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Volumetric restrictions in single particle 3DEM reconstruction
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Abstract

3D electron microscopy aims at the reconstruction of density volumes corresponding to the electrostatic potential distribution of macro-
molecules. There are many factors limiting the resolution achievable when this technique is applied to biological macromolecules: microscope
imperfections, molecule flexibility, lack of projections from certain directions, unknown angular distribution, noise, etc. In this communication
we explore the quality gain in the reconstruction by including a priori knowledge such as particle symmetry, occupied volume, known surface
relief, density nonnegativity and similarity to a known volume in order to improve the quality of the reconstruction. If the reconstruction is
represented as a series expansion, such constraints can be expressed by set of equations that the expansion coefficients must satisfy. In this
work, these equation sets are specified and combined in a novel way with the ART + blobs reconstruction algorithm. The effect of each one
on the reconstruction of a realistic phantom is explored. Finally, the application of these restrictions to 3D reconstructions from experimental
data are studied.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

3D electron microscopy (3DEM) is a powerful technique for
structural studies of biological macromolecules due to the wide
range of specimens that can be addressed. One of the biggest
challenges in 3DEM lies in the area of “single particles” (spec-
imens with low or no symmetry) where results worse than
6 Å resolution seem to be the best currently achievable [1–6].
Therefore, there are ongoing research activities to identify the
limitations of the current methodologies and to introduce im-
provements in the experimental and computational procedures.
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One of these is the investigation of how one can introduce a
priori information about the specimen to restrict the possible
set of solutions and, thus, increase the reconstruction quality.

For example, Zheng et al. [7] studied the incorporation of
several a priori constraints into the estimation of the autocorre-
lation function of the 3D structure of crystallized virus capsids.
They translated constraints with physical meaning such as
icosahedral symmetry, bounded support (the virus was assumed
to fit within a known spherical shell) and nonnegativity into
information used during interpolation in Fourier space. Two
technical constraints were also considered: real-valuedness (the
autocorrelation of a real function is real-valued) and invertibility
(the autocorrelation of a real function is even). They performed
the constrained interpolation by expanding the autocorrela-
tion function into a series of icosahedral harmonics. However,
this approach cannot be directly applied to single particles in
3DEM. First of all, the interpolation is for the autocorrelation
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function and not for the particle volume. Further, the support
constraint assumed that the virus capsid was fully contained in
a spherical shell, rather than a general mask, potentially repre-
senting a surface relief more accurately. Finally, micrographs
of crystallized specimen yield relatively clean Fourier images
and, therefore, interpolation can be carried out safely. This is
not the case in single particle 3DEM, where the signal-to-noise
ratio may be as low as 1

3 .
In this work, we propose the incorporation of a priori in-

formation into the ART + blobs process [8] in a nonlinear
and adaptive way. Particularly, support (with complicated sur-
face reliefs), density nonnegativity, total mass, similarity to a
known volume and symmetry are considered. This kind of a
priori constraints are easily expressed in real space. In this way,
starting from the well-known ART reconstruction algorithm,
we have defined a new constrained reconstruction algorithm
incorporating a priori information. ART is a linear equation
solving algorithm that treats the tomographic problem as a fea-
sibility problem, i.e., finding a volume that is feasible consid-
ering that it must be near to all the hyperplanes defined by each
of the projection pixels. In this work, we show how to solve
the constrained tomographic problem in the same mathemati-
cal framework using a very simple modification of the tomo-
graphic equation set. Alternatively, the constrained tomographic
problem might have been expressed as a series of feasibility
problems associated with each of the constraints, as has been
previously presented in the context of Projection Onto Con-
vex Sets (POCS) by Carazo [9], Sezan and Stark [10], Stark
and Peng [11] and Yeh and Stark [12]. Note, however, that the
method proposed here allows for the incorporation of noncon-
vex constraints (like total mass), extending in this way previous
works. Another difference with the previous POCS approach is
that in the proposed algorithm the constraints are applied while
the volume is being reconstructed instead of waiting to the end
of the reconstruction step.

