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Resumen

La farmacocinética es aquella parte de la materia farmacéutica que estudia la
evolucion temporal de la cantidad total en el cuerpo de un determinado farma-
co y sus metabolitos asi como su concentracién en diferentes tejidos y plasma.
Esta evolucion es de vital importancia ya que para muchos farmacos existe una
ventana terapéutica dentro de la cual son efectivos (por debajo de una deter-
minada concentracion el firmaco no tiene ningin efecto; y por encima de otra
concentracion tiene efectos toxicos). El conocimiento de la concentracion, por si
mismo, puede ser util para evitar efectos nocivos; sin embargo, muy probable-
mente, estemos también interesados en comprender los efectos fisiologicos del
farmaco sobre un determinado parametro (por ejemplo, la presiéon sanguinea,
la temperatura corporal, o el ritmo cardiaco). Este es el dominio de la farma-
codinamia, construir un modelo del efecto fisiologico que dependa de la con-
centracion del farmaco. Por su parte, la biofarmacia propone modelos precisos
de la liberacion del farmaco, su disolucién y absorcién. Los tres juntos (biofar-
macia, farmacocinética y farmacodinamia) intentan caracterizar las propiedades
LADME (Liberacién, Absorcion, Distribucion, Metabolismo y Excrecion) de un
farmaco concreto asi como sus efectos toxicologicos y efectos terapéuticos.

La herramienta mateméatica mas utilizada es el modelado mediante ecua-
ciones diferenciales, ya que esto no sélo permite ajustar las observaciones de
concentracion a lo largo del tiempo, sino que ademas permite predecir la misma
para dosis diferentes a la empleada para la determinacién de los pardmetros
del modelo. Una vez fijado el conjunto de modelos matematicos, el interés de
esta tesis se centra sobre los aspectos técnicos del conjunto asi como su ge-
neralizacién para incluir un mayor numero de efectos. Esto contrasta con un
enfoque més farmacolégico que estaria orientado a los parametros concretos de
un farmaco, su distribucién dentro de una poblacién, su variacién con diferentes
estados fisioldgicos y la interaccion entre farmacos, y su comparacioén con otros
farmacos.

La aproximacion clésica a todos estos esfuerzos de modelado ha tratado cada
efecto por separado, de forma que los modelos farmacocinéticos o no incluyen o
incluyen modelos biofarmacéuticos muy simples. El motivo es que se han centra-
do fundamentalmente en el uso de formulas analiticas cuyos parametros deben
ser estimados a partir de muestras experimentales obtenidas en el laborato-
rio. Cada modelo debe ser resuelto explicitamente y debido a la complejidad
de la matematica subyacente, en muchas ocasiones inicamente hay soluciones
integrales para situaciones relativamente simples. Los métodos de célculo de
parametros, ademés, suelen estar dnicamente resueltos como casos particulares
y con una formulacién poco general. En oposiciéon a esta perspectiva, en esta
tesis se defiende que el modelado biofarmacéutico, farmacocinético y farmaco-
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dindmico puede ser unificado desde una perspectiva de ingenieria en un marco
comun de senales (dosis, concentraciones y cantidad total de farmaco) y siste-
mas (el paciente y el sistema de medida). Las sefiales son simplemente funciones
y distribuciones matematicas, y se pueden utilizar para representar cualquier
variaciéon de uno o varios parametros fisiolégicos a lo largo del tiempo. Por su
parte, los sistemas son todas aquellas operaciones que transforman una sefial en
otra. Por tltimo, debemos tener en cuenta que normalmente no tenemos acce-
so a la verdadera senal subyacente sino tan sélo a una version deteriorada de
aquella. Se dice que la senal observada es ruidosa entendiendo por ruido cual-
quier interferencia determinista o aleatoria que modifique el valor observado de
la senal que deseamos medir. El modelo unificado consistiria en un conjunto de
ecuaciones diferenciales que relacionan las entradas y las salidas del sistema. El
sistema continuo asi construido debe ser discretizado de forma que, una vez se
conozcan los parametros del sistema, se puedan realizar simulaciones numéricas
muy precisas por medios computacionales. De hecho, se propone el modelado del
ruido de las medidas como el mecanismo de alcanzar la identificacion de los pa-
rametros del sistema por medio de una aproximacién de maxima verosimilitud.
Esta identificaciéon se puede realizar para cualquier régimen de administracion y
se propone determinar los intervalos de confianza asociados a estos parametros
mediante un muestreo por bootstrapping.

El objetivo de esta tesis ha sido el de dotar de un escenario de sistemas
discretos a los problemas encontrados en biofarmacia, farmacocinética y farma-
codinamia. En este contexto, todos los problemas de estimacién de pardmetros
se reducen a un unico problema de identificaciéon de sistemas. El problema a
resolver es el mismo para cualquier tipo de sistema y se debe poder utilizar de
forma conjunta con procedimientos de estadistica no paramétrica que estimen
la varianza y la covarianza de los paramétros del sistema, la evaluaciéon de su
bondad de ajuste, y la comparaciéon entre sistemas alternativos. Esta aproxi-
macioén también es valida para resolver problemas con pardmetros que varian
con el tiempo asi como para analizar la distribucién de estos parametros en una,
poblacién. El escenario debe ser lo suficientemente general como para poder
manejar posologias a intervalos de tiempo irregulares asi como para realizar el
diseno de la propia posologia. El marco mateméatico debe ser capaz de manejar
dosis intra- y extra-vasculares con cualquier tipo de medidas de concentraciéon
(concentracion de farmaco en plasma, orina, tejido, ...), medidas simultaneas
o alternas. Ademas, la implementacién de un nuevo modelo farmacologico en
el nuevo marco debe ser lo suficientemente sencillo como para permitir que el
usuario se concentre en la tarea de modelado sin necesidad de ocuparse, ademaés,
de las tareas méas “administrativas’ de la programacion.

Desde esta perspectiva de senales, sistemas y ruido identificamos varias de
las limitaciones de las aproximaciones que habitualmente se utilizan en Farmacia,
como son el abuso del concepto de deconvolucién y el no aprovechamiento del
régimen transitorio de la sefial de concentracién de farmaco hasta que no se
alcanza el estado de equilibrio (steady state).

A lo largo de la tesis proporcionamos el marco de sistemas discretos (nor-
malmente no lineales) buscado. Relacionamos este marco con conceptos nor-
malmente utilizados en farmacocinética y farmacodindmica como los minimos
cuadrados, los minimos cuadrados ponderados y la estimacién Bayesiana, jus-
tificando tedricamente todas estas aproximaciones y explicitando sus hipotesis
constitutivas. Proponemos en la tesis el empleo de algoritmos de optimizacién
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global como pueden ser los algoritmos genéticos de forma que se superen los
problemas asociados a la convergencia local de algoritmos basados en gradiente
conjugado o gradiente descendiente y la consiguiente dependencia de la solucién
final con la primera estimacién de los pardmetros. Mostramos cémo estimar los
intervalos de confianza de cada parametro utilizando estadistica no paramétrica
(muestreo por Bootstrapping), como utilizar esta distribuciéon para determinar
posibles respuestas farmacocinéticas y farmacodinamicas por medio de la simu-
lacion de Monte Carlo, y demostramos, a través de la Matriz de Informacion de
Fisher, que existe un limite inferior (la cota de Cramer-Rao) por debajo de la
cual ningn método de ajuste, por sofisticado que sea, puede reducir la varianza
de un determinado valor. De hecho, mostramos como la Matriz de Informa-
cion de Fisher puede ser utilizada para disefiar de forma Optima los instantes
de recogida de muestra de forma que se minimice la incertidumbre sobre los
parametros del sistema. En la tesis estudiamos la estabilidad, sensibilidad de
primer y segundo orden de los modelos propuestos. Proponemos nuevas formas
de normalizar estas sensibilidades de forma que éstas sean comparables entre
parametros con 6rdenes de magnitud muy diferentes. También mostramos como
se puede calcular la sensibilidad en el caso de no disponer de una férmula ana-
litica de la respuesta farmacocinética a partir del analisis de la propia ecuacién
diferencial que define el modelo. Durante el proceso de discretizacion, debemos
prestar especial atencion al periodo de muestreo de la sefial analégica. Este es
un concepto normalmente no contemplado en los textos farmacéuticos y que,
sin embargo, puede comprometer seriamente la precision y la estabilidad de las
predicciones de los modelos.

También mostramos como plantear todos estos conceptos en los problemas
concernientes a la farmacocinética (farmacocinética lineal, modelos comparti-
mentales, diferentes modelos de aclaramiento y regeneracién de moléculas, asi
como el escalado alométrico, farmacocinética no lineal, saturaciéon enzimatica,
induccion e inhibicién enzimatica, efectos sobre el flujo sanguineo, unién a pro-
teinas, modelos de metabolitos y velocidad de reaccion), a la farmacodinamia
(efecto inducido y unién a receptores, modelos genéricos, modelos indirectos,
transduccién y compartimentos de transito, modelos de desarrollo de tolerancia
y rebote, y modelos de efectos fisiologicos discretos), y la biofarmacia (difusion,
disolucion y absorcion). En aquellos puntos donde es posible hemos generaliza-
do diferentes modelos, habitualmente presentados como modelos independien-
tes, y demostramos que todos son casos particulares de un modelo més general.
Adicionalmente, hemos provisto de un modelo dinamico basado en ecuaciones
diferenciales a muchos efectos que en el ambito farmacéutico se tratan tnica-
mente desde un punto de vista estatico (una vez que se alcanza el equilibrio).
Nuestra formulacion permite el analisis del transitorio de dichas variables. En
este proceso hemos descubierto algunas ecuaciones que definen sistemas varia-
bles en el tiempo definidos por ecuaciones diferenciales no auténomas (algo no
muy habitual en el mundo de la ingenieria).

En la Seccién de Resultados mostramos la aplicacién de todos estos princi-
pios a ejemplos concretos de modelado y estimaciéon de parametros en diferentes
aplicaciones de farmacocinética, farmacocinética clinica, toxicocinética, farma-
codinamica y biofarmacia. Estos resultados muestran cémo el nuevo marco de
analisis abre la puerta al estudio de situaciones anteriormente vedadas a las he-
rramientas tradicionalmente utilizadas en la practica farmacéutica como pueden
ser el ajuste simultaneo a dos vias de administracion, el anélisis con parametros
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variables con el tiempo, y el analisis de sistemas fuertemente no lineales. De
forma destacada, en la Seccion 4.7 se desarrolla un modelo muy complejo que
unifica estas tres disciplinas en un tnico marco teoérico. Por iltimo, se muestran
posibles errores de modelado que normalmente no son comentados en los textos
farmacéuticos.

En el Apéndice se muestra un articulo actualmente en revisiéon sobre el uso
de la Matriz de Informacién de Fisher para la determinacién de los instantes
optimos de muestreo en un farmaco del que se conoce la distribucién poblacional
de sus parametros farmacocinéticos y en los que no se tienen acceso a otros
parametros que también afectan a la respuesta (nuisance parameters).



Chapter 1

Introduction

1.1 The pharmaceutical problem

Pharmacokinetics refers to the study of the time evolution of the amount of
a certain drug in the body as well as its concentration at different tissues and
plasma. This evolution is of crucial importance because for many drugs there is
a therapeutic window within which the drug is effective (below a certain concen-
tration, the drug has no effect; and above a certain concentration, the drug may
become toxic). Concentration alone may be useful to avoid toxicologic effects;
however, we are, most likely, also interested in understanding the physiological
effect of the drug on a certain parameter (e.g., blood pressure, temperature, or
heart rate). This is the domain of pharmacodynamics, which constructs a
model of the physiological effect that depends on the drug concentration. Ac-
curate models for the drug release, dissolution and absorption can be given from
biopharmaceutics. Altogether the field aims to characterize the ADME (Ab-
sorption, Distribution, Metabolization, and Excretion) features of a particular
drug as well as its toxicological and therapeutic effects.

The classical approach to all these modelling efforts has addressed each effect
separately. It has also focused on giving closed-form formulas whose parameters
can be estimated from experimental samples obtained at the laboratory (see Fig.
. Each case has to be explicitly solved, and due to the complexity of the un-
derlying mathematics, many times there are only formulas for relatively simple
situations. In contrast to this view we defend that biopharmaceutical, phar-
macokinetical and pharmacodynamical modelling can be jointly unified from an
engineering perspective into a common signals and systems framework. The uni-
fied model consists of a set of differential equations relating inputs and outputs to
the system. The continuous system constructed above is then discretized so that
accurate numerical simulations can be performed once the system parameters
are known. In fact, to identify the system parameters, a system identification is
proposed in which measurement noise is modelled, and according to this model
the most likely system parameters can be determined. This identification can
be performed for any arbitrary dosing regime and empirical confidence intervals
can be determined.

In the following pages we discuss certain aspects not specifically covered in
the thesis but that can be easily derived from the framework proposed or that
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C(t) mg/L

t(h)

Figure 1.1: Example of drug concentration in plasma and its samples for an oral
dosis.

are superseded by the framework.
Non-compartmental pharmacokinetics

Non-compartmental pharmacokinetics has currently found its application
niche for evaluating drug exposure. This approach does not need any model
for the concentration and it exclusively relies on the experimental samples to
estimate parameters such as the Mean Residence Time (MRT; the mean time
that a drug molecule is inside the body), the Mean Absorption Time (MAT; the
mean time that takes the drug to pass into the body), the Clearance (the amount
of plasma whose drug is eliminated by unit time), etc. In all these analysis
the Area-under-the-curve (AUC) plays a central role (see Fig. [[.2). However,
accurate measurement of this area requires a fine sampling of the curve (many
measurements) and require extrapolation techniques for the area after the last
experimental sample. Extrapolation is normally based on the assumption of an
exponential decay whose constant has to be estimated from the final part of the
curve. The main criticisms to this approach are that it is only valid for linear
systems (nonlinear effects cannot be handled), the AUC has no physiological
meaning and it confounds clearance and dose. Additionally, the formulas to
calculate MRT are only valid in specific administration regimes (single bolus,
constant rate infusion, etc.) and they are normally given as recipes.

Regression modelling

Alternatively, we may fit a suitable curve with few parameters and estimate
the AUC from this curve. In the example of Fig. [I.2] an appropriate function
is

C(t) = Co (e K — e~ Keh) (1.1)

By standard nonlinear regression we may estimate Cp, K and K,. As in the

previous case, the function does not have any physiological meaning and all its

merit is that it has a low error when approximating the experimental samples.

In nonlinear regression it is very important to have reasonable initial values for

the model parameters and there are “magic” formulas to estimate them.
Linear compartmental modelling
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C(t) mg/L

25

Figure 1.2: Noncompartmental analysis of the concentration profile in Fig.
AUC represents an estimate of the Area-under-the-curve from the experimental
samples. Note that the area after the last sample has to be extrapolated.

Compartmental modelling assumes that the body can be divided in different
compartments within which the drug concentration is constant. For instance,
all the circulatory system may be a compartment (normally referred to as the
central compartment). Some organs with large blood flows are also normally
considered to be included in the central compartment. Other tissues with less
blood flow are normally included into one or several peripheral compartments.
Then, we must write a differential equation describing the evolution over time of
the concentration within each compartment. Actually, Eq. is the solution
of the differential equation

dC(t)  K.FDp, oKt

. - — KCO(t) (1.2)

This equation models the absorption of an oral dose, e.g. at the intestine.
K, is the absorption rate, F' is the fraction of drug that actually gets into
the circulatory system, V' is the volume of the compartment (which does not
necessarily coincide with the volume of blood due to plasma protein binding
and other effects discussed along the thesis), and K is the elimination rate. All
these parameters are further discussed in the thesis chapters. In Eq. (1), Co
represents Cy = %. The differential equation above is linear and that is
why the methodology is called linear compartmental modelling.
Compartmental modelling is based on a physiological modelling of the drug
kinetics which is a clear advantange over other models since the model paramet-
ers intuitively represent physiological mechanisms. However, in its traditional
treatment, only those cases for which there exists a closed-form solution of the
differential equation are studied. This strongly narrows the possibilities of ex-
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ploring irregular doses regimes and limits the analysis of physiological processes
such as enzyme mediated reactions at different levels. As in the previous cases,
“magic formulas” are given to provide initial estimates of the model parameters.
The amount of formulas needed to deal with these models can dauntingly grow,
and traditionally, compartmental modelling analysis is based on a huge list of
particular cases.

In fact, this was the motivation of the present thesis: to unify all these par-
ticular cases into a few general formulas that can handle multiple physiological
effects and any dosing regime. At the same time, all initial value formulas have
been substituted by intervals of feasibility and powerful global optimization
algorithms are employed to find the model parameters within these intervals.
As a result of the identification methodology, we may even empirically provide
confidence intervals for the modelling parameters.

Nonlinear compartmental modelling

Nonlinear compartmental modelling aims at faithfully modelling physiolo-
gical effects by incorporating different aspects that make the differential equa-
tion to become nonlinear. Linearity or nonlinearity is a technical, mathematical
aspect. At this point it suffices to point out that nonlinear differential equations
are more difficult to solve and they require more accurate numerical approxim-
ations to guarantee their stability. One of the most important nonlinear effects
being modelled is the fact that many biochemical reactions are mediated by
enzymes, whose maximum processivity rate is normally bounded by its concen-
tration and that the reaction speed normally depends on the concentration of
the ligands involved. This directly translates into a concentration dependence of
the absorption and elimination rates, which are no longer constants but varying
over time. The framework developed in this thesis is capable of handling any
nonlinear effect that we may desire to model.

Population studies

Note that all the modelling above refers to estimating the model parameters
for a particular concentration profile from samples drawn from a single indi-
vidual (see Fig. . It is expected that different individuals may respond
differently to the same dosis, in concentration as well as on physiological ef-
fects. This can be easily modelled by giving the statistical distribution of the
model parameters for a given population. For doing so, we would need to find
the parameters for different individuals and gather all those parameter estim-
ates into a single statistical distribution. Interestingly, we may even classify
the population into responders and non-responders to the therapy and use the
model parameters to perform this classification.

Exposure

Body exposure to a particular drug is an important parameter when try-
ing to determine the drug toxicological and therapeutical effects. There have
recently been several definitions of exposure all of them reasonable and accept-
able. It has been defined as: 1) the stedy state concentration of the drug after
regular intakes; 2) the maximum concentration after a single intake; 3) the
AUC after a single intake; 4) area under the concentration profile and above
the minimum therapeutic concentration. We may apply all these definitions to
the study of the total drug concentration or the free drug concentration (those
drug molecules that are not bound and sequestered, consequently without any
therapeutic or toxic effect). In any case, the methodology proposed in these
cases allows calculating any of the definitions above. Since the drug concentra-
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tion (total or unbound) can be readily by simulated after system identification,
we simply need to measure the desired quantity to determine exposure.

