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    Chapter 11   

 Semiautomatic, High-Throughput, High-Resolution 
Protocol for Three-Dimensional Reconstruction 
of Single Particles in Electron Microscopy       

     Carlos Oscar Sorzano      ,    J.  M.   de   la   Rosa   Trevín   ,    J.   Otón   ,    J.  J.   Vega   , 
   J.   Cuenca   ,    A.   Zaldívar-Peraza   ,    J.   Gómez-Blanco   ,    J.   Vargas   , 
   A.   Quintana   ,    Roberto Marabini   , and    José María Carazo      

  Abstract 

 In this chapter we describe the steps needed for reconstructing the three-dimensional structure of a 
macromolecular complex starting from its projections collected in electron micrographs. The concepts are 
shown through the use of Xmipp 3.0, a software suite speci fi cally designed for the image processing of 
biological structures imaged with electron or X-ray microscopy. We illustrate the image processing work fl ow 
by applying it to the images of Bovine Papilloma virus published in Wolf et al. (Proc Natl Acad Sci USA 
107:6298–6303, 2010). We show that in the case of high-quality, homogeneous datasets with a priori 
knowledge about the initial volume, we can have a high-resolution 3D reconstruction in less than 1 day 
using a computer cluster with only 32 processors.  
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 The study of the structure of protein and protein complexes by 
Transmission Electron Microscopy (TEM) provides key insight 
into the way that these macromolecules perform their function in 
the cell  (  1–  3  ) . One of the techniques available to perform these 
studies is called Single Particle Analysis (SPA). In SPA, thousands 
of projections of different copies of the same molecule are compu-
tationally combined in a single volume. It is assumed that all par-
ticles being analyzed correspond to exactly the same conformation. 
If this is not the case, projection images are separated in different 
classes of homogeneous populations. The quality of the images 
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returned by the microscope is rather low:  fi rst, the overall image 
contrast is lost by the TEM microscope  (  1  )  (see Fig.  1 ); second, 
the structural information is severely degraded at high frequencies 
by aberrations of the microscope;  fi nally, the macromolecule is not 
isolated in the vacuum but depending on the sample preparation it 
is surrounded by a thin layer of amorphous ice (cryo-EM) or a 
thicker layer of carbon and a heavy metal salt (negative staining), 
which introduces an important background signal that interferes 
with the signal from the complex under study. Altogether, the 
Signal-to-Noise Ratio (SNR) is well below 1/10, i.e., there is 10 
times more noise than signal.  

 In this chapter, we introduce the standard image processing 
work fl ow needed to produce a volume from a collection of micro-
graphs. The work fl ow is presented with the use of Xmipp 3.0 soft-
ware. Note that other software packages may de fi ne different 
work fl ows, but in any case, the  fi nal structure of a complex must be 
obtained through a user-de fi ned sequence of the standard steps 
introduced in this chapter. 

 In short, the standard image processing work fl ow starts by 
screening the micrographs to check that they are not astigmatic or 
drifted and realize the maximum frequency available. Then parti-
cles are selected from the micrographs either manually or semiau-
tomatically. Particles are extracted from the micrographs into a 

  Fig. 1.     Top-left  : Original image.  Top-right  : Image affected by CTF with no envelope decay.  Bottom-left  : Image affected by 
CTF with envelope decay (the decay acts as a lowpass  fi lter).  Bottom-right  : Image affected by CTF with envelope decay 
and noise.       
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gallery and they are again screened to  fi nd possible wrongly picked 
particles. The set of selected particles is aligned and classi fi ed 
attempting to identify possible 2D inhomogeneities. Possible con-
taminants or alternative structures are removed from the dataset. 
Next, an initial model is constructed either from the particles 
themselves or from a priori knowledge about the particle being 
reconstructed. Finally, the initial model is further re fi ned using the 
projection images and its resolution estimated. At this level of 
model re fi nement it is still possible to have a mixture of different 
structural populations, and there are methods to sort them into 
different homogeneous classes.  

 

     1.     Software . SPA image processing is normally performed via soft-
ware packages like Spider  (  4  ) , Eman  (  5  ) , Imagic  (  6  ) , or Xmipp 
 (  7  )  among others. These software suites allow image process-
ing starting from the raw micrographs and ending at the  fi nal 
reconstructed three-dimensional (3D) structure (see  Note 1 ).  

    2.     Hardware . The whole process is rather demanding of compu-
tational resources and it is normally performed in computer 
clusters or supercomputers (cloud computing is an obvious 
choice for the future but at present it is not in place). The 
operating system of this kind of computers is always Unix-like, 
and therefore, Unix is the natural environment for these soft-
ware packages. An average con fi guration of Xmipp uses a clus-
ter with 8–16 Gb of RAM memory per node, 8–32 cores per 
node, and several nodes. Most Xmipp programs scale well up 
to 128 processors. Beyond this point, inter-process communi-
cations and disk access may become a bottleneck, although the 
optimal performance is rather system dependent and has to be 
tested on each cluster con fi guration.      

 

 In the following, we describe the mainstream protocols needed 
to perform a 3D reconstruction starting from the electron 
micrographs. 

  The  fi rst step is to check the quality of the collected micrographs. 
Only high-quality micrographs should progress to further analysis 
in a high-resolution analysis. For medium-low resolution analysis, 
one might include not so good micrographs depending on the 

  2.  Materials

  3.  Methods

  3.1.  Micrograph 
Screening
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resolution loss that one is willing to tolerate. The Xmipp protocols 
produce a number of criteria that may help to screen good from 
bad micrographs. 

