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Resumen 
El procesamiento de imágenes es un caso 
particular del procesamiento de señales del cual la 
Ingeniería de Telecomunicación es quizás el 
mayor contribuyente. El procesamiento de 
imágenes está completamente permeado de 
técnicas matemáticas de mayor o menor 
complejidad utilizadas con el objetivo de resolver 
problemas relacionados con la reconstrucción y 
restauración de imágenes, extracción de bordes, 
modelado de formas, segmentación, registro, etc. 
Para ello se utilizan técnicas de análisis funcional, 
modelos estadísticos, optimización, ecuaciones en 
derivadas parciales, álgebra lineal, etc. En general 
es difícil encontrar un campo de la matemática 
que no haya sido utilizado para resolver cada uno 
de los problemas que aparecen en procesamiento 
de imágenes. Este artículo pretende introducir 
brevemente al lector en la importante fertilización 
cruzada que un problema como el procesamiento 
de imágenes ha tenido con las matemáticas. 
 
Palabras clave 
Procesado de imágenes, procesado de señales, 
matemática aplicada. 
 
Abstract 
Image processing is a particularization of signal 
processing of which Electrical Engineering is, 
maybe, the major contributor. Image processing is 
completely pervaded by more or less complex 
mathematical tools aimed at solving problems 
related to image reconstruction and restoration, 
boundary extraction, shape modeling, 
segmentation, registration, etc. For performing 
these tasks, mathematical tools are employed such 
as functional analysis, statistical models, 
optimization, partial differential equations, linear 

algebra, etc. In general, it is difficult to find a 
mathematical area that has not been used to solve 
each of the problems in image processing. This 
article briefly introduces the important cross-
fertilization between the image processing 
problems and mathematics in general. 

 
Keywords 
Image processing, signal processing, applied 
mathematics. 

1. Introduction 
Image processing is a challenging engineering 
topic aimed at solving many real-life problems by 
means of images. Applications range from 
intelligent road vehicles "looking" into the road 
for possible dangers [1], automatic fruit quality 
assessment [2], medical imaging non-invasively 
looking for tumors inside the body [3], or the 
determination of the structure of a 
macromolecular complex [4]. All these problems 
share the commonality of trying to solve the 
problem at hand by extracting features from the 
image such as borders, dimensions, distances, 
textures, shapes, etc. This is done with the help of 
a computer and an algorithm that effectively 
carries out the job. 
 
In general, all these tasks are grouped under a 
single name, image processing, which is no more 
than a particularization of a more general 
framework, signal processing. A signal can be 
mathematically modeled as a function 

. The two most widely used spaces 

for 

:u X Y→
X  are  and . If , we speak of 

"signal processing". If 

nR nZ 1n =
2n = , we speak of 

"image processing" and X∈r  represents the 
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]

spatial location at which a certain gray level or 
color is observed. For gray color images, Y  
represents the range of possible gray levels and is 
usually considered to be or 

 (where is the 

quantization step, and [

R
min max[ ,I IΔ ∩Z Δ∈R

]min max,I I ⊆ R  

represents the minimum and maximum levels of 
the image). For a color image, the function is 

usually of the kind 3: grayu X Y→  where grayY  

is the range for a gray image. A well-known color 
image code is the RGB (Red-Green-Blue) in 
which each of the components of 

 represents 

the intensity of a red light beam, a green light 
beam, and blue light beam, all of them superposed 
at the same point to produce a color.  

( ) ( ( ), ( ), ( ))red green blueu u u u=r r r r

R
R

 
Image processing addresses the problem of how to 
express image features like distances, textures, 
and borders in a mathematical way, and more 
importantly, how to detect them in a real image. A 
non-exhaustive list of image processing problems 
would comprise image denoising, image 
restoration, blind image deconvolution, image 
reconstruction, image enhancement, boundary 
extraction, shape modeling, image segmentation, 
image registration, motion analysis, volumes from 
images, feature recognition, etc. On the 
mathematical side, a list of techniques used would 
include functional analysis, statistical models, 
Monte Carlo simulations, optimization, partial 
differential equations, linear algebra, operator 
theory, graph theory, topology, differential 
geometry, discrete geometry, stochastic processes, 
set theory, level sets, fuzzy sets, fuzzy logic, etc. 
It would not be untrue to say that for any 
combination of mathematical tool and image 
processing problem there is at least 1 paper, and in 
most occasions, hundreds. A full coverage of the 
connection between applied mathematics and 
image processing would be out of the scope of a 
conference paper. The reader interested is referred 
to very good books in image processing such as 
[5-8]. Instead, in this short review, we show an 
example of imaging problem and how it involves 
many mathematical fields. In particular, we show 
the different approaches currently taken to denoise 

and restore images. For doing this, we need first to 
introduce the concepts of image observation 
model and image transforms. 

