p(n) =
∑

i

�iG(x, Si + N). (5)

Then, the denoising problem is stated as the Bayesian prob-
lem of estimating x from y. The a posteriori PDF is given by

p(x|y) =
∑

i �iG(x, Si)G(y − x, N)∑
i �iG(y, Si + N)

. (6)

The filtering is done by taking the a posteriori expectation
of x

E{x|y} = y

∑
i �i (Si/Si + N)G(y, Si + N)∑

i �iG(y, Si + N)
= yw(y). (7)

The relationship of this filter with classical Wiener filtering
is given in the article by Bijaoui [1].

The previous filter is applied independently to each of the
scales of the wavelet transform of the measured image, i.e.,
the variable x is formed by all those wavelet coefficients be-
longing to the same scale. Therefore, each scale has its own
�i and Si parameters while the noise power, N, is common
to all the scales since the noise is assumed to be white.

The problem now is to estimate the �i , Si and N parameters
from the measured images. Bijaoui [1] assumes that there is
no signal at the finest scale. Therefore, all the energy at that
scale is coming from the noise term. Under this assumption
the noise power N can be estimated from that scale and later
used for the rest of the scales. Bijaoui [1] proposes a robust
estimate of N at the finest scale based on a k − � clipping
strategy.

For the rest of the scales, the original paper affirms that, in
practical terms, only two Gaussians are necessary to model
the PDF of the measured wavelet coefficients at a given scale

p(y) = (1 − a)G(y, N) + aG(y, S + N), (8)

where a and S are estimated at each scale through the 2nd
(M2) and fourth order (M4) moments of the measured
wavelet coefficients at that scale

S = M4/3 − N2

M2 − N
,

a = (M2 − N)2

M4/3 − N2 . (9)

In order to guarantee the convex nature of the combina-
tion given by Eq. (8) a is set to 0 if M2 − N < 0 or if
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M4/3− N2 < 0. Accordingly, a is set to 1 if a > 1 and, in
this case, S is estimated only from the variance M2.

3. Improvement of the parameter estimation

The main contribution of our study refers to the estima-
tion of the parameters S, a and N. We provide three new
estimation procedures, each one with different hypothesis
and applicable to different fields. In the first one, we si-
multaneously solve for all the parameters using a rationale
similar to the one used by Bijaoui [1]. The first method
assumes that the wavelet coefficients follow a Gaussian dis-
tribution and that the noise is white and independent from
the signal. In the second one, we solve for the same denois-
ing problem (removal of white noise) following a different
approach based on the power decomposition of the mea-
sured image. This second method assumes that the noise is
white and independent from the signal. Finally, we extend
the power decomposition procedure to the case of non-
white noise assuming that the noise is independent from
the signal.

3.1. Method 1

In this method we solve simultaneously for all the noise
and signal parameters in the problem. Our changes also af-
fect the “practical” PDF given by Eq. (8). For the kind of
images addressed in this work a single Gaussian suffices to
model the ideal wavelet coefficients, x, at a given scale (this
point will be explicitly checked in our experiments). In this
way, our “practical” PDF becomes

p(y) = G(y, S + N). (10)

This model has an advantage over the model in Eq. (8)
since the estimates given by Eq. (9) may become highly un-
stable under certain circumstances. Let us assume that there
is no signal energy at the first (finest) and second scales.
Under these circumstances, the noise power is correctly es-
timated from the first scale. However, when estimating the
signal power at the second scale we are using the second and
fourth order moments of the Gaussian defining the noise, that
should be the same as for the first scale. Therefore, M2 and
M4 for the second scale take the value N and 3N2, respec-
tively, (for a Gaussian PDF it can be proved that M4=3M2

2 ).
Plugging these values into Eq. (9) we have 0 over 0, and
consequently the S and a parameters cannot be determined.
In practical terms, 0 over 0 is never obtained due to the ran-
dom nature of the estimates of the M2 and M4 moments.
However, the resulting S and a parameters may be highly
unstable.

Using Eq. (10) an alternative equation system can be
posed. As in the original article, we assume that there is no
significant signal at the finest scale. However, we do not es-
timate the noise power only from the first scale (s = 1), and
subsequently all the rest of parameters, but we estimate all

the parameters simultaneously in a least squares sense con-
strained by some reasonable hypothesis.