  Good micrographs have a homogeneous background level (with-
out any smooth gradient along the micrograph), are not astigmatic, 
have no drift, and have high-resolution structural information 
(visible Thon rings in high frequencies) (see Fig.  2 ). Astigmatic 
micrographs could, in principle, be processed. However, in practice 
they are avoided since most programs cannot track correctly the 
astigmatism angle through all the sequence of iterative alignments.  

 Micrographs can be semi-automatically screened by estimating 
their Power Spectrum Density (PSD) and their Contrast Transfer 
Function (CTF)  (  8  ) . The PSD is an estimate of the energy distri-
bution of the micrograph over frequency. Astigmatic micrographs 
have elliptical rings, while non-astigmatic micrographs have circu-
lar rings. Drifted micrographs have masked Thon rings (they do 
not appear to be complete). The CTF is normally described by a 
number of parameters, among which the most important are the 
microscope operating voltage and the defocus  (  9  ) . However, 
Xmipp provides a full 2D characterization of the CTF, as well as, 
the background noise  (  8  ) , which also plays a role in the accurate 
determination of the defoci and cannot simply be “ fi ltered out.” 

 In order to correctly estimate the PSD it is important that the 
digital micrograph does not have empty borders or labels as in 
Fig.  3 .   

  The information content of the micrograph is an important issue 
to consider. We need to estimate at which resolution the informa-
tion content of the micrograph fades into the noise (let us call     maxf
  to this frequency). This frequency is characterized by a strong 

  3.1.1.  Identifying 
Astigmatic and Drifted 
Micrographs

  3.1.2.  Determining 
the Maximum Resolution 
of the Micrographs

  Fig. 2.     Left  : Example of a good micrograph, the PSD has circularly symmetric Thon rings. The presence of many Thon rings 
is normally associated to the preservation of structural information in high frequency.  Middle  : Example of astigmatic 
micrograph, Thon rings are elliptical.  Right : Example of drifted micrograph, Thon rings appear incomplete.       
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decay of the envelope of the CTF (Xmipp reports the frequency at 
which the CTF envelope drops below 1% of its maximum value). 
3D Reconstruction algorithms may recover a few Angstroms more 
of resolution beyond this frequency, but not many, and the  fi nal 
volume resolution is strongly determined by the maximum resolu-
tion visible in the micrographs. 

 Related to the maximum attainable resolution are the sampling 
rate and the downsampling factor. The sampling rate relates spatial 
frequencies measured in 1/Angstroms with digital frequencies 
measured in cycles/sample (the maximum digital frequency is 0.5 
cycles/sample  (  10  ) ). The relationship is w = f  T, where wis the digi-
tal frequency,  fi s the spatial frequency in 1/Angstroms, and Tis the 
sampling rate in Angstroms/pixel. When we downsample the 
images, we increase the pixel size. Downsampling brings in two 
important bene fi ts:  fi rst, images are obviously smaller with the sub-
sequent gain in disk space and computing time; second, downsam-
pling reduces the noise in the images by cutting out in Fourier 
space a region where no signal is present. 

 In principle, we can increase the pixel size by a factor Kas long 
as     max0.5 f KT≥   (downsampling by a factor larger than this intro-
duces an effect called aliasing in which high-frequency components 

  Fig. 3.    Example of digitized micrograph with blank areas in the corners and a label for 
identi fi cation. The PSD may not be correctly estimated if these elements are present in the 
digital micrograph.       
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may be strongly degraded). In practice, it is normally preferred 
to have a safety region such that     max0.2 0.3f KT≤ ≤    (this is so to 
avoid the aliasing of the signal with the noise). For instance, if  
    11

max 6f Å −=   , and     1 / pixelT Å=   , then we can downsample by a 
factor     1.2 1.8K≤ ≤   . Note that the downsampling factor may not 
be an integer number. In the Xmipp protocols, downsampling is 
performed in Fourier space (and that is why it can accept non-
integer factors). Downsampling in Fourier space provides the best 
accuracy even for integer downsampling factors since the micro-
graph PSD is multiplied by a rectangular window  (  11  ) . On the 
other side, downsampling by simply averaging neighboring pixels 
(an operation often called  binning ) introduces strong distortions 
in the high-frequency components  (  11  ) . 

 Considering     max maxf Tω =   (    T   being the effective sampling rate 
after downsampling), ideal micrographs have     max0.2 0.3≤ ω ≤   . 
Micrographs with     max 0.2ω ≤   (also called oversampled) can be 
safely downsampled since no special gain in resolution will be 
obtained by so  fi nely sampled images and the noise present may 
hinder the quality of the  fi nal reconstruction. Micrographs with 
    max 0.3ω ≥   may suffer from aliasing resulting in reconstruction arti-
facts (they are said to be undersampled).  

      1.     PSD correlation   at 90 °. The PSD of non-astigmatic micro-
graphs correlates well with itself after rotating the micrograph 
90°. This is so because non-astigmatic PSDs are circularly sym-
metrical, while astigmatic micrographs are elliptically symmet-
rical. High correlation when rotating 90° is an indicator of 
non-astigmatism. In Xmipp, this criterion is computed on the 
enhanced PSD  (  12  ) .  

    2.     PSD radial   integral . This criterion reports the integral of the 
radially symmetrized PSD. This criterion can highlight differ-
ences among the background noises of micrographs. This cri-
terion is computed on the enhanced PSD.  

    3.     PSD variance . The PSD is actually estimated by averaging differ-
ent PSD local estimates in small regions of the micrograph. This 
criterion measures the variance of the different PSD local esti-
mates. Untilted micrographs have equal defoci all over the micro-
graph, and therefore, the variance is due only to noise. However, 
tilted micrographs have an increased PSD variance since different 
regions of the micrograph have different defoci. Low variance of 
the PSD is indicative of non-tilted micrographs.  