Inter-species scaling

Many drugs are first tested in animals, in fact the FDA regulations require
testing in two roedents and one non-roedent before testing in humans, to char-
acterize their therapeutic and toxic effects. The effective doses used for animals
have to be scaled to humans so that in the first experiments with humans we
never induce any adverse effect (although we may not induce any beneficial ef-
fect either). Then, the dose is progressively increased. The more accurate we
predict the effective doses needed for humans, the less experiments we will need
in clinical trials and the more cost effective will be our process. Inter-species
scaling deals with the problem of predicting several pharmacokinetical paramet-
ers from one species to another. This scaling is mostly based on the body weight
of the individuals.

1.2 Numerical solution of differential equations

The approach adopted in this thesis is tightly related to the numerical solution
of differential equations. Conceptually, discrete systems (the ones proposed
in this thesis to solve pharmacokinetics and pharmacodynamics problems) can
be viewed as a simple change of notation in the traditional field of numerical
solution of differential equations. Although this is true, it is only partially true
since discrete systems have given raise to a whole theory of its own, and not
only as numerical solutions of differential equations. In fact, this theory is what
makes our current world to be so “digital”. In the following paragraphs let us dive
deeper in the concepts traditionally involved in the numerical approximation of
differential equations.

Ordinary differential equations date back to the XVIIth century and they
were independently invented by the English physicist Isaac Newton and the
German mathematician Gottfried Leibniz about 1680 (Archibald et al., |2004).
Except in very limited occasions, differential equations do not have a closed-
form solution as in Egs. and . Alternatively, the field of applied
mathematics have developed approximate tools to handle the rest of cases. In
general, they approximate the solution C(t) as a Taylor series around a given
point (in the following example around ¢t = 0):

C(t) = i ant” (1.3)
n=0

whose differential is

dC(t) s n—1
Then, the homogeneous differential equation (Eq. (1.2)) becomes

(e} o]
S napt" Tt = —K Y a,tt

n=0 n=0 (15)
ant_l + 1a1t0 + 2a2t1 + 3a3t2 +...= —K(aoto + a1t1 + a2t2 + )
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or what is the same, a¢ can be any arbitrary constant because from the term at
t~! we learn that Oap = 0, and for n > 1

(n+1any1 = —Kap = apy1 = —%an (1.6)

However, our differential equation (Eq. (L.2)) is non-homogeneous. We could
use the technique of dominant balance. However, note that this technique is
rather inconvenient because:

e This solution is only valid within the convergence radius of the Taylor
expansion. Beyond that time point, we need to re-expand around a point
within the convergence radius. In this way we can progress along the time
axis.

e The convergence of the Taylor sum may be rather slow, especially for
points far from the expansion time point.

e The recurrence equation (Eq. [1.6) may not be easily to solve, particularly
for non-linear equations.

An alternative approach, and the one followed in this thesis, proposes to
discretize the differential equation. Discretization is the process by which we
transform a continuous function into a discrete function. A continuous function
depends on a continuous variable ¢t € R:

f&):R—=R (1.7)
A discrete function depends on a discrete variable n € Z
fin]:Z—=R (1.8)

We normally make coincide the discrete function f[n] with values of the con-
tinuous one

fln] = f(nTy) (1.9)

where T is called the sampling rate and is measured in time units. The dis-
cretization is based on the Taylor expansion of the function f()

flt=h) = f(t) + f'(t)(=h) + O(h?) (1.10)

where O(h?) are terms that depend on h?, h3 k%, ... and they are called second
order term, third order term, etc. If h is sufficiently small (for instance if A is
much smaller than 1), these terms tend to be much smaller than the first order
term and can be disregarded. Solving for f/(¢) we would have a simple way of
approximating the derivative

f(t) = ft=h)  O(*) _ f(t) = f(t—h)

/ o _
@)= 5 + P 5 + O(h) (1.11)
If we make T = h and take into account Eq. we would have
@) = fln] = fln 1] + O(Ty) (1.12)

T,
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We may increase the accuracy of this approximation by choosing more elements
in the Taylor expansion and more sample points. For instance:

Ft—h) = f(t) + £()(=h) + £ (—h)2 + O(h?)

" (1.13)

F(t—2h) = f(t) + f(£)(—2h) + L8 (—20)2 + O(3)

Let us now multiply the first equation by a; and the second by as
alf(t - h) = alf(t) + alf/(t)(_h) + al@(_h’)2 + alo(h3) (1 14)

asf(t — 2h) = asf(t) + ao f'(t)(—2h) + QQW(—2h)2 +az0(h?)
and now let us sum both equations

a1 f(t = h) + asf(t — 2h) = (a1 + a2) F(t) = h(ar + 2a2) f' () + % (a1 + 4az) f(t) + O(h?)
(1.15)
We may set the coefficient going with f/(¢) to 1 and the one going with f(¢)
to 0

a1 +2a = 1
4 +day = 0 (1.16)
whose solution is a; = 2 and as = f%. the we have
2f(t —h) — 3f(t —2h) = 3 f(t) — hf'(t) + O(h3) = (1.17)

F(t) = MO0 o2y

As we did before, a more accurate approximation is obtained by the discretiza-
tion

3fn] —4fln—1]+ fln —2
oy = =470 =)+ fin =2

The differential equation Eq. (1.2) becomes

+0(T7) (1.18)

3C[n] —4Cn — 1]+ Cln —2] K. F Dy, o—KunT.

T % — KC|n] (1.19)
At this point we may solve for Cn]
1 K.,FD
=—— (4 — 11 = —9 T 2a” PO ,—KanTs 1.2
Cln] 5T KT, < Cin—1]—-C[n—2]+T; v ¢ > (1.20)

This recursion is valid for n > 0 since we are assuming that the extravascular
dose is given at ¢t = 0. Consequently, C(t) = 0 for ¢ < 0, which is referred to as
the rest condition. Consequently, C[n] = 0 for n < 0. The rest condition allows
us to calculate C[0] using C[—1] = C[-2] = 0.

At Eq. we inadvertedly have already taken a decision that results in
what is called an implicit formula. It is implicit because to have a recursion
formula we have needed to solve for C[n] in Eq. (L.19). In this case, it was
relatively easy, but it might be rather difficult in certain nonlinear cases. Explicit
and implicit schemes come after the following reasoning. Many of the equations
we deal with in pharmacokinetics and pharmacodynamics can be written in the
form

y'(t) = F(ty(t)) (1.21)
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For the moment, let us consider the first order, backward approximation of the
derivative y/(t) ~ W If we discretize the differential equation as

y(t) —y(t —h)

M = F(ty() = o(0) =yt —h) +hF@y(1)  (122)

To have a recursion formula we need to solve for y(¢) in the equation above. This
may not be an easy task if F' is a non-linear function in y. Let us now consider
the first order, forward approximation of the derivative y/(t) ~ M The
discretized differential equation becomes

yt+h) —y(t)

Y = F(t,y(t)) = y(t+h) = y(t) + hF (¢, y(t)) (1.23)

The recursion is now much more straightforward.
We may get an explicit discretization of the differential equation at Eq.
(1.2) using the centered second order first derivative approximation y'(t) =

%}M + O(h?). In this particular case, we would have

Cln+1]-Cln—1] KaFDpoefKanTs

o, % — KC|n] (1.24)
which gives the recursion
Cln+1]=Cn—1]+ 2T5%8—KQ"TS — 2K T,C[n] (1.25)
If we change n by n — 1 in the equation above we get
Cn] = Cln — 2] + 2, Bt Pro (-ker-0T. oo -1 (1.26)

%

Compare Egs. ((1.20) and (|1.26]). They are supposed to give different approxim-
ations to the same differential equation. However, they have different numerical

properties. Implicit methods are, maybe, much more stable than explicit meth-
ods (if this is the case, the differential equation is said to be stiff). The theory
of stability of differential equations is well beyond the scope of this thesis. It
suffices to know that explicit methods can be made more stable by choosing a
sampling rate, T, sufficiently small. In this thesis, we promote the use of im-
plicit methods. Additionally, since the computational burden is relatively low,
we can afford to have very small sampling rates, T in the order of 1 minute, as
compared to the rate at which physiological variables are supposed to change.



Chapter 2

Objectives

The objective of this thesis is to set the problems encountered in biopharmacy,
pharmakokinetics and pharmacodynamics in a discrete system scenario. In this
setting, all estimation problems reduce to a single system identification prob-
lem. This problem is the same for any kind of system and can be used in
conjunction with non-parametric statistical procedures to estimate the variance
and covariance of the system parameters, the evaluation of its goodness of fit,
and the comparison among competing systems. This approach is also valid to
solve problems with time varying parameters as well as population parameters.
The developed framework must be general enough to deal with arbitrary dosing
regimens as well as for the design of the posology itself. Also, the framework
must deal simultaneously with extravascular and intravascular doses and with
any kind of drug concentration measurement (drug concentration at plasma,
urine, tissue, ...) including alternative measurements at different time points.

Being so general, the framework should lend itself to relatively simple com-
puter implementations that allows the practitioner to concentrate on the model-
ling problem disregarding most “house-keeping” functions that should be provided
by the generic framework.
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Chapter 3

Materials and methods

3.1 Materials

The material required for this thesis is a computer and any programming lan-
guage. For simplicity, we will make use of MATLAB (http://www.mathworks.
com/products/matlab) for the design of the Graphical User Interfaces (GUIs)
and for the availability of its Global Optimization Toolbox (http://www.mathworks.
com/products/global-optimization) and Optimization Toolbox (http://www.
mathworks.com/products/optimization). Heavy calculations associated to
the model will be performed in C++ and compiled with any compiler (in Win-
dows we have compiled with Microsoft Visual C++ and in Linux with the GNU

gce compiler). The C++ routines are bound to Matlab through the use of MEX
files.

3.2 Methods

The discretization proposed in this thesis along with the system simulation and
system identification approach proposed can be considered as the single method
of the thesis. As a rude approximation we may describe the method as:

1. Step 1: Write the differential equations describing the dynamics of the
system being analyzed including the doses as an external excitation of the
continuous system. In general, the set will describe a non-linear, non-
homogeneous, multiple-input, multiple-output, continuous system.

2. Step 2: Discretize the differential equation by a set of difference equations.
In general, the set will describe a non-linear, non-homogeneous, multiple-
input, multiple-output, discrete system.

3. Step 3: Identify the system parameters by minimizing with respect to
the system parameters the likelihood of the observed concentrations (the
system output) given knowledge about the system input (doses). This
system identification step is independent of the type of system and can be
employed to estimate the variance and covariance of the system parameters
as well as empirical distributions of these parameters in a given population
of individuals.

11
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Once the system is identified (estimates for its parameters are given), the system
can be simulated in order to distinguish among different models or to design a
specific posology.

An important consequence of this method is that the three fields (biophar-
maceutics, pharmacokinetics, and pharmacodynamics) collapse into a single dis-
cipline and most models normally studied in the literature become variations of
a single theme. The modelling process becomes a highly modular task in which
all our biological knowledge or assumptions go into Step 1. Step 2 is normally
largely disregarded in the standard pharmaceutical approach which prefers the
closed-form solution of the model at Step 1. However, this second approach
severely limits the complexity of the systems to analyze as well as the dose
regimens utilized. These are not limitations any longer in the approach defen-
ded in the thesis. Finally, Step 3 finds the parameters of the model by finding
a suitable optimization approach that maximizes some goal function normally
derived under fixed statistical assumptions on the measurement errors (another
aspect that is normally omitted in the standard pharmaceutical literature). In
this thesis we prefer a global+local optimizer approach, while in the standard
pharmaceutical literature it is preferred a local approach with ad hoc initial val-
ues for the parameters. Although equivalent, again this second approach limits
its applicability to relatively simple cases.

Being in summary relatively simple, most of the thesis is devoted to slowly
present this methodology and to show how to incorporate different physiological,
biochemical and biophysical effects by the selection of the appropriate differen-
tial equation. We may consider the different thesis sections as the building
blocks that have to be combined in order to construct a complex PKPD model.
In many cases, especially at the beginning, while the discretization methodology
is not well-established yet, we show how to discretize the differential equations.
As the text progresses, we assume that the discretization methodology is already
known and many times we omit this step. In the Results section, we show sev-
eral examples in which this methodology is applied. Particularly interesting is
a complete example in which building blocks from biopharmaceutics, pharma-
cokinetics and pharmacodynamics are combined in a single model. However,
the defended methodology does not need to model the whole system, it may
be used only to model a particular part of the system (biopharmaceutics or
pharmacokinetics or pharmacodynamics, or any combination of them).

3.3 Linear compartmental pharmacokinetics

3.3.1 One-compartment intravenous bolus

Maybe, this is the simplest model we can address. The drug is administered

directly into the blood stream at time ¢ = 0, it is assumed to immediately

distribute in the whole distribution volume and its disappearance is related to

the elimination by some (unspecified) mechanisms. The model is fully explained
in (Gabrielsson and Weiner), [2007)[Section 2.2].

Drug concentration at time 0 can be calculated as the ratio between the
intravenous bolus and the distribution volume
Doseyy

C0) == (3.1)
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This initial concentration decays over time as the drug is cleared. The clearance
model is assumed to follow a first order differential equation that states that
the variation of the amount of drug in the body (A,(t)) over time decreases
since a small volume of blood (denoted as Cl, Clearance) is totally cleared.
Note that the amount of drug in this small volume is CIC(t) where C(t) is the
concentration at a given time point:

dAu(t) = —CIC(t) (3.2)

dt

Since the concentration in the body is the total amount of drug in the body
over the distribution volume, we have

dC(t)  1dAt)  Cl

a v oa ~ vW (3:3)
Reorganizing the terms we have
dC(t) Cl
— = ——dt 3.4
C(t) \% (34)

So the clearance have dimensions of [Volume/time] (normally mL/min or L /min).

The solution of this differential equation is (see Fig. [3.1)

l D ] l
C(t) = C(0)e~ Tt = 7056”6—% (3.5)

The ratio % is called the elimination rate constant (K.) and has dimensions
[1/time]. Note that the model is fully described by the distribution volume V'
and the clearance Cl. Note also that this concentration profile only makes sense
for t > 0; otherwise, the drug concentration before giving the dose must be 0.
We may write this mathematically using the so-called step function, u(t). It is

defined as
0 t<O0
u(t) = { 1 > 1 (3.6)

In this way, the concentration over time is

Dose; ci
_ v @77’&

o) = ==

From these parameters, we may derive some other interesting parameters.
For instance, the drug half-time is the time it takes to reduce concentration
by 1/2.

u(t) (3.7)

;=¢ (3.8)
—log2 = —7lt1

2
t1 =log2g; = 0.693%;

The Mean Residence Time tries to estimate the mean time that a given
molecule stays in the body (Rosenbaum| [2011))[Section 10.2]. For a first order
elimination model, the amount of drug eliminated in a differential period of time

is (see Eq. (3.2))
dA.(t) = —dAy(t) = CIC(t)dt (3.9)
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Figure 3.1: Typical response of the concentration over time for a single intra-
venous bolus applied at time ¢ = 0.

This amount of drug has been in the body a time ¢ (this is its residence time).
The mean residence time can be calculated as the average over all molecules as

t(CIC(t)dt) 29t<7(t)dt AUMCE

MRT =
R AUCE

(3.10)

Tcmwmt::TC@ﬁ
0 0

where AUCS® and AUMCG® are referred to as the Area-Under-the-Curve and
Area-Under-the-first-Moment-Curve, respectively.
In this case

AUQF:ngﬁzgcmk*Uﬁzgp

o

i ° (3.11)
AUMCE® = Jtc(t)dt = Oftcm)e—Ketdt _ %2)
The Mean-Residence-Time is calculated as
MET = gregh = #; (3.12)

Classical estimation of parameters

In a real application, we need to estimate the model parameters. As we have
seen in the previous section, the model is fully determined by the volume of
distribution V' and the clearance Cl. However, we may also estimate many
other secondary parameters that are derived from this two (AUCO0>, M RT,
ti,...)

* In this model, the data available to estimate the parameters is normally the
amount of drug in the injected bolus (Dose;,) and different measures of the
drug concentration along a number of time points. For instance, after injecting
10 mg of a given substance in the blood stream, its concentration over time
drops as shown in the table below:



3.3. LINEAR COMPARTMENTAL PHARMACOKINETICS 15

~

log(C(t))
o o o o o
[e<] (2] N = o ©

o
o
T

o
IS
T

a
)

. .
50 100 150
t (min)

Figure 3.2: Logarithm of the concentration over time for a single intravenous
bolus applied at time ¢ = 0.

Time (min) | Concentration (ug/L)
10 920
20 800
30 750
40 630
50 610
60 530
70 520
90 380

110 350
150 200

At this point, the traditional pharmacological approach provides all kinds of
different formulas to estimate the different parameters as a function of the data
available. We have to admit that in the case of a single intravenous injection,
this may be an easy approach due to the simplicity of the concentration response.
However, this is not the general case and pharmacological applications currently
addresses more complex situations in which non-linear differential equations are
involved. At this point, it is illustrative to show how the traditional approach
proceeds.

It is normally exploited the fact that the logarithm of the concentration (Eq.

(3.5)) follows a straight line (see Fig.
Cl
log C(t) = log C(0) — 7t =log C(0) — K.t (3.13)

The elimination rate K. can be easily identified as the slope of the line.
Let to and tp the first and last time points for which we have experimental
measurements. In this particular example, tg = 10 and tp = 150

log(C(tr)) — log(Clto) _ log(200) — log(920)

K, = = = 0.0109min !
tr —to 150 — 10 fin
(3.14)
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C(0) can be calculated as the intercept of the straight line with the vertical
axis in the logarithmic plot (see Fig. [3.2):

log(C(to)) = log(C(0)) — Kcto =
log(C(0)) = log(C(to)) + Keto (3.15)
10g(920) + 0.011 - 10 = C(0) = 1.03 - 10°

These estimates are normally refined using a least-squares fitting, normally
through a local minimization starting from these values as starting point. In
this case, these two values are refined to:

K. = 0.0104min~!

C(0) = 1.011-10%ug/L (3.16)

We may recover the V' and Cl parameters through the definition of K, and

_ Dose;, _ Dose;, _  10-10°
C0) = P = V= D8 = {5 = 9.889L (3.17)
K. = £ = Cl=K,/V =0.104-9.889 = 0.1033L/min

Finally, we can calculate parameters like the drug half-time, the MRT and
the AUCE®:

ti = 152 =66.39min
MRT = 4= =95.78min (3.18)
AUCE = SO 101L10° _ g6 85mp. min | L

It has to be noted that the formulas shown in this section strictly applies
to the case of the application of one intravenous bolus, and cannot be extra-
polated to any other situation. In fact, traditional pharmacokinetics books now
enter into a wide profusion of formulas to handle different cases. Instead, in this
thesis we promote the adoption of a holistic approach to pharmacokinetics and
pharmacodynamics through the use of the systems theory used in engineering.
This theory unifies all kinds of compartimental and non-compartimental models
by considering the different concentrations as output signals of a given system.
From an engineering point of view a system is any device that transforms one
or several input signals into one or several output signals. Mathematically, they
are often described as differential equations that are discretized so that they can
be implemented in a computer by a difference equation. From a pharmacokin-
etics point of view, a system is a tool that transforms the input to the system
(the administered dose, orally, intravenously or through any other means) into
different outputs (drug concentrations at different organs or locations). In the
following section we briefly introduce systems and set the context in which they
can be used to solve pharmacokinetics problems.