Concisely, given the PDF model in Eq. (10), the following
equation must hold for all scales s = 1, 2, . . .

M2s = Ss + N , (11)

where M2s is the variance of the measured wavelet coef-
ficients at the scale s and Ss is the variance of the ideal
wavelet coefficients at that scale. Furthermore, we know that
all variances must be positive (N �0 and Ss �0), and for the
kind of images employed in this article Ss �Ss+1 (i.e., most
of the energy is concentrated at low frequencies). Finally,
if reasonable lower and upper limits for the signal-to-noise
ratio (SNRl and SNRh) are provided, then it must hold that

I

1 + SNRh

�N � I

1 + SNRl

, (12)

where we have made used of the fact that the total image
power, I, must be I = ST + N (ST is an estimate of the
total signal power). In case that no clue is available about
the SNR (SNRl = 0 and SNRh =∞) the bounds of the noise
power become 0�N �I .

To solve simultaneously for all the parameters we propose
to minimize ‖Cx − M2‖2 subject to Ax�b, where

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . .

1 1 0 0 . . .

1 0 1 0 . . .

1 0 0 1 . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N

S2

S3

S4

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M21

M22

M23

M24

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1 0 . . .

0 0 1 −1 . . .

. . . . . . . . . . . . . . .

−1 0 0 0 . . .

0 −1 0 0 . . .

0 0 −1 0 . . .

0 0 0 −1 . . .

. . . . . . . . . . . . . . .

−1 0 0 0 . . .

0 1 0 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
. . .

0
0
0
. . .
I

1 + SNRh
I

1 + SNRl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The main advantages of the proposed method with respect
to the original paper are its simultaneous nature (allowing
for a higher stability) and the possibility of constraining the
parameters with a priori information (SNR and the constrain
that for a certain kind of images Ss �Ss+1).

3.2. Method 2

The second method is based on the power decomposi-
tion of the measured image. If the image formation model
is y =x +n, and x and n are independent variables, then the
measured image power I =Py is the sum of the correspond-
ing powers Px and Pn. Since the wavelet decomposition is
orthogonal, this fact is also true at any scale of the wavelet
decomposition. Furthermore, due to the orthonormality of
our wavelet transform I = Pwy , where Pwy is the power of
the wavelet transform of the image y.

In this way, the power of the wavelet transform of y at
each scale s, Ps , can be decomposed as the sum of two
components: one coming from noise and another one coming
from the signal

Ps = (N + Ss)ns , (13)

where ns is the number of wavelet coefficients at scale s.
Again, we assume that there is no significant signal at the
finest scale (S1 = 0). The power decomposition must be
constrained in such a way that the sum of the power at all
scales yields the overall image power

I =
∑

s

Ps . (14)

Eq. (12) can still be used to incorporate our a priori infor-
mation about noise.

This second procedure also solves simultaneously for
all the noise and signal parameters involved minimizing
‖Cx − P‖2 subject to Ax�b and Aeqx = beq, where

C =

⎛
⎜⎜⎜⎝

n1 0 0 0 . . .

n2 n2 0 0 . . .

n3 0 n3 0 . . .

n4 0 0 n4 . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎠ ,

x =

⎛
⎜⎜⎜⎝

N

S2
S3
S4
. . .

⎞
⎟⎟⎟⎠ , P =

⎛
⎜⎜⎜⎝

P1
P2
P3
P4
. . .

⎞
⎟⎟⎟⎠ ,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1 0 . . .

0 0 1 −1 . . .

. . . . . . . . . . . . . . .

−1 0 0 0 . . .

0 −1 0 0 . . .

0 0 −1 0 . . .

0 0 0 −1 . . .

. . . . . . . . . . . . . . .

−1 0 0 0 . . .

0 1 0 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
. . .

0
0
0
. . .
I

1 + SNRh
I

1 + SNRl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Aeq =
(∑

s

ns n2 n3 n4 . . .

)
and beq = (I ).

This second method is based on a weaker assumption on
the image formation model: noise is independent from sig-
nal. A drawback of the two procedures presented above is
that they assume that noise is white (i.e., it has the same
power at all frequencies) and that there is no significant sig-
nal at the finest wavelet scale. This precludes the application
of this denoising method to filtered images. Next procedure
will partially overcome this problem.