    4.     PSD Principal   Component Variance . When considering the 
local PSDs previously de fi ned as vectors in a multidimensional 
space, we can compute the variance of their projection onto the 
 fi rst principal component axis. Low variance of this projection 
is indicative of a uniformity of local PSDs, for example, this is 
another measure of the presence of tilt in the micrograph.  

  3.1.3.  Criteria to Identify 
Bad Micrographs 
Based Only on the 
Micrograph PSD
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    5.     PSD PCA   Runs test . When computing the projections onto 
the  fi rst principal component, as discussed in the previous cri-
terion, one should expect that the sign of the projection is 
random for untilted micrographs. Micrographs with a marked 
nonrandom pattern of projections are indicative of tilted 
micrographs. The larger the value of this criterion, the less ran-
dom the pattern is.      

      1.     Fitting score . The CTF is computed by  fi tting a theoretical 
model to the experimentally observed PSD. This criterion 
is the  fi tting score. Smaller scores correspond to better  fi ts. 
A complete description of Xmipp  fi tting score is given at 
Sorzano, Jonic  (  8  ) .  

    2.     Fitting correlation   between the    fi rst and   third zeroes . The region 
between the  fi rst and third zeroes is particularly important since 
it is where the Thon rings are most visible. This criterion reports 
the correlation between the experimental and theoretical PSDs 
within this region. High correlations indicate good  fi ts.  

    3.     First zero   disagreement . If the CTF has been estimated by two 
different methods (normally Xmipp and Ctf fi nd  (  13  ) ), then 
this criterion measures the average disagreement in Angstroms 
between the  fi rst zero in the two estimates. Low disagreements 
are indicative of a correct  fi t.      

      1.     Damping . This is the envelope value at the border of the PSD. 
Micrographs with a high envelope value at border are either 
wrongly estimated or strongly undersampled.  

    2.     First zero   average . This is the average in Angstroms of the  fi rst 
zero over all possible directions. Normally, this value should be 
between 4 and 10 times the effective sampling rate in 
Angstroms/pixel.  

    3.     First zero   ratio . This measures the astigmatism of the CTF by 
computing the ratio between the largest and smallest axes of 
the  fi rst zero ellipse. Ratios close to 1 indicate no astigmatism.       

  The next step is to pick particles from those micrographs passing 
the previous screening step. Particle picking can be performed 
manually or semiautomatically. Manual particle picking simply lets 
the user to choose those particles he is interested in from the elec-
tron micrographs. The ease of picking particles depends on the 
particle size, image contrast, contamination level, etc. The task can 
be facilitated by displaying the micrograph with a moderate zoom-
out factor. 

 Image  fi lters can also help to better visualize the particles of 
interest. In Xmipp we provide the following  fi lters: color dithering, 
bandpass  fi lter, anisotropic diffusion, mean shift, background sub-
traction, and contrast/brightness enhancement. Particularly useful 

  3.1.4.  Criteria to Identify 
Incorrectly Fitted CTFs

  3.1.5.  Criteria to Identify 
Bad Micrographs Based 
on the Fitted CTF

  3.2.  Particle Picking
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are color dithering and bandpass  fi ltering. Color dithering  (  14  )  is 
an algorithm that reduces differences between adjacent gray val-
ues. Bandpass  fi lter  (  15  )   fi lters out gray-scale variations that are 
either too small or too large with respect to the size of the particle 
we are interested in. 

  Manual picking is sometimes criticized for biasing the dataset 
towards those shapes that the user better recognize or has in mind 
as the possible projections of her structure. In order to avoid this 
bias, automatic or semiautomatic particle picking algorithms are 
sometimes preferred as an objective way of choosing particles. At 
the same time, the particle picking process, which in general is a 
tedious and time-consuming task, is computationally assisted and 
accelerated. Algorithmically chosen datasets contain a nonnegli-
gible amount of wrongly picked particles (contaminants, true par-
ticles on carbon, particle conglomerates, etc.). These datasets have 
to be carefully scrutinized to remove wrongly picked particles 
from the onset. This can be done by a manual revision of the auto-
matic picking results, and/or by classifying in 2D the selected par-
ticles and eliminating those classes corresponding to wrongly 
picked particles.  

  Xmipp allows semiautomatic particle picking  (  16  ) . The algorithm 
has been designed to keep a low false-positive rate (FPR), i.e., pick-
ing as few wrongly picked particles as possible. In order to keep the 
FPR as low as possible, the algorithm must be trained by the user in 
the kind of particles he is interested in. The  fi rst step of the training 
requires the user to manually pick about 100–200 particles. Then, 
the algorithm learns a set of features describing the particles being 
picked. In the next step, the algorithm tries to automatically select 
particles from a micrograph that has not been manually processed. 
The  fi rst attempt will pick a number of true particles, but many 
other true particles may be left. The user is required to pick those 
“unseen” particles. He is also required to correct the algorithm by 
removing those particles that have been wrongly picked automati-
cally. This correction information helps the algorithm to distinguish 
true particles from other objects looking alike. This process of the 
algorithm trying to correctly pick particles and the user correcting 
for errors is repeated on more micrographs until the user is satis fi ed 
with the algorithm results. At each step, the algorithm learns from 
its errors and next time it will try to better distinguish between par-
ticles and nonparticles. No automatic particle picking algorithm is 
absolutely infallible. As a rule of thumb, they can be applied when 
the imaging conditions are not specially challenging.   

  The next step is to extract the particles from the micrographs and 
form a stack of projections of our particle. This stack of projections 
is further analyzed in 2D or 3D in subsequent steps. Projection 

  3.2.1.  Manual Particle 
Picking

  3.2.2.  Semiautomatic 
Particle Picking

  3.3.  Particle Extraction, 
Screening, and 
Preprocessing
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screening helps to identify projections that are not typical (in the 
statistical sense). Nontypical particles may correspond to under-
represented projection directions or states of our particle, but also 
to wrongly picked particles and outliers. If an automatic particle 
picking algorithm has been used, nontypical particles normally cor-
respond to wrongly picked particles, such as particles on edges. 
Finally, particle preprocessing helps to highlight or concentrate 
speci fi c features of our dataset. 