3.3.2 A signal processing approach to pharmakokinetics
Signals, ...

The concentration of a drug in the blood stream over time is a signal, the amount
of cleared drug over time is a signal, the different administered drug doses are
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4,0

ua ]

Figure 3.3: Dirac’s delta is often regarded as the limit of the function da(t)
when A goes to 0.

signals, ... In fact, a signal is any function that goes from a domain onto another
domain:

s US>V (3.19)

Of special interest in pharmacokinetics are those functions that express the
variation of a physical quantity over time:

R

s:R —
t — s(t)

(3.20)

for instance, the concentration of a drug in plasma C(t). From a signal pro-
cessing point of view, these signals are called continuous signals because the
time domain varies in a continuous way (¢ can take any value). This implies
that systems (see below) are normally described as differential equations, in
which the concentration is the unknown.

Signals found as the solution of these differential equations need not be con-
tinuous (for instance, the concentration profile in Fig. is not continuous).
Instead, they are normally found in a Sobolev space (Leoni, |2009), which in-
formally can be defined as a vector space of functions equipped with a norm
that combines the LP-norm of the function itself and its derivatives up to a
given order. The functions in this space have sufficient derivatives to solve the
differential equation.

Particularly important in the context of pharmacokinetics is the Dirac’s delta
(6(t)). This delta is not a function but a distribution (a generalized function),
although it can be manipulated as if it were a function. Although incorrect, it
is customary to think of it as the limit of the pulse function below when A goes

to 0 (see Fig. [3.3):

1 po<t<A
_J A A S
da(t) = { 0 otherwise (3:21)
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Figure 3.4: Dirac’s delta shifted to the time point %

Two important properties of this generalized function are

70 d(r)dr =1
= (3.22)
7f z(7)0(7)dT = 2(t)

This is one of the reasons why Dirac’s delta is not a function. A function that is
zero everywhere except at a single point should have a zero integral, but Dirac’s
delta has integral 1.

Dirac’s delta is often represented with an arrow at the location it occurs.
For instance, we may shift its location by simply changing its argument §(¢ —to)
(see Fig. 3.4)

The delta function is important because bolus can be described as delta
functions whose amplitude is the size of the bolus and that they are shifted to
the time instant at which the bolus is administered. Similarly, repeated doses
can be represented as a collection of delta functions, each one of the amplitude
corresponding to the bolus size. These bolus deltas will be input to the system
that will translate them into different concentration profiles. For instance, Fig.
-5 shows a fancy dosing plan. A signal processing approach has no problem
in dealing with this kind of dosing plans. However, it would be impossible to
derive a single equation as was performed in Section [3.3.1

..., systems, ...

A system is any physical set that transforms one or several input signals into one
or several output signals. For continuous signals, they are normally specified
by a differential equation. In the case of pharmacokinetics, the system is the
patient’s body that transforms the drug intake (a signal as we saw in the previous
section) into a drug concentration at the different tissues and blood stream (see
Fig. 3.6).
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Figure 3.5: Dose plan in which 10 mg of a substance was administered at time
t = 0; 8 hours later, 5 mg; and 8 hours laters, 2 mg. Between the first and
second doses, the patient was administered 0.5 mg every hour.

Dose(t) DrugConcentration(t)

Figure 3.6: A patient can be regarded as a system that transform the signal
corresponding to the drug doses into a plasma concentration of that drug.
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For instance, the system represented in Eq. (3.4) can be modelled as

dC(t) Cl dose, (t)

2N o) 4 )

dt yCOT

We see that Eq. (3.4) and Eq. (3.23) are rather similar. The difference is that

the latter includes an input signal (the drug dose over time). In fact, a single
dose at time 0 can be modelled as

(3.23)

dose;y(t) = Dose,d(t) (3.24)
Then, the output of the system is

() = Do o~y p) (3.25)
v

Exactly, the same concentration profile as in Eq. (3.5). The advantage of the
model in Eq. is that it can admit any kind of dose plan, not only a single
bolus at time 0. The concentration profile is no longer computed analytically
with closed forms as in Eq. but numerically with the help of a computer.
To be able to use a computer program to solve the problem, we need to
discretize the problem and go from a continuous signal (with values for any
possible value of t) to a discrete approximation to this signal. This is normally
done by sampling the input signal every T, minutes. If the sampling period
is small enough and all the signals in the system are bandlimited, Nyquist
theorem (Oppenheim and Schafer| |2010)[Chapter 4] guarantees that the original
continuous signal can be recovered exactly. For any continuous signal, z.(t), its

sampled discrete version is defined as

z[n] = x.(nTs) (3.26)

Continuous systems can be approximated by discrete systems (they trans-
form input discrete signals into discrete output signals). For instance, the system
of Eq. (3.23) can be easily approximated as

C[n] = C[n — 1] Cl doseiy[n]
— —=——"Cn-1]4 ——— 3.27
Ts 7 Cln =1+ — (3.27)
Note that $'C(t) has been approximated by $}C[n — 1] because its meaning is
the concentration decrease due to the drug clearing. Obviously, the drug cleared
is a function of the previous concentration, and not of the current concentration.
Interestingly, we see that the derivative in Eq. (3.23) is approximated by a first
difference
Ct)—C(t—-At) C[n]-C[n—1]

I S VA (3:25)

Reorganizing the terms in Eq. (3.27) we arrive at

d (2
O] = (1~ K.T)Cn — 1] + 220y, (3.29)
where we have used the fact that K., = % In this way, we have defined

a recursive equation that we may use to calculate the current concentration
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based on the knowledge of the previous concentration. Obviously, before the
application of the bolus, the concentration is 0 (that is, C[n] = 0 for n < 0).

If we use this formula to reproduce Fig. the error is in the order of
0.1% of the true values when T, = 1min. We may achieve more accurate res-
ults by employing numerical techniques to solve differential equations. Given a

differential equation of the form
dC'(t
10 _ si.c0) (3.30)

Runge-Kutta’s explicit method of order 4 states that we may follow the recursion
(Chapra and Canale, [2010)[Chapter 25]

1
C[’I”L] = C[TL — 1] + 6(161 + 2ko + 2ks + k) (3.31)
with
ki =Tsf((n—1)Ts,Cn —1])
_ Ts — Ly
ko =Tsf((n—1)Ts + i,C[n 1] + 132) (3.32)
k3 = Tsf((n — 1)T5 + 770[77/ — 1] + 7)
ke =Tsf((n—1)Ts +Ts,Cln — 1] + k)
In our case,
f(t,C1) = —K.O(t) (3.33)
this gives
kl = —KEC[’I’L - l]TS
ky = — (K. — L K2) C[n — 1]T;
2
By = — (Ko - K2+ 5K2) Clo—1IT, (3.34)
k= — (K, - TLK2 + K3 — T;K‘l) Cln — 1]T,
Combining all together, we have the recursion (compare to Eq. (3.29))
1 1 1 dose;y[n]
=(1- KT+ -K2T? — —K3T? + —K.T! — 1]+ —=T
C[?’l] ( €S+2 e’s 6€S+24 ers C[?’l ]+ V s
(3.35)

This time the numerical error is in the order of 1072%.

Unfortunately, explicit Runge-Kutta recursions are not A-stable (Butcher
2008)[Chapter 35]. Implicit Runge-Kutta recursions are much better behaved
in this regard. The implicit equivalent of Eq. for order 4 is

Cln] = Cln — 1] + biky + bk (3.36)
with
k1 = Tsf((n — 1)T3 + 1Ty, C[n — 1] + a1kl + algk‘g) (3 37)
ky =Tsf((n — 1)Ts + c2T5, C[n — 1] + a21ky + agoks) '
and
1_ V3 1 1_ V3
Y U P B 3.38
“ | 2t% | 1 ﬁ? 1 (3.38)
2 2
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This latter table is called the Butcher tableau of the Gauss-Legendre method
(Butcher}, 2008)[Chapter 34].

In this case in which the function f is given in Eq. (3.33)), we have to solve
the following equation system for k; and ko:

k1= —KeTS(C[’I’L — 1] + a1k, + (112]{)2)

3.39
]{12 = —KeTs(C'[n — 1] + a21k1 + a22]€2) ( )
The solution is
_ 1+ K. Ts(azz—ai2)
kl - = 1+K8T5(auf-f?g);-f((sz(au)agg—auazl)KeTsC[n — 1] (3 40)
— elsl@11—a21 °
by = — 1+KcTs(a11+a22)+KZTZ (a11a22—a1zaz1) K. T:Cln —1]
Let us define
k= 1+ K Ts(azz2—ai2)
1 1+ K Ts(ar1+aze)+K2T2(ar11a22—a12a21) (3 41)
k! = 1+ K Ts(a11—az1) .
2 1+KcTs(a11+aze)+K2T2(ar1a2—ai2a21)
Then, the recursion becomes
K+ K, doses,
Cln] = (1 _ K712 ; 2) Cln—1] + 705; ", (3.42)

The error drops down by a factor of magnitude, 1071°% and the recursion is
guaranteed to be A-stable (Butcher, [2008)[Chapter 34].

In any case, the system is a first order system with slightly different coeffi-
cients for the recursion. If we call a; the coefficient multiplying the term C[n—1],
we have

a; = 0.989600000000000 for Eq. (3.29
a1 = 0.989654080000000 for Eq. (3.35)
a1 = 0.989653893009263 for Eq. (3.42
However, in all cases the model is of the form:

C[n] = a1C[n — 1] + bpdose;y, [n) (3.43)

Additionally, we may introduce a lag to account for the delay between the dose
application and the arrival to blood. In the case of an intravenous bolus, this
delay is negligible. Notwithstanding, the more general model is

Cln] = a1C[n — 1] + bodose;y [n — Niag) (3.44)

Note that this model is a generalization of the intravenous constant rate
infusion, which in traditional pharmacokinetics is treated as a separate case
with its own equations for the evolution of the concentration in blood over time
and its own methodology to estimate parameters. In our case, the constant rate
infusion is simply achieved by setting

dosei,[n] = RinTsuln| (3.45)

where R;, is the infusion rate in mg/min.
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..., and noise

There can be a few sources of noise or imperfections in our system modelling;:

e Noise related to the prescription: If the drug prescription is “take 10 mg
every 8 hours” the patient will hardly take the dose with an exact interval
of 8 hours. Most likely, there will be a time deviation of plus/minus 30
minutes, for example. In general, we may model this noise as a random
number uniformly distributed with a maximum value AT, ... Therefore

Atintuke ~ U(*Airi,maza AT’i,maz) (346)

Similarly, the dose is hardly made exactly of 10 mg of the compound.
Instead, it will have a slightly different amount that can be modelled as
percentage deviation that is uniformly distributed between —A,,,..% and
Anae%. In this way, the real amount is actually:

AA
Doseactual = Doseideal(l + m) (347)
where
AA ~ U(=AA s, A ) (3.48)

e Noise related to measurements: In the same way, blood or urine samples
will hardly be taken at the specified time. If the nurse is instructed to take
a blood sample every 30 minutes, it is likely that there is a small deviation
of 1 or 2 minutes, while the annotated time is still 30 minutes. We can
similarly model this noise in time as a normally distributed variable whose
standard deviation is oy:

At,, ~ N(0,07) (3.49)

Finally, all physical measurements have an associated uncertainty that is
normally modelled as a Gaussianly distributed random variable with zero
mean and standard deviation o,,. The units of o, are the same as the
ones for the measurement. In this case, we will consider it to be [mg/L]
or ppm (parts per million).

€m ~ N(0,02) (3.50)

This noise is said to be additive because the observed concentration is
presumed to be the true concentration plus some measurement error:

Cobs = Ctrue + €m (351)

This is normally the most accepted noise and it is the model used in
Least Squares (or, what is the same, Ordinary Least Squares; see next
section). However, there are analytical techniques whose error is within
a percentage of the drug concentration. That means that there is more
measurement noise when the concentration we are trying to estimate is
larger. A correct model for this measurement process would be

C'obs = Ctrue(l + Em) (352)
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where €,, is a normally distributed error. In this case, the noise model
is said to be multiplicative. To deal with this measurement process, we
should use Weighted Least Squares (see next section). Instead of assuming
that €,, is normally distributed, we could assume that the distribution of
1+ €, is log-normal. That implies that if we take the logarithm

log Cops = 10g Cprye + log(1 + €,,) (3.53)

we are back to the additive case (and consequently to the Ordinary Least
Squares).

System identification

Related to the measurement noise model is system identification. The goal of
this problem is to identify the parameters that define the system. In the previous
example the clearance, Cl, and the distribution volume, V. Since we do not have
regular samples of the concentration, but irregularly distributed samples, the
problem is similar to that of curve fitting. Let us, at this point, reformulate
the problem in order to have a comprenhensive overview. Given a dose regimen
(input signal to the system) and the system parameters, that in general we will
refer to them as ©, the system responds with a measurable concentration Cg(t)
where we have used © as subscript to emphasize the dependence of C(t) with
the system parameters. Let us presume that the true underlying measurement
is given by the pair (t¥,Ce(t¥)), that we will refer to as X¥. However, the
actual observation corresponds to a perturbed version of this truly underlying
measurement

System identification using Maximum Likelihood tries to identify the system
parameters that maximize the likelihood of observing the ensemble of measure-
ments (presume we have N of such measurements). If these observations are
statistically independent, then the identification problem becomes

N
6= mgxil;[l f(X;|©) (3.55)
Since the logarithm is a monotonic function, optimizing a function or its log-
arithm does not change the location of the optimum. However, in this case,
the log-likelihood is normally optimized because it simplifies the mathematical
expressions

N N
6= max log (1:[1 f(Xl|@)> = mgxglog(f(XA@)) (3.56)

The likelihood of observing a given vector X; depends on its distance to the
actual measurement X (see Fig.

and its probability density function fc(€). However, the ideal measurement is
not accessible, and we have to evaluate all possibilities

F18) = [ fo(Xs - X7)ax: (3.58)
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Note that because the possible X* points lie in a curve, the previous integral is

a line integral and can be expressed as an integral on a single parameter

f(Xi[0) = / Fel(t:, Ci) — (£, Co (1)) dt

1000

c(0)
900 .

800 h
700 h
600 - b

500 h

CH) (na/L)

400 i

300 ! b

200 b

100 h

0 . . . . .
0 50 100 150 200 250 300

t (min)

(3.59)

Figure 3.7: Example of concentration profile. The true measurement should

have been X¥. However, the observed value was X;

Depending on the distribution we presume for the errors, we have different

optimization problems:

o Least squares (LS): If we presume that there is no error in the time vari-
able and the measurement error is normally distributed, the statistical
distribution of the error is defined by the following probability density

function,

1 —Sm
feler, em) = 0(e)) —===¢ *7m

\/2mo2,

(3.60)

and the likelihood in Eq. (3.59) becomes (see Dirac’s delta properties in

Eq. (3.22)):

0o L _(Ci—Cg (t¥)?
)
f(X;l©) = _{o o(t; — ) Tﬂfie 207, dty

_(C;=Cot:)?
_ 1 202,

B \/2mo2,

(3.61)
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Its logarithm is

_ 1 2y (Ci—Co(t))?
The optimization problem in Eq. (3.56) becomes:
A N
© = max )’ log(f(Xi|®))
© =1
N
Ci—Co(ti
= mgxg:1 (—%log(Qwa,?n) — 20‘;( )* )
N
= mgx{—glog(%mfn) - 207271 Z (Ci — Co(ti))? }
=1 (3.63)

|
of

o{-okr £ (C- Colt]
x {— gjl (C; — C@(tz‘))z}
= wp{$ @ - cot)

i=1

Il
. of

This is the famous Least Squares (LS) criterion, that is, by far the most
widely used optimization criterion in pharmacokinetics. In the derivation
provided in this thesis we have highlighted the fact that it is the maximum
likelihood estimate when we assume no errors in the time measurements
and a gaussian error in the concentration. Least Squares can be extended
to the case in which the variance of the measurements change over time
(Banks et al., 2009).

Total least squares (TLS): If we, now, presume a gaussian error for both
measurements (time and concentration) we have

2 e 2 2
feler, em) = Lo e e—(22?+2072n>
e\tt,Em) — m =
\/2mo? V/ 271'02 2100
(3.64)
The likelihood of observing a given vector is
o _<<t 7tu>2+(c c@(tU))Q)
_ 1 202 202, u
fXi0) = ] ke \ o
—o00

00 7<(trt;&)2+(crc@(t;ﬁ)2> (3'65)
_ 1 202 202 u
- 2O m ot f € ¢ " dtl

— 00

Its logarithm is

s _((f —t)? | (Ci-Colt >>2>
log f(X;]0©) = —log(2wo0¢) + log / e 20¢ 277 dt}

(3.66)
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The optimization problem in Eq. (3.56) becomes:

N
© = max ) log(f(X;]®))
i=1

N o _((ti—t?>2+(ci—ce<t7;>>2>
= maxq > | —log(2momo) +1og [ e 20¢ 2% dty

— i=1 —o0

50 ((t —tY >2+<ci—c@<t;+>>2>
= max —Nlog(2mo,0) + Z log [ e 20 270 dty
=1 —0o0

(t; —r“)2+(c —Co (t1)?

= max{z og f ( 207 207, >dtf

<f7,—t,)2+<ci—c@<t;">>2

= mln{ Z log f ( 207 295 >dt$}

(3.67)
Note that the parameters o; and o,,, are part of the model parameters and
are, generally, unknown. In this way, they have to be estimated from the
data itself. To do so, we can adopt an iterative approach (in fact, it is an
Expectation-Maximization approach):

1. Start with some initial values of at(o) and o,(,?).

(0)
2. Construct the covariance matrix (0 = (06 ?0))
Om

3. Estimate the rest of parameters of © by the optimization in Eq.
(13.67).

4. For each experimental observation X; = (¢;,C;) find the point in
the curve X¥ = (t,Co(t)) that minimizes the Mahalanobis distance
(X — XI)T(50) 71 (X, ~ X?)

