
Comparing scientific performance among equals

C. O. S. Sorzano • J. Vargas • G. Caffarena-Fernández •

A. Iriarte

Received: 15 November 2013
� Akadémiai Kiadó, Budapest, Hungary 2014

Abstract Measuring scientific performance is currently a common practice of funding

agencies, fellowship evaluations and hiring institutions. However, as has already been

recognized by many authors, comparing the performance in different scientific fields is a

difficult task due to the different publication and citation patterns observed in each field. In

this article, we defend that scientific performance of an individual scientist, laboratory or

institution should be analysed within the corresponding context and we provide objective

tools to perform this kind of comparative analysis. The usage of the new tools is illustrated

by using two control groups, to which several performance measurements are referred: one

group being the Physics and Chemistry Nobel laureates from 2007 to 2012, the other group

consisting of a list of outstanding scientists affiliated to two different institutions.
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Introduction

Measuring scientific performance is currently at the heart of many funding calls, job

openings and fellowship applications. The rationale behind it is that the limited resources

available in science should be allocated to the best performing scientists, so that the overall

output is maximized. However, measuring performance is not an easy task, since different

scientific aspects can be evaluated and comparison across disciplines is a major issue.

There is the general agreement that scientific outcome can be measured by productivity

(mostly, number of papers) and by impact (number of citations to those papers).
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Additionally, it has been argued that patents and licensed patents should also be used as an

indicator for scientific production evaluation. However, not all scientific fields are prone to

patenting, as for example theoretical physics or mathematics, and there are significant

differences in the way scientific articles and patents are cited.

Measuring performance

Many scientific productivity indicators have been traditionally proposed to evaluate the

performance of individuals, laboratories, or institutions. Up to 2005, the indicators were

based on simple functions (number of citations, number of citations of the single most

highly cited paper) or statistical measurements (average number of citations, average

number of papers published per year, median number of citations, relative frequencies and

quartiles (Glänzel 2006). One of the main disadvantages of these indicators is that they do

not reflect the full impact of scientific research, or that they are disproportionately affected

by a single publication of major influence (Panaretos and Malesios 2009). In 2005, Hirsch

proposed a different indicator to quantify scientific excellence (Hirsch 2005). Since then,

the so-called h-index or Hirsch-index has succeeded in becoming a used yardstick when

assessing the productivity of individual scientists. A scientist has index h when a number

h of his publications have at least h citations each. It is thus an indicator easy to compute

that combines productivity and impact in a single number. However, it has received a lot of

criticism and a number of variants and alternative indices have been proposed to avoid its

inconveniences. For example, the g-index (highest number of papers of a scientist that

received g2 or more citations) was introduced to avoid the disadvantage of the h-index that

once a paper is cited more than h times, it does not matter it being cited 100, 1,000 or

10,000 times, nor it continuing to be cited. The hg-index (geometric mean of the h- and g-

indices of a researcher) tries to keep a balance between the advantages and disadvantages

of the h- and g-indices; while taking into account the number of citations of the most cited

papers of an author, it also moderates the impact that a highly cited paper could have in the

g-index. Other indices have been proposed that extend the h-index to take into account

other sensible variables. For example, the m-quotient (h-index divided by the number of

years since the first publication of the researcher) facilitates the comparison between

scientists with different lengths of academic careers. On the other hand, the hm- and hi-

indices account for the number of co-authors of the publications. The reader is referred to

the excellent reviews by Lehman et al. (2008), Moed (2009), Alonso et al. (2009),

Bornmann et al. (2008), Harzing (2010) and Panaretos and Malesios (2009) for a full

description of most of the numerous possibilities to measure scientific performance.

Performance among equals

As stated in the previous section, a huge quantity of different proposed scientific pro-

ductivity indicators have been proposed. All of them are sensitive to different aspects of

scientific productivity. In this work, we will focus on the fact that none of the above

mentioned indicators is adequate to compare the performance between different scientific

fields. Whichever the performance index used, an obvious drawback to an ‘‘absolute’’ scale

of performance is that different scientific disciplines have different publication and citation

patterns. Even the definition of ‘‘field’’ is not well established (two electrical engineers, one

working in Radio Frequency devices and another in Image Processing, have very different

publication patterns; among engineers working in Image Processing, those working in the

pure development of methods and those in their applications also have very different
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publication patterns; likewise, among engineers working on the application of Image

Processing methods, those working in Neuroimaging present a very different scientific

environment compared to those applying those methods to Material Sciences).