2. Materials and methods

Block-ART with blobs [8] is a series-expansion reconstruc-
tion algorithm that assumes that the volume to be reconstructed
f (r) (r ∈ R3 is the point at which the volume is evaluated)
can be expressed as a linear combination of a set of basis func-
tions obtained by shifting a fixed function b(r) to fixed points
rj ∈ R3 in space. The set of fixed points is called a grid and
they can be obtained as rj = gzj , where the zj come from a
subset of Z3. For this work a generalized Kaiser–Bessel win-
dow function (also known as blob) [13] has been used as the
b(r), and

f (r) =
J∑

j=1

xj · b(r − rj ). (1)

Both, the blob’s shape and the grid are fixed and the unknowns
are the coefficients xj . Given this volume representation it is
easy to calculate the ideal projection (line integrals along lines
perpendicular to the projection plane). This is because the in-
tegration can be brought inside the summation and can be

analytically evaluated for the known blob b and the grid point
rj . In this way, the projection can be simply calculated as a
weighted sum over the blob coefficients xj . If the projection
direction is specified by a vector �� ∈ S2 (S2 is the unit sphere in
R3), and � is the in-plane rotation, then the projection operation
can be written in a matrix form as

y ��,� = P ��,�x, (2)

where y ��,� is a vector formed by all the pixel values of the ex-
perimental projection in the direction �� and with an in-plane
rotation �, P ��,� is the projection matrix and x is the vector of
all blob coefficients. The (i, j)th element of the matrix P ��,�
represents the projection of the blob j onto the pixel i. There-
fore, this matrix has as many columns as there are blobs in
the volume, and as many rows as there are pixels in the pro-
jection. When several projections are available, then all pixel
values are stacked in a single vector, y, and the projection op-
erator becomes a block matrix, P , whose blocks are the P ��,�
previously introduced. Finally, the experimental projection set
poses an equation system described by

y = P x. (3)

In this paper we discuss, in addition to Eq. (3) that arise
from measurements, additional equations that arise from prior
knowledge. Such prior knowledge will be of the form that f (r)
has values at particular points r ∈ R3 that are similar to given
values. Typically, such points form the whole or a subset of a
simple cubic grid over R3 (i.e., a set of voxel centers). Using
(1), this leads to additional equations of the form

w = V x, (4)

in which the ith equation expresses the fact that the recon-
structed volume should have a value similar to wi at a point
r (the entries in the matrix V in the ith row are of the form
b(r − rj ), for j = 1, . . . , J ).

We solve such equation systems using a variant of block-ART
[14]. This algorithm produces a sequence of iterates {x(n)}∞n=0,
each one defining a volume using our volume representation.

A decision that one has to make is the choice of the initial
vector x(0). It is known that ART-type reconstruction algorithms
tend to minimize the distance from the initial vector x(0) while
searching for a solution of Eq. (3) [15]. Usually a zero-valued
initial vector is provided as the starting point to the iterative al-
gorithm. This initial guess expresses our uncertainty about the
correct reconstructed volume and tends to minimize the vari-
ance of the resulting reconstruction. However, there are many
situations where a reasonable approximation to the desired
reconstruction is available at voxel centers. This approximation
can be used as starting point for the ART iterations. This was
already done in Ref. [15]. However, our volumes are expressed
in blobs and some translation is needed to convert a voxel
volume approximation into a blob volume. To obtain x(0) we
make use of Eq. (1). Each of the values of f (r) at a voxel cen-
ter r provides us with a single instance of this equation, and the



618 C.O.S. Sorzano et al. / Pattern Recognition 41 (2008) 616–626

collection for all the voxel centers will result in a system of
equations, as in Eq. (4), which can then be solved to obtain x(0).
Below we report on results using both of the above-mentioned
choices for x(0).