3.3. Method 3

If images are low-pass filtered, for instance, then the noise
power measured at the finest scale does not correspond to
the true noise power present at the rest of the scales. This
is a basic assumption in Methods 1 and 2. Furthermore, in
those methods it was assumed that there was no significant
signal at the finest scale, which may not always be the case.
In this last procedure, we provide a framework in which
both situations can be handled easily. It is an extension of
Method 2 and, therefore, it is based on the decomposition
of the image power in different components due to different
sources. The main departure from the previous method is
that we allow for different noise powers Ns at each scale
and that S1 is not necessarily null. Therefore, the power
decomposition at each scale is now

Ps = (Ns + Ss)ns . (15)

Eq. (14) still must hold because signal and noise are again
independent. The SNR constraints adopt a different expres-
sion

SNRl �
∑

s nsSs∑
s nsNs

�SNRh. (16)
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Additionally, we impose the constraint Ns �Ns+1. This con-
straint assumes that the imaging system attenuates high fre-
quencies more than low frequencies.

Summarizing, the cost function to minimize is still
‖Cx − P‖2 subject to Ax�b and Aeqx = beq, where now

C =

⎛
⎜⎜⎜⎝

n1 0 0 0 . . . n1 0 0 0 . . .

0 n2 0 0 . . . 0 n2 0 0 . . .

0 0 n3 0 . . . 0 0 n3 0 . . .

0 0 0 n4 . . . 0 0 0 n4 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎠ , x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1
N2
N3
N4
. . .

S1
S2
S3
S4
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P =

⎛
⎜⎜⎜⎝

P1
P2
P3
P4
. . .

⎞
⎟⎟⎟⎠ ,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 . . . 0 0 0 0 . . .

0 1 −1 0 . . . 0 0 0 0 . . .

0 0 1 −1 . . . 0 0 0 0 . . .

. . . . . . . . . . . . . . . 0 0 0 0 . . .

0 0 0 0 . . . 1 −1 0 0 . . .

0 0 0 0 . . . 0 1 −1 0 . . .

0 0 0 0 . . . 0 0 1 −1 . . .

0 0 0 0 . . . . . . . . . . . . . . . . . .

−1 0 0 0 . . . 0 0 0 0 . . .

0 −1 0 0 . . . 0 0 0 0 . . .

0 0 −1 0 . . . 0 0 0 0 . . .

0 0 0 −1 . . . 0 0 0 0 . . .

. . . . . . . . . . . . . . . 0 0 0 0 . . .

0 0 0 0 . . . −1 0 0 0 . . .

0 0 0 0 . . . 0 −1 0 0 . . .

0 0 0 0 . . . 0 0 −1 0 . . .

0 0 0 0 . . . 0 0 0 −1 . . .

0 0 0 0 . . . . . . . . . . . . . . . . . .

−SNRhn1 −SNRhn2 −SNRhn3 −SNRhn4 . . . n1 n2 n3 n4 . . .

SNRln1 SNRln2 SNRln3 SNRln4 . . . −n1 −n2 −n3 −n4 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
. . .

0
0
0
. . .

0
0
0
0
. . .

0
0
0
0
. . .

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Aeq =
(∑

s

ns n2 n3 n4 . . .

)
and beq = (Pwy).

4. Relationship to Wiener filtering

In our model, it has been assumed that the PDF of the
signal coefficients can be represented with a single Gaus-
sian. In this case, the filter applied falls back to a classical
Wiener filter. The hypothesis of the Wiener filter is that the
relationship between the original image x (x is a vector with
all pixel values ordered lexicographically) and the acquired
image y is

y = Hx + n, (17)

where H is a blurring matrix and n is a random noise vector. n
is assumed to follow a multivariate normal distribution with
zero mean and covariance matrix �2I , i.e., p(n)=G(0, �2I )

and the input vector x is assumed to follow a multivari-
ate normal distribution with zero mean and covariance ma-
trix �x , i.e., p(x) = G(0, �x). Under these assumptions it
has been proven [11, Chapter 46] that the filter W to opti-
mally recover x̃ = Wy from y in a maximum a posteriori

sense is

W = �xH
t (�2I + H�xH

t )−1, (18)

where Ht denotes the transpose of H.
Taking into account that we are considering one-

dimensional vectors, for us H = I , and that in our notation
�x = S and �2 = N this filter boils down to