This need to compare among equals has already been pointed out by Hirsch himself.

How ‘‘equal’’ should be is a matter of discussion, but current bibliographic tools as Scopus,

ISI Web of Science, or Google Scholar have very limited capacity to clearly define the

reference group to which a certain scientist, laboratory or institution should be compared.

This fact disagrees with the generally accepted scientific principle that any numerical

measurement should be compared to a ‘‘control’’ group in order to know its actual rele-

vance (Is an h-index of 30 high or low? To which standards? It depends on what the

distribution of the h-index among the equals of that researcher is). Unfortunately, there are

no standardized ways of establishing what is high or low when it comes to defining an

appropriate control group. The major players in bibliographic analysis should take into

account this significant drawback faced by many scientists when applying for grants,

fellowships, positions, etc. The jury evaluating the proposal may not be sufficiently related

to the applicant’s field, the application thus becoming either undervalued or overvalued. As

an example, in Table 1, we show the best scored scientist in very different topics

(Astrophysics, Biology, Sociology, Engineering and Literature) obtained by Google

Scholar. As can be seen from Table 1, the scientific productivity indicators are by no

means comparable, taking into account that these individuals are top-quality scientists in

their own fields.

There have been a number of attempts to compensate for the differences among various

disciplines. Podlubny (2005) observed how in the distribution of the scientific citations

across a wide range of scientific fields published in the 2004 report of the National Science

Foundation, the ratio of the total number of citations of any two broad fields of science

remains close to constant. Based in this law, the normalization of the total number of

citations with respect to Mathematics is suggested as a tool to compare performance in

different fields of science. Iglesias and Pecharromán (2007) calculate the average number

of citations/papers in different ISI fields and use it to calculate a multiplicative correction

to the h-index for each field, provided in a very practical table. Imperial and Rodrı́guez-

Navarro (2007) empirically observed that the highest h-index values attained for a given

area correlate well with the impact factor of journals in that area. Based on this obser-

vation, they propose what they call the reference h-index, defined as hR = 16 ? 11f,

f being the impact factor of the top journals that characterize the specific area or subarea.

Despite the fact that the above mentioned works provide efficient tools to compare sci-

entists working in different fields, it can be objected that the standardizations they propose

are all based in assumptions derived from empirical observations. The results they obtain

may be thus strongly conditioned by the statistical significance of the specific observations

in which they are based. The patterns derived from such observations can be caused by

specific trends or circumstances that might not apply anymore by the time the tools they

provide are used.

Coleman et al. (2012) and El Emam et al. (2012) developed benchmarks for researchers

who publish in logistic and medical informatics journals respectively, based on their peers

performance. Using a sample of authors and publications in a selection of journals from the

respective fields, these works identify a set of productivity thresholds allowing classifying

individual authors of a field at various levels. A more general approach along the same line

is proposed in Radicchi et al. (2008), where the statistical distributions of citations in the

different disciplines are rescaled on a universal curve. With such purpose a relative

indicator cf = c/c0 is considered, where cf is the number of citations received and c0 is the
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average number of citations per article of the discipline. This gives the numerical value of

cf the direct interpretation as the relative citation performance of the publication, also

known as the ‘‘item oriented field normalized citation score’’ (Lundberg 2007), an ana-

logue for a single publication of the popular Centre for Science and Technology Studies,

Leiden (CWTS), field-normalized citation score or ‘‘crown indicator’’ (Moed et al. 1995).

The work by Radichi et al. (2008) allows both classifying scientists in groups and ranking

them, as well as mixing researchers working in different disciplines. However, this

approach has not been massively adopted, and it can somehow be described as a ‘‘coarse

grained’’ discipline correction, in the sense that it considers very broad disciplines. Not-

withstanding, it points out in the right ‘‘statistical direction’’. Papers of the control group

define a reference statistical distribution that can be used to assess the quality of a paper.

Based on this premise, that is the standard methodology in statistical data analysis, we

propose a way of referring scientific performance to the scientific performance of a control

group and even a methodology to compare among different control groups.

