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Resumen

La farmacocinética es aquella parte de la materia farmacéutica que estudia la
evolución temporal de la cantidad total en el cuerpo de un determinado fárma-
co y sus metabolitos así como su concentración en diferentes tejidos y plasma.
Esta evolución es de vital importancia ya que para muchos fármacos existe una
ventana terapéutica dentro de la cual son efectivos (por debajo de una deter-
minada concentración el fármaco no tiene ningún efecto; y por encima de otra
concentración tiene efectos tóxicos). El conocimiento de la concentración, por sí
mismo, puede ser útil para evitar efectos nocivos; sin embargo, muy probable-
mente, estemos también interesados en comprender los efectos �siológicos del
fármaco sobre un determinado parámetro (por ejemplo, la presión sanguínea,
la temperatura corporal, o el ritmo cardiaco). Éste es el dominio de la farma-
codinamia, construir un modelo del efecto �siológico que dependa de la con-
centración del fármaco. Por su parte, la biofarmacia propone modelos precisos
de la liberación del fármaco, su disolución y absorción. Los tres juntos (biofar-
macia, farmacocinética y farmacodinamia) intentan caracterizar las propiedades
LADME (Liberación, Absorción, Distribución, Metabolismo y Excreción) de un
fármaco concreto así como sus efectos toxicológicos y efectos terapéuticos.

La herramienta matemática más utilizada es el modelado mediante ecua-
ciones diferenciales, ya que esto no sólo permite ajustar las observaciones de
concentración a lo largo del tiempo, sino que además permite predecir la misma
para dosis diferentes a la empleada para la determinación de los parámetros
del modelo. Una vez �jado el conjunto de modelos matemáticos, el interés de
esta tesis se centra sobre los aspectos técnicos del conjunto así como su ge-
neralización para incluir un mayor número de efectos. Esto contrasta con un
enfoque más farmacológico que estaría orientado a los parámetros concretos de
un fármaco, su distribución dentro de una población, su variación con diferentes
estados �siológicos y la interacción entre fármacos, y su comparación con otros
fármacos.

La aproximación clásica a todos estos esfuerzos de modelado ha tratado cada
efecto por separado, de forma que los modelos farmacocinéticos o no incluyen o
incluyen modelos biofarmacéuticos muy simples. El motivo es que se han centra-
do fundamentalmente en el uso de fórmulas analíticas cuyos parámetros deben
ser estimados a partir de muestras experimentales obtenidas en el laborato-
rio. Cada modelo debe ser resuelto explícitamente y debido a la complejidad
de la matemática subyacente, en muchas ocasiones únicamente hay soluciones
integrales para situaciones relativamente simples. Los métodos de cálculo de
parámetros, además, suelen estar únicamente resueltos como casos particulares
y con una formulación poco general. En oposición a esta perspectiva, en esta
tesis se de�ende que el modelado biofarmacéutico, farmacocinético y farmaco-
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dinámico puede ser uni�cado desde una perspectiva de ingeniería en un marco
común de señales (dosis, concentraciones y cantidad total de fármaco) y siste-
mas (el paciente y el sistema de medida). Las señales son simplemente funciones
y distribuciones matemáticas, y se pueden utilizar para representar cualquier
variación de uno o varios parámetros �siológicos a lo largo del tiempo. Por su
parte, los sistemas son todas aquellas operaciones que transforman una señal en
otra. Por último, debemos tener en cuenta que normalmente no tenemos acce-
so a la verdadera señal subyacente sino tan sólo a una versión deteriorada de
aquella. Se dice que la señal observada es ruidosa entendiendo por ruido cual-
quier interferencia determinista o aleatoria que modi�que el valor observado de
la señal que deseamos medir. El modelo uni�cado consistiría en un conjunto de
ecuaciones diferenciales que relacionan las entradas y las salidas del sistema. El
sistema continuo así construido debe ser discretizado de forma que, una vez se
conozcan los parámetros del sistema, se puedan realizar simulaciones numéricas
muy precisas por medios computacionales. De hecho, se propone el modelado del
ruido de las medidas como el mecanismo de alcanzar la identi�cación de los pa-
rámetros del sistema por medio de una aproximación de máxima verosimilitud.
Esta identi�cación se puede realizar para cualquier régimen de administración y
se propone determinar los intervalos de con�anza asociados a estos parámetros
mediante un muestreo por bootstrapping.

El objetivo de esta tesis ha sido el de dotar de un escenario de sistemas
discretos a los problemas encontrados en biofarmacia, farmacocinética y farma-
codinamia. En este contexto, todos los problemas de estimación de parámetros
se reducen a un único problema de identi�cación de sistemas. El problema a
resolver es el mismo para cualquier tipo de sistema y se debe poder utilizar de
forma conjunta con procedimientos de estadística no paramétrica que estimen
la varianza y la covarianza de los paramétros del sistema, la evaluación de su
bondad de ajuste, y la comparación entre sistemas alternativos. Esta aproxi-
mación también es válida para resolver problemas con parámetros que varían
con el tiempo así como para analizar la distribución de estos parámetros en una
población. El escenario debe ser lo su�cientemente general como para poder
manejar posologías a intervalos de tiempo irregulares así como para realizar el
diseño de la propia posología. El marco matemático debe ser capaz de manejar
dosis intra- y extra-vasculares con cualquier tipo de medidas de concentración
(concentración de fármaco en plasma, orina, tejido, ...), medidas simultáneas
o alternas. Además, la implementación de un nuevo modelo farmacológico en
el nuevo marco debe ser lo su�cientemente sencillo como para permitir que el
usuario se concentre en la tarea de modelado sin necesidad de ocuparse, además,
de las tareas más �administrativas� de la programación.