Having chosen x(0), each iterate is calculated after present-
ing a subset (block) of the equation system (3) to the algo-
rithm by

x̃
(n)
j = x

(n)
j + �

N
(n)
j

∑
l∈K

(n)
j

yl − 〈pl , x(n)〉
‖pl‖2 pl,j , (5)

where x(n) represents the vector x at iteration n and x
(n)
j its j th

element, pl is the transpose of the lth row of P , K
(n)
j is the set

of row indices within the block considered at iteration n such
that the (l, j)th element of P is not null, N

(n)
j is the cardinality

of K
(n)
j (in practice, it is never zero), � is a relaxation factor,

yl is the lth measurement and x̃
(n)
j is the j th element of an

auxiliary vector representing a volume in blobs.
Without taking into consideration additional constraints on

the volume to be reconstructed, x̃(n) would in fact be taken as
the next iterate. The subject matter of our paper is the introduc-
tion of volumetric restrictions into the iterative process. This
is done by making use of Eq. (4), obtained as follows. Each
volumetric constraint that we discuss below gives rise to a sub-
set � of the set of voxel centers and a value w, both of which
may depend on x̃(n). The collection of such constraints will
give rise to a system of equations (4), in the manner discussed
above (4), which is then treated as a single block of additional
equations to obtain x(n+1) by a single application of a step, as
in Eq. (5), to x̃(n). (We remark that this way of proceeding is
a bit of an overkill: the constraints (4) are repeatedly applied
after every use of a single block of data. It is a reasonable al-
ternative to apply the constraints (4) only after all the equa-
tion in Eq. (3) have been treated; and we indeed report below
that this alternate way of proceeding usually does not make
a significant difference, although there is a single exception
to this.)

We now discuss how prior constraints such as surface re-
lief, symmetry, density nonnegativity and total mass can be ex-
pressed using this approach. In any application, one can use all,
or some, or none of these constraints; the experiments reported
below will illustrate this.

2.1. Surface relief

There exist experimental microscopy techniques that produce
an image of the surface of a protein, such as metal shadowing
[16] or atomic force microscopy [17]. Such surface information
can be used to produce a mask, outside which the volume should
be zero-valued (see Fig. 1). Furthermore, such a mask can also
be obtained by application to x̃(n), for selected n’s, nonlinear
image processing methods such as thresholding, segmentation,
connected component extraction and mathematical morphology
[18]. Such information is modeled by setting wi to 0 for those
voxel centers ri that are not within the mask.

Fig. 1. Top: example of surface constraint: outside the mask shown, the volume
must be zero-valued. Bottom: During the reconstruction, this knowledge
translates into a new equation set that the blob coefficients must also satisfy.
At each point outside the mask, the sum of all the blobs must be zero.

2.2. Symmetry

The classical way of imposing symmetry in a 3DEM re-
construction is either by symmetrizing the output volume at
the end of the reconstruction process or by replicating the
experimental projections with different angular assignments.
However, volumetric constraints allow us to impose symmetry
during the reconstruction process itself. In this case, � is the
set of all voxel centers and, for any voxel center ri , wi is the
estimated average of the f (r) values that are provided by x̃(n)

at all those points r that are symmetrically related to ri .

2.3. Total mass

Experimentalists can determine the molecular weight of the
complex under study via biochemical experiments or some es-
timation based on the protein aminoacid-sequence length and
composition. Given the image sampling rate, this weight can
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easily be translated into an estimated number of voxels that the
reconstructed volume should occupy, i.e., the number of voxels
that are not zero-valued is fixed by the mass of the particle. In
fact, this is the most used criterion in the field for segmenting
reconstructions. Let us define t be the threshold such that the
total mass of the voxels centered at ri , whose value f (ri ) based
on x̃(n) is not less than t , is the desired mass m. This leads to
constraints given by wi = 0 at voxel centers ri in �mass = {ri :
f (ri ) < t} and c(�mass) = m, where c(A) is the cardinality of
the set A, and A is the complement of A.

2.4. Density nonnegativity

In principle, the reconstructed volume corresponds to an
electrostatic potential density estimate of the protein under
study. Image normalization procedures guarantee that the vol-
ume density at all points should be nonnegative if there were no
aberration introduced by the microscope [19]. However, the
contrast transfer function (CTF) of the microscope introduces
contrast modulations changing the sign of the Fourier transform
at specific frequencies. Therefore, in the absence of ideal CTF-
correction, the density nonnegativity would only be an approx-
imate constraint. Still, the results presented in Ref. [19] and the
ones in this work indicate that in spite of the practical viola-
tion of this constraint, the final result gets better when this con-
straint is imposed. Furthermore, since a large amount of noise
is present in the experimental projections, it may turn out that,
even with ideal normalizations and CTF corrections, for certain
positions r, the f (r) that corresponds to x̃(n) has negative val-
ues. To force these negative values towards zero, we use wi =0
for the voxel centers ri in the set �nonneg = {ri : f (ri ) < 0},
and introduce the corresponding equation into Eq. (4).