Furthermore, it needs to be pointed out that the previous approaches focus just in

accounting for the differences among research areas. However, a fair comparison between

two scientists should consider other factors as well (e.g. whether they have been working

on science a similar number of years, in a similar scientific environment with the same

access to resources, funding access, scientific opportunities and equipment, institutional

networking, …). This can be particularly important for young researchers with high

potential, but trying to compete for funding with established labs. For this reason, we

would like to draw your attention to the fact that the methodology that we are to introduce

next enables to take into account the dependence that the scientific performance is known

to have on age, gender, scientific environment, country and any other factor for which a

control group can be defined.

Materials and methods

Fine grain performance measure among equals

In the following, we introduce a new methodology to measure scientific performance. We

will refer to this method as ‘‘fine grained’’, because each component in the control group

contributes to the score of the element being evaluated.

Let us assume that we have identified our control group, it does not matter how general

it is (papers of scientists working in Physics, or scientists in U.S. developing new materials

for X-ray photon detection in synchrotrons). In our opinion a good criteria to define the

control group would be as follows: assuming that we want to evaluate a number of papers

(these papers can be from a given scientist, a set of scientists, a department, a university, or

may have been collected by any other criterion), and considering all those papers

Table 1 Scientific productivity
indicators of the best scored sci-
entific in very different topics

Name Topic Citations h-index

William H. Press Astrophysics 131,722 64

Eugene Koonin Biology 98,272 156

Pierre Bourdieu Sociology 308,893 198

David R. Nelson Engineering 32,019 85

Gianfranco Delle Fave Literature 7,442 45
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referenced by the collection of papers to be evaluated and their authors, then the control

group would be formed by the papers of these referred authors in journals of the same topic

as the collection of papers being evaluated. However, any other criterion could be devised

as long as the control group serves for the meant comparison purposes and the control

group to which everyone is compared to is well defined. The construction of the control

group has to pay careful attention to database issues like removal of duplicated items,

incorrect entries, etc. But these issues fall out of the scope of this paper. Let us also assume

that we have selected a performance measure that highlights a certain aspect we are

interested in (total number of citations, total number of papers, number of citations per

year, number of citations per year in the last 5 years, any of these measurements nor-

malized with whichever correction factor we think is relevant). Any numerical index can

be used and it may include normalization by age of the paper or the scientist, number of

authors or any other factor that we may consider applicable. Let us call Xi; i ¼; 2; . . .;N the

numerical indices of the N elements in the control group. We can use the values in Xi to

obtain the empirical statistical distribution of the index within the control group. Note that

we do not need to fit the distribution of the Xi values to any a priori distribution (Gaussian,

power law, etc.). To assess the importance of a particular paper P with respect to the

control group, we measure the chosen index XP and the empirical probability in the control

group of having an index smaller (or equal) than the element index (scorep ¼ PrðX\XpÞ or

scorep¼PrðX�XpÞ; the difference between the two will be commented below). Note that

this score index definition corresponds to the percentile value of XP. This probability is

obviously between 0 and 1 (the higher the value, the better the performance of the index of

the P element being evaluated). Note that these probabilities can be calculated because the

empirical distribution of X is given by the Xi measurements observed in the control group.

The previous measure evaluates the performance of a single paper. To assess the

importance of a set of papers (for example, the papers of a scientist, or a group of scientists

in a laboratory or an institution) with respect to the control group, we may compute the

sum of all scores (gathering productivity and impact in a single measure) or compute any

centrality measure (like its mean, median or trimmed mean). In the following, we will call

the P-index to the index resulting of the sum of all scores with respect to our defined

control group (p ¼
PNp

p¼1 PrðX�XpÞ or p ¼
PNp

1 PrðXi\XpÞ being Np the number of

papers considered). Note that the P-index summarizes the quality and impact of a set of

performance scores and that it is bound by the total number of papers (as also is the h-

index).

Fine grain performance measures among groups

The performance presented above covers the case of comparison among equals. Next, we

will show how the P-index introduced in the previous subsection can be used to compare

scientists, groups or institutions whose control groups differ.

Given two control groups, we first compute the P-index of each element in the first

group using as control group the rest of elements in the group. We perform a similar

analysis for the elements in the second group. The ranking of these elements resembles a

preference learning problem. However, the standard input to these algorithms [some

examples are Ranked Pairs (Tideman 1987 and Schulze’s method 2003] are matrices

whose entries are the frequency with which an option is preferred over a different option.