2. Image observation model 
The key step in many image processing problems 
is to state the way in which the image has been 
generated or degraded. This is called the image 
observation model. A very general model is the 
one given proposed in [6]. An ideal image 

 is transformed into an 

observed image  by linear and 
nonlinear transformations plus noise. 

2( ) :u →r R
2( ) :v →r R

 

( )

( )( )
2

1 2

( ) ( ) ( )

( ) ( ') ( , ')

( ) ( ) ( ) ( )

v g w

w u h d

f g w

ε

ε ε

= +

=

= +

∫
r r r

r r r r r

r r r
R

ε r

 (1) 

 
The linear transformation defined by 

 is usually used to 

represent some blurring. If  fulfills 

2 2( , ') :h × →r r R R R
h

( , ') ( ', )h h= −r r r r 0 , then it is said that the 
system is spatially invariant and the integral used 
to compute  becomes a convolution integral. 

 is a nonlinear function usually 
representing nonlinear darkening or whitening of 
the image gray level. 

w
:g →R R

( )ε r  is a random process 
(i.e., a collection of random variables) formed by 
the combination of other two independent random 
processes, one depending on the signal through 
two nonlinear transformations ( f  and ) and 

one linear ( h ). If the autocorrelation of the 
random process 

g

( )ε r  is ( )δ r  (the Dirac 
impulse distribution), then the noise is said to be 
white since its Power Spectrum Density is 
constant (as the one of white light)[9]. White 
noise implies that the noise added in one position 
is independent of the noise added in another 
position. This may not be the general case. 
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Figure 1 shows an ideal image, the image after 
linear blurring to simulate the effect of an electron 
microscope and the image after blurring and noise 
addition. 
 

 
 
Fig. 1. Left: Ideal projection of the bacteriorhodopsin 
[10]. Middle: Linear convolution to simulate the effect 
of an electron microscope [4]. Right: Ideal image 
linearly convolved and with noise added [4]. 

3. Image transforms 

The function  is assumed to belong to 

 (i.e., the space of all square integrable 
functions). The set of Dirac's delta functions is a 
basis of this space, and therefore  can be 
expressed as a linear combination of Dirac's delta 
functions, i.e., 

( )u r
2 ( )L R

( )u r

 

2

( ) ( ') ( ') 'u u δ= −∫r r r r
R

dr  (2) 

 
In fact, this is the base in which it is usually 
expressed. However, we can change the basis of 
this space. For instance, complex exponential 
functions are also a basis of this space, and the 
function  can be expressed as  ( )u r
 

2

, ,( ) ( ), j ju u e e= ∫ ω r ω rr r ω
R

d  (3) 

 

where 1j = −  and . 2∈ω R ,x y  

represents the dot product between vectors  and 

. For vectors in  it is computed in the usual 
way, and for functions it is computed as  

x
y nR

 

2

*( ), ( ) ( ) ( )x y x y= ∫r r r r
R

where *y  denotes the complex conjugate of . 

The projection of the function  onto each of 
the basis functions is called the Fourier transform 
of  . The Fourier Transform of a signal is 

denoted as 

y
( )u r

( )u r
{ }( )FT u r  or  and is 

defined as 

( )u ω

 

{ } ,( ) ( ) ( ), jFT u u u e= ω rr ω r  (5) 

 
The Fourier Transform represents nothing more 

than a change of basis in the space . Eq. 3 
is usually referred to as the Inverse Fourier 

Transform and is denoted by 

2 ( )L R

{ }1 ( )FT u− ω . 