3. Results

To test the efficacy of the proposed constraints, experiments
were carried out. The first set of experiments explored all
constraints independently to check the utility of each one.
Then, these constraints were tested on the reconstruction of
the DnaB–DnaC complex [20].

3.1. Application to simulated data

In order to quantitatively assess the utility of each restric-
tion, simulation experiments were carried out. We started from
a realistic phantom based on the protein data base (PDB) entry
1BRD, namely the bacteriorhodopsin [21], see Fig. 2. Projec-
tions were taken from this phantom and Gaussian white noise
was added to the projections. Furthermore, noise was added
to the Euler angles describing the projection direction and the
projection center was shifted randomly. Then the reconstruc-
tion algorithm with the constraint under study was applied. To
compute the number of iterations we followed the strategy pro-
posed by Marabini et al. [8] and Sorzano et al. [22]. Finally, the
reconstructed volume was compared with the phantom using
objective figures of merit (FOM). The analysis of these nu-
merical observers helped us to assess the utility of each one

of the constraints. We performed three different experiments
with this protein. In the first and second, the capability of the
volumetric constraints to improve the reconstruction quality
was explored with a medium (1000) and a large number of
images (10,000). In the third experiment, volumetric constraints
were applied to a single axis tomography problem as a possible
way to fill information within the missing wedge. In the first
two cases, the algorithm was stopped after cycling through the
data exactly once, for the third case 500 iterative steps were
used.

3.1.1. Experiment with a medium number of images
A thousand projection images were simulated from an atomic

model of bacteriorhodopsin whose resolution was lowered
down to 7 Å. The collection geometry was randomly chosen
(uniform distribution in all angles) with a maximum tilt angle
of 60◦. Noise was added to obtain a signal-to-noise ratio of 1

3 .
A random number with a Gaussian distribution with zero mean
and standard deviation equal to 5◦ was added to each one of the
three Euler angles. The projection center was shifted randomly
in X and Y directions with zero mean and a standard deviation
of 2 pixels. The relaxation factor of ART was optimized for
this data collection geometry following Ref. [22] and its opti-
mal region was found to be between 0.05 and 0.07. For this
reason, the relaxation parameter was picked randomly from
this interval for each one of the reconstructions performed.
(The same relaxation parameter was used when dealing with a
block of Eq. (3) and when dealing with the constraints (4).)

We compared the benefits obtained by each constraint inde-
pendently and with all restrictions applied at the same time.
For our pixel size (3.5 Å/pixel), 100% of the bacteriorhodopsin
occupied 26,000 voxels, so the total volume of the recon-
struction, when the total volume restriction was applied, was
limited to 40,000 voxels. The surface for the support constraint
was computed by dilating the surface enclosing the 100% of
the mass of the bacteriorhodopsin phantom with a 2 × 2 × 2
cube as structuring element. This surface limited the number of
voxels to 48,000 (note that when the surface constraint is used
in combination with the total mass constraint only the 40,000
voxels within the known surface with highest values are left).
The phantom was filtered to 40 Å and this volume was pro-
vided as the starting point to ART when similarity to known
volume was considered. The symmetry constraint imposed a
3-fold symmetry around a rotational axis passing through the
center of the channel formed by the seven monomers.

Thirty reconstructions with each of these constraints were
performed. We measured the correlation between the recon-
struction and the phantom. Fig. 3 represents the correlation val-
ues obtained for each constraint. These values were statistically
different from each other with a confidence of 99%. The av-
erage resolution (measured by Fourier shell correlation (FSC)
[23, Chapter 5] at a threshold of 0.5) of the 30 reconstruction
without constraints is 24.85 ± 0.88 and for the 30 reconstruc-
tions with all constraints 18.27 ± 0.42 (the difference in reso-
lution is significant with a confidence higher than 99%). This
resolution estimation was performed comparing the recon-
structed volume to the bacteriorhodopsin phantom.
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Fig. 2. Isosurface containing 100% of the bacteriorhodopsin mass for the atomic phantom from PDB.