We find that the problem of ranking the different scientists, groups of papers or groups of

scientists does not fully fit in this setting. Alternatively, the field of Decision Making
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Theory solved a similar problem using Analytic Hierarchy Process (AHP; Saaty 1988).

One of the subproblems in AHP is to rank a number of categorical features by assigning

them a numerical value according to their absolute importance. This numerical assignment

and ranking is performed by pairwise comparisons of the different features and the cal-

culation of the ratio of their relative importance. These ratios are provided by domain

experts and the information of several of such experts can be combined. This methodology

has been quite successful in Decision Making and the theoretic papers setting its foun-

dations have received over 20,000 citations and found applicability in most scientific fields.

AHP is a method to solve the so-called Multi-Criteria Decision Making. There are other

methods to solve this sorting problem like those proposed by Geoffrion et al. (1972) and

Köksalan and Sagala (1995). However, their grade of success in other fields is much

smaller than that of AHP.

In the following we will use the methodology of AHP. To construct the relative

importance matrix, H, let us assume that, among the two groups, we have a total of M

elements that we need to rank together. If we construct a matrix of the form:

H ¼

1
p1

p2

� � � p1

pM

p2

p1

1 � � � p2

pM� � � � � � � � � � � �
pM

p1

pM

p2

� � � 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

where Pi is the P-index of the i-th scientist (computed with respect to its corresponding

control group) divided by the maximum P-index in its group (this normalization assumes

that the leaders of the different groups are equally performing). Then AHP produces a

numerical rank by computing the eigenvector corresponding to the largest eigenvalue of

H. This provides an objective way of ranking the different scientists with relative scores. In

the following, we will refer to the eigenvector components as W-index.

Results and discussion

For the sake of illustrating the method to measure performance among equals introduced in

section ‘‘Fine grain performance measure among equals’’, we have chosen a first control

group, composed by the 13 Physics Nobel laureates between 2007 and 2012. Again for

illustration purposes, we have chosen as performance measure the number of citations

given by Scopus for the works published in the last 6 years divided by the age in years of

the paper and the number of authors. Such data can be easily obtained from Scopus by

introducing the name of the author in the search engine, going to the ‘‘Documents’’ link,

and ticking the checkboxes of the corresponding years (2007–2012 in this case), in order to

restrict the search to the desired temporal window. In this particular example, the control

group includes N papers (N = 473) and the number of citations per year and number of

authors (Xi; i ¼; 2; . . .;N) ranges from 0 to about 205.2 (interestingly, 19.6 % of the papers

received 0 citations, despite the fact that the scientific quality of these scientists is out of

question). Table 2 shows the results for the 13 physicists considered in this example when

they are compared according to the P-index (comparison among equals). For comparison

purposes, we also report the h-index (provided by Scopus in the ‘‘Author Information’’

section) and what we will call the T-index T ¼
PNp

1 Xp (being Np the number of
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publications considered for each author), which is one of the most common ways of

aggregating impact. It needs to be noted that different performance measures (e.g. without

normalization by age and/or number of authors) might produce different author rankings. It

must also be noted that choosing Pr(T \ Tp) instead of Pr(T B Tp) would entail different

consequences. For example, papers with 0 citations under the first scoring scheme receive

score = 0, while in the second scheme they receive a score different from 0 (in this

particular case score = 0.196 since 19.6 % of the papers in the control group have no

citations). Depending on whether we want to reward a published paper (even if it had no

impact) or not, we must choose one or the other scheme.

Focusing in the results obtained under the criteria chosen, it can be observed in Table 2

how large P-indices correspond to scientists with many papers, consistently of a top-

quality. There is in fact, a strong correlation both between the values of the P- and T-

indices (specifically, the Pearson correlation coefficient is r = 0.82) and between the

values of the P- and h-indices obtained (r = 0.85). However, the P-index overcomes some

of the limitations of the T- and h-indices in the measurement of scientific performance.

While allowing, as the h-index, to account for both the number of publications and citations

(this will depend on the performance measurement used) of an author, the P-index takes

into account all the citations of all the publications of an author. Moreover, the P-index is a

time-variant index. It can grow not only if the scientist increases his number of publica-

tions but also if his papers have an impact sustained over the time whereas his counterparts

do not. The P-index can as well decrease if a scientist ‘‘rests on his laurels’’ while his group

mates make their progress or if the impact of his publications remains less cited than his

partners’. This allows discriminating inactive from trendsetter scientists.