W = S

N + S
= 1

1 + (1/SNR)
. (19)

In other words, our Bayesian filtering is the same as a Wiener
filter and our contribution lays solely on how to estimate the
filter parameters N and S at each wavelet scale.
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5. Results

5.1. Simulated data

In order to test the efficacy of the newly proposed param-
eter estimation methods we denoised 600 projection images
(of size 64 × 64) of the Protein Data Bank [12] model of
the bacteriorhodopsin [13] (PDB entry: 1BRD, see Fig. 1).
These projection images were computed as line integrals of
a voxelized volume created from the atom description pro-
vided by the PDB model. The Xmipp package [14] was
used to create these projections. In our first experiment we
tested the performance of Methods 1 and 2 with respect
to Bijaoui’s. We added white Gaussian noise up to a SNR
of −10 dB. These parameters yield similar images to those
obtained in electron cryomicroscopy [9]. Bijaoui’s method
as well as Methods 1 and 2 were applied to an orthonor-
mal wavelet decomposition (with Daubechies 12 as wavelet
function [15]) of the input images. We applied the denois-
ing procedures in the first four scales (s = 1, 2, 3, 4) since
further scales had too few wavelet coefficients to make reli-
able estimates of the statistical moments. We used SNRl =
−∞(dB)and SNRh = 0(dB) as minimization constraints.

Fig. 1. Side and top view of the isosurface of the bacteriorhodopsin.

Fig. 2. Each row shows a different example of the results for cryomicroscopy conditions of the two denoising procedures (Bijaoui’s and Method 1).
From left to right: original image, noisy image, image denoised using original Bijaoui’s method, image denoised using Method 1.

Fig. 3. Histogram of the SNR difference between the proposed Method
1 and the one originally presented by Bijaoui for the images simulating
cryomicroscopy. Positive differences favors our modification.

Before applying Method 1 we contrasted the hypothesis
that the wavelet coefficients at each scale were coming from
a normal distribution by performing the Geary’s test [16].
The null hypothesis could not be rejected with a confidence
of 99% and, therefore, the wavelet coefficients came from a
single Gaussian as assumed by Method 1.

Fig. 2 shows examples of the resulting images after ap-
plying Bijaoui’s method and Method 1. Fig. 3 shows the his-
togram of the difference between our output SNR (Method
1) and Bijaoui’s output SNR. The average SNR of the de-
noised image using the original method (Bijaoui) was 7.06±
1.12(dB), while the average SNR of the denoised image
using the newly proposed method (Method 1) was 8.60 ±
0.76(dB). No significant difference (with a 99% confidence)
was detected between the performances of Methods 1 and 2
in this experiment.
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Fig. 4. Each row shows a different example of the results for negative staining conditions of the two denoising procedures (Bijaoui’s and Method 3).
From left to right: original image, noisy image, image denoised using original Bijaoui method, image denoised using Method 3.

Fig. 5. Histogram of the SNR difference between the proposed method
(Method 3) and the one originally presented by Bijaoui for the images
simulating negative staining. Positive differences favors our modification.

In our second simulated experiment we tested the efficacy
of the third estimation procedure. We simulated the condi-
tions obtained in negative-staining microscopy [9] by adding
white Gaussian noise (up to a SNR of −10 dB) and then
low-pass filtering the noisy image with a cutoff frequency of
1/15 Å−1. We used SNRl = −30(dB) and SNRh = −5(dB)

as minimization constraints. Notice that in this case, since
we stopped denoising at s = 4, the SNR must represent our
knowledge about the SNR in the first four scales.

Fig. 4 shows examples of the resulting images after ap-
plying Bijaoui’s method and Method 3. Fig. 5 shows the his-
togram of the difference between our output SNR (Method 3)
and Bijaoui’s output SNR. The average SNR of the denoised
image using the original method (Bijaoui) was −1.66 ±
0.11(dB), while the average SNR of the denoised image
using the newly proposed method (Method 3) was 9.49 ±
0.79(dB).

5.2. Experimental data

Finally, we applied Method 3 to denoise negative staining
micrographs of the DnaB protein [17]. These images were
taken with a Philips CM120 electron microscope equipped
with a Gatan cryostage. Defocus is between 1.0 �m and
1.5 �m. The pixel size is 3.6 Å. Fig. 6 shows an example
of a 512 × 512 piece of such images and its corresponding
denoised image. It can be seen that particle projections are
much more noticeable in the denoised image.