Fig. 3. Plot of the dependence of the correlation between the reconstruction and the phantom for different sets of constraints. The plotted line is a square
distance fit to the data as described in Ref. [29].

Since similarity to a known volume seems to be the most
informative a priori information, we performed an extra ex-
periment to test how much the results in Fig. 3 depend on the
quality of the initial volume. White, Gaussian noise with zero
mean and standard deviation � was added to the phantom vol-
ume before filtering it to 40 Å. While � was below 0.2, the
results applying similarity to known volume were similar to

the ones when the noiseless filtered phantom was supplied (see
Fig. 3). With increasing � the results deteriorated. At � = 0.3,
the results were similar to the results of “All but similarity”
in Fig. 3. At � = 0.4 and 0.5, the results were similar to the
ones with symmetry constraints. Finally, at � = 0.6, supply-
ing an initial noisy volume was comparable to using a surface
constraint.
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We further tested the applicability of the volumetric
constraints when a CTF is present. The following CTF
parameters were used: sampling rate = 3.5 Å/pixel, ac-
celerating voltage = 200 kV, defocus = −6000 Å, spher-
ical aberration coefficient = 20 mm, chromatic aberration
coefficient = 6.44 mm, energy loss = 0.024, longitudinal
displacement=21.3, traversal displacement=3.77 and fraction
of multiply scattered electrons=0.36 [24]. When all constraints
but similarity were applied, the achieved resolution in the 30
experiments was 22.4 ± 0.64 Å, while the resolution when no
constraint was used was 32.3 ± 1.13 Å. The rest of the results
for the constraints alone were 28.0 Å when the initial volume
was provided or symmetry constraints were used, 29.9 Å for
the mass constraint and 31.0 Å for the nonnegativity con-
straint. The resolution achieved when any of these constraints
was used was significantly different from the case where no
constraints were used. However, the resolution achieved by
the surface constraint (32.1 Å) was not significantly different
from the case with no constraint. It is interesting to note that
there was no statistical difference between applying the sym-
metry via volumetric constraints or via considering the same
projections from symmetric projection directions.

As it has been previously commented, the CTF introduces
sign changes in the images that invalidates the strict application
of nonnegative constraints. However, the application of this
constraint has been shown in the previous paragraph and in
Ref. [19] to still produce better reconstructions with statistical
significance. The first zero of the CTF was at 12.54 Å. To check

Fig. 4. Different views of the isosurface containing 100% of the bacteriorhodopsin mass for the volume reconstructed without constraints (solid) and with all
volumetric constraints but similarity (wire).

to what extent a correction for the CTF could improve the re-
sults, images were CTF-corrected by phase flipping. However,
no significant change was observed in the final reconstructions,
except if, additionally, the symmetry constraint was applied,
in which case the resolution was marginally, but significantly,
improved by 2 Å with respect to the reconstruction performed
with symmetry constraint but no CTF correction. We observed
no statistical difference between applying symmetry as a volu-
metric constraint and applying symmetry simply by repeating
the experimental views with their symmetric equivalent angles.

In the previous experiments, for each reconstruction with
each constraint a new set of projections with a different noise
realization was generated. In order to compare results when
the different constraints were applied to the same projection
set, reconstructions were performed applying the different con-
straints to the same projection data. Fig. 4 shows the resulting
volumes without constraints and with all the constraints except
similarity, which is less likely to be available in an experimen-
tal setup. Fig. 5 represents the achieved resolution (measured
by FSC with the bacteriorhodopsin phantom) when every con-
straint is applied separately, when none is applied and when
all are applied. This experiment was repeated several times
observing always the same behavior. The improvement in res-
olution is about 7 Å (from 26 to 19 Å) in the example shown.
Fig. 6 shows the volumetric spectral signal-to-noise ratio
(VSSNR) [25] for the reconstruction performed without con-
straints and the reconstruction performed with all constraints
except similarity to a known volume. The VSSNR is a volume
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Fig. 5. Fourier shell correlation of the reconstructions obtained after applying the different constraints.