  When extracting the particle projections, there are a number of 
actions we can take:

    1.     Phase  fl ipping . Use the information from the estimated CTF to 
compensate for phase reversals introduced by the microscope 
at different frequencies. This phase correction is better per-
formed on the micrographs (not the projections), since we 
have enough information to perform a deconvolution.  

    2.     Taking logarithm . Depending on your acquisition system you 
may have to take the logarithm of the data in order to have a 
linear relationship between the gray values in the image and 
those in the volume.  

    3.     Contrast inversion . Most image processing algorithms expect 
to see the particle as a white object over a dark background. 
However, some imaging conditions produce just the opposite. 
At this moment, you may invert the contrast if your particles 
are black over a white background.  

    4.     Normalization . The same projection in different micrographs 
may have different gray values. Even within the same micro-
graph there might be a light gradient causing the gray values to 
be different. In order to eliminate a local gradient, a ramp in 
the gray values is  fi tted for each projection image and then 
subtracted from the image. Then, the image values are linearly 
transformed so that in the background there is zero mean and 
standard deviation equal to one. Noise statistics should be sim-
ilar in all projections after this normalization step.  

    5.     Dust removal . Sometimes dust, hot or cold spots can be seen in 
a projection. These pixels are identi fi ed by noting that their gray 
values are normally far from the mean of the rest of the image. 
You should choose to  fi ll these pixels with a random value from 
a Gaussian with zero-mean and unity-standard deviation.      

  Automatic picking algorithms have a nonnegligible FPR (i.e., they 
pick locations in the micrograph that do not actually correspond to 
true particles). Particle screening is a successful way of identifying 
them. 

 For each image, we calculate the gray values histogram, square 
the gray values and compute the radial average of these squared 
values. The gray histogram and the radial average are stacked into 

  3.3.1.  Particle Extraction

  3.3.2.  Particle Screening
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a multivariate vector associated to each projection. Now, we 
perform a PCA analysis of the whole set of projections and project 
the multivariate vector onto the PCA space spanned by the  fi rst 
two eigenvectors. Then, we analyze the multivariate normality of 
these projections. The normality is measured as the Mahalanobis 
distance of the PCA projection to the space origin. Typical projec-
tions have a small distance, while nontypical projections have a 
larger distance. The dataset is sorted according to their distance 
(called  z -score). Normally, wrongly picked particles, particles on 
edges, contaminants, etc., have a large distance and are sorted to 
the end of the list. At this point, the user may discard the particles 
he considers that do not correspond to the structure under study, 
or that for some reason do not follow the general trend.  

  Sometimes, we may want to apply an image processing  fi lter to our 
images in order to reduce noise, highlight certain features, mask 
out the background, etc. In Xmipp protocols the following choices 
are available.

    1.     Scaling . Change the size of the projection images. Normally a 
size reduction is performed so that image processing is faster. 
The amount of noise is also reduced.  

    2.     Fourier lowpass ,  highpass ,  and bandpass    fi ltering . Low frequen-
cies correspond to slow variations in the image; too high fre-
quencies normally come from noise or very  fi ne details. You 
may use these  fi lters to remove any frequency band that you 
are not interested in. Cutoff frequencies are normalized to 0.5 
(they are called digital frequencies). The digital frequency of 

an object whose diameter is  D  pixels is     
1
D

ω =   . The Xmipp 

protocols offer a wizard that allows interactive selection of the 
cutoff frequencies so that we may preview the effect of the 
 fi lter in our images.  

    3.     Fourier Gaussian    fi ltering . We may implement multiresolution 
approaches by a series of Gaussian  fi lters in Fourier space. Coarse 
representations are obtained by multiplying in Fourier space by 
a Gaussian of small bandwidth. Finer representations are 
obtained by enlarging the bandwidth of the Gaussian  fi lter.  

    4.     Dust removal . Similar to the dust removal option in the previ-
ous section.  

    5.     Normalization . Besides the noise normalization with back-
ground subtraction described in the previous section (the rec-
ommended option), Xmipp also offers to normalize the images 
to have zero mean and unitary standard deviation, or to nor-
malizing without background subtraction.  

    6.     Masking . Apply a mask to the images to concentrate the analy-
sis on a speci fi c region. A wizard helps to choose among a wide 
variety of masks.       

  3.3.3.  Particle 
Preprocessing
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  Two-dimensional analysis is the most common way of getting 
acquainted with the structural information contained in the pro-
jection images. In a way, it is an Exploratory Data Analysis (EDA) 
that is very much used in other data analysis contexts. The whole 
set of images is classi fi ed into different groups as homogenous as 
possible. Inside each group, projections are aligned and (normally) 
averaged producing a class representative. The class representative 
has much less noise (thanks to the averaging or equivalent operation) 
than the raw projections and allows a better visual identi fi cation of 
the structural features. The price for this improved visualization is 
the possible blurring introduced by averaging nonidentical projec-
tion images. If the group is small enough (between 50 and 150 
projections), then this blurring effect is minimized. 