But the main novelty of the new P-index is that its value is relative to a specific control

group. In order to illustrate this aspect, we have performed a second experiment. The

performance measure is again the number of citations normalized by the paper age and the

number of authors, but this time the control group is formed by the most productive

scientists (between 2007 and 2012) of the University of Manchester in the same Scopus

areas as the Nobel Prizes Konstantin Novoselov and Andre Geim; we have chosen this

university because both scientists are affiliated to this institution. Both scientists belong

thus to the two groups, Nobel Prizes and Manchester University, that have been studied. In

order to get the data fitting these criteria, a search by affiliation has been performed. Scopus

allows restricting the authors search to a particular research center just by introducing the

corresponding university or institution (Manchester University in this case) in the Affili-

ation box of the search engine. Then, the results have been filtered by areas by ticking the

corresponding checkboxes that match the areas of publication associated to Konstantin

Novoselov and Andre Geim by Scopus. Finally, the resulting authors have been ordered by

descending number of publications just by selecting this criterion in the results page. As

can be observed in the results shown in Table 3 (corresponding to 45 scientists with 6,220

papers), the relative order of both authors is kept when they are evaluated with respect to

the second group (as expected, since the measure of comparison is the same), but the value

of their respective P-indices change with respect to the first experiment, according to our

claim that scientific performance depends on the specific context. Strangely enough, the

two Nobel prizes do not occupy the first positions of this second ranking and are not the

most cited authors either, two facts that once again prove the single-index evaluators to be

limited. However, their P-indices are higher than when assessed with respect to the other

Nobel Prizes, a fact that is in agreement with the higher scientific standards, and therefore

fiercer competition, that can be expected in such a distinguished group.
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The differences among the P-indices of Konstantin Novoselov and Andre Geim vary as

well from one experiment to another. However, since they have been computed in different

scales, a fair comparison between the distances separating both authors within their

respective rakings cannot be performed. This is precisely the type of problems that want to

be addressed with the computation of the W-index introduced in section ‘‘Fine grain

performance measures among groups’’. In order to apply the W-index as a tool for the

evaluation of scientists that belong to different control groups we have chosen first the

Physics Nobel laureates (13 physicists with 473 papers) and the Chemistry Nobel laureates

(11 chemists with 350 papers) between 2007 and 2012, as differing control groups. We

have measured the publication and impact pattern using the normalized P-index within

each group (physicists are compared to the Physics control group, and chemists are

compared to the Chemistry control group). Then, we have computed the corresponding W-

indices. Table 4 shows the ranking obtained for the M = 13 ? 11 = 24 scientists, by

applying the methodology described in section ‘‘Fine grain performance measures among

groups’’, in which their belonging to different groups is taken into account. Although the

classification obtained by ordering the authors according to their normalized P-index

matches exactly the W-index based ranking, this does not need to be always the case, and

the use of the W-index is recommended over the P-index when evaluating different groups.

The fourth column of the table shows an item-oriented normalized indicator, computed as

the sum of the number of citations received by the accounted papers, normalized by the

average number of citations per article of the corresponding, physics, or chemistry, dis-

cipline. The normalization factors (8.74 for the physicists and 10.74 for the chemists) have

been obtained from Thomson Corp. Item-oriented normalization is a normalization pro-

cedure that is becoming standard when comparing different disciplines. Note that there is

no direct relationship between the W-index and the item-oriented normalized index,

meaning that these two indices are actually measuring different aspects of scientific per-

formance. It may be argued that the item-oriented normalized index is a more coarse grain

measurement since it uses a single average number of citations per discipline while

underlying the W-index is the whole distribution of citations within the control group.