Fig. 6. Left: isosurface of the VSSNR at SSNR=1 of the reconstruction performed without constraints (wire) and the reconstruction with volumetric constraints
(all constraints but similarity) (solid). It can be seen that the one with constraints outperforms the one without constraints at most directions in Fourier
space. Right: we have removed some of the rendered planes of the VSSNR to better show that the improvement is larger in the missing cone where the
reconstruction without constraints has a vertical-direction resolution of 37.3 Å, while the reconstruction with constraints has a resolution of 28 Å. The VSSNR
of the reconstruction without constraints is now represented by the wireframe, and the VSSNR of the reconstruction with all constraints but similarity is solid.

in Fourier space that estimates the signal-to-noise ratio for each
frequency. It can be seen that the reconstruction performed with
the volumetric constraints is better than reconstruction with-
out constraints in most directions. This is especially important
in the missing cone where the improvement goes from 37.3
to 28 Å.

Finally, we checked the reconstruction improvement ob-
tained by imposing the volumetric constraints during the
reconstruction process as proposed in this article and the im-
provement obtained by simply imposing them at the end of
the reconstruction when they are applicable (for instance, the
similarity to a known volume cannot be applied at the end of
the reconstruction). The experimental setup is identical to the
one that has been introduced so far. We did not observe sig-
nificant differences between applying them at the end of the
reconstruction process or during the reconstruction process for

this medium-sized problem, except for the case of the surface
constraint for which a resolution increase of 10% was observed
when applying the constraints repeatedly rather than just at the
end. However, as already demonstrated, there is a big differ-
ence between applying each of the volumetric constraints and
not applying it (either during the reconstruction process or at
its end).

3.1.2. Experiment with a large number of images
We explored the effect of the volumetric constraints when a

large number of views were used. Ten thousands images were
used with the same experimental setup as for the medium-size
experiment described above. The experiment was repeated 30
times changing the realization of the noise added to the images
and the realization of the collection geometry (uniform distri-
bution in all angles with a maximum tilt of 60◦). No CTF was
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considered in this case. The average resolution of the recon-
structions without constraints was 23.00±0.96 Å. There was no
significant difference between applying all constraints (includ-
ing the initial volume) or applying all constraints but the initial
volume. In the same way, there was no significant difference
between applying no constraint and applying the symmetry or
mass constraints or supplying an initial volume. Therefore, the
only two conditions that seemed to be informative in this case
were the surface constraint and nonnegativity which increased
the resolution achieved to 20.00 ± 0.50 Å. The average resolu-
tion with all constraints was 17.60±0.38 Å. Thus, it seems that
although individual constraints may not add extra information,
there is a synergistic interaction when all of them are applied
at the same time.

3.1.3. Experiment with a small number of images
In order to elucidate if this behavior was maintained even

with a small number of projections we conducted the following
experiment. Sixty-one images were taken every 2◦ simulating a
single-axis tilt series with a maximum angle of ±60◦. No noise
was added either to the Euler angles or the particle center. The
reconstruction algorithm was run 500 iterations with and with-
out nonnegativity constraint (one of the constraints for which
it seemed not to be any difference between applying it during
the process or at the end of the process). We observed a general
increase of about 6% of the FSC value at all frequencies.

3.2. Application to experimental data

We also applied our volumetric constraints to experimen-
tal data. In particular, we performed the reconstruction of the
DnaB–DnaC complex with the same images as used by Barcena
et al. [20]. Since the true volume was unknown, we performed
a constrained reconstruction with all the images whose tilt
angle was smaller than 45◦ (that we will refer to as the limited-
angle image set). This yielded a total of 4182 out of 6995 im-
ages. The sampling rate was 3.5 Å, and images were of size
81 × 81 pixels. Images were normalized in such a way that the

Fig. 7. Isosurface containing 66% of the DnaBC mass for the volume reconstructed without constraints (wire) and with all volumetric constraints but similarity
(solid). The vertical elongation due to the 45◦ missing cone is very pronounced. The threshold of 66% of the mass was chosen to concentrate the attention
on the most central part of the structure with higher density values.