 
The Fourier transform is not the only possible 
change of basis. In fact, recently the wavelet 
transform and other similar transforms (like the 
wavelet packets and the local cosine bases) [11] 
have been paid very much attention due to some 
desirable properties of the transformed image. In 
brief, 1D wavelet functions are functions 

:ψ →R R  that have the property that the set 
of dilated and shifted versions of ψ  can also 

span , i.e.,  2 ( )L R
 

2
, , ,( ) ( ), ( ) ( )a b a b a bu r C u r r r dadbψ ψ= ∫

R

 
(6) 

where 
 

,
1( )a b

r br
a a

ψ ψ −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (7) 

and  is some suitable constant depending on 

 and . This is called the continuous wavelet 
transform since parameters  and can take any 
real value. The extension to several dimensions is 
performed by tensor product in each of the 
directions. 

,a bC
a b

a b

 
dr  (4) 

However, this representation is overcomplete in 
the sense that there are many more , ( )a b rψ  than 
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needed to construct a basis of . 
Alternatively, the continuous wavelet transform 
can be discretized so that parameters  and b  
are not continuous parameters but discrete ones. It 
can be shown that signal can be decomposed 
as 

2 ( )L R

a

( )u r

 

2
, ,

( , )

( ) ( ), ( ) ( )i s i s
i s

u r u r r rψ ψ
∈

= ∑
Z

 
(8) 

where  
 

,
1 2( )

22

s

i s ss

r irψ ψ
⎛ ⎞−

= ⎜
⎝ ⎠

⎟  (9) 

 
Coefficients ,( ), ( )i su r rψ  are referred to as the 

Discrete Wavelet Transform (DWT) of the 
function  and are generally denoted as  ( )u r
 

{ } ,( ) ( , ) ( ), ( )i sDWT u r u i s u r rψ=  (10) 

 
A wavelet decomposition is orthonormal if 
 

, ', '( ), ( ) ( ') ( ')i s i sr r i i sψ ψ δ δ s= − −  (11) 

 
Orthonormal wavelets really constitute a basis of 

 and, therefore, efficiently transform the 
signal content. 

2 ( )L R

 
The wavelet decomposition of a multidimensional 
signal, as is the case of an image, the 
multidimensional wavelet function is formed by 
the tensor multiplication of 1D wavelet functions 
[5]. The 2D wavelet transform of an image has 
four parameters: two location parameters 

( ), 1 scale parameter ( ), and 1 

orientation parameter (

2∈i Z s∈Z
{ }, , ,l lh hl hh∈o l ) 

that accounts for how the tensor product was 
performed. In this paper, the 2D wavelet function 
of an image will be referred to as  where 

. 

( , )u i s
( )ts o=s

4. Image denoising and restoration 
Approaches to image denoising usually assume a 
simplified image formation model such as 

( ) ( ) ( ) ( )v u h ε= ∗ +r r r r  and aim at 

estimating  (we will refer to the estimate as 

). Most of the times, the different 
techniques need to make some assumptions about 
the nature of 

( )u r
ˆ( )u r

( )ε r , the most common one that it 
is white Gaussian noise of zero mean and constant 
standard deviation. The different techniques for 
estimating  involve tools and formulations 
from different mathematical fields. In this paper 
we discuss the most popular ones, although the 
number of image denoising and image restoration 
algorithms is huge. 

( )u r

4.1. Transform based approaches 

One of the most widely used techniques to image 
denoising is based on filtering its Fourier 
transform. The assumption behind this technique 
is that the Fourier transform of the image  is 

bandlimited (i.e., 

( )u r
( ) 0u =ω  for maxω>ω  

and maxω ∈R ). Considering a simplified model 

( ) ( ) ( )v u ε= +r r r , and taking into account 
that the Fourier transform is a linear operation, 
i.e., ( ) ( ) ( )v u ε= +ω ω ω , any value of 

 different from zero beyond ( )v ω maxω  must 
come from the noise term. Hence, a simple way of 
removing some noise from the image is by setting 
to zero all  values beyond ( )v ω maxω . This is 
known as low-pass filtering [5]. Defining a 
denoising function  
 

max

max

1
( )

0
g

ω
ω

⎧ ≤⎪= ⎨ >⎪⎩

ω
ω

ω
, (12) 

low pass filtering can be performed as 
 

{ }1ˆ( ) ( ) ( )u TF g v−=r ω ω  (13) 
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In practice, the design of function  is not 
so simple because our current design introduces 
artifacts in the image due to the avoidable 

discontinuity at 

( )g ω

maxω=ω . The design of 

suitable continuous functions  is an active 
research topic and many solutions have been 
proposed. The reader interested is referred to [5]. 