 2D analysis allows identifying wrongly picked particles, con-
taminants if they are suf fi ciently dissimilar from the structure under 
study, particle aggregations, damaged particles, etc. We should 
select among the classes all those that are likely to come from the 
structure we are studying in order to choose a projection popula-
tion as homogeneous as possible in terms of biochemical species 
and conformational state. The rest of the classes may be interesting 
by themselves and worthy of further analysis, although they should 
not be mixed with the “good” classes in order to avoid contamina-
tion in the 3D reconstruction process. This class selection process 
is tricky in the sense that the user might bias the  fi nal 3D recon-
struction by removing projections that a priori do not  fi t with his 
preconceived idea about the structure being reconstructed. The 
boundary between removal of contaminants, damaged particles, 
and wrongly picked particles and the removal of valid projection 
images is a fuzzy,  fi ne line dif fi cult to characterize. 

 Class representatives can also be used as input images to a 
common-lines algorithm  (  17,   18  ) . This kind of algorithms addresses 
the initial reference problem. Most 3D reconstruction algorithms 
need an initial volume as starting point. The initial volume must 
share some general features with the structure under study. When 
such a starting volume is not available, common-lines algorithms 
are capable of producing one by identifying common lines in 
Fourier space. This identi fi cation is rather error prone and sensitive 
to noise. That is why class representatives, with less noise, are par-
ticularly well suited as input for these algorithms. 

 Xmipp offers several possibilities to perform this 2D EDA, 
which are brie fl y described below. 

  The algorithm performs alignment and classi fi cation of the input 
images. It allows the identi fi cation of a large number of classes (the 
larger the number of classes, the fewer particles will take part in 
each class; there must be a balance between avoiding blurring by 
averaging dissimilar projections and having suf fi cient images in 
each class to signi fi cantly reduce the noise and allowing better 

  3.4.  2D Analysis

  3.4.1.  CL2D (Clustering 
in 2D)  (  19  ) 
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visualization). First, the algorithm split the data in a small number 
of classes that are subsequently subdivided into more and more 
classes until the desired number of classes is reached. Images are 
allowed to change class at any moment. This divisive structure has 
been proved to yield more robust results than directly starting with 
a large number of classes. The algorithm requires relatively few 
parameters (the most important is the  fi nal number of classes). We 
can also control how to measure the distance between a raw pro-
jection and the class representative (correlation or correntropy 
 (  20  ) ) and how to decide to which class a raw projection belongs 
(classical multireference assignment or robust assignment  (  19  ) ). 
Two setups are normally used: (1) correlation and classical multi-
reference assignment, which normally works well with good qual-
ity images and it is standard in other software packages; (2) 
correntropy and robust assignment, which works well with good 
and bad quality images and it is particular to Xmipp. The output 
classes are sorted so that one image is similar to the next. 
Additionally, thanks to the hierarchical nature of the algorithm, we 
can compute the core of any class (we de fi ne the core of the class 
as the subset of images that were always together in the classi fi cation 
hierarchy). We further re fi ne the core by eliminating outliers in the 
PCA space spanned by the  fi rst two eigenvectors (in the same way 
as in the particle screening). We refer to these re fi ned cores as sta-
ble cores.  

  Maximum Likelihood is a different classi fi cation framework. 
Instead of assigning each projection image to a single class, it is 
assigned to all classes with different probabilities. Classes are then 
updated with the weighted average of all particles (weighted by 
probability). The algorithm solves at the same time the alignment 
and classi fi cation problems and it is well suited to work with a rela-
tively small number of classes (less than 20–30). The algorithm can 
be applied in Fourier space instead of real-space. Fourier space has 
the advantage of letting noise be correlated, which is actually the 
case in Electron Microscopy due to the Contrast Transfer Function 
(CTF). Another advantage of Maximum Likelihood in Fourier 
space is that the CTF needs not be estimated.  

  This algorithm projects the input images onto an output space of 
class representatives. Nearby classes are similar to each other (as in 
the output of CL2D but in a 2D topology). The algorithm does 
not align images to classes, so that they have to be previously 
aligned. The algorithm is useful to perform a careful analysis of a 
given region in a set of images that may be the output of a previous 
classi fi cation (CL2D or ML2D) or alignment.  

  The rotational spectrum of an image measures its rotational sym-
metry. A twofold symmetric image can be rotated 180° (=360/2) 

  3.4.2.  ML2D (Maximum 
Likelihood in 2D)  (  21  ) 

  3.4.3.  KerDenSOM 
(Kernel Density Estimation 
Self-Organizing Map)  (  22  ) 

  3.4.4.  Rotational 
Spectra  (  23  ) 
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and we obtain the same image. A threefold symmetric image can 
be rotated 120° (=360/3) and 240° (=2 × 360/3) and we obtain 
again the same image. The rotational spectrum measures the 
strength of each symmetry in a particular image. The rotational 
spectrum is rotationally invariant (i.e., if we rotate the image by 
any angle, the rotational spectrum remains the same), but it is not 
translationally invariant (i.e., if we shift the image, the rotational 
spectrum changes). For this reason, it is important to have all the 
images translationally aligned, and compute the rotational spec-
trum with rotations around the image center. The analysis of the 
rotational spectrum may reveal heterogeneities in particles whose 
projections are relatively symmetric  (  24  )  in a particular projection 
direction. The most important parameters of this step are the two 
radii between which the symmetry is analyzed (for instance, a ring-
shaped projection can have symmetry only between the two radii 
where the ring is inscribed).   

  The two main steps in 3D are the analysis of homogeneous popula-
tions (all projections belong to a single structure) and heteroge-
neous populations (in the dataset there are projections coming 
from different structures). 

 The homogenous population analysis is normally referred to as 
3D model re fi nement. Starting from an initial guess of the struc-
ture being reconstructed, a work fl ow of image processing steps is 
taken to re fi ne this initial guess. The initial guess may be obtained 
by the same protein in a slightly different conformation, from a 
similar protein, from an atomic model, from random conical tilt, 
from a common-lines algorithm, etc. The initial reference chosen 
may bias the  fi nal result, and it is customary to strongly  fi lter the 
initial volume so that all details are removed, and only the general 
shape at very low resolution remains. 