N
5. Reestimate the covariance matrix as (*+1) = Z (X; — X¥)(X; — X

and set the off-diagonal terms to 0.
6. Go back to Step 3 till convergence.

Weighted Least Squares: Let us now assume the multiplicative noise model
in which €, is normally distributed, and there is no noise in the time
measurements. This case is much more difficult because the true values
are unknown and the observed values have a distribution given by

Ci ~ N(C, (Clom)?) (3.68)

If we approximate C}* by our estimate Cg(¢;), which is our best estimate
of the unknown true concentration value, then The probability density
function of our measurements would become

_1(Ci—Co(ti))?
FOX10) = e (SRS (3.69)

As we already did in the case of the Least Squares, we would have

R N
0 = mgxalog(f(XiIG))

~ N (3.70)
1 2 1 (Ci=Ce(ti)
= max 3 4 log(2m(Co (t)om)?) - § (Gress)
=
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which does not fall under any standard regression framework. If we ap-
proximate C}* by the measurement, a noisier estimate of the unknown true
concentration, then

N 2
_ Ci—Ce(t:)
e = mgxi; (—%1og(27r(0igm)2) -1 (Taom) )

N (3.71)
- min{z <ci—cc*g<ti>>2}
=1 i

S}

that is a Weighted Least Squares (WLS) problem and it is the approach
already taken in (Banks et al. 2009). If we now collect all measurements
and predicted values in vectors we could write the previous objective func-

tion as R
0 = m@in (C—-Co)TW=L(C - Co) (3.72)

where W is a diagonal matrix whose ii-th entry is CZ. If W were a full
matrix, then this technique would be called Generalized Least Squares and
we would be explicitly accounting for correlations among different samples.
There are efficient algorithms for all these problems (Bjork! [1996)).

Bayesian regression: If we have a priori knowledge about the distribution
of the system parameters, ©, that is, we know the probability density
function fg(0), we would simply have to substitute the a priori likelihood
at Eq. by its a posteriori counterpart

N
O = arg mafo(Xi|@)f@(@) (3.73)
©

i=1

If, as is generally the case, fo(©) is an empirical distribution represen-
ted by a sum of Gaussians or a tabulated distribution, the problem above
does not have a closed-form solution as has to be numerically solved using
any optimization algorithm. However, this software makes a simplification
that we explain below (Lacarelle et al., |1994). As we have seen, maxim-
izing a function or its logarithm does not change the parameters estimate
since the logarithm is a monotonic function. Consequently, we may also
find the parameters by maximizing

N
® = argmgxlog H f(Xz|@)f@(®)
i=1 (3.74)

N N
arg max ; log f(Xi]©) + _ log fe(O)

i=1

As we did in the case of Least Squares, above, let us assume a Gaussian
distribution for the measurement noise (Eq. (3.62))) and let us assume a
multivariate Gaussian distribution as the a priori for the parameters

fe(®) = (2
log fo(@) = -

™) E|S T exp (3O — ) SO — ) =
Plog(2r) — log[S] — 1(0 — )50 - )
(3.75)
where p is the number of parameters, p is the expected mean of the set of
parameters and ¥ is its covariance matrix. Maximizing Eq. (3.74)) is the
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same as minimizing

“ N 2
& = argminy. (%ﬂ”) FNO - @w)TES O —p)  (3.76)

i=1

If the parameters are independent, then the covariance matrix is diagonal
and the minimization problem above becomes

6 = arg min g: (i@(t))Q + Nkz: (M)Z (3.77)

: Tm [
i=1

where o,,, is the standard deviation of the measurement noise and o, the
standard deviation of the p-th parameter. Except for the N in front of the
second summatory, which is normally dropped in pharmacokinetics books,
this is the expression normally referred to as Bayesian estimation in the
standard pharmaceutical literature (Shargel et al.,2012)[p.601], (Gabriels-
son and Weiner} |2007))[p.772]. This is in fact the approach followed by Ab-
bott’s PKS pharmacokinetics software (Lacarelle et al.,[1994). However, it
is important noting that the formula spread in the pharmaceutical literat-
ure does not weight correctly the prior probability according to a Bayesian
framework, and that it has been obtained under the simplification that the
parameter distribution is a multivariate Gaussian with independent para-
meters. With the current computing power, these assumptions are not
needed anymore and more realistic modelling can be used in which the
joint distribution of parameters can be explicitly considered, or at least, it
can be accurately approximated by a Gaussian mixture. The drawback of
this approach is that the landscape of solutions of the optimization prob-
lem becomes much more complex and globally convergent optimization
algorithms are needed.

To measure the impact of noise in the time measurements we performed the
following experiment. We simulated 1,000 times the process of taking concen-
tration samples from a one-compartment intravenous bolus (see Section
whose true parameters are Cl = 0.1 (L/min) and V = 10 (L). We assumed
that the measurement error is o, = 0.001 (ppm or, equivalently, mg/L; see Eq.
(3.50)). We performed three sets of experiments: in one of them we assumed
that there was no time measurement noise (o; = 0 (min)); in the second one, we
assumed that oy = 0.5 (min); in the third one, we assumed that o; = 2 (min).
Note that for a Gaussian distribution the typical measurement error is between
—30¢ and 30¢. In Fig. [3.8 we show the 1,000 estimates of the model parameters
in the three cases. We first see that the joint distribution of parameters is not
Gaussian. The marginal distributions of the clearance parameter is not Gaus-
sian. However, the hypothesis that the marginal distribution of the elimination
rate constant is Gaussian is rejected in the case of o = 0 (p-value=0.0455) and
cannot be rejected (with a Lilliefors test of normality) in the case of o, = 0.5
and oy = 2. In any case, we see that the average parameter values are unbiased
in the three cases (with a precision between 0.02% and 0.05% of the true value),
and the increase of measurement time noise is translated into a larger variance
of the estimates (especially, for the distribution volume). However, the standard
deviation of the two parameters is still rather low (for the clearance, it grows
from 1.09% (o = 0) to 1.33% (o, = 2); while for the distribution volume, it
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grows from 0.93% (o¢ = 0) to 1.86% (o, = 2)). Additionally, a Kolmogorov-
Smirnov test for the equality of the two marginal distributions could be rejected
only for the case of oy = 2 and not for oy = 0.5. We see that the effect of an
increase of measurement time noise does not translate, in this experiment, into
a biased estimate of the underlying model parameters but in an increase of the
estimation variance (only significant for a large time measurement noise), which
is still under acceptable conditions. Consequently, we do not explore the TLS
alternative any further.

Confidence intervals and correlation for model parameters

An important issue when identifying a system is to estimate the uncertainty
associated to each of its parameters. In this way we determine their identifi-
ability. Bootstrapping is a common resampling technique aiming at estimating
the variance associated to each of the model parameters (Efron and Tibshirani,
1993)). An interesting observation from Fig. is that the distribution of the
estimated parameters is centered with respect to the true parameters. This
allows using the Bootstrap Percentile method for the estimation of confidence
intervals (Efron and Tibshirani, [1993). This method goes as follows:

e Given a set of N measurements (¢;,C;) from a response profile, we con-
struct Np bootstrap samples by resampling with replacement N samples
from the original samples. Note that since the resampling is performed
with replacement, an original sample may be repeated several times in the
bootstrap sample. This is called Monte Carlo bootstrap resampling.

e We estimate the model parameters for each of the bootstrap samples using
any system identification method (see Section [3.3.2). For each bootstrap
sample, we will get a model parameters estimate, @, that is, we get a
total of Np model parameters estimates.

e For each model parameter, i, we construct a confidence interval of confid-
ence level 1 — o as [9%2), @Ell)ig)].
2 2

Additionally, we may estimate the parameter covariance matrix from the Ng
model parameters estimates as

Z‘H

_ Ng
5 - L6
b=1

(3.78)

B . Nz - e
Co = — > (0, —0)(6, — 0)
b=1

Np

and detect significant associations through the Spearman’s rank correlation coef-
ficient (Kendall, [1970)), that is a non-parametric equivalent of Pearson’s correl-
ation coefficient for which we can also test its significance (Best and Roberts,
1975)).

To illustrate this approach we performed the following experiment. We gen-
erated 16 samples in 8 hours from a one-compartment model with 0.1 (L /min) as
cleareance and 10 (L) as distribution volume. We set the measurement error to
0.001 (mg/L) and assumed no time measurement error. Then, we estimated with
1,000 bootstrap resamplings the confidence interval for each one of the model
parameters. The 95% confidence interval for the cleareance is [0.09792,0.10244]
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Figure 3.8: Estimates of the parameters of the one-compartment intravenous
model for ¢, = 0.001 (mg/L) and oy = 0 (min; top), oy = 0.5 (min; middle)
and oy = 2 (min; bottom).
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Figure 3.9: Bootstrap estimates of the parameters of the one-compartment in-
travenous model for o,,, = 0.001 (mg/L) and o; = 0. The true underlying
parameters are a clearance of 0.1 (L/min) and a distribution volume of 10 (L).

and for the distribution volume [9.6730,10.2415]. Interestingly, there is a negat-
ive association between these two parameters as shown in Fig. The Spear-
man’s rank correlation coefficient is -0.6361 and its p-value is in the order of
10719 (that is the correlation is significantly different from 0). This means that
if the clearance parameter is incorrectly overestimated, the estimation method
will tend to underestimate the distribution volume to compensate for this er-
ror and viceversa. In Fig. [3.9 we can see how for a particular realization of a
fitting (a single dataset with only 16 measurements), the bootstrap estimation
process may be biased. However, the method is not biased if the expectation
of the process is considered (repeating infinite times the process of taking 16
samples from the same distribution and performing a bootstrap estimate of the
confidence intervals).

Goodness of fit

In regression, there are a number of accepted measures of goodness of fit. All
of them make use of the residuals of the fitting, that are defined as the differ-
ence between the observed concentrations and the predicted concentrations. In
particular, at any time ¢; with observed concentration C; and predicted concen-
tration Co(t;), the residual is

Let us assume that there are N pairs of observations (¢;, C;) and p parameters
in the model (in the example of the one-compartment, p = 2, clearance and
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distribution volume). Below we list the most widely used measures of goodness
of fit:
2 _ 1

N
e Residual variance: 62 = 5 > (&; — €)°.

.2
75, where 62 is the variance of the

G

e Coefficient of determination: R? = 1—

concentration measurements. This represents the fraction of unexplained
variance.

e Adjusted coefficient of determination: RZ;; = 1— (1 — R?)~ 3. The

adjusted coefficient of determination is not a measure of fit but a relative
comparison of the suitability of different nested models.

e Akaike’s Information Criterion: AIC =log? + 2%

e Bayesian Information Criterion: BIC =logé2 + (log N)%.

e Final Prediction Error: FPE = %—*_‘Z&?, whose logarithm (a monotonic
function of the FPE) can be written as LFPE = log 62 + log %—fi.

The goal is to minimize the residual variance (or optimize the coefficient of
determination) without overfitting the data, that is not adding too many para-
meters to the model so that we compromise the capability of the model to
generalize the underlying behaviour. In general none of them are “correct” since
every measure has been derived under some assumptions that may not hold in
real data. In practice, one should check all of them and choose a model that is
in a sensible range provided by the different measures (for instance, AIC may
favour a model with 5 parameters and BIC with 3 parameters; the true model
must be somewhere between 3, 4 or 5 parameters). Generally speaking, AIC
and BIC can be regarded as equivalent to a likelihood ratio test with different
significance thresholds(Burnham and Anderson} 2004)). AIC becomes like a sig-
nificance test with o = 0.16 while BIC has a decreasing « as the number of
samples increases (o = 0.13 for N = 10, o = 0.032 for N = 100, o = 0.0086 for
N =1000). In this way, as the number of samples increases AIC tends to prefer
models with more parameters than BIC.

3.3.3 One-compartment extravascular administration
1st order absorption

Let us assume now that we administer the drug extravascularly, e.g., with an oral
tablet. The amount of drug in the gut will be absorbed into the body and the
amount of drug in the body will consequently increase. The absorption process
involves dissolving the tablet and absorbing the drug across the gastrointestinal
membranes. Additionally, part of the drug may be degraded in the intestine and
more importantly at the liver (first pass effect). This gives raise to the concept
of bioavailability, that is the fraction of drug that actually reaches the systemic
circulation. If we look at the rate at which the amount of drug disappears
from the intestine, we can write a differential equation, assuming a first order
dissapearance, as

04, (1)

dt

= —(Kq + KAy (t) (3.80)
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where K, is the absorption coefficient and K is the degradation coefficient.
The solution of this equation is

Ay(t) = Dpoe~ KatKaty(3) (3.81)

where D, is the amount of drug in the oral (per os) dose (assumed to be given
at time ¢ = 0). If we now look at the rate of input of the drug into the body,
we see that (for ¢ > 0)

dAy(t)
dt

= K,Ay(t) = K,Dppe” HKatKalt (3.82)

We may rewrite the previous equation as

dAy(t
;t( ) _ (Ko 4 K4)FD,pe” Kot Kalt (3.83)
where we have defined %
F - ﬁa[(d (384)

F is called the bioavailability and has no units. Ideally, we would like F' to
be 1, that is, there is no degradation in the administration route. However, in
practice, F' is normally a number between 0 and 1. With the definition of the
bioavailability, we may define the concept of apparent absorption that integrates
both absorption and degradation into a single constant

Kopp = Ko + Ky (3.85)
and rewrite the rate of drug input into the body as

dAy(t)
dt

= K,ppF Dpoe Karvt (3.86)

which is a more standard way of writing the first order input system. However,
we prefer its original formulation given in Eq. . Now, considering that
the amount of drug into the body can be written as Ay(t) = VC(t) where V
is the volume of distribution and C(t) the concentration. We may rewrite the
previous differential equation as

dC(t)

=
dt

= KD~ KatEat (3.87)
To be complete, we have to add the rate at which the drug dissappears from
the body, that as in the case of the intravascular administration is given by a
clearance parameter

dC(t)

th

= K,Dp,e”KatEDt _ 010 (1) (3.88)
This is the differential equation governing the concentration of drug in the body
assuming a first order absorption and degradation in the administration route,
and a first order elimination in the body (see Fig. for a graphical repres-
entation of the model).
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Dose(t)

Ky

Figure 3.10: Model of extravascular administration with absorption in the gut.

The closed form solution of this equation is given in classical textbooks (see
Section 2.2.4 of |Gabrielsson and Weiner| (2007)) as
KqDpo
V(Ka + Kd)
In this model, we assume that the absorption process starts at a single anatom-

ical compartment (in this example, the gut). However, the tablet needs some
time to reach the gut which is normally modelled through a time lag as

@) = — (e—%t - e—<Ka+Kd>t) u(t) (3.89)

Ct) = V(Kfia%l‘; B e a) PR
(3.90)
The identification of the model parameters (V, Cl, K,, K4) in classical
pharmacokinetics books involves a pletorah of equations and particular cases
(for instance, distinguishing the case in which K, + K4 > % and the case in
which K, + K4 < %, this is known in the pharmacokinetics literature as the
flip-flop effect). Additionally, Eq. is only valid for a single intake at time
t = 0 and it has to be modified for repeated intakes and there is no closed form
solution for repeated intakes of different amounts of drugs or at irregular time
intervals. Moreover, the model assumes that drug degradation starts at the same
time as absorption, but this may not be true. For instance, degradation may
start at the stomach much earlier and with a different degradation constant with
respect to the degradation constant in the gut. If we adopt a fitting approach
based on differential equations, as defended in this thesis, we may overcome
all these difficulties and even generalize the previous model to deal with more
general situations. This will be addressed in Section [3.3-3]

Oth order absorption

Although absorption is normally a complex, relatively slow process (and that
is why it is considered to be first order), there are certain molecules that are
rather fast to absorb. In this case, the absorption can be considered a zero-th
order process, that is, the absorption occurs at a constant rate independently
of the amount of drug in the intestine. The equivalent to Eq. in this case
would be

dAp(t)

dt
where R;, is the rate (in mg/min) at which the drug passes from the gut to the

= Ri, (3.91)

plasma. At this rate, a dose of D,, mg will take T,ps = Z?“ to get into the

plasma. The classical solution of the zero-th order absorptioﬁnfor t > Tups is

C(t) = % (1 _ ef%f(t)) e FE=F®) (3.92)
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t(h)

Figure 3.11: Typical response of a zero-th order absorption model.

with

Tabs t> Tabs

Note that Eq. is valid only for t < T,ps, since for t > T,ps there is no
drug in the gut to pass into blood, and %”t@ = 0. Note also that this model is
exactly the same as the constant rate infusion discussed at the end of Section
3.3.2] A typical concentration profile of this kind of systems is shown in Fig.
BI1

It could also be that both processes (zero-th and first order) coexist. In this
case, the increase of drug in plasma is said to be of mixed order and it would

be given by

ft) = { Lo 0t <Tab (3.93)

dAy(t)
dt
In this equation we clearly see that the word “order” refers to the exponent of
the different terms of A, (¢). This equation is valid until A4(¢) = 0 because all
drug in the intestine has disappeared.