Desde esta perspectiva de señales, sistemas y ruido identi�camos varias de
las limitaciones de las aproximaciones que habitualmente se utilizan en Farmacia
como son el abuso del concepto de deconvolución y el no aprovechamiento del
régimen transitorio de la señal de concentración de fármaco hasta que no se
alcanza el estado de equilibrio (steady state).

A lo largo de la tesis proporcionamos el marco de sistemas discretos (nor-
malmente no lineales) buscado. Relacionamos este marco con conceptos nor-
malmente utilizados en farmacocinética y farmacodinámica como los mínimos
cuadrados, los mínimos cuadrados ponderados y la estimación Bayesiana, jus-
ti�cando teóricamente todas estas aproximaciones y explicitando sus hipótesis
constitutivas. Proponemos en la tesis el empleo de algoritmos de optimización
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global como pueden ser los algoritmos genéticos de forma que se superen los
problemas asociados a la convergencia local de algoritmos basados en gradiente
conjugado o gradiente descendiente y la consiguiente dependencia de la solución
�nal con la primera estimación de los parámetros. Mostramos cómo estimar los
intervalos de con�anza de cada parámetro utilizando estadística no paramétrica
(muestreo por Bootstrapping), cómo utilizar esta distribución para determinar
posibles respuestas farmacocinéticas y farmacodinámicas por medio de la simu-
lación de Monte Carlo, y demostramos, a través de la Matriz de Información de
Fisher, que existe un límite inferior (la cota de Crámer-Rao) por debajo de la
cual ningún método de ajuste, por so�sticado que sea, puede reducir la varianza
de un determinado valor. De hecho, mostramos cómo la Matriz de Informa-
ción de Fisher puede ser utilizada para diseñar de forma óptima los instantes
de recogida de muestra de forma que se minimice la incertidumbre sobre los
parámetros del sistema. En la tesis estudiamos la estabilidad, sensibilidad de
primer y segundo orden de los modelos propuestos. Proponemos nuevas formas
de normalizar estas sensibilidades de forma que éstas sean comparables entre
parámetros con órdenes de magnitud muy diferentes. También mostramos cómo
se puede calcular la sensibilidad en el caso de no disponer de una fórmula ana-
lítica de la respuesta farmacocinética a partir del análisis de la propia ecuación
diferencial que de�ne el modelo. Durante el proceso de discretización, debemos
prestar especial atención al periodo de muestreo de la señal analógica. Éste es
un concepto normalmente no contemplado en los textos farmacéuticos y que,
sin embargo, puede comprometer seriamente la precisión y la estabilidad de las
predicciones de los modelos.

También mostramos cómo plantear todos estos conceptos en los problemas
concernientes a la farmacocinética (farmacocinética lineal, modelos comparti-
mentales, diferentes modelos de aclaramiento y regeneración de moléculas, así
como el escalado alométrico, farmacocinética no lineal, saturación enzimática,
inducción e inhibición enzimática, efectos sobre el �ujo sanguíneo, unión a pro-
teínas, modelos de metabolitos y velocidad de reacción), a la farmacodinamia
(efecto inducido y unión a receptores, modelos genéricos, modelos indirectos,
transducción y compartimentos de tránsito, modelos de desarrollo de tolerancia
y rebote, y modelos de efectos �siológicos discretos), y la biofarmacia (difusión,
disolución y absorción). En aquellos puntos donde es posible hemos generaliza-
do diferentes modelos, habitualmente presentados como modelos independien-
tes, y demostramos que todos son casos particulares de un modelo más general.
Adicionalmente, hemos provisto de un modelo dinámico basado en ecuaciones
diferenciales a muchos efectos que en el ámbito farmacéutico se tratan única-
mente desde un punto de vista estático (una vez que se alcanza el equilibrio).
Nuestra formulación permite el análisis del transitorio de dichas variables. En
este proceso hemos descubierto algunas ecuaciones que de�nen sistemas varia-
bles en el tiempo de�nidos por ecuaciones diferenciales no autónomas (algo no
muy habitual en el mundo de la ingeniería).

En la Sección de Resultados mostramos la aplicación de todos estos princi-
pios a ejemplos concretos de modelado y estimación de parámetros en diferentes
aplicaciones de farmacocinética, farmacocinética clínica, toxicocinética, farma-
codinámica y biofarmacia. Estos resultados muestran cómo el nuevo marco de
análisis abre la puerta al estudio de situaciones anteriormente vedadas a las he-
rramientas tradicionalmente utilizadas en la práctica farmacéutica como pueden
ser el ajuste simultaneo a dos vías de administración, el análisis con parámetros
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variables con el tiempo, y el análisis de sistemas fuertemente no lineales. De
forma destacada, en la Sección 4.7 se desarrolla un