 The heterogeneous population analysis can be seen as the 
simultaneous re fi nement of several volumes with homogeneous 
population. The model re fi nement problem is coupled to the prob-
lem of classifying the input raw projections into different classes 
(the homogeneous populations). 

  The most basic input of a model re fi nement algorithm is a starting 
volume (normally at low or very low resolution) and a set of projec-
tions supposedly from a single 3D structure and ideally covering all 
possible projection directions. The starting volume is projected in 
all possible directions (reference projections) and the experimental 
images are compared (after alignment) with all of them. The pro-
jection direction of the best matching reference projection is 
assigned to the corresponding experimental image and the in-plane 
alignment parameters (in-plane rotation and shift) are annotated. 
These alignment parameters are then used by a 3D reconstruction 
algorithm to produce a better estimate of the 3D structure of the 

  3.5.  3D Analysis

  3.5.1.  3D Model 
Re fi nement
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macromolecular complex. This process is iterated till convergence 
or a  fi xed number of iterations have been performed. 

 The most important parameter of this algorithm is the plan for 
3D alignment search. To align each experimental projection with 
respect to the current estimate of the volume being reconstructed, 
we need 5 parameters (3 Euler angles de fi ning the projection direc-
tion and the in-plane rotation, and 2 shifts de fi ning an in-plane 
displacement). We can perform a truly 5D search for these param-
eters (trying all possible combinations of Euler angles and shifts 
within a bounded range) or perform a 3D + 2D parameter search 
(looking for the best projection direction keeping the shift  fi xed, 
and then looking for the best shift using the projection direction 
just found). A full 5D search provides more accurate results at the 
cost of a signi fi cant increase of computation time. We can use both 
strategies during the process: it is custom to start with a 5D search 
for the  fi rst few  (  23,   25  )  iterations and then switch to a 3D + 2D 
strategy. The bounded search regions for each parameter (angles 
and shifts) are also normally diminished in size so that the param-
eter search is performed in a narrower area (this helps the process 
to converge while saving time by not looking for the parameters in 
areas that are rather unlikely to produce a good match). An exhaus-
tive search is performed within the bounded region using a sam-
pling step. As the region becomes narrower, the sampling step is 
also diminished so that the alignment is more accurate. Typical 
search ranges for the  fi rst iterations allow any angle and shift in the 
 fi rst 4–5 iterations with an angular sampling of 10° (the shift sam-
pling is not needed since the shift is searched in Fourier space by 
making use of its correlation property, which allows for a continu-
ous shift search). From the fourth to  fi fth iteration, the angular 
range is reduced to about twice the angular sampling, and this is 
progressively diminished towards a sensible value (the smallest 

identi fi able angle is given by     
1

arctan
R

  , where  R  is the radius of the 

object being reconstructed in pixels). 
 During the alignment and reconstruction process we may also 

correct for the amplitude effects of the CTF. Xmipp does so by 
grouping the input projections according to their defocus values. 
Those images belonging to the same defocus group are recon-
structed together, and then the different volumes are merged in 
3D by using a Wiener  fi lter  (  26  ) . Alternatively, a B-factor correc-
tion can be employed  (  25  ) . 

 Another important issue is how to generate the reference vol-
ume for the next iteration from the current reconstruction esti-
mate. Using the raw estimate may produce over fi tting since the 
very high frequencies of the volume may be  fi tting mostly noise 
components; this is especially true during the  fi rst iterations 
since the angular sampling is still large and the reconstruction esti-
mate is rather rough. The raw estimate can be masked in real space 
(using a  fi xed radius or a user-de fi ned mask) and Fourier space 
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(by lowpass  fi ltering the volume to a certain frequency; normally 
this cutoff frequency is gradually increased so that the alignment 
uses a progressively improved reference volume).  

  In case we suspect that our population of projections may come 
from different 3D structures (different conformations, different 
oligomeric states, different binding states, etc.) we can simultane-
ously solve the 3D reconstruction and classi fi cation problem. The 
idea is to sort the input projections into different classes so that 
each class is homogenous, and then a 3D reconstruction is 
performed within each class. This is the standard idea behind mul-
tireference 3D reconstruction. In Xmipp we have extended the 
Maximum Likelihood framework to 3D (each experimental pro-
jection belongs to all classes and all projection directions with dif-
ferent probabilities; then, the volumes representing each class are 
updated considering the relative weights of each projection)  (  27  ) . 
The algorithm is rather time consuming and, because of this, its 
applicability is limited to relatively large angular samplings (in the 
order 5–10° depending on the image size and number of images). 
At the end of the algorithm, we may assign each experimental 
image to the class with maximum likelihood. Then, within each 
class we can run a model re fi nement (see previous Section) in order 
to improve the resolution of the class model.   

  We present the protocols results as applied to the Bovine Papilloma 
virus images published in  (  28  )  and kindly provided by Drs. Wolf 
and Grigorieff for this book chapter. The dataset consists of 49 
micrographs of an approximate size of 10,000 × 10,000 pixels. The 
sampling rate is 1.237 Å/pixel, the microscope voltage 300 kV, 
and the nominal magni fi cation ×56,588. At this magni fi cation, the 
projection of a single virus  fi ts in an image of size 512 × 512. The 
execution time for the different protocol steps are reported for the 
parallel run of Xmipp on Intel Xeon 2.666 GHz processors. The 
processors belong to a cluster with 28 nodes, 8 processors, and 
16 GB of RAM per node. 