( )g ω

 
Image denoising can also be performed in other 
transformed spaces. For instance, it has been 
observed that in the wavelet space, signal 
coefficients tend to be larger than noise 
coefficients. Thus, a possible way to remove noise 
is by setting to zero the small wavelet coefficients 
of . Defining the denoising function ( , )v i s
 

min

min

( )
0
v v v

g v
v v
≥⎧

= ⎨ <⎩
, (14) 

image denoising can be performed as 
 

{ }1ˆ( ) ( ( , ))u DWT g v−=r i s

r

 (15) 

 
This denoising strategy is called hard 
thresholding. Current research on this kind of 
denoising is focused in the selection of function 

 and the threshold . The reader 
interested is referred to [5]. 

( )g v minv

 
The most common Fourier transform based 
approach to image restoration assumes an image 
observation model given by . 
Under these circumstances, it can be proved that 

. Hence, a possible image 
restoration method would be simply dividing the 
Fourier transform of the observed image by the 
Fourier transform of the linear degradation 
function, i.e., 

( ) ( ) ( )v u h= ∗r r

( ) ( ) ( )v u h=ω ω ω

 

1 ( )ˆ( )
( )

vu FT
h

− ⎧ ⎫
= ⎨ ⎬

⎩ ⎭

ωr
ω

 (16) 

 

This is fine as far as , otherwise a 
different method must be employed since the 
division by zero would infinitely amplify the noise 
at that frequency. 

( ) 0h ≠ω

4.2. Wiener filtering: an ideal statistical 
approach for restoration 

Another famous approach to image restoration is 
the Wiener filtering which minimizes the variance 
of the estimate error [6] 
 

( ){ }2*ˆ ( ) arg min ( ) ( )u E û u= −r r r , (17) 

where {}E ⋅  denotes the expectation operator, 

and it is assumed that the additive noise is a zero-
mean random process. It is well-known that the 
solution of this optimization problem is  
 

{ }*ˆ ( ) ( ) |u E u=r r v

| )

 (18) 

i.e., the conditional expectation of given the 
whole observation v . However, computing this 
expectation is difficult in general since it is a 
nonlinear equation and because the probability 
distribution 

( )u r

( ( )f u r v

dr

 is difficult to calculate. 
Here is where some assumptions are made about 
the a priori noise model (which allows for 
computing the a posteriori probabilities needed). 
A further simplification impose that the best 
estimate can be computed by linear filtering the 
observed image 
 

2

*ˆ ( ) ( ') ( , ')u v g= ∫r r r r
R

 (19) 

and the problem now moves on how to design a 
good linear filter . It can be proved [12] that the 
linear space-invariant solution of this problem is 

g

 
*

2

( )( ) 1( )
( )

hg
h

SNR

=
+

ωω
ω

ω

, 
(20) 
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where  denotes the complex conjugate of , 
and  is the Signal-to-Noise Ratio 
(SNR) at frequency ω  defined as 

*h h
( )SNR ω

 
2

2

( )
( )

( )

u
SNR

ε
=

ω
ω

ω
, (21) 

 
None of the quantities involved in the SNR are 
known, and they have to be estimated from the 
data itself. This is one of the main drawbacks of 
the Wiener filter as a practical filter. Despite this 
problem, Wiener filters are one of the most widely 
used techniques for image restoration and 
denoising. 

4.3. Variational approaches 

The total variation of a continuously differentiable 

function  in an open-

bounded set Ω  is defined as 

( ) : nu ⊇Ω→r R R

 

1 ( , )
| ( )| 1

( ) ( )

sup ( ) ( )
m

cw C
w

V u u

u w

Ω
Ω

∈ Ω Ω
≤ ∀ ∈Ω

= ∇

= ∇⋅

∫

∫
r r

r

r r
R

dr

 

(22) 

where  is the set of all continuously 
differentiable scalar functions with a compact 
support contained in . The total variation 
measures the variability of function u  within 
some region . Variational approaches to image 
denoising minimize the variation of the restored 
function as long as the restored function is 
compatible with the data. In some way, this 
approach is similar to the maximum entropy one 
except that the functional to be optimized is 
different [13, 14] 

1( , )cC Ω R

Ω

Ω

 
*

2 2

ˆ ˆ( ) arg min ( )

ˆ. . ( ) ( )

ˆ( ( ) ( )) 0

u V u

s t v u

v u d
εσ

Ω

=

− =

− =∫

r

r r

r r r

 
(23) 

 

The norm in this case is the usual norm in 2L , 

i.e., 
2 2( ) ( )f f d

Ω

= ∫r r r . 