= Rin + K, Ay (1) (3.94)

Absorption from multiple sites

In the previous model, we have assumed that absorption occurs in a single organ
(in our example, intestine). However, it might well be that it occurs at multiple
sites. To illustrate how to modify the model in this case, let us assume that we
are only interested in the bucal cavity and the intestine. An easy way to model
this situation is to divide the drug amount in two fractions: the fraction of drug
that is absorbed in the bucal cavity (with absorption rate K1) and the fraction
of drug that is absorbed in the intestine (with absorption rate K,3). Let’s call
« the first fraction (with 0 < o < 1) and 1— « the second fraction. The increase
of drug amount in plasma due to the two mechanisms of absorption would be
for t > tiransit (Gabrielsson and Weinerl, [2007)[Section 2.2.11]

LA;t(t) = aKq1Dpoe™ K1t 4+ (1 — @) Do K goe™ Kozt transic) (3.95)
However, note that this model is not so well suited to the actual situation since
it predicts that for ¢ > t;qnsit (that is, once the drug has reached the intestine)
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there is still absorption in the bucal cavity (which is rather unlikely). In practice
this is not a problem because K,1 > K,2 (there is a quicker absorption in the
bucal cavity than in the intestine) and in practical terms the first term can be
assumed to be 0 when ¢t > ty.qnsit- Moreover, degradation in the bucal cavity
and the intestine is neglected. A more appropriate model would have been to
distinguish between amount of drug in blood (A4(t)) and in the extravascular
organs (A, (t)). Then, we simply need to say that the absorption rate varies over
time (first it is absorbed at the bucal cavity, then at the stomach, then partly
at the stomach and partly in the intestine, then completely in the intestine, and
even inside the intestine we may assign different absorption rates at its different
segments)

dAy(t)

dt

In the model above, we have assumed a first order absorption (although verying
over time) and neglected degradation. In next section, we propose a generalized
model that takes into account all the effects described in Sections [3.3.3] [3.3.3]
and [3.3.3

= Kao(t)Acy (1) (3.96)

Generalized model

As already introduced above, let us distinguish between the amount of drug in
blood (Ap(t)) and the amount of drug in the extravascular organs (A.,(t)). Let
us adhere to the symbols introduced in this section. Then, the following system
of differential equations fully describe absorption and degradation at multiple
sites as well as mixed order absorption. Moreover, it can be used with a single
or multiple intakes (even at irregular intervals and with different drug doses).

dAelt) — Ry (t) — (Kqo(t) + Ka(t) Ay () + Dpol(t)

dt
VICW = Ry (1) + Ka(t) Ay (1) — CLC(D)

(3.97)

Obviously, the identification of this model is not an easy task because we need
to determine the functions R;,(t), K,(t) and K4(t). These functions have con-
tributions from all the extravascular organs through which the extravascular
doses are traversing. However, these functions may be discretized as accurately
as desired. Following the idea of defining t4-qnsi¢ as the transit time from the
bucal cavity to the intestine, we may discretize these functions in two parts be-
fore and after t;,qnsi¢- 1t is also convenient to separate the extravascular organs
in two functions (one for the bucal cavity and another one for the intestine).
Let us consider first the effect on a single intake taken at time ¢ = 0.

o For 0 <t <tiransit:

M = _Rinl - (Kal + Kdl)Ae'ul(t) + Dpoa(t)

¢ 3.98
VICW — Ryt + Koy A (t) — CIC(1) (3.98)

e Fort Z ttransit:

M = _Rin2 - (KaQ + KdQ)AeUQ (t) + Aevl(tt'ransit)(s(t - ttransit)

dt
VIO — Ry + KazAua(t) — CIC(1)

(3.99)
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The model considers a single intake of D,, (mg) at ¢ = 0, 1st order absorption
and degradation as well as zero-th order absorption at the first extravascular
organ and it is valid till ¢ = t;rqnsit- At this time, the remaining amount of
drug in the extravascular organ 1 is passed to the extravascular organ 2, and
the absorption and degradation continues from this organ as it was done in the
first organ although with different constants. Note that the models in Sections
B:3:3] and [3:3.3] are particular cases of this generalized model with ti,qnsit = 0,
and R;,2 = 0 (Section or Kgo = Kgo = 0 (Section . The model in
Section [3.3.3]is superseded by this one.

Since the model above is non-linear (due to its disruptive behavior at ¢ =
teransit), for multiple doses, we cannot simply compute the blood concentrations
due to each of the dosis and then add the results (application of the superposition
principle). Instead, we need to track each individual dosis. For each one of them,
consider whether it contributes to the first or the second extravascular organ
and calculate its particular contribution to absorption and degradation in that
organ.

In this thesis, we will only fully explain the discretization of one of the
branches (since the other one is totally analogous) which for simplicity will be
rewritten as

dAey(t) _ —Rip — (Ko + Kg)Aew(t) + Dpolt)

dt
VW — R, + K, A (t) — CIC(1)

(3.100)

To solve this equation system we will make use of an explicit Runge-Kutta’s
method of order 4 (see Eq. (3.31))). We will reformulate this method for equation
systems. Let y(¢) be a vector function with n components (in our case n = 2)
meeting the equation system

dy (¢
WO _ ety (1)) (3.101)
dt
Then, we may iterate as
1
yln] =y[n—1] + 6(k1 + 2ks + 2ks + ky) (3.102)
with
ki =T f((n— 1)Ts,y[n — 1))
— _ T _ ky
ky = Tsf((n — 1)Ts + 7 ¥ —1] + 2 ) (3.103)
ks = Tf((n — )T + 5, y[n — 1] + 73)
ky =Tf((n — 1)Ts + Ts,y[n — 1] + k3)
In our case,
_Rzn - (Ka + Kd)Aev(t) )
£(t,y(t) = 3.104
o) = (e et (3.104)
The final recursion is
Aevln] = caaAev[n — 1] — coaRin + Dpoln|Ts (3.105)
Cln] = ceeCln—1]+ & (cocKaAeo[n — 1] + cocRin) ‘
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where we have defined

Kopp = Ko+ Ky
K. = ¢
Con = 1= KappTs+ $KZ2,, T2 — Kg’ppr t 3 KTt
coa = Ti— 5KappT?+ tK? ]de K3 T
Cee = 1-— K Ts + 1K2T2 K3T3 L KT (3.106)
Coc = T9 (K JFK )T2 (K (Kapp +[K4) JFKE)TS
—5 (K. (K2, +KappK +K2) + K2)T!
Cac = Ts . ;(Kapp + Ko )T? + (Kapp(Kapp + Kf) + KeQ)TS
24 (Kapp(Kapp + KappKl + Kez) + KS)TQ

Fig. [3:12] shows the blood concentration over time for a number of systems
with varying absorption, clearance and constant infusion parameters. All ex-
periments were performed for a single dose at time ¢t = 0 of 1 mg, a distribution
volume V' = 10 (L) and a degradation constant K, = 0.005 (min~!). For those
cases with R;, = 0 we have compared the results from this model from those of
Eq. The mean error is in the order of 1077%. Note that the model be-
haves as expected for the first order extravascular model and generalizes it as it
includes a zero-th order absorption. Additionally, the generalized model can be
easily put into the system identification framework proposed in this thesis and
there is no need for closed or approximated formulas to estimate its parameters.
The framework can handle any dosing regime.

3.3.4 Multicompartment models

The one-compartment model is not appropriate for drugs with a rapid admin-
istration and when concentration measures are taken frequently. The reason is
that it takes time for the drug to distribute into tissues and reach equilibrium
(maybe due to perfusion or diffusion rate limited processes). In these cases,
a multicompartment model is better suited to the data modelling. A central
compartment represents blood and all those organs that are rapidly equilibrated
while peripheral compartments represent more slowly equilibrated organs. The
different compartments may be all connected to the central compartment (mam-
millary model) or be connected in sequence (catenary model) (see Fig. [3.13)).

To illustrate the methodology introduced in this thesis, let us consider one of
the most used multicompartmental models, the two compartment model. This
model considers a central compartment composed by blood and all tissues that
achieve a quick equilibrium with blood, and a peripheral compartment formed by
those tissues with a slow equilibirum with blood. Let us consider simultaneously
extravascular and intravenous administration. As done so far, we will focus on
the amount of drug that remains extravascularly and the concentration at the
different compartments. Let us also assume that the central compartment has
a distribution volume V. and the peripheral compartment V,,. The diagram in
Fig. represents the drug flow among the different compartments. Note
that this model allows for first and zero-th order absorption as well as for any
arbitrary dosing regimen including oral and intravenous administration.



3.3. LINEAR COMPARTMENTAL PHARMACOKINETICS

0.08 T
~ —K,=0.05, CI=0.06, R =0
K,=0.05, CI=0.05, R, =0
0071 K,=0.06, CI=0.05, R =0 ||
Ka:O 06, CI=0.05, RWZO.OOZ

0.06

0.05

(1) (mg/L)
°
2

0.03

o 100 200 300 400 500 600
t (min)

700 800 900 1000

-25 T T
—— K_=0.05, CI=0.06, R. =0
- o in
- //’\\\\\ Ka:() 05, CI=0.05, RWZO
K,=0.06, CI=0.05, R, =0
K,=0.06, CI=0.05, R, =0.002
b
g
5
o |
a5l |
|
|
|
|
|
|
|
|
|
|
|
" I I I I I I I |
0 20 40 60 80 100 120 140 160 180 200
t (min)

Figure 3.12: Drug concentration profiles in the blood stream for different para-
meters (top) and its logarithm (bottom)
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Figure 3.13: Mamillary multicompartment model (top) and catenary multicom-
partment model (bottom).
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Figure 3.14: Generalized two-compartment model
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The model can be described with the differential equation system

A~ (Ryp + (Ka + Ka)Aew(t) + Dyolt)
VAW~ (CL+ CL)C(t) + CLCy(t) + Rin + KoAeu(t) + Din(1)
V%0 = 01,0, (t) + ClLC()

(3.107)

Note that the generalized one-compartment model in Eq. (3.100) is a par-
ticularization of this model with Cl, = 0. In fact, a good starting point for C1,
is given by solving for C', in the following equation

QVe = (Cly + Cl)Vhiood (3.108)

where @ is the blood flow into the organs contained in the peripheral compart-
ment and Vjjp0q is the volume of blood of the individual. The equation is simply
assuming that @ ~ Cl, + Cl and V; = Vij00d-

Now, following the methodology explained in Eq. (3.101) and subsequent
equations applied to the function

_(Rzn + (Ka + Kd)Aev(t))
£(t,y(t)) = —“%flpcm;l %écpu);l B 4 Kaf, (1) (3.109)
~SeCy(t) + SO

The resulting recursion is

Aev [n] = CaaAev [n - 1] - cOaRin + Dpo[n]Ts
Cln] = ¢..Cln—1]+ V% (cacKaAey[n — 1] + cocRin) + CpeKpcCpln — 1] + V%Div[n]Ts
Cpln] = copKppCln —1] + V%Kpp (CapKaAeco[n — 1] + copRin) + cppCpln — 1]

(3.110)
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where we have defined

Coc

Cop

K, + Ky
feil
&t
¢t
Ve 12 g2 _ 173 73 1 g4 d
;_ [ia;)é)Ts ;:25[({&1}??8 1_13€K%m}3;9 + ?KGPPTS
- = + = — =
s 2trapp+ts 6 app—s 247 app~ s
1= KT+ g K217 — g KXT? + 5 KT
_Kchs + %KgcTSQ - %KSCTSS + iKﬁch
FEpe K (T = 5(Ke + Kpe) T2 + (K2 + S K Kpe + K3)TY)
JrKPCKPP (%Tf - %(Kpp + QKPC)TS + i(KE)p + 3KP6KP1’ + 3K§C)TS4)
+ K Kpe Ky (_%ng + ﬁ@Kpp + 6Ky + 3Ke)T§L)
Ty — 1K, T2 + LK2T3 — L KT
? a’s 247"a~s

(Kq+2K,)T? — 37 (K3 + 3K, K4 + 3K2)T?)

Uk, + KT~ L(K2Y KK, + K2)Th)
FKpe (—3T2 + §(Kpe + Ko)T2 — 5 (K2, + KoKpe + K2)T2)
+3(KaKe + KgKpe + KpcKpp + 2K Kpe) T3
— o (KaK? + K2K. + Kpe K2, + KgK2, + K3K e + KK K T2
— 2 CKaK Ky + 2K Kpe K pp + 2K2 Ky + 3K K2, + 3K2K )T
Kok KK, + 2K Kpe + 2K Kpe + Kpe Kpp) T2
T — 5K T2 + %KETE — 5 KiT
—5(Ke + Kpe)T2 4+ §(K2 4+ K2, 4 2K Kpe + Kpo Kp, ) T3
— (K3 + K3, + 3K K2, + 3K2Kpe + Kpo K2, + 2K2 Ky + 2K Ko K ) T
Ko (Ka+ Ko + Kpe)T?
~Koog (K3 + K2+ K2+ K Ko + KqKe + KoKpe + KaKpe + Kpe Iy ) T2
Koo QKoK + 2K Kpe) T
Ty — 5 Kp T2 + § K212 — 51 K3, T
%(Ke + Kpp) T2
FL2K Kpe + K2 + K2, + 2K Kpp + K K, T3
(K3 4+ K3+ 3K K} + 3K2.Kyp + 3K2K e + 3K, K2 T
— (K K2, + K2Kpp + AK Ko K pp ) T2

(3.111)
1 1 1
T, — §KppT82 + EK;%{TE — ﬂKj‘;’st‘l
K + KPC)TSQ + E(Ke2 + K;%c + K Kpp + 2Ky Ky + ZKerC)TS
(K2 + K3, + K K2, + K2K ), + SKPZK;, + 3K Kp,) T
(3K K2, + 3K2Kp. + AK Ko K, )T

NN
|2

24
%TSQ - %Kpst + ﬁKz%pr
— (Ko + Kq+ Ke + Kp)T?
o (K2 + K34+ K2+ K2+ KoKpp + Ko Kpe + KoK, + KqKp ) T2
J{2—14(K6Kpp + KoK, + KgK, + 2K Kpe + 2K, K, + 2K, K) T2
3T2 — L(Kq + Kpp + Ke + Ko ) T2
+o5 (K + K2, + K2+ K2, + Ko Kpp + KoK+ KoK + Ko Kpe + Ko Ky ) T
+57 (2K pe Kpp + 2K K. )T
L KT+ LG T2 KT K T 3
+5 Kpe K ppTs — 6 Kpp(Kp, + Ko+ 2K Kpp + K Kpe) T
31 Kpe Kpp (K2, 4+ K2 + 3K2, 4+ 2K Kpo + 2K K, 4 3K, Kypp) T

(3.112)

Note that it seems counterintuitive that the recursion defined in Eq. (3.110)
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uses Acp[n — 1] and R;, to compute Cp[n] when in the model these two mag-
nitudes are not directly connected. However, we have to realize that this lack
of direct connection is correctly shown in the continuous model (Eq. (3.107),
but they become connected in the discrete recursion simply by the numerical
method used to solve the differential equation system. In fact, the coefficients
cap and copp do not contain first order terms, and consequently they would not
appear in a first order approximation of the derivative, as expected. It is also
remarkable the simplicity of Eq. for a two-compartment model that
considers extravascular and intravenous administration in any dosing regimen,
first and zero-th order absorption, and degradation in the extravascular domain.

Additionally, this model allows the calculation of important pharmacological
parameters as the Mean Residence Time (MRT) of a molecule in the system and
the Mean Transit Time (MTT) of a molecule in the central compartment:

MRT = Yelle

MTT (3.113)

cI+cr,

In general, the mean time that a molecule stays in a combination of compart-
ments is the total volume associated to that combination divided by the clear-
ance of the combination. The MRT and MTT formulas above respond to this
general principle.

As an example, Fig. [3.15]shows the evolution of the extravascular amount of
drug and the concentration in the two compartments for a single intake of 1 mg of
drug in the case of oral and intravenous administration. The model parameters
are K, = 0.0167 (1/min), K4 = 0.0033 (1/min), Cl = 0.1167 (L/min), Cl, =
0.8333 (L/min), R;, = 0 (mg/min), V., =50 (L), V,, = 60 (L).

3.3.5 Clearance

The methodology proposed in this thesis can be extended to physiological mod-
elling. In this section, we develop the details for the physiological modelling of
clearance. Let us concentrate first on hepatic clearance as an example, in fact
one of the main mechanisms for drug elimination. Although the theory exposed
here is not limited to this organ. We understand as drug clearance any mech-
anism by which a drug ceases to perform its therapeutic task either because it
has been biochemically inactivated (for instance by hepatocytes in the liver) or
it has been eliminated from the body (for instance by kidneys). Actually, the
first mechanism has proved to be much more important than the second one for
many drugs, and both together are responsible for the elimination of 90% of the
drugs (Rosenbaum) 2011)[Section 5.1] (the other important elimination route is
through bile; minor routes involve sweat and exhalation). In general terms, one
could say that molecules whose molecular weight is below 500 Da are primarily
cleared by extracellular hydrolisis, between 500 Da and 1 kDa by carrier medi-
ated uptake into hepatocytes, between 1 and 50 kDa by glomerular filtration,
between 50 and 200 kDa by receptor mediated endocytosis, and beyond this
weight by opsonization and phagocytosis.

Hepatic clearance

For a drug to be inactivated, it has to be biochemically accessible to an enzyme
that modifies it producing a metabolite that is further metabolized or finally
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excreted in urine or bile. From the pharmacokinetics point of view, the drug
molecule has been eliminated. If the metabolite has some therapeutic or toxic
activity, it should be included in the pharmacokinetics study. This will be
performed in Section [3.4.5

Enzymatic modification is not possible for those drug molecules that has
been bound to plasma proteins at specific sites (there might be binding sites
that still leave the inactivation site accessible). In the literature, f, is defined as
the fraction of unbound drug molecules in plasma (or in some cases, in tissues).
We will stick to this nomenclature although f,, would be better defined as the
fraction of drug molecules that cannot be enzymatically modified because they
are bound.

Hepatic metabolism is normally classified in two phases: Phase I and Phase
IT (Rosenbaum, [2011))[Section 5.4]. Phase I metabolism is responsible for about
70% of hepatic clearance and it results in small chemical modifications, most
of the times oxidations (normally by adding hydroxil group or removing a
methyl group) although some reductions can occur. The Cytochrome P450
(CYP) enzyme system is by far the most important family of enzymes acting
at this phase. At Phase II, the drug itself or its Phase I product is conjug-
ated with a polar function such as a glucoronide, sulfate or glutathione. The
UDP-glucoronosyltransferases (UGTS) is the most important family of enzymes,
responsible for about 10% of the drugs cleared by metabolic elimination.

There are several hepatic models, mostly based on fluid dynamics and blood
flow. In this quick summary, we will give the details for the well-stirred model
and the results for the rest. The well-stirred model considers the liver to be an
homogeneous organ whose drug concentration is uniform. It considers the drug
concentration at its input Cj, and at its output C,,:, and relates both mag-
nitudes by an extraction factor Fp, a number between 0 and 1 that represents
the fraction of drug concentration that is eliminated in the liver:

Cout = Czn(l - EH) (3114)

It is said that a drug is highly cleared if Fy > 0.7 and it is poorly cleared if
Ep <0.3.

Let us consider the following differential equation for the dynamics of the
amount of drug in the liver:

ac'
VHTtH = QHCl'n - QHCout - fuClintCout (3115)

where Vi is the volume of the liver, C'y is its drug concentration, Qg is the
blood flow into the liver and Cl;,; is the intrinsic clearance, that is, the
maximal clearance capacity if the process would not be limited by blood flow.
Note that the amount of drug eliminated is Qg C;, and that C;, is inversely
proportional to the distribution volume. Drugs with a large distribution volume
will also be poorly eliminated.