The W-index allows not only to rank the scientists but also to put their performance

indices in a common scale in which their relative distances can be measured (i.e. not only

Table 2 P-index and T-index
and h-index analysis for the
Physics Nobel laureates since
2007

Name P-index T-index h-index

K. Novoselov 67.63 184.06 54

A. Geim 63 404.1 62

A. Riess 24.92 15.06 52

A. Fert 24.12 24.21 50

M. Kobayashi 21.4 5.16 32

S. Perlmutter 18.87 5.98 39

B. Schmidt 11.63 3.16 48

G. Smith 6.07 1.54 5

Y. Nambu 3.34 1.93 5

T. Maskawa 2.02 0.23 1

P. Grunberg 1.99 2.7 17

C. Kao 0.87 0.27 1

W. Boyle 0.86 1 1
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Table 3 P-index, T-index and
h-index analysis for the Man-
chester affiliated scientists

Entries in bold indicates Nobel

laureates

Name P-index T-index h-index

K. Harder 200.75 1.1 45

K. Johns 196.58 1.05 50

Christian Schwanenberger 181.08 1 43

G Hesketh 146.85 0.87 38

G. Lafferty 140.63 0.87 56

A. Das 140.33 0.9 36

S. Soldner-Rembold 138.06 1.13 47

Y. Peters 130.36 0.82 31

K. Petridis 106.37 0.47 31

D. Bailey 102.37 0.61 48

W. Yang 102.05 0.65 25

L. Suter 95.64 4.12 29

K. Novoselov 88.11 184.06 54

P. Rich 87.4 0.56 28

C. McGivern 78.86 0.53 23

A. Geim 78.79 404.11 62

K. Alwyn 76.67 0.48 24

M. Vesterinen 75.67 1.24 20

T. West 74.84 0.39 29

G. Jackson 71.8 0.33 20

F. Tuna 71.45 21.17 25

S. Snow 66.72 0.37 29

J. Pater 66.62 0.23 45

F. Loebinger 66.11 0.21 43

G. Brown 60.2 0.17 27

V. Chavda 60.2 0.17 27

J. Howarth 56.78 0.16 24

J. Lane 56.56 0.16 26

M. Ibbotson 55.4 0.16 43

J. Almond 53.59 0.22 27

G. Timco 50.81 7.79 30

E. McInnes 48.7 10.29 30

D. Cullen 26.66 0.42 22

V. Markevich 23.85 1.3 18

J. Billowes 23.05 1.44 17

R. Bishop 21.55 5.53 16

M. Ford 17.95 0.11 32

G. King 11.11 0.87 16

B. Varley 8.74 0.32 23

J. Durell 5.89 0.37 21

J Dowker 4.04 2.54 10

A. Turcot 2.12 0.01 40

A. Donnachie 0.98 0.33 19

M. Naisbit 0.9 0 28

B. Middleton 0.3 0 7
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to determine which scientist is ‘‘better’’ but how much ‘‘better’’ than others he is). As has

been previously mentioned, this type of benchmark can be extremely useful in many

practical situations in which the performance of several scientists is assessed by taking into

account their differences either in terms of academic disciplines, career length, scientific

environment or any other relevant factor (these factors have to be used in the normalization

of the underlying Xp measurements). For example, Table 5 shows a joint scaled ranking,

always according to our methodology and to the evaluation criterion chosen, of the most

productive scientists from the Manchester University (in the same Scopus areas as its

affiliated Physics Nobel prizes Konstantin Novoselov and Andre Geim) and from the Iowa

State University (in the Scopus areas of its affiliated Chemistry Nobel Prize Dan

Shechtman). The first group gathers 45 scientists with 6,220 papers, whereas the second

consists of 45 scientists with 849 papers. In this way, we have two rankings including the

three above mentioned Nobel Prizes, one that accounts for their different field of work and

another that accounts as well for their different affiliation. The results obtained in Table 5

illustrate how the comparisons among scientists may vary if their different contexts are

taken into account, and how the W-index can be used to consider and measure such

Table 4 W-index normalized, P-index and item-oriented normalized analysis for the Physics and Chemistry
Nobel laureates since 2007