This optimization problem is solved in the space 
of functions with bounded variations since they 
allow for regular solutions as well as for solutions 
with sharp edges. The bounded variation 
functional space is defined as  
 

{ }1( ) : ( )BV u L V u= ∈ <r ∞  (24) 

 
The Euler-Lagrange equation associated to this 
problem is [14] 
 

1 2

ˆ ˆ, ,
ˆ( )

ˆ ˆ
u x u y

u v
x u y u

λ λ
⎛ ⎞ ⎛ ⎞∇ ∇∂ ∂ 0+ − − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∇ ∂ ∇⎝ ⎠ ⎝ ⎠

 
(25) 

which needs now to be solved numerically. 
 
The variational approach can also be used for 
image restoration. For instance, assuming a linear 
convolution blurring, the corresponding 
variational problem would be [13] 
 

*

2 2

ˆ ˆ( ) arg min ( )

ˆ. . ( ) ( ) ( )

u V u

s t v h u εσ

=

− ∗ =

r

r r r
 (26) 

 
The total variation can be generalized to any 
convex, positively one-homogeneous function that 

is 0 at the origin, ,  : nφ →R R
 

( )( ) ( )V u uφΩ
Ω

= ∇∫ r  (27) 

 
φ  can be made anisotropic giving raise to whole 
plethora of anisotropic diffusion algorithms. In 
general, all the variational approaches boil down 
to a partial differential equation that needs to be 
solved numerically. 
 
A different kind of variational approaches try to 
approximate the underlying continuous function 

 from observed noisy samples . The 
idea is to find a smooth function that 

( )u r ( )iv r
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approximates well the observed samples and at the 
same time is smooth. The smoothness measure 
provides the variational approach, while the 
fidelity to the observed data (in the previous 
examples treated as tight constraints) is handled as 
a soft constraint. The fact that the smooth function 
is not forced to pass through all observed 
measurements is supposed to be able to remove 
noise. The functional to minimize is 
 

2 2*ˆ ˆ( ) arg min ( ) ( ) ( )p
i i

i

u D u d vλ
Ω

= + ∑∫r r r r û− r (28) 

where λ  is a user-provided parameter,  is 
the vector of all derivatives of order . It is 

well-known that for , the solution is of the 
form [15] 

pD
p

2p =

 

( )*ˆ ( ) ( )i i
i

u w g= − +∑r r r l r  (29) 

where  is a polynomial of degree 1 lying in 
the kernel of the smoothness seminorm, i.e., 

, 

( )l r

2 ( ) 0D l =r { }iw   is a collection of weights 

to be determined, and  (this 
function is also known as a thin-plate spline). 
Although we already know the form of the 
solution, we still have to determine the weights 

 and the polynomial 

coefficients. Let  be a basis of the kernel of 

 (e.g., monomials in 

2( ) logg r r r=

( 1 2 ... tw w=w

 

)
iq

2D x  and ), the 
polynomial can then be expressed as 

. Let us define the vector of 

polynomial coefficients 

y

1

0
( ) ( )

p

i i
i

l l q
−

=

= ∑r r

( )1 2 ... tl l=l . The 

determination of vectors l  and  is done with 
the help of a linear system of equations. Let 

w
B  

be a matrix such that ( )ij i jb g= −r r , Q be 

a matrix such that . Let  be a 

vector with all the observed values. Then, the 
linear equation system given by  

( )ij i jq q= r

⎛ ⎞
⎜ ⎟
⎝ ⎠

v

0t

B I Q
Q
λ+⎛ ⎞⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

w v
l 0

, (30) 

gives the solution to the smoothing problem (i.e., 
denoising) here defined [16]. 