In steady state, there is no change of the drug concentration in liver, that

41 — () and consequently

1S, dt

Qu

in out — Ju lin out — out = Min AT T e g
Qi Cin = QuiCout = fuClintCout = 0= Cout = Cin i —

(3.116)
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Comparing this last equation with Eq. (3.114]) we see that

QH fuClint
. =xH g, JuZwmt
Qi+ fuClime 17 Qu + fuClimt

The hepatic clearance is defined as the blood flow into the liver times the ex-
traction factor
QH fuClint

QH + fuClznt
The units of clearance are obviously the same units as for the blood flow (e.g.,
L/min), and we see that the blood flow into the liver is an upper bound for the
drug clearance. In fact for highly cleared drugs, the clearance process is said to
be limited by blood flow (if blood flow increases, clearance also increases), while
for poorly cleared drugs, clearance is limited by extraction (increases in blood
flow do not translate into increases of clearance because the process is limited
by the biochemical reaction taking place).

Note that we may substitute this expression in any of the models presented
so far (see Egs. (3.42), (3.105), and (3.110)). The system dynamics would
not change at all and we simply would have to add the different physiological
parameters to the system parameters to be identified. Note that f, and Cl;,,
are not uniquely identifiable (assume that the true parameters are f,, and Cl;,.,
then f, = Kf,, as long as 0 < f,, < 1, and Cl},,, = +Cl;;,; provide the same
product, f,Clins = f1CI., ). Although, less obvious the same happens with
Qy and f,Cl;n:. Let’s say that Qg and f,Cl;,: are the true parameters that
result in a clearance Clg. It can be verified that

_ C’lH fucllnt
B fuClznt - C'lH

1— Ey = (3.117)

Cly = QuEy = (3.118)

Qu (3.119)

If we incorrectly estimate the product f,Cl;n: to be K f,Cl;pn:, then we can
compensate and still produce a clearance Cly by finding a different Q'

(3.120)

For this reason it is important to provide tight constraints to the physiological
parameters, if they are known. For instance, the average blood flow into the liver
is estimated to be about 1.45 (L/min). We may performed a constrained least-
squares minimization forcing Qg to be between 1.4 and 1.5. The same would
apply for f,. f., may be estimated in vitro or in vivo by any other means and we
may perform a constrained minimization. Note that physiological parameters
may greatly change among species. For instance, the liver blood flow of a
mouse is about 1.8:1072 (L/min). Similarly, different species may have different
plasma proteins, most of them will be evolutionary analogs of each other, but
their affinity by a given drug compound may be different and this translates
into different f,,.

Interestingly, our identification framework allows for a more accurate, prob-
abilistic approach. In the paragraph above, we simply constrained Qg to be
between 1.4 and 1.5. However, let’s say that we know the likelihood of Qg
taking any of the values in the interval. This is given by its probability density
function fg, (¢z). Similarly, let’s say we know the probability density function
for fu (fr,(fu)). Thisis not unreasonable since we may estimate these functions
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in our experiments to estimate the mean values of those quantities. In these
circumstances we may estimate the probability density function of Cl;,; in the
following way:

e Take regular or random samples of Q)7 and f,, within the specified interval.

Let’s refer to a specific realization of this pair as ( 2)7 ,(f)).

e We know that the likelihood of observing this pair is
faur, (Q5 1) = fau (@) fr. (££7)  (3221)

e We then fit our pharmacokinetic model by setting Qg and f, to fixed

values ( §)7 qu)> and get an estimate of Cl;,¢, that we will refer to as

o

wnt

(=),

nt

e Repeat this process to obtain S tuples ( S), 158), Cl

At this point we may calculate the marginal distribution of Cl;,; with a kernel
estimator

fctm(Clint) = [ [ fctom (Clintlans fu) four. (an, fu)dandf.

éK,, (clinthlffL)t) fQHF“( ) 7@) (3.122)

%

where fei,,, (clint|qn, fu) is the conditional probability of Cl;,: given ¢ and f,
and K, (x) is a kernel whose width is parameterized by o with the property that

| Ky(x)dz = 1. The reader interested in kernel estimators may read |Tsybakov
— 00

(2008).

We may substitute the well-stirred liver model by more realistic models
(Gabrielsson and Weiner, [2007))[Section 2.5]. For instance, the parallel tube
model explictly accounts for the larger drug uptake of hepatocytes at the portal
venous entry of the liver than at the hepatic vein (the liver output). In this case,
the extraction factor is modelled as

(3.123)

EH -1 exp (_ fuClint>

Qu

The distributed model further refines this concept by considering the liver
to be composed of parallel small tubes. In each of them, the clearance process
takes place. Since not all the small tubes are exactly equal, there is a variance
associated to the different clearing capability of the tubes modelled by a constant
€2. In this case,

2
Eg=1—exp (— f"gli”t — %62 (fuglmt> ) (3.124)
H H

Finally, the dispersion model considers the blood mixing that takes place
within the hepatic sinusoids. It is parameterized by the dispersion number Dy
and the efficiency number Ry so that

a = \/1+4RNDN
By — 1 1a (3.125)

~ (140)2 exp(5p50 ) —(1-a)2 exp(35L )
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?dgitionally, this latter model is connected to the previous ones because Ry =
u int

Kll clearance models above can be used within our system identification
framework and the probabilistic methodology developed in this section, taking
into account the identifiability considerations already discussed.

Let us now concentrate on the intrinsic clearance. This parameter is basically
determined by the different metabolic routes through which the drug molecule is
metabolized. Let’s assume that each enzyme that degrades our drug responds to
the Michaelis-Menten enzyme kinetics equation and that we know its maximum
metabolic rate Vi,q, (mg/min) and its Michaelis-Menten constant K, (mg/L).
Then, the intrinsic clearance can be calculated as

Vmam,i
Clins = Z m (3.126)

being C' the drug concentration in the liver, which for the moment will be con-
sidered to be a constant (in a subsequent section on nonlinear pharmacokinetics
we will drop this assumption). As expected from its equation, Cl;,; can also be
quite different among different species since analog enzymes may exhibit quite
different affinities and efficiencies with respect to a particular molecule.

Renal clearance

Clearance of a drug can occur through multiple mechanisms. So far, we have
only considered metabolic clearance (normally performed, although not exclus-
ively, in the liver). However, renal clearance is another common route to dispose
a drug. The kidney daily filters about 200 L of plasma and produces between
1 and 2 L of urine. Part of the drug may be excreted this way. An advant-
age of such excretion path is that we may measure the concentration in plasma
and/or urine. Obviously, having both measurements results in a more robust
identification of the system. In this section we will illustrate how to model urine
data in the proposed framework by assuming that we have a one-compartment
model with intravenous administration. As we already know from Eq. ,
the differential equation governing plasma concentration is

act)  Ci
— = _Vc(t) (3.127)

However, clearance now has two components: one coming from metabolic clear-
ance (Cly) and another one from renal clearance (Clg):

Cl=Clyg +Clgr (3.128)

On the other side, the total amount of excreted drug, A.(t), responds to the
following differential equation:

dA.(t)
dt

= CIrC(t) (3.129)

that states that the increase in the excreted amount of drug is proportional to
the plasma concentration.
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At this point we apply the methodology developed in Eq. (3.101) (and
subsequent equations) applied to the function

£t y(t)) = ( ngég ) (3.130)

The recursion for the plasma concentration, C(t), is exactly the same as the one
in Eq. (3.35)). For the excreted amount, A.[n], it is

1 1 1
Ac[n] = Ac[n—1]+Clg <T = KT + S KT — 24K§Tf) Cln—1] (3.131)
The regression can now be performed simultaneously on the plasma and the
urine data. Let us assume that we have N measurements of both magnitudes
together (¢;, C;, Ae;). We can estimate the model parameters that minimize the

Least-Squares error (see Eq. (3.63))

. N

0 = Hgn { Z (Cl — C@(ti))z + (Aez' — Ae@(fi))Q} (3132)
i=1

Renal clearance can also be explained in physiological terms. For instance,
we may decompose Clg as

Clp = f.GFR+ Clrs — TR (3.133)

The first term models the glomerular filtration rate (GFR) that takes place at
the glomerulus. Water and many small molecules, including drugs, are forced
to go into the renal tubule by passive diffusion caused by hydrostatic pressure.
This mechanism is not so effective for negatively charged molecules since the
glomerular wall is negatively charged and repels anions and for molecules whose
diameter is larger than 8 nm (in fact, between 4 nm and 8 nm the efficiency of
this mechanism is inversely proportional to the molecule diameter). The normal
GFR for a human adult is 125 mL/min and corrections to this value can easily
be calculated through Cockcroft-Gault formula as a function of the age, gender
body weight and creatinine concentration in serum (Cockcroft and Gault, |1976)).
However, this filtration cannot occur if the molecule is bound to a plasma protein
and its effective diameter is larger than 8 nm, that is why we need to multiply
GFR by the fraction of unbound molecule, f,. After the glomerulus, blood
goes into the peritubular capillaries that surround the renal tubule. Further
secretion of drug molecules can occur at this site, normally mediated by active
membrane transporters. The effect of this second mechanism (tubular secretion)
is summarized into the parameter Clyg. Finally, as the filtrate moves through
the proximal tubule and the loop of Henle, water is reabsorbed into blood along
with some small molecules. This effect is represented by the third term TR
(tubular reabsorption). The reabsorption of a drug depends on its lipophilicity
(the more lipophilic it is, the easier it is to be reabsorbed), the filtrate pH
(non-ionized drug molecules can be reabsorbed), and filtrate flow through the
tubule (the higher the flow, the less chances there are to reabsorb any molecule).
As we discussed for the physiological modelling of hepatic clearance, the terms
in Eq. are not uniquely identifiable (we can arbitrarily modify one of
the parameters and compensate through the other two) and tight optimization
constraints are needed to successfully identify the physiological parameters.
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3.3.6 Turnover

Some therapies include the administration of proteins, peptides, or antibodies.
These are large molecules sometimes already constructed and destroyed by the
own patient (for instance, diabetes patients are administered human insulin that
adds on top of their own generated insulin, whose generation rate is rather low
and that is why they need external supplements). In these cases, clearance is not
performed only at the liver or the kidneys, but there are specific mechanisms
to digest these macromolecules and reuse its components. The methodology
proposed in this thesis is also compatible with this situation. We only need
to add the internal generation rate to the differential equation defining the
system. For instance, for the two-compartments model we simply need to add
the internal generation to the second equation

dAdet(t) = —(Rin + (Ko + Kq)Aeo(t)) + Dpo(t)
‘/;dcdit) = _(CZ + Clp)c(t) + Clpcp(t) + Rzn + Rinte'r'nal + KaAev (t) + Div (t)
V55D = —CLGy(1) + ClO()

(3.134)
The clearance parameter gathers the contribution from the hepatic clearance,
renal clearance and any other degradation mechanism acting on the macro-
molecule. Note that R;,terne; is identifiable and cannot be confounded with
R;;, because it does not appear in the first equation while R;, does. Now, we
simply need to apply the same methodology as the one described in Section
for numerically solving the differential equation system.

Turnover rate refers to the amount of compound that is generated and des-
troyed per unit time in the steady state. In the absence of external inputs, in
the long term the concentrations in the central and peripheral compartments
will equilibrate and there will not be any real change of the concentration in the
central compartment. The second equation in the equation system above would
become:

0= dcdgt) = _OZCSS + Rinternal (3135)
where Cj; is the steady-state concentration
Rinternal
Cos = —=— 3.136
Cl (3.136)

The amount of drug inside the central compartment in the steady-state is
Ags = VoClys (3.137)

Knowing that the generation rate is R;jternal, the time needed to achieve this

amount of drug is
ASS
tp = ——— 3.138
k Rintcrnal ( )
This time is called the turnover time and its inverse is called the fractional

turnover rate. Since at the steady-state Rjnternat = ClCss (see Eq. (3.135)),

we have V.C v

— C Ss — 7() .1
CiCss Cl (3.139)
This equation is formally identical to the equation of the Mean Residence Time

(Eq. (3.12)). In fact, t; can be considered to be the MRT of any drug molecule

ty
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once the steady-state is achieved. The half-life time is simply

t1 = log(2)t; (3.140)

1
2

3.3.7 Inter-species scaling (Allometry)

It has been found that many pharmacological parameters scale with the power of
the body weight among most terrestrial mammalians. This is particularly true
for parameters that depend on the body size as can be the distribution volume
(assuming that protein binding does not significantly change) or hepatic or renal
clearance (as long as the biochemical routes involved do not change). For a given
body weight, BW, it has been proposed that many parameters (in particular,
clearance, distribution volume of the different compartments, Mean Residence
Time, turnover time, and half-life time) they all depend as

X; = aBW} (3.141)

meaning that an species with a body weight BW, would result in a parameter
X; (being X any of the parameters mentioned above). Parameters a and b are
constants and do not depend on the species. Note that this power modelling is
needed for pharmacokinetical parameters, but it is not for physiological para-
meters (e.g., we do not need to extrapolate the blood flow into the liver for
humans, but there have been experimental studies directly aimed at estimat-
ing it). Also it is needed for parameters that depend on the organ size (for
instance, the intrinsic clearance, a parameter that depends mostly on the bio-
chemical capabilities of hepatocytes, does not change; but the hepatic clearance
does since it depends on the number of hepatocytes and the blood flow into the
liver).
The power dependence can be used in different ways:

1. Extrapolation from a single species: If we have measured a parameter
Xanimal for a given species whose weight is BW,,ima1, We may extra-
polate this paramater to humans by simply applying

BWoan "
BWani’rnal

Xman = Xanimal < (3142)
This extrapolation can be performed for a single point estimate (resulting
in a point prediction for humans) or for the limits of a confidence interval
(resulting in a predicted confidence interval).

2. Extrapolation from multiple species: If we have measured the parameter
X for multiple species, we may fit paramters of Eq. (3.141)) to the species
at hand and then extrapolate to the body weight of humans.

3. Inter-species modelling: We may integrate the power scaling law into the
modelling equations. Let us take as an example the one-compartment
model with intravenous administration. Let us consider a particular an-
imal with a body weight BW, and clearance and distribution volume CY;
and V;, respectively. The differential equation governing the concentration
in the compartment becomes

v, d(cjlgt) = —CLC(t) + Dy(t)
Bl _ 4 j o
aBWPACH)  — _cBWAC(t) + Dyy(1)
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Instead of looking for the parameters Cl; and V; for each animal, we look
for the parameters a, b, ¢ and d. We may perform the identification of
these parameters for several animal individuals simultaneously.

Extrapolation always involves a prediction error. This error is more import-
ant the further the body weights of the different animals are from the human
weight. This means that extrapolating pharmacological parameters from mice
(whose average body weight is about 23 g) has much more error than from a
dog (whose average body weight is about 14 kg). In practice, several different
species can be used: mice (23 g), rats (250 g), rabbits (1.5 kg), monkeys (4.7
kg), dogs (14 kg). Human weight is estimated to be about 70 kg.

3.4 Nonlinear compartmental pharmacokinetics

All the differential equation systems explained so far are of the form

d}:liit) =b+ Hy(t) + x(¢) (3.144)
where y(t) is a vector of system variables like amount of drug at a given site
or concentration, H is a matrix of constant values, b is a vector of constant
values, and x(t) is a vector of inputs, in our systems, input doses. If b = 0, this
equation defines a linear system. Linear systems are characterized because of
two properties:

e Doubling the input dose results in doubling the system response. In fact,
this property holds for any multiple of the input kx(t).

e The superposition principle: the system response to two different doses is
the sum of the individual response of the system to each one of the doses
independently.

The introduction of b breaks this linearity assumption. For instance, internal
generation of a molecule (see Eq. ) or zero-th order absorption (see Eq.
(3-94)) fall into this category.

However, in the standard pharmacokinetics literature, the word nonlinear is
not referred to this technical detail but to physiological effects such as enzyme
capacity saturation, enzyme induction, time dependent system parameters, etc.
These nonlinearities are particularly important at high drug concentrations. In
this section we will study how to incorporate these effects into the modelling
framework introduced in this thesis.

3.4.1 Enzymatic capacity saturation

Michaelis-Menten model for enzymatic reactions states that an enzyme mediated
reaction rate is related to the substrate concentration as
d[P] B Vinaz 5]

dt K+ [9]

(3.145)

v =

where v is the reaction rate, [P] is the concentration of the reaction product, [S]
is the concentration of substrate, V;,4; is the maximum reaction rate and K,,
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is the Michaelis-Menten constant that determines the substrate concentration
at which the reaction rate is one half of the maximum rate. Using this model
it has been established that it translates into an intrinsic clearance given in Eq.
and reproduced here for a single enzyme

Vmax
Clint = ——— 3.146
int Km + C ( )
Remind from Eq. (3.118]) that the hepatic clearance is given by
QHfuClint
Clg= —"—F—7— 3.147

where Qg is the blood flow into the liver and f, is the fraction of unbound
drug. Substituting the intrinsic clearance by its value we get

QHVmawfu
Vmaxfu + CQH + KmQH

We need to realize that f, and V,,4, are not uniquely identifiable, but its product
is. In many textbooks (Gabrielsson and Weinerl, [2007)[Section 2.7.2], this clear-
ance is approximated by Cly = Vm‘/’;‘% to make the mathematical resolution
more tractable. In this example, we will keep its full form. Note that the hepatic
clearance depends on the drug concentration in the liver, C', which is normally
considered to be the same as in the central compartment. To concentrate on
the nonlinear effect of this dependence, we will illustrate how this nonlinear
clearance reflects in the one-compartment intravenous bolus model. The differ-
ential equation governing the behavior of drug concentration over time is (see

Eq. (3.23))

Cly = (3.148)

dC(t) Cly dose;y(t)
—— =——0C{)+ ——— 14
7 v CO)+— (3.149)
If we now substitute Cly by its expression we get
dC(t) 1 QHVma:c fu dosem (t)
- + —_ 3.150
"V Vaafat COQn+ K@ O TV (3.10)

which is clearly a nonlinear differential equation. However, the methodology
developed at Eq. is still valid in this case. For the sake of clarity,
instead of applying the 4th order Runge-Kutta’s method (which gives a rather
complicated expression) we will simply use a first order Runge-Kutta’s method
(also known as Euler’s method) given by the general recursion

ylnl=yn -1 +k; (3.151)
with
ki =Tf((n—1)Ts,y[n —1]) (3.152)
For this specific model, the recursion is
— T QHVimax fu doseiy, [n]Ts

This numerical method is not very accurate since it is only first order. How-
ever, it already illustrates the main features of our methodology: 1) any model
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can be handled by simply writing its differential equation; 2) the differential
equation is transformed into a difference equation; 3) the system is responsive
and valid to any dosing regimen; 4) there is no need for approximations and
limiting cases; 5) model parameters can be determined by system identification;
6) the empirical probability density function of the model parameters can be
easily obtained. In this particular case, we see that the recursion is nonlinear
in C[n — 1] and, therefore, defines a nonlinear system.