6. Discussion and conclusion

The Bayesian approach proposed by Bijaoui [1] was
proven to compare favorably to other wavelet-thresholding
denoising techniques. The procedures introduced in this
article (Methods 1 and 2) improved the performance of
Bijaoui’s methodology by solving simultaneously for all
the signal and noise parameters involved. In the first sim-
ulated experiment carried out, no significant difference
was observed between Methods 1 and 2. This is an in-
teresting result since the rationales of both methods are
different. Method 1 is based on the analysis of the PDF
of the measured image, while Method 2 is based on its
power decomposition. Besides, our parameter search can
be optionally constrained by a priori knowledge about the
SNR or about the nature of the images (in our case, energy
tends to concentrate in low-frequency components). The
application of the modified methodology to images sim-
ulating cryomicroscopy conditions compares favorably to
the original Bijaoui’s algorithm.

Furthermore, we have developed a methodology to es-
timate the algorithm parameters (noise power and signal
power) allowing for different noise levels at each wavelet
scale. This methodology makes it feasible to apply the al-
gorithm in the case of low-pass filtered images resembling
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Fig. 6. Top: Negative staining micrograph. Each object in the image
correspond to a projection image of the DnaB protein. Bottom: Denoised
micrograph using Method 3.

negative-staining conditions in electron microscopy. Our
methodology shows a clear advantage in this case with
respect to the originally proposed algorithm since the orig-
inal parameter estimation was not designed to consider the
presence of filtered noise. However, the explicit form of
the filter does not need to be known in our methodology.
We only assume that its amplitude decreases at finer levels
of detail which is a plausible hypothesis in a wide range
of applications. We have applied our algorithm to the case
of experimental negative staining electron micrographs. We
have shown that, despite of the complicated nature of the

filter applied by the electron microscope, our methodology
is able to enhance the image quality.

The application of our denoising procedure to electron
micrographs may facilitate automatic particle identification
by improving the image quality as was shown in our exper-
iments. The application of image pre-processing steps like
the one described here is important in order to minimize
the number of false positives and false negatives [18] se-
lected by the automatic particle-picking algorithms. The se-
lection of thousands of projection images from single parti-
cles is an absolute need to achieve high resolution structures.
Furthermore, current projects on high-throughput structural-
proteomics [19] need to solve protein structures in ever de-
creasing times and need the help of automated steps. The
results obtained in this paper encourage further research on
this topic.

Acknowledgements

We acknowledge partial support from the “Comunidad
Autónoma de Madrid” through grants CAM-07B-0032-
2002 and CAM GR/SAL/0234, the “Comisión Inter-
ministerial de Ciencia y Tecnología” of Spain through
grants BIO2001-1237, BIO2001-4253-E, BIO2001-4339-
E, BIO2002-10855-E, the European Union through grants
QLK2-2000-00634, QLRI-2000-31237, QLRT-2000-0136,
QLRI-2001-00015, and the NIH through grant HL70472.
Partial support from the “Universidad San Pablo-CEU”
grant 17/02 is also acknowledged. We are thankful to Dr.
Marabini for useful comments on the manuscript.

References

[1] A. Bijaoui, Wavelets, Gaussian mixtures and Wiener filtering, Signal
Process. 82 (2002) 709–712.

[2] S.G. Mallat, A Wavelet Tour of Signal Processing, Academic Press,
New York, 1999.

[3] J.L. Starck, A. Bijaoui, Filtering and deconvolution by the wavelet
transform, Signal Process. 35 (1994) 195–211.

[4] F. Abramovitch, T. Sapatinas, B.W. Silverman, Wavelet thresholding
via a Bayesian approach, J. Roy. Statist. Soc. Ser. B 60 (1998)
725–749.

[5] S.G. Chang, B. Yu, M. Vetterli, Spatially adaptive wavelet
thresholding with context modeling for image denoising, IEEE Trans.
Image Process. 9 (2000) 1522–1531.

[6] E.P. Simoncelli, Bayesian inference in wavelet based models, Lecture
Notes Statist. 141 (1999) 291–308.