4.4. Algebraic approaches 

If the support of the image  is a finite subset 

of , then  can be represented as vector 
simply by lexicographically writing its 
components. In these conditions, it can be proved 
that the convolution with  can be computed as a 
matrix multiplication by the appropriate block-
Toeplitz matrix 

( )u r
2Z ( )u r

h

H [12]. Hence, the simplified 
image formation model can be expressed as 
 

H= +v u ε , (31) 

 
Many matrix approaches can be followed now. 
Some of them are based on the minimization of a 
certain functional. Some others are based on some 
"reasonable" iterative algorithm that has been later 
proved to converge to a desired solution. 
 
The image denoising and restoration problem can 
be expressed in matrix form as 
 

2*

2 2

ˆ ˆarg min

ˆ. .

W

s t H ε

=

− ≤

u u

v u
, (32) 

where  is a weight matrix. This problem 
formulation is known as the Tikhonov-Miller 
regularization. The solution of this optimization 
problem is the solution of the equation system [6] 

W

 

( )

* 1

212 1

ˆ ( )

( )

t t t

t t

W W H H H

H W W H I

γ

γ γ

−

−−

= +

2 0ε+ − =

u v

v

 

(33) 

 
If there is no blurring ( H I= ), and W  is 
computed from a discrete version of the 
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u

Laplacian, then the equation system is a two-
dimensional version of a smoothing spline [6]. 
 
If the image formation model is further simplified 
to , then the restored image could be 
found as the solution of the least-squares (LS) 
problem 

H=v

 
2*ˆ ˆarg min H= −u v u  (34) 

 
It is well-known that the solution of this LS 
problem uses the pseudoinverse of H  
 

* 1ˆ ( )t tH H H H+ −= =u v v

t

 (35) 

 
Some of the algebraic solutions proposed for the 
denoising/restoration problem make use of 
iterative equations that look reasonable and, later 
proving, that they converge to a solution having 
some desirable properties. This is the case of the 
Landweber or van Cittert iterative equation [12] 
 

(0)

( ) ( 1)

ˆ
ˆ ˆ( )t I H

α

α α −

=

= + −

u v
u v u

 (36) 

 
If there is no noise, this recursive equation can be 
shown to converge to  
 

* 1ˆ H −=u v  (37) 

 
This is the matrix homolog of the division by 

 presented at the end of Section 4.1. 

Hence, the inverse of matrix 

( )h ω
H  does not exist if 

the Fourier transform of  contain zeros. 
Alternatively, the iterative step may be changed to  

( )h r

 
( ) ( 1) * ( 1)ˆ ˆ ˆ( )t t tH Hα−= + −u u v u −  (38) 

which is known to converge to the pseudoinverse 
solution [12]. 
. 

4.5. Maximum entropy: an information 
theoretic approach 

Coming back to the matrix image observation 
model H= +v u ε , the image can be restored 
in a maximum entropy sense. Entropy is a 
measure of the information provided by a 
probability distribution. For a discrete distribution 

, the entropy  is defined as p ( )H p
 

1( ) logi
i i

H p p
p

=∑  (39) 

where ip  range over all the probabilities defined 
by the probability distribution [6]. Considering the 
restored image as a probability distribution, one 
way to find the restored image is by searching for 
the image providing maximum information and 
that is compatible with the observed 
measurements 
 

2* 21ˆ ˆ ˆarg max ( ) . .
2

H s t H εσ= − =u u v u  (40) 

for some specified 2
εσ . The solution of this 

problem is the solution of the equation [6] 
 

( )* *ˆ ˆexp 1 ( )tH Hλ= − − −u v u  (41) 

where λ  is the Lagrange multiplier so that the 

constraint 
2 21 ˆ

2
H εσ− =v u  is met. 

4.6. Conclusions 

As has been shown in this paper, image 
processing, and in general, signal processing is a 
fertile application field in which many 
mathematical tools find their way to applications. 
In fact, in many applications it is difficult to 
delineate the difference between applied 
mathematics and signal processing. In the 
example presented, image denoising and 
restoration, we have shown that different solutions 
come from very different mathematical 
perspectives. There is none that can be considered 
absolutely better than the rest, and usually which 
is the best technique depends on the data at hand. 
We hope that this paper encourage 
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mathematicians looking for applied fields, as well 
as practitioners looking for a more grounded 
algorithms. 
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