3.4.2 Enzymatic induction or inhibition

Let us assume that the concentration of a given enzyme responds to a model
similar to the one studied for turnover (see Section |3.3.6):

dCx(t)
dt

= Rp — ClgCp(t) (3.154)

A certain drug may increase the enzyme concentration by increasing the ex-
pression of the enzyme (making Rp larger) or by decreasing its degradation
(making Clg smaller). Contrarily, the drug may decrease the enzyme concen-
tration by decreasing its expression or increasing its degradation. In all cases we
talk of either a stimulation or an inhibition. In both cases, the effect size can be
modelled by a fractional change named S for stimulation and I for inihbition.
S = 0.3 or I = 0.3 would mean a 30% increase or decrease of the magnitude
affected. S and I are defined as

S — SmazC(t)
L ey (3.155)
=  TICs0+C(t)

where S),q2 and I,,,, are the maximal possible fraction stimulation and inhibi-
tion that can be achieved, SC5g is the concentration of drug at which S = Sm—Q”
(analogously for ICj5g, and C(t) is the drug concentration. With these definitions
we can model enzymes whose concentration is increased or decreased because of
a drug. We can distinguish four possibilities (Rosenbaum)| 2011)[Section 17.4]:

e Stimulation of enzyme expression: dci(t) =Rp(1+S5) — CigCg(t)

e Inhibition of enzyme expression: dc(ft(t) =Rp(1-1I)—ClgCg(t)

e Stimulation of enzyme degradation: %Et(t) =Rg —Clg(1+ S)Cg(t)

e Inhibition of enzyme degradation: dci(t) = Rg — Clg(1 - I)Cg(t)

All these are nonlinear differential equations that can be solved using the Euler’s
method (see Eq. (3.151)). The concentration of the enzyme affects the max-
imum capacity of the enzymatic reaction (see Eq. [3.145). It is normally accepted
that this effect is linear:

Vinaz = aCg(t) (3.156)

where a is simply a proportionality constant.

The case presented so far is called heteroinduction or heteroinhibition be-
cause the drug affects the concentration of an enzyme that, in its turn, has an
effect on some other macromolecules or metabolites. The drug is said to have
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an indirect effect (it affects an enzyme that has a direct effect). Of particular in-
terest is the case in which the enzyme affects its own metabolism. This is called
autoinduction (if it inhibits its own degradation) or autoinhibition (if it stimu-
lates its own degradation). We will further expand this example to illustrate the
autoinduction case for the one-compartment intravenous model. Autoinduction
occurs when the drug inhibits its own degradation. Let us assume that a certain
enzyme F mediates the degradation of a drug and that the drug promotes the
degradation of the enzyme. As seen in Eq. , metabolic clearance can be
calculated as
Cly = QHVmaxfu _ QHGJCE(t)fu
Vmazfu + C(t)QH + KmQH aCE(t)fu + C(t)QH + KmQH
(3.157)
Then, we can write the dynamical equations for the concentration of the drug
and the concentration of the enzyme

el = Rp—Clp(1+8)Cr(t) = R — Ol (1 - S22 Cp(t)
dc(t) Cl dose;y (1) 1 QuaCg(t)fu dose;y (t)
a = 0O+ T = v mnrcnen kaan ¢ 1) +( v |
3.158
Applying Euler’s method to this equation system we get
Cpln] = Cgln—1]+ RgT, — ClpT, (1 v S%(%) Cpln — 1]
— T QuaCgn—1]fu dose;,[n]Ts
C[’ﬂ] - C[n - 1] - 7aCE[n—l]fi-ﬁ-CE[n—l]QH—&-KmQHO[n - 1] + v
(3.159)

whose parameters to be identified are Rg, Clg, Smaz, SCs0, V, Qu, af, (which
are not separately identifiable), and K,,. Fig. shows the evolution over
time of the drug concentration and the hepatic clearance in the case of no
autoinduction S,,,, = 0 and autoinduction S,,,; = 0.3. The rest of parameters
are Rg = 0.01 (mg/min), Clg = 0.005 (L/min), SCs¢ = 0.02 (mg/L), V = 10
(L), Qg = 1.45 (L/min), f, = 1, a = 0.01 (1/min), Ty, = 1 (min), K,, = 0.1
(mg/L).

3.4.3 Effects on blood flow

Certain drugs affect blood flow either by increasing it or decreasing it. This may
be modelled with coefficients similar to the stimulation and inhibition factors
in Eq. (3.155)). So that the effective blood flow becomes Qg = Qg))(l +5) or
Qu = g (1—1). Let us develop here the case of blood flow stimulation for the

one-compartment intravenous bolus. The increase of blood flow directly affect
the metabolic clearance

Cly — QufuCline _ Qf(+8)fuCline _ _ QY fuClins
H = Qut+fuCline — QO = 50 — 1
QH (1+S)+fu0lwlt QH +fuCl1,nt 1+5S (3 160)
QY £uClin :

(©) ] C+5C
Qp +FuClint o ,000) 45050

and this increased metabolic clearance is the one that must be used in the model
for the concentration

VW — _ClyC(t) + dose;, (t)

_ QY fuClint
- - Q(U) Cl, = C(t)+SCs0 C(t) + doseiv (t)
i T uClint 50T 8ma0) 45050

(3.161)
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Figure 3.16: Drug concentration profile C'(¢) for the case of no autoinduction
and autoinduction after a bolus administration of 1mg (top) and the evolution
of the metabolic clearance Cly(t) (bottom).
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We may apply any of the discretizing methods already seen.

3.4.4 Protein binding

Disregarding drug uptake into the blood cells, drug in plasma is circulating
either bound to plasma proteins (like albumin and «aj-acid glycoprotein) or
unbound. In our models so far, we considered the fraction of unbound drug
to be fix, f,. However, this may not be the case and protein binding can
vary as a function of the drug concentration. It is normally accepted that
the concentration of bound drug in blood follows an equation similar to the
Michaelis-Menten modelling of enzymatic reaction (see Eq. (3.145)):

_ Bmaz C’LL

Cb_Kd+Cu

(3.162)

where B4, is the maximum binding capacity, C,, is the unbound concentration,
and K is the dissociation constant at equilibrium. The total drug concentration
in blood is
Biaz
C=Cp+C,=0Cy 1+ 3.163

b u u ( Kd T Cu ( )
If the concentration in blood of the binding protein is Cp and each protein can
bind to n drug molecules, then the maximum binding capacity is B4, = nCp.
The unbound fraction can be calculated as

Cy 1
fu="=—— (3.164)
C 1+ Kdi}éu

Now, we can transform a differential equation on C into a differential equation
in C,, as follows. Consider, for instance, the one-compartment intravenous bolus
model

VI —  _CluC(t) + dosei(t) (3.165)

by substituting C(¢) by its expression as a function of C,,(t) we get

d(Cu(t) (1+ 2Fw
(e dfﬁcu”)) = —ClgCy,(1) (1+7Kd’fcj(t)) + dose;, (t)

(3.166)

Vv

We simply have now to calculate the derivative on the left

d(CU(t)OZf ikm)) Gl (1+ A% u)) +Cu(t) (‘(x 1?@))2) =
d u d u
_dCL(b) C Cu(t)
- dt L+ K;—:—Ci(t) (1 T Ka+Cu (1)
(3.167)
and substitute into Eq. (3.166)):
dC, (t nC Cy(t o nC
VIGO (14 pnCe o (12 2805)) = —CluCu(t) (14 22585 ) + dosen(t)
(3.168)

At this point we may apply any of the discretization techinques already used in
the thesis.
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Figure 3.17: Model for a drug that is first converted into a metabolite with
therapeutic effects.

3.4.5 Metabolite models

The modelling framework presented in this thesis also allows for modelling drugs
that are first degraded into a metabolite with therapeutic effects and then elim-
inated. This model is schematically represented in Fig. |3.171 The model can
be easily be represented in differential equations using the standard approach
presented along the thesis

Vcddcfét) = —(Cly + CL)C(t) + CLCy(t) + Diy(t)
V2%~ _C1,0,(t) + CLO(t) (8.169)

The model above is linear, but we may consider non-linear enzymatic kinetics
at the metabolization of the drug. Let us consider a Michaelis-Menten enzymatic
reaction as in Eq. (3.146)). Then, it suffices to substitute Cl,, in the previous

equation by Cl,, = .

3.4.6 Reaction rate

We may be particularly interested at the drug disappearance due to its binding
to a particular receptor or molecule. In general, let us assume that the chemical
reaction is of the form

dD +mM < pDM (3.170)

where D represents the drug, M the molecule it binds to, and DM the drug-
molecule complex. In the general case, we assume that the chemical reaction is
reversible. The case of irreversible binding is easily handled below.

The reaction rate is defined as

_1d[D] _ 1d[M] _1d[DM]
dd  m d p dt

(3.171)

and it can be calculated as a function of the different species concentrations as

v = kf[D) [M]"™ — ky[DM]¥’ (3.172)



60 3.5. PHARMACODYNAMICS

where &y is a constant (although with an important dependence on temperature)
for the forward reaction, k; is a constant for the backwards reaction, d’, m’
and p’ are constants that have to be experimentally determined. For reactions
occurring in a single step, these coefficients equal the stoichiometric coefficients
d =d, m" = m, and p’ = p. The case of irreversible binding of the drug and
the molecule simply requires setting k;, = 0. Note that v is normally given in
(mol-L~'-s7!) and the units normally used along the thesis are mg- L~ -min~!.
Consequently, we must also express concentrations in mg-L~!. At equilibrium,
the net reaction rate is 0 implying

’

= ky[DM" = K = ’Z—Z = % (3.173)

k(D) [M]™
that is the standard formula for the equilibrium constant. However, note that
in the methodology proposed in this thesis we are not restricted to study the
equilibrium state, but that we can study the dynamics of the full system at any
time.

Let us incorporate the reaction rate to the one-compartment intravenous
bolus model. We simply need to add the corresponding disappearance of drug
and keep track of the concentration of the other species involved in the reaction
(to be consistent with our notation we will change [D] by C(¢), [M] by Cys(#),
[DM] by Cparr)

VI — _ClyC(t) — dv + dose;, (1)
= —ClyC(t) = d(kyCY (R)C (£) = kyCh (1)) + dosesn(t)

dz%w = —mv=—m(k 0¥ (t)CF; (t) — kO (t)
DM (t ' m’
2ol — py = p(kyCY (£)CF (£) — kCB ps (1))

(3.174)
In order to fully keep track of all species it is important that we know the con-
centration of the molecule M at ¢t = 0 (when it is supposed that we administer
the drug). Note also that nothing precludes this model of incorporating other
nonlinear effects as turnover (see Section of the molecule M.

3.5 Pharmacodynamics

Pharmacodynamics models the therapeutic effect of a certain drug at a given
concentration. Administering a drug has a certain physiological target (regu-
lating the body temperature, heart rate, blood pressure, etc.). Measuring drug
concentration alone does not tell us how the target parameter, E, evolves over
time. Pharmacodynamics places mathematical models to predict the effect of
the drug at a particular concentration on the desired variable F. In this chapter
we revise the pharmacodynamics literature under the light of the system mod-
elling approach defended in this thesis.

3.5.1 Effect size and receptor binding

The most widely accepted model suggests that variable F is related to the occu-
pancy of a number of receptors (may be cell receptors or extracellular receptors)
that are involved in the physiological events finally resulting in a certain body
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response E. A drug may act as: 1) an agonist by binding to these receptors
and activating their response; 2) an inverse agonist by binding to the receptors
and causing an effect opposite to that of the agonist; 3) as an antagonist by
binding to the receptors and blocking their action. In any case, the drug effect
is directly linked to its binding to a certain receptor. A comprehensive review
of receptor binding is given by Krohn and Link| (2003).

It has been proposed that the response variable E can achieve a maximum
value, F,,q2, when all involved receptors are occupied. Let us assume that there
is a total of N;,; of these receptors and that each one has an intrinsic efficacy €
(that is defined as the part of the response caused by a single receptor). In this
case, we could compute the maximum effect as

Ema:v = -Z\/vtot6 (3175)

In practice, it is difficult to estimate any of these two parameters and it has been
alternatively proposed to compute E,,,, as a function of the concentration of
receptors. Let us denote C'g as the concentration of receptors per volume unit
in a certain compartment, which for the moment is assumed to be fixed. Then,

Eraz = aCRr (3176)

where « is a proportionality constant. This maximum response is presumed to
be achieved when all receptors are activated. If not all of them are activated,
then the actual response would be proportional to the fraction of activated
receptors:

CR,activated(t)
Cr
where CRr qctivated 1S the concentration of activated receptors. Let us study the
effect of an agonist drug. The binding of this drug to the receptor results in
an increase of the physiological response F because the fraction of occupied
receptors increases. The variation of the bounded receptors can be modelled

through the law of mass action applied to the following reaction

E(t) = Emas (3.177)

D + Rfree <+ DR (3.178)

where Ry, is a free receptor and DR is a receptor bound to a drug molecule.
The concentration of activated receptors can then be calculated as

CR,activated(t) = C??,activated + CDR(t) (3179)

where Cpr(t) is the concentration of receptors occupied by a drug molecule and
C’%’actwated is the concentration of activated receptors when the drug has not
yet been administered (the basal state). The corresponding basal level of the re-

. . L. CY ot
sponse variable will be denoted as Ey (which is equal to Ey = Ejpqp — 0522 )

The concentration of receptors occupied by drug molecules can be calculated
with the law of mass action:

dCpgr(t

T() = k‘fORJ',-ee(t)O(t) — kyCpr(t) (3.180)
where k; is the rate constant of the forward reaction and k; is the rate constant
of the backwards reaction. Note that at any moment it must hold:

CvaTGE (t) + CDR(t) + C??,activated = CR (3181)
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that is, the total concentration of receptors is the sum of those that are still
free, those that are bound to a drug molecule, and those that are bound at the
basal state. In particular, at ¢ = 0 this makes

CR,free(O) = CR - C?{,activated (3182)

and obviously, Cpr(0) = 0. Eq. has to be combined with the equation
monitoring the amount of free receptors and an equation governing the drug
concentration. For simplicity we will consider the one-compartment with in-
travenous doses, although nothing in the theory precludes more sophisticated
models. The set of differential equations to be solved is:

D = yC e (()C(0) ~ (1)
e =~y Crpree(t)C(1) + kyCor (1)
LI = —CUC(t) = kyCh grec(t)C(2) + kuCpr(t) + Doses (1)

(3.183)

The previous set of equations give the full dynamics of the concentration

of all the species involved. However, some of its parameters may be difficult

to estimate like the concentration of occupied receptors in the basal state and

the total concentration of receptors. For this reason, in the following we will

try to simplify this equation into a more tractable form. If the change of drug

concentration over time is relatively slow with respect to the time that it takes

to reaction in Eq. to achieve equilibrium. We may consider that this
reaction is at equilibrium. This gives

WConl) = kyCp pree(t)C(H) — bCpp(t) = 0 = B = Trgree OO _ g,
(3.184)
where Kp is the dissociation constant of the receptor-drug complex. Consider-

ing that from Eq. (3.181) we have that
CR,fT’EE (t) = CR - CDR(t) - C%,activated (3185)

we can rearrange Eq. (3.184) to write

C(t)
Cpr(t) = (Cr — C?z,actwated)m (3.186)
The fraction of activated receptors would be
C%,activated + CDR(t) (3 187)

Cr

If we refer to the fraction of occupancy as p, and we define the basal fraction of

c )
occupancy as pg = —“g+<, then we have
_ ChiactivateatCor(?)
p = Cr
= P + CR_CR,activated C(t) (3.188)

Cr C(t) KD+C(t)
= po+ (1 —po)miem



3.5. PHARMACODYNAMICS 63

The corresponding response

L = Enum:p
= Emas (po+ (1= 20) i) (3.189)
C
= Eo+ (Emax - EO)KD+tC)'(t)

We may rewrite the expression above by using the maximum effect of the drug,
ED maz, instead of the maximum physiological response:

C
E = Eyg+ ED max Kpitc)’(t) (3190)

In this way we may deal in the same way with drugs that increase the basal
effect (Ep,mas > 0) or that decrease it (Ep maz < 0).

In some textbooks (Gabrielsson and Weiner, [2007)[Sec. 3.3], Ey is disreg-
arded yielding the well-known dependency

E = Enwradm (3.191)
However, it is worth noting that this expression has been obtained after two
simplifications: the basal response is negligible (Ey = 0), and that the receptor-
drug binding reaction is much faster than the decay of the drug concentration.

Within the framework defended in this thesis we are not restricted to these
simplified effect models in which the receptor binding is assumed to be faster
than the drug concentration changes. Instead, we may integrate the effect within
the full dynamical description of the system as follows. Let us consider the dy-
namical equations in Eq. . We simply need to calculate the instantaneous
proportion of activated receptors and the corresponding effect:

dCDR(t) = kfCR frec(t)C(t) — kyCpr(t)
% = —k;CR frec(t)C(t) + BCpr(t)
L dg ) _ fcl%(t) - kfCR, frec(t)C(t) + kyCpr(t) + Doseiy(t)
P = Cor+Cn @
E = Ema:rp<t)

(3.192)

Multiple receptor binding

It might well be that the drug binds to multiple receptors with different affinities
and that each receptor has a different effect size. We may model this as two
chemical reactions:

D + Rfree,l < DRy

D+ Rfree,Z L d DR2 (3193)

We only need to consider the additive effect of both receptors by modifying Eq.
(13.177) to

CRl,acti'uated (t) + Emaz ) CRg,activated(t)

E(t) = Fnas
( ) ! CR1 ' CR2

(3.194)
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and the equation system at Eq. (3.183]) to track the number of free receptors of
type 2:

Wom ) — iy Cry free(®)C(t) — kiy Cp, (£)
Wonmogree® e Cpy ree(O)C(E) + kip, Cor, (1)
208D = ki, Cry. prec(t)C() — ko, Cor, (t) (3.195)
chZ’diftm(t) = —kp,CRry frec(t)C(t) + kp,Cpr,(t)
LW~ _CIO(t) — kg, Cry ree(t)C(t) + ki, Cpr, (1)

—k,CRy, free(t)C(t) + ko,Cpr, (t) + Doseiy (t)

This equation system fully describes the dynamics of the system. As we did
before, we may assume that receptor binding to both receptor types quickly
achieves equilibrium so that Eq. (3.189) becomes

_ C(t)
E = Ejp1+ (Emazs1 — EO,l)er (3.196)
E0,2 + (Emax,Q - EO,Q)&

Multiple site binding

Some receptors need multiple drug molecules to be activated. Let us say we
need n drug molecules to activate the receptor

nD + R < DR, (3.197)

The system dynamics are described by (equivalent to Eq. (3.183))

dCLZf“) = kfCR frec(H)C™ () — kyCpr(1)
Rycfl%:;(t) = _kaR,free (t)Cn (t) + kbCDR(t)
LAOW = _CIC(t) — kyCRofree(t)C™(t) + kyCpr(t) + Doses (t)

(3.198)
This equation assumes that the binding of n drug molecules is performed sim-
ultaneously to the receptor and receives the name of Hill model. This is rather
unrealistic experimentally. However, this assumption results in a sigmoidal de-
pendency that fits relatively well in experimental situations with a small modific-
ation. As we have done before, we assume that the receptor binding equilibrium
is much faster than changes in the concentration. This makes that

4800 — 0 = Cppr(t) = L CR,free(t)C™(2) (3.199)

Following a reasoning similar to the one developed at the beginning of this
section, we would arrive to an effect size
C’?’L
E = Eo+ (Bmas — EO)W% (3.200)
This situation is experimentally unrealistic because it is difficult that n drug
molecules simultaneously bind to the receptor. However, macroscopically we

observe that only a fraction of those n actually bind per unit time. This is
easily modelled by replacing n by h (the Hill coefficient, with h < n)

h
E = Ey+ (Bmas — E@thigg(t) (3.201)
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The Hill coefficient also helps to explain cooperative binding. Let us imagine
that a single drug molecule binds a single receptor. However, once it is bound
it helps other drug molecules to bind nearby receptors. This is referred to as
positive cooperative binding and it is modelled by & > 1. Let us imagine the
opposite situation in which once a drug molecule binds a receptor it prevents
the binding in nearby receptors. This is called negative cooperative binding and
it is modelled by h < 1.