Name Nobel prize W-index Normalized
P-index

Item-oriented
normalized index

K. Novoselov Physics 0.48 1 21.06

R. Heck Chemistry 0.48 1 3.19

A. Geim Physics 0.45 0.93 101.08

R. Tsien Chemistry 0.24 0.51 53.84

T. Steitz Chemistry 0.24 0.5 26.37

A. Suzuki Chemistry 0.23 0.47 11.97

A. Riess Physics 0.18 0.37 8.03

A. Fert Physics 0.17 0.36 2.77

M. Kobayashi Physics 0.15 0.32 0.59

S. Perlmutter Physics 0.13 0.28 0.68

E. Negishi Chemistry 0.13 0.28 13.7

V. Ramakrishnan Chemistry 0.12 0.25 11.25

A. Yonath Chemistry 0.11 0.23 4.65

M. Chalfie Chemistry 0.11 0.23 8.27

B. Schmidt Physics 0.08 0.17 4.13

G. Smith Physics 0.04 0.09 0.34

G. Ertl Chemistry 0.04 0.09 17.37

Y. Nambu Physics 0.02 0.05 3.8

D. Shechtman Chemistry 0.02 0.05 1.74

O. Shimomura Chemistry 0.02 0.04 0.28

T. Maskawa Physics 0.01 0.03 0.03

P. Grunberg Physics 0.01 0.03 0.31

C. Kao Physics 0.01 0.01 0.03

W. Boyle Physics 0.01 0.01 0.11
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Table 5 W-index normalized and P-index analysis for the Manchester and Iowa State affiliates scientists