  Estimating the CTF and evaluating the quality of all micrographs 
took 15 min for the BPV dataset in 32 processors. The estimated 
micrograph defocus ranged between 1.8 and 2.3  m m and no micro-
graph was removed for having an astigmatic or drifted CTF (Fig.  4  
shows the typical output of the Xmipp protocols for this step). The 
maximum resolution present in the micrographs is about 6 Å (the 
CTF envelope drops below 1% its maximum value, which implies a 
loss in image power by a factor 0.01 2 ).   

  Semiautomatic particle picking was used. We manually trained the 
algorithm with the  fi rst 4 micrographs. 238 virus projections were 
manually picked among the 4 micrographs (the automatic picking 

  3.5.2.  3D Heterogeneity 
Analysis

  3.6.  Example 3D 
Reconstruction

  3.6.1.  Micrograph 
Screening

  3.6.2.  Particle Picking
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algorithm was used after the  fi rst 153 manually picked particles). 
6,475 particles were automatically selected in 50 min from 45 
micrographs (an average of 130 particles/min) (see Fig.  5 ). Among 
the 6,475 particles, 1,158 were false-positives (mostly they were 
true virus particles on the carbon  fi lm instead of the grid holes), 
which amounts to 17.9% of the selected particles. This kind of 
false-positives was easily removed during the revision of the proto-
col output. A total of 5,317 (=6,475–1,158) particles were cor-
rectly identi fi ed. 410 additional particles were manually selected 
(they corresponded to false-negatives). In total 5,727 (=410 + 5,317) 
particles were selected during the automatic phase, 92.8% of them 

  Fig. 4.    Display of the micrograph screening results. Each row shows the PSD,  fi tted CTF, and different quality criteria for a 
different micrograph. The table can be sorted by any of the quality criteria and bad micrographs can be manually dese-
lected so that they are no longer considered in the analysis.       

  Fig. 5.    Sample region of a micrograph with virus particles automatically identi fi ed.       
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were automatically selected. Thus, we see an advantage in the 
manual workload by using a semisupervised approach to particle 
picking. Adding the 238 particles manually selected during the 
training phase then gave a total of 5,965 particles in the dataset.   

  The selected particles were corrected for the CTF phase  fl ip and 
screened in search of outliers using the multivariate procedure 
described in Subheading  3.3 . The process took 3 min in a single pro-
cessor. All particles whose PCA distance was larger than 7 were dis-
carded (245 particles out of 5,965, 4.1%; the visual appearance of 
these particles was not particularly different from the other images in 
the dataset, but for some reason they did not follow the general 
trend). Discarded particles mostly corresponded to a couple of micro-
graphs that had a relatively lower correlation between the  fi rst and 
third zero of the CTF. For some reason the CTF in these micro-
graphs was more dif fi cult to estimate, and they also resulted in parti-
cles whose projections into the PCA space were outliers. It is worth 
noting that these two quality measures are completely independent 
so that both seem to indicate some strange behavior of the discarded 
micrographs. After the screening, the dataset was composed of 5,720 
particle projections.  

  In order to explore the acquired projections, we reduced the image 
size from 512 × 512 to 128 × 128 (3 min in 8 processors). We then 
applied a CL2D analysis with 64 classes (6 h in 32 processors). 
Figure  6  shows the  fi rst 24 class averages. The CL2D iterations 
converged rather clearly, with only 1.7% of the images changing 
from one class to the other after 15 iterations (this is normally a 
sign of  fi nding good classes). In the set of class averages, we could 
not identify any class that did not correspond to true virus projec-
tions. Therefore, we assume that the set of experimental projections 
corresponds to a single, homogenous population.   

  3.6.3.  Particle Extraction 
and Screening

  3.6.4.  2D Analysis

  Fig. 6.    First 24 classes of the 64 classes calculated by CL2D.       
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  To construct the initial volume, we downloaded the three- 
dimensional structure of the Bluetongue virus capsid from the 
Electron Microscopy Data Bank (  http://www.ebi.ac.uk/pdbe/
emdb    , entry code: 5147, Zhang, Jin  (  29  ) ). This virus is totally 
unrelated to the Bovine Papilloma virus, and they only share the fact 
that both have an icosahedral capsid. The volume at the EMDB has 
an alternate 222 symmetry (twofold symmetry axes on  X ,  Y  and  Z ). 
We  fi ltered the Bluetongue capsid to 100 Å, and scaled the capsid 
to  fi t in a box of size 128 × 128 × 128. We used this lowpass  fi ltered 
volume as a reference for the alignment and 3D reconstruction of 
the class averages found by CL2D. We used seven iterations of 
the 3D Model Re fi nement pipeline described in Subheading  3.5 . 
The angular sampling was 10° for the  fi rst four iterations, 5° in the 
next two, and 3° in the last one. Images were allowed to freely 
move in the projection sphere in the  fi rst four iterations, and then 
their Euler angles were restricted to a maximum change of 10° in 
the next two iterations, and 6° in the last iteration. The  fi rst four 
iterations performed a fully 5D parameter search, while the rest 
used a 3D + 2D search. CTF was not corrected. The whole process 
took 3 min in 8 processors, at the end of which we had already an 
initial volume that we rescaled (30 s in a single processor) to a size 
of 512 × 512 × 512. Figure  7  shows the Bluetongue initial structure 
and its re fi nement using the CL2D classes. This re fi ned volume will 
serve as starting volume for the 3D data analysis of the Bovine 
Papilloma virus.   

  At this point we entered into a 3D Model re fi nement process start-
ing from the initial volume constructed in the previous step. We 
performed 16 iterations of the process. In the  fi rst four iterations 
we performed a fully 5D parameter search allowing the angles to 
take any value in the projection sphere. The rest of iterations were 

  3.6.5.  Initial Volume

  3.6.6.  3D Model 
Re fi nement

  Fig. 7.     Left  : Bluetongue capsid  fi ltered at 100 Å.  Right  : Volume obtained after re fi ning the Bluetongue capsid using the 
CL2D classes. This example shows the robustness of the 3D reconstruction process in this speci fi c case to the initial 
volume.       