Sequential binding

Let us now consider that drug molecules bind sequentially the receptor according
to the following reactions

D + Rfree < DR

D+ DR < DyR (3-202)
The system dynamics is described by
dc?if(t) = ky CR,free(t)O(t) — ky, Cpr(t)+
kb2CD2R(t) — kuCDR(t)C(t)
f%%?% = —kp,CRprec(t)C(t) + kv, Cr(?)
F2m = iy, Cpr(t)C(t) — kb, Cpyr(t)
LACD = —CIC(t) — by, Cr ree(t)C(t) + iy, Cpr(t) + Doses(t)
—k,Cpr(t)C(t) + kb, Cp, r(t) + Dosey(t)
(3.203)

As we did before, we may assume that the receptor binding is much faster than
the drug concentration changes. In this situation, both binding equilibria are
achieved. At steady state

0= g~ ky,Crgree()C(E) + b Corlt) = Kp, = o = =200
0= dc%f(t) = kpCpr(t)C(t) — ko,Cp,r(t) = Kp, = :% = %
(3.204)

From these two equations we deduce

Cpr(t) = 5 Cr.free(t)C(1)

3.205
Cp,r(t) = 7, Cor()C(t) = 75 55 CR.frec(H)C*(1) (3:205)

The total amount of receptors must remain constant
C?%,activated + ORJT@@(t) + ODR(t) + ODzR(t) =Cr (3206)

Substituting the concentrations above we have

1 1
C% i CR. free(t) + ——CRr. free(t)C(t) + ————CRr free(t)C?(t) = C
R,actwated+ R,f ( )+ KD1 R,f ( ) ( )+ KDlKDz R,f ( ) ( ) R
(3.207)
From which we deduce
Cr-C%
CR7free(t> _ R R,activated (3208)

1+IC(LDI?+KG¢

Dy, KDy
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and, consequently,

c2(t)

1 201 — 0 Kp, KDy
Kp, Kp, Cvaree(t)C (t) - (CR - CR,activated) 1+ g(t) + K02§§)
Dy Dy "Dy

CD2R(t)

_ (C — 00 ) C*(t)
R R,activated) Kp, Kp,+Kp,C(t)+C?(t)

(3.209)
The fraction of activated receptors can be calculated as

— C%,activated+cD2R(t)
p = Cn ]
0 _° c2()
Chiactivateat(Or CR'““““”“)KDIKD2+KD20<t>+c2(t) (3.210)
C2R
C=(t)
po + (1 - pO) Kp, Kp,+Kp, C(H+C2(D)

Finally, the effect size is

C2(t
E = EO + (Emaz - EO) KDIKD2+KD(2)C(t)+Cz(t) (3211)

Competitive binding

Let us now consider that some exogeneous or endogenous molecules bind to
the same site as the drug, but with no effect. Let us call such a molecule an
antagonist A. The chemical reactions are

D+ Rf'r‘ee <~ DR

A+ Rpyee ¢ AR (3.212)
The system dynamics is described by
Zz?i‘f (z) = kjCRr frec(t)C(t) — keCpr(1)
?i?( ) = kaCR,free(t)OA(t) — kbACAR(t)
dCRg;m(t) = _k'fCR,free (t)c(t) + k'bCDR(t)
kA CR free(t)Ca(t) + Ky, Car(t)
dcc?t(t) = _ka CR,free (t)CA (t) + kbA CAR(t)
% d(égt) = —CZC(t) - kaR,free(t)C(t) + kbCDR(t) + DOS@W (t)
(3.213)

As usual, we assume that receptor binding achieves equilibrium much faster than
there are significant changes in the drug concentration. At this equilibrium there
is no net variation of the bound concentrations

dczif(t) =0= Cpr(t) = %DCR,free(t)C(t>

dc (3.214)
9Canl) = 0 = Cap(t) = 7o O free(t)Cal(t)
Assuming that the total amount of receptors is kept constant, we have
Clo%,activated + CR,fTee (t) + ODR(t) + CAR(t) = CR (3215)

Substituting the values calculated above we get

CR,free (t) CA (t) = CVR
(3.216)

1
C%,activated + CR,fTEG (t) + ?DCR,free (f)C(t) + KD
A
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From where

1

3.217
1+ g=C(t) + K—}DACA(t) ( )

CR,free (t) = (CR - C?%,activated)

The fraction of occupied receptors becomes (only those receptors with some
effect on the physiological variable are accounted)

C%,activated+cDR(t)

p = Cr
Cr—-C activate
= p0+(1—p0) Ly
1+ﬁc(t)+Krl>A Cal(t) (3.218)
- _ C(t)
= po+(1 pO)KDJrC(t)JrKKTDCA(“
A
_ C(®)
= po+(1—po)
(1+?<AT(1:))KD+CU)

The corresponding effect is

_ )
E Eo + (Emas — Eo) (1+ 0 )Kﬁcm (3.219)
Note that the effect of the competitor is a decrease in the effective K p which
results in an increase in the drug concentration to achieve the same effect. The
competitor receives the name of a competitive antagonist.

The competitor instead may have the same effect as the drug (it is called a
full agonist, full because it has the same maximum effect as the drug), then
the proportion of activated receptors would become

Clo'x’,,acti'uatcd+CDR(t)+CAR(t)
Cr

C(t) | Calt)

®p T Rp, (3.220)
= po+(1—po)—sm—oa

C(t) L Ca(®)
1+W+KATA

p =

and the corresponding effect

c() , Calt)
KD+KDA

() , Cald)
AR

E = Ey+ (Emax - Eo) (3221)

We may also consider that the agonist molecule only causes a fraction of the
full effect Epgp,a = @Fmqr (with 0 < a < 1; it is then called partial agonist).
Then, we separate the two effects. The final effect becomes

MJFQ Cat)
_ Xp KDy
E — EO + (Emax - Eo)m (3222)
Kp " Kp,
An inverse agonist is a molecule that causes a contrarian effect to that of
our drug. The effect equation is exactly the one for a partial agonist, only that
a<0.
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Non-competitive binding

An exogenous or endogeneous molecule may bind to an allosteric site of the
receptor. It does not compete with the drug for the binding site but it modifies
the structure of the site and reduces or increases the maximum effect attainable
by the drug. The chemical reactions are

D+ Rfre@ ~ DR
A+ Ripree < AR (3.223)
D+ AR < DAR

The system dynamics is described by

W80 = ks Cp prec(t)C(t) — I Cpr(1)
WO = ky O prec(t)Ca(t) — ko, Car(t)
Jc _kaR ( ) (t) + kbARCDAR(t)
Rg;m(t) = _kaR,free( )C(t) + kyCpr(t)
—kf,OR frec(t)Cal(t) + ko, Car(t) (3.224)
dCA(t) _ 7 .
=g~ = kg CORr free(t)Ca(t) + kp,Car(t)
+kianC(t)Car(t) — kp,nCpAR(L)
dCDdiAtR(t) = krzCt)Car(t) — ki, nCpar(t)
2990 = —CIC(t) — kCh free()C(t) + koCpr(t)

—k‘fARC(t)CAR(t) + kbARCDAR(t) + Doseiv(t)

Assuming that the receptor binding is much faster than the variations of the
drug concentration, we would have that the binding equations are at equilibrium:

Conl) = 0= Cpr(t) = 2= Crfrec(H)C(1)
dCDdi‘;R(t) = 0=>CDAR()=K (t)Car(t)
s~ 0 = by, O gree(t)Ca(H) = (kiy + K7y CO)ICaR() + Koo Can(?)
= kpsCR free(t)Ca(t) = (koy +kp,nC(t)Car(t) + kbARﬁMC(t)CAR(t)
= kpaCrgree®Calt) = (Rou + (Kran = Foan g ) C()) Canlt)
kra O ree(Cat) = (Kou + (kran = koan 22 ) C(8)) Car(t)
= kpsCR frec(t)Ca(t) = (koy + (krar = kpan) C(t) Car(t)
= kp,Cr frec(t)Ca(t) — kp,Car(t)
= 0= CAR( ) Klle CR,free( )CA(t)
(3.225)
In fact, we may reexpress Cpar(t) at equilibrium as
Cpar(t) = ﬁmc(t)cﬂm(t) = mc(t)CR,free(t)CA(t) (3.226)

The amount of total receptors is fixed. Consequently,
C?%,activated + CRJTee(t) + CDR(t) + CAR(t) + CDAR(t) =Cgr (3227)

Substituting the values above

C(t) Calt) CHCA)
O —
CRactivated T CR, free(t) (1 L P o Ko Kp. )~ Cr (3.228)

A
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From which

1

c@) 4 Ca(®) Ct)Ca(t)
Kp + Kp, + Kp,rKpy

(3.229)

_ 0
CR,free(t) = (Cr CR,actwated) 1+ (b

As we did in the case of competitive binding (previous paragraph), let us pre-
sume that only the DR receptors are effective for the physiological response
being studied. We may calculate the proportion of effectively bounded recept-
ors as

o)
K
p = po+(1—po) T c<t>+cA<t>DJr SOIFI0) (3.230)
Kp " Kp, " Kp,pEDy

whose corresponding effect is

c()
K
E = Ey+ (Fma — Eo) T C(f,)+CA(t)D+ CHTA D)
Kp ' Kp CKtDARKDA
- EO + (Emaz - EO) K
5CA()  REpOOCAD 3.231
Kp+C(t)+ Ko, + KD, KD, ( )

= EO + (Emaz - EO) o)

C KpC
(1+—K’§j ) Kp+ (1+7KDZ pro ) ()

Note that the antagonist has modified both, the effective Kp (that is increased
as in the case of the competitive antagonist) and the maximum achievable effect
(that is decreased; the limit when C(t) goes to infinity is Ey + %)
DAR" Dy
If, as we did in the case of competitive binding, we presume that the DA and
DAR complexes have some partial effect on the physiological response, then we

have that the total effect is

C®) |, Cal) L 5 C(HICA®
Kp Kp Kp, rED
E = Eo+ (B — E0)1+c<t)+0f(t>+ SIGIFYGN (3.232)
Kp " Kp, 'Kp,pKp,

Activated and inhibited binding

Let us consider the case in which the receptor has to be in a relaxed form to
be chemically active. Otherwise, the receptor is said to be in a taut (inactive)
form. Let us refer to the relaxed, free form as Ryye. and as Ryqqyt to the receptor
in its taut form. The chemical reactions involved are

Rf’ree ~ Rtaut

D+ Rpyec <> DR (3.233)
System dynamics are described by
19580~ R Copree()C(E) = yCpr(?)
dCR)zl{ZM(t) = kf,tautCR,free (t) - kb,tautCR,taut (t)
Cnpree®)  — _k;Cp free(H)C(E) + kCpr()+
*kf,tautCR,free (t) + kb,tautCR,taut(t)
% dcdgt) = 7CZC(t) - kaR.,free (t)C(t) + kbCDR(t) + Doseiv ((t) )
3.234

Assuming that the drug concentration changes relatively slowly with respect to
the rest of chemical reactions, we can assume that the receptor binding is at
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equilibrium. Then, as was reasoned in the previous case,

KD — CR,free(t)c(t) = CDR(t) — CR,free(t)C(t)

Cor(t) Ao (3.235)
C ree C free !
K = 762’,;“8; = CRtaut(t) = R'RT -
The total number of receptors must be constant, so
Ch.activated T Crotaut(t) + Cr pree(t) + Cpr(t) = Cr (3.236)
Substituting the concentrations above
C t C t)C(t
C%,activated + M + CR,f7'€6 (t) + M = CR (3237)
Kr Kp
From where
C ree t C ree t C t
L() + CR,free (t) + M = CR - C?%,activated (3238)
KT KD
and )
CR,free (t)=(Cr— C?%,activated)l—c(t) (3.239)
ol vy
( ) o)
E = EO + Emaw - EO D T
Rrt (3.240)
= Eo+ (Bmar — Fo) 77—~ ———
(1+W)KD+C(t)

When there are inhibitors and activators, inhibitors can bind to the taut form
(unbalancing the equilibrium towards taut) and activators to the relaxed form
(unbalancing equilibrium towards relaxed). The factor %T becomes

Cr(t)
(MR (3.241)
KT 1+ Ca(t) ’

Ka

where C(t) and C4(t) are the concentrations of the inhibitor and the activator,
and K; and K4 are the dissociation constant of the inhibitor-receptor com-
plex and the activator-receptor complex, respectively. Finally, the effect size in
presence of inhibitors and activators becomes

E = Ey+ (Eme — Eo) +Cj8
<1+K1T <Kf> ) Kp+C(t) (3.242)

1+C£1(4t)

Binding of enantiomers

A drug may alternate between two enantiomeric states. Each one binding the
target receptor with different affinity. Now, we will derive what is the combined
effect of both conformations. The biochemical equation may be represented as

Dy < DrDy, + Rfree <~ DR

DR + Rjree ¢+ DrR (3.243)
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Let us study first the equilibrium between the two enantiomers in the absence
of any other effect. Their dynamical behaviour respond to

dCp, (t)

—k1Cp, (1) + k-1Cpy (¢
ac ) 16D, (8) + k10D, (1) (3.244)

dt = kICDL(t)—k_chR(t)

At equilibrium both variations are zero, and the relationship between the two
concentrations at equilibrium are

k1Cp, (t) =k_1Cp,(t) = K = kkfll = ggfg (3.245)

The fraction of the left enantiomer and the right enantiomer become

Cp, (t) Cp, (1) 1

P TR E A 8.266)
DL(t)+CDR(t) CDL(t)+KC'DL(t) 1+K
The full system dynamics is given by
Won @ = kg, Crgree(t)Cpy (8) = i, Oy r(t)
Cotn® = kO gree(t)Cpp () — ks Cpilt)

WCngpesl) = ki, Cr free(t)C, () + ko, C, (1)
_kfRCRJT@e(t)CDR (t) kbRCDRR(t)
R
AT = pr(t) +k1Cp, (1) — 1C'DR(t) + frDose (t)

t

(3.247)
Assuming that the receptor binding is much faster than the variations of the
drug concentration, we would have that the binding equations are at equilibrium:

dcC t
Copn® - — 0= Op,at) = %oy O gree()Cp, () (3.248)
Copn® 05 Cpop(t) = T, CR.pree(t)Cpy (1)

The amount of total receptors is fixed. Consequently,
C%,activated + OR,f’ree(t) + C'DLR(t) + ODRR(t) = CR (3249)

Substituting the values above

Cp, (t Cp,(t
C?%,activated + CR, free(t) <1 + [[()L( ) + I?R( )) =Cg (3.250)
DL Dr
From which
1
CR’fTGG(t) = (CR - C?% activa ed) (3251)
ety Gpull o C2e®

We may calculate the proportion of bounded receptors of each kind (left and
right enantiomers)

Cp, ()
K
= (1 —-pg)———2L
pL ( pO)H_cI,?L(t) N )

RE, @ PR (3.252)

PrR = (1_]70) Cp,® , CpL®
1+ KDL KDR
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Let us assume that the effect of the right enantiomer is a fraction, «, of that of
the left enantiomer. The combined effect is

Cp, () | Cpp®)
E = Ey+(E By)—bi_ " Tog 3.253
= 0+ (Emaz — O)W (3.253)

1+ Kp, + KD'R

Non-specific binding

We may consider the non-specific binding of the drug to other receptors with
no therapeutic effect (Lauffenburger and Linderman| [1993)[Sec. 2.2]. Let us
generically refer to these non-specific receptors as Ryg. This binding moment-
arily sequesters drug molecules and later releases them. Let us assume that
non-specific binding occurs with a pool of receptors much larger than the num-
ber of drug molecules. If this is the case, we do not need to worry about the
number of free receptors, which does not significantly change over time, and we
may assume its concentration to be constant Cr, . The equation system at

Eq. (3.183) becomes:

dc%?sm = kasCRNsC(t)_kszcDRNs(t)
LW _CUO(E) = ks Cras C(E) + ks Cois (1) + Dosesn(t)

(3.254)
At equilibrium, there is no variation of the concentration of non-specific bounded
complexes

Corns®) _ 2 cpp (1) = B2y, o) (3.255)
dt kbNS

That is, the concentration of non-specifically bounded receptors is proportional
to the drug concentration. Let us call this proportionality constant Kyg =

kfns .
mCRNS7 that 18,

Cprys(t) = KnsC(t) (3.256)

which is a well-accepted model for non-specific binding (Gabrielsson and Weiner,
2007)[Sec. 3.4.1]. However, note that this model has been constructed un-
der the assumption that the pool of non-specific receptors is much larger than
the number of drug molecules, and that the non-specific binding reaction has
reached equilibrium. In these circumstances, the effective concentration of drug
decreases and its effect becomes (see Eq. (3.189))

_ (1—Kns)C(t
E = Eo+ (Ema — Bo) gl (3.257)

3.5.2 Generic models

Previous section dealt with effects as a direct consequence of the drug binding
to specific receptors. Some physiological evidence supports this approach, and
system identification with these models aims at physiologically explaining the
observed drug effects. However, a more pragmatic approach could be taken
and suitable mathematical functions may be employed simply for the reason
that they “fit” the data. There is no other justification for them apart their
explanatory power in a particular case. These models can be used after acute
dosing or when studying the steady state. Being, memoryless systems, they are
assumi