background (defined by a surrounding circle of radius 40 pix-
els) had 0 mean and standard deviation 1. The properties of
this normalization procedure are reported by Sorzano et al. [19]
and they correspond to the same conditions used with the sim-
ulated data sets. We imposed the mass of the reconstruction to
be at most 5

3 of the known mass of the complex (this thresh-
old has been arbitrarily chosen so as to generously constrain
the volume). The molecule surface was computed by nonlin-
ear image processing on the reconstruction obtained from the
limited-angle image set without constraints: this reconstruc-
tion was thresholded to hold 110% of the known mass; then,
a rough approximation of the molecular surface was built by
dilating the biggest connected component of the binary vol-
ume with a cube of size 2 × 2 × 2 voxels as the structural
element [26].

The reconstruction obtained applying the symmetry, total
mass, nonnegativity and surface constraints on the limited-angle
image set as well as the reconstruction obtained from the same
data set without constraints were compared to the reconstruc-
tion obtained with the full image set without constraints (see
Fig. 7). Fig. 8 shows the corresponding FSCs when each recon-
struction (unconstrained and constrained) is compared to the
reconstruction carried out using the full data set (with all the
images available and not only with those whose tilt angle was
smaller than 45◦). To perform a fair comparison, all volumes
were masked (using the same mask) prior to computing the
FSC; this explains why the FSC never drops below 0.5 and the
deep minimum shown at middle frequencies. The mask used
was extracted by dilation (with a cube 2 ×2 ×2) of the biggest
connected component of the volume reconstructed from the full
data set without constraints, thresholded to hold 110% of the
known mass. This mask is necessarily a hard mask since the
surface constraint applied during the reconstruction process is
rather tight (3 or 4 voxels away from the reconstructed vol-
ume) and is applied in a hard way in the equation system as
already shown. Fig. 9 shows the corresponding VSSNR of both
reconstructions. Again, we see a noticeable increase of the FSC
values as well as the VSSNR.
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Fig. 8. Fourier shell correlation of the reconstruction of the DnaB–DnaC complex from a limited-angle image set using and not using volumetric constraints.

Fig. 9. Isosurface of the VSSNR at SSNR=1 of the reconstruction performed
without constraints (solid) and the reconstruction with volumetric constraints
(wire).

4. Discussion

In this paper we explored how to restrict the set of possible
solutions of the tomography problem by imposing extra condi-
tions on the reconstruction in the specific case of 3DEM using
ART+blob as the reconstruction algorithm. Several restrictions,
not necessarily convex, have been considered: symmetry, total

volume, similarity, nonnegativity and support constraint; these
share the property of being easily expressed in real space. This
is the first time that this kind of constraints are combined with
methods using blobs as expansion basis. Blobs, by themselves,
incorporate the a priori information of smoothness and conti-
nuity. A very pragmatic approach has been followed through-
out this work in terms of justifying the theoretical goodness of
applying some of these constraints. In general, for the case of
nonconvex constraints, there is no mathematical proof of con-
vergence of the algorithm. However, it is to be noted that even
using convex constraints related to projection matching, which
are at the core of ART, the presence of noise in the data may
preclude the intersection set from being nonempty, which is a
prerequisite in POCS-based methods [9–12,27]. The applica-
tion of nonnegativity may be more controversial since even if
our results do show that, in general, it has a positive effect,
the practical use of the microscope with its associated image
degradation by the CTF makes the use of this constraint a kind
of compromise. Finally, it is to be noted that in all cases the re-
construction algorithms are stopped at a relatively early stage.
This is so because strong noise may dominate the outcome of
long iterative procedures that in many cases tend to be related
to some form of least-squares solution.

The constraints are supposed to be especially useful in those
situations where projections alone fail to provide enough infor-
mation to achieve a high resolution reconstruction; for instance,
for those data collection geometries that do not fully cover the
Fourier space. This is confirmed by the VSSNR volumes in
which it can be seen that the missing cone is partially filled and
that, in general, the resolution of the constrained reconstruction
is better than that of the unconstrained one in most directions.
Although there is a general improvement as measured by all
FOM, no drastic changes should be expected. This is specially
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true for medium–low resolution experiments. As the quality of
the data improves, more important gains should be expected as
is the case for solvent-flattening in crystallography [28].