[7] J. Portilla, V. Strela, M.J. Wainwright, E.P. Simoncelli, Denoising
using scale mixtures of Gaussians in the wavelet domain, IEEE
Trans. Image Process. 12 (2003) 1338–1351.

[8] M. van Heel, B. Gowen, R. Matadeen, Single-particle electron cryo-
microscopy: towards atomic resolution, Quart. Rev. Biophys. 33
(2000) 307–369.

[9] J. Frank, Three-dimensional Electron Microscopy of Macromolecular
Assemblies, Academic Press, San Diego, CA, 1996.

[10] J.A. Velázquez-Muriel, C.O.S. Sorzano, J.J. Fernández, J.M. Carazo,
A method for estimating the CTF in electron microscopy based on
ARMA models and parameter adjusting, Ultramicroscopy 96 (2003)
17–35.



C.O.S. Sorzano et al. / Pattern Recognition 39 (2006) 1205–1213 1213

[11] D. Mackay, Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, Cambridge, 2003.

[12] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H.
Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank, Nucle.
Acids Res. 28 (2000) 235–242.

[13] T.A. Ceska, R. Henderson, J.M. Baldwin, F. Zemlin, E. Beckmann,
K. Downing, An atomic model for the structure of bacteriorhodopsin,
a seven-helix membrane protein, Acta Physiol. Scand. Suppl. 607
(1992) 31–40.

[14] C.O.S. Sorzano, R. Marabini, J. Velázquez-Muriel, J.R. Bilbao-
Castro, S.H.W. Scheres, J.M. Carazo, A. Pascual-Montano, XMIPP:
a new generation of an open-source image processing package for
electron microscopy, J. Struct. Biol. 148 (2004) 194–204.

[15] W. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes in C, second ed., Cambridge University Press, Cambridge,
1992.

[16] R.E. Walpole, R.H. Mayers, S.L. Mayers, K. Ye, K. Yee, Probability
and Statistics for Engineers and Scientists, seventh ed., Prentice-Hall,
Upper Saddle River, NJ, USA, 2002.

[17] M. Bárcena, L.E. Donate, T. Ruiz, N. Dixon, M. Radermacher, J.M.
Carazo, The DnaB-DnaC complex: a structure based on interactions
among asymmetric dimers, EMBO J. 20 (2001) 1462–1468.

[18] W.V. Nicholson, R.M. Glaeser, Review: automatic particle detection
in electron microscopy, J. Struct. Biol. 133 (2001) 90–101.

[19] M.B. Schmid, Structural proteomics: the potential of high-throughput
structure determination, Trends Microbiol. 10 (2001) S27–S31.

About the author—C.O.S. SORZANO was born in Málaga (Spain, 1973) where he studied Electrical Engineering (M.Sc., Honors) and Computer
Science (B.Sc.). He then joined the BioComputing Unit at the National Center for BioTechnology (CNB) of the Spanish National Council of Scientific
Research (CSIC), Madrid, Spain, where he obtained a Ph.D. (Honors). He worked as a Research Assistant in the Biomedical Imaging Group (EPFL,
Switzerland), and currently he is a Lecturer in University San Pablo-CEU (Madrid, Spain). His research interests include image processing, tomography,
multiresolution approaches, and electron microscopy.

About the author—M.D. LÓPEZ was born in Madrid (Spain, 1968) where she studied Mathematics (Astronomy and Geodesy). She has always been
related with the University and currently she holds a Lecturer position at the Polytechnical University of Madrid where she joined the research group:
Applied Mathematic to the Civil Engineering. Her research interests include: Image Processing, Applied Mathematics to the Engineering, Localization
and Computational Geometry.

About the author—J. RODRIGO was born in Madrid (Spain, 1967) where he studied Mathematics at the Autonoma University. He has always been related
with the University and currently he holds a Lecturer position at the Universidad Pontificia de Comillas (Madrid). He joined the research group: Applied
Mathematics to the Civil Engineering. His research interests include: Image Processing, Discrete Mathematics, Localization and Computational Geometry.


	Improved Bayesian image denoising based on wavelets with applications to electron microscopy
	Introduction
	The filtering procedure
	Improvement of the parameter estimation
	Method 1
	Method 2
	Method 3

	Relationship to Wiener filtering
	Results
	Simulated data
	Experimental data

	Discussion and conclusion
	Acknowledgements
	References