Name Affiliation W-index Normalized P-index

K. Harder Manchester 0.31 1

J. Clutter Iowa 0.31 1

K. Johns Manchester 0.3 0.98

C. Schwanenberger Manchester 0.28 0.9

G. Hesketh Manchester 0.22 0.73

G. Lafferty Manchester 0.22 0.7

A. Das Manchester 0.21 0.7

S. S. Rembold Manchester 0.21 0.69

Y. Peters Manchester 0.2 0.65

K. Petridis Manchester 0.16 0.53

D. Bailey Manchester 0.16 0.51

W.C. Yang Manchester 0.16 0.51

L. Suter Manchester 0.15 0.48

K. Novoselov Manchester 0.13 0.44

P. Rich Manchester 0.13 0.44

F. Xiu Iowa 0.12 0.4

C. McGivern Manchester 0.12 0.39

A. Geim Manchester 0.12 0.39

K. Alwyn Manchester 0.12 0.38

M.Vesterinen Manchester 0.12 0.38

T. West Manchester 0.11 0.37

R. Fernandes Iowa 0.11 0.36

G. Jackson Manchester 0.11 0.36

F. Tuna Manchester 0.11 0.36

S. Snow Manchester 0.1 0.33

J. Pater Manchester 0.1 0.33

F. Loebinger Manchester 0.1 0.33

G. Brown Manchester 0.09 0.3

V. Chavda Manchester 0.09 0.3

J. Howarth Manchester 0.09 0.28

J. Lane Manchester 0.09 0.28

M. Ibbotson Manchester 0.09 0.28

A.Baran Iowa 0.08 0.27

J. Almond Manchester 0.08 0.27

G. Timco Manchester 0.08 0.25

W. Yuhasz Iowa 0.08 0.25

E. McInnes Manchester 0.07 0.24

R. Dhaka Iowa 0.07 0.24

A. Russell Iowa 0.07 0.22

Y. Han Iowa 0.07 0.22

D. Pratt Iowa 0.07 0.22

T. Kempel Iowa 0.06 0.2

F. Wei Iowa 0.06 0.19
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Table 5 continued

Name Affiliation W-index Normalized P-index

N. Singh Iowa 0.05 0.16

A. Struck Iowa 0.05 0.16

M. Vuckovic Iowa 0.05 0.15

X. Sheng Iowa 0.05 0.15

J. Lamsal Iowa 0.04 0.14

N. Shen Iowa 0.04 0.13

A. MCullen Manchester 0.04 0.13

M. Vannette Iowa 0.04 0.13

A. Stefanescu Iowa 0.04 0.13

V. Markevich Manchester 0.04 0.12

J. Billowes Manchester 0.04 0.11

T. Nagai Iowa 0.04 0.11

S. Sivasankar Iowa 0.03 0.11

V. Smetana Iowa 0.03 0.11

R. Bishop Manchester 0.03 0.11

Y. Wu Iowa 0.03 0.09

M. Ford Manchester 0.03 0.09

S. Nelson Iowa 0.03 0.09

W. Keith Iowa 0.02 0.08

S. Prell Iowa 0.02 0.08

L. Willson Iowa 0.02 0.08

O. Pestovsky Iowa 0.02 0.08

A. Ruiz-Martinez Iowa 0.02 0.07

C. Chen Iowa 0.02 0.07

K. Yamamoto Iowa 0.02 0.07

S. Thimmaiah Iowa 0.02 0.07

S. Xu Iowa 0.02 0.07

C. Kerton Iowa 0.02 0.06

G. King Manchester 0.02 0.06

D. Urner Manchester 0.02 0.05

D. Shechtman Iowa 0.01 0.05

J. Xu Iowa 0.01 0.05

B. J. Varley Manchester 0.01 0.04

R. Huang Iowa 0.01 0.04

F. Margetan Iowa 0.01 0.04

X. Lin Iowa 0.01 0.03

S. Bahadur Iowa 0.01 0.03

L. Brasche Iowa 0.01 0.03

J. Durell Manchester 0.01 0.03

S. Song Iowa 0.01 0.02

J. Dowker Manchester 0.01 0.02

D. Carter Lewis Iowa 0 0.01

A. Turcot Manchester 0 0.01
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variation. Relevant differences can, in fact, be observed among the W-indices obtained for

the three reference scientists (Konstantin Novoselov, Andre Geim and Dan Shechtman)

when referred to their field in Table 4 (W-indices of 0.48, 0.45, 0.02 respectively) or their

affiliation in Table 5 (W-indices of 0.13, 0.12 and 0.01). Specifically, it can be observed

how Dan Shechtman reduces his distance with respect to Konstantin Novoselov, and Andre

Geim when his affiliation to a less renowned institution (in the 2012 Academic Ranking of

World Universities, http://www.arwu.org, Manchester is ranked 40th in the world, whereas

the Iowa State University is out of the rank) is taken into account. Such tendency is also

reflected in the normalized P-indices of the three authors, but since the values belong to

two distinct scales (Physics and Chemistry), the differences among the P-indices cannot be

used as a reliable distance measure.

As a final remark, we want to point out that the aim of the above experiments is by no

means to assess the scientific value of the contribution of any of the authors used in the

examples, but to illustrate the tools introduced/presented, that could be applied in a real

research assessment decision. For this reason the reference groups chosen have been those

that allowed us to easily classify some of the authors according to several different con-

texts, and may not be groups that make the most radical differences between their com-

ponents. For example, the publication and citation practices in the areas of Physics and

Chemistry Nobel Prizes belong are not so discordant and, although the Manchester Uni-

versity is usually ranked before the Iowa State University, both are unquestionably pres-

tigious universities. However, if these, somehow naive, examples already show how the

belonging to different reference groups can condition the scientific evaluation, more sig-

nificant differentiations can be expected in real situations, where more critical factors may

come into play.

Conclusions

Measuring performance among different scientists, laboratories or institutions is an

important issue when trying to get the most from the money invested in science. With more

or less success many different performance measures have been proposed (probably,

several of them are needed to provide a complete picture of scientific performance).

However, the absolute scale of each one of these measures is ill-defined since it strongly

depends on the scientific discipline, scientific environment, or scientific age (is a h-index of

30 high or is it low? It depends on what we compare it to). We have proposed a way of

referring scientific performance to the scientific performance of any control group and a

methodology to compare among different control groups. In particular we have defined:

Table 5 continued

Name Affiliation W-index Normalized P-index

Y. Li Iowa 0 0.01

S. Lin Iowa 0 0.01

A. Donnachie Manchester 0 0

M. Naisbit Manchester 0 0

N. Anderson Iowa 0 0

B. Middleton Manchester 0 0

Entries in bold indicates Nobel laureates
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• The P-index: that compares any performance score (h-index or any other that highlights

those features we are interested in) to the distribution of the same performance score

computed in a control group. The P-index is calculated using a fine-grained approach

based on individual papers and, consequently, can be used to carefully distinguish

among similar performances.

• The W-index: that allows integrating two lists of scientists, departments or institutions

with different control groups.

Both together allow us to effectively compare an author, department or institution to his

equals and compare authors, departments or institutions with different scientific back-

grounds. Finally, it needs to be pointed out that, to be optimally effective, maximizing the

use of the resources devoted to science should also consider the monetary income (e.g., it is

not enough to measure the number of citations per year of a given institution, the number

of citations per year and invested dollars should also be evaluated). If measuring scientific

outcome is a controversial issue, measuring this productivity by invested money can raise

bitter debates among scientific stakeholders, which was not the aim of this article.
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