The simulations carried out show that the total volume and
the surface constraints are close to each other in terms of the
amount of information supplied to the algorithm. In fact, the
amount of information supplied by these two constraints de-
pend on how accurate these restrictions are with respect to the
macromolecule. In our experiments it has been considered that
in experimental situations there exists uncertainty about the ex-
act number of voxels occupied by the reconstruction or about
the exact shape of its surface and we have supplied generous
constraints.

Simulation experiments show that nonnegativity is a re-
striction whose improvement is not highly reflected by global
FOMs although its effect is clearly seen in the FSC (see Fig. 5)
specially at medium–high frequencies. Nonnegativity is a
constraint that, in principle, should not be directly applied to
experimental EM images which suffer from degradation due
to CTF, since this function inverts the sign of the Fourier
transform of images at certain frequencies. However, previous
experiments [19] as well as the ones carried out in this paper
show that nonnegativity can help to achieve better resolution
even if the images are corrupted by the CTF. Some researchers
consider that nonnegativity can be safely applied if the CTF of
the experimental images is phase corrected, although it is not
guaranteed that such corrected spectrum necessarily conforms
to nonnegativity.

In our experiments, the resolution achieved by applying non-
negativity was not statistically significantly different when the
phase was corrected and when it was not. Furthermore, in both
cases the application of the nonnegativity constraint implied an
improvement in resolution with respect to the not constrained
situation.

Symmetry is a restriction that, as expected, may be very
little or very much informative depending on the symmetry
elements used and the lack of angular coverage present. In
the reconstruction of the bacteriorhodopsin, the symmetry con-
straint was not adding much information since the symmetry
axis was aligned with the missing cone. Most of the improve-
ment in that experiment reflected by global FOMs were due
to the suppression of noise, not by a better agreement of the
reconstruction with the phantom.

Similarity to a known volume is a very powerful tool. In our
simulations we provided volumes that were filtered to 40 Å,
while the resolution achieved by applying no constraints was
26 Å. Similarity to known volume alone strongly improves the
correlation at low frequencies as well as global FOMs, but
when it is combined with the rest of restrictions an important
boost of the correlation at most frequencies, and therefore of
the resolution achieved, is seen.

The application of all these constraints during the recon-
struction process or applying it simply at the end once the
reconstruction obtained seems not to make any difference ex-
cept for the surface constraint in which case an increase of the
resolution of a 10% has been observed due to repeated appli-
cation. This is an important issue since it would be validating

common practice in which these constraints are not applied dur-
ing the reconstruction but at the end of the reconstruction. This
fact would save a lot of computing time since the application
of the volumetric constraints within the reconstruction process
significantly slows down the ART +blobs algorithm due to the
frequent blob to voxel conversion needed by the constraints.
As has already been mentioned, the surface constraint is more
or less informative depending on the faithfulness of these con-
straint, the number of images available and their orientations
with respect to the surface.

The reconstructions from experimental data showed that
these constraints can be successfully applied to a real case. The
FSC showed that the constrained reconstruction correlated bet-
ter to the full-coverage reconstruction than the unconstrained
reconstruction. This was confirmed by the VSSNR where a
general improvement in all directions, not only in the missing
cone, could be seen. The two reconstructed volumes them-
selves are also different. The constrained volume is fatter and
is less elongated along the missing cone direction.

5. Conclusion

In this paper, we have explored the gain of incorporating a
priori knowledge within the tomographic reconstruction pro-
cess. This knowledge includes symmetry, nonnegativity, sur-
face constraint, total volume and similarity to a known volume.
All these restrictions are easily expressed in real space and,
thus, their incorporation into a reconstruction algorithm such
as ART, that works in real space, is quite natural. The amount
of information provided by these constraints depends on their
accuracy and the amount of information not present in the
projection data set. In our simulations improvements were ob-
served in the FSC at all frequencies and the resolution achieved
was higher. These observations were confirmed when using
experimental data. However, except for the surface constraint,
similar improvements can be achieved by applying these con-
straints at the end of the reconstruction process instead of dur-
ing it. The algorithm described in this paper is freely available
in the Xmipp software package.
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