 

http://www.ebi.ac.uk/pdbe/emdb
http://www.ebi.ac.uk/pdbe/emdb
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performed with a 3D + 2D strategy. The angular sampling was 10° 
in the  fi rst four iterations, 5° in the next two, 3° in the following 
two, 2° in the following two, 1° in the next three, and 0.5° in the 
last three iterations. In the  fi rst four iterations the projection direc-
tions could take any value in the projection sphere, in the next two 
they could move up to a maximum of 30°, in the next two up to a 
maximum of 15°, in the next two up to a maximum of 10°, and the 
rest of iterations up to a maximum of 6°. 

 Starting from iteration 12, we started correcting for the CTF 
amplitude effects with a Wiener  fi lter (since projections were phase 
corrected when extracted, the reconstruction up to iteration 11 is 
phase corrected; the angular step at that level was 2°). The  fi nal 
result is shown in Fig.  8 . The resolution achieved in iteration 16 is 
5.75 Å (at FSC = 0.5) which is in agreement with the fact that the 
maximum visible frequency in the micrographs is about 6 Å, and it 
con fi rms our hypothesis that the set of images belonged to a single 
structural population (or at least structural differences are in details 
 fi ner than those recorded by the microscope). Wolf, Garcea  (  28  )  
report a resolution of 4.9 Å which is further improved to 3.6 Å by 
averaging the subunits. The difference from 5.75 to 4.9 Å could be 
explained by a regularization internal to the 3D reconstruction 
algorithm used by Wolf, Garcea  (  28  ) , over fi tting or any other rea-
son that increases the consistency of the reconstruction between 
the two halves of the dataset.  

 Alternatively we could have performed the amplitude correc-
tion by taking the phase corrected volume (Iteration 11), and 

  Fig. 8.    Final reconstruction of the Bovine Papilloma virus at 5.75 Å.       
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applying a B-factor correction  (  25  ) . This takes 2 min in a single 
processor, and in this particular case it produced a superior result 
to the Wiener  fi lter ( a -helices were better de fi ned). The resolution 
of the amplitude corrected volume with the B-factor cannot be 
measured through the FSC since this measure is insensitive to mul-
tiplicative factors. 

 Wolf, Garcea  (  28  )  created an atomic model that was  fi tted to 
their EM volume. The atomic model is at the Protein Data Bank 
(  http://www.pdb.org    ) under the access code 3IYJ. Figures  9 ,  10 , 
and  11  show some detail of that atomic model  fi tted to our EM 
reconstruction. The secondary structure elements ( a -helices and 
 b -sheets) can be clearly seen as well as some side chains.     

  Fig. 9.    Overview of the  fi tting between the EM reconstruction and its atomic model.       

  Fig. 10.     Left  : Detail of an  a -helix.  Right  : Detail of a  b -strand.       

 

 

http://www.pdb.org
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  Table  1  shows the time spent at each of the different steps. In 9 h, 
we screened the micrographs, selected the particles, screened them, 
checked that there were no contaminants, and constructed an ini-
tial model for the 3D Model re fi nement. The next 13 h were used 
to construct a phase corrected volume. Finally, 18 h were needed 
to construct an amplitude corrected volume with a very  fi ne angular 

  3.6.7.  Execution Time

  Fig. 11.    Detail of the  fi tting of some side chains.       

   Table 1 
  Computing times for each process using a variable number 
of processors (see text). Each processor is core of an Intel 
Xeon 2.666 GHz   

 Process  Time 

 Micrograph screening  15 min 

 Semi-automatic particle picking  50 min (+1 h manual training 
and revision) 

 Particle screening  3 min 

 Particle downscaling  3 min 

 CL2D  6 h 

 Initial volume construction  3 min 

 3D Model re fi nement Iterations 1–11 
(phase corrected) 

 13 h 

 Amplitude correction via B-factor  2 min 

 3D Model re fi nement Iterations 12–16 
(amplitude corrected) 

 18 h 
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step in the projection matching. In parallel to this last step, a second 
amplitude corrected volume was computed by B-factor correction 
in only 2 min. These times were obtained by using at most 32 pro-
cessors of a cluster, which is a reasonable number of processors 
available in standard clusters.    

  In this chapter we have introduced the basic protocols used in 3D 
Electron Microscopy for Single Particles and illustrated them as 
they are applied in Xmipp. These protocols cover all the way from 
the micrographs to the  fi nal 3D reconstructed volume. We have 
applied these protocols to images of the Bovine Papilloma virus 
capsid. This dataset was rather homogeneous and no heterogeneity 
analysis was needed. Obtaining a 3D map with a resolution that 
allows the identi fi cation of  a -helices (below 5.75 Å) took less than 
24 h in a cluster with 32 processors available. The presence of het-
erogeneity in the sample complicates the 3D analysis, specially its 
validation. However, as shown by this example, 3DEM is advanc-
ing towards high-throughput, high-resolution protocols.   

 

     1.    All packages have been written with a command-line interface 
(i.e., the user issue commands from a shell, each one perform-
ing a small task). The whole image processing task consists of 
the concatenation of many small tasks that start at the micro-
graph level and  fi nish with the 3D reconstruction. However, 
all packages now offer a graphical interface that provides a 
more user-friendly interface. In some cases, the different pro-
grams have been bundled in a few protocols  (  30  ) . Protocols 
re fl ect the typical image processing pipeline and are suited for 
most users, especially novice ones. Despite the simpli fi cation 
brought by the protocols, packages still offer their full func-
tionalities so that experienced users may diverge from the most 
typical image processing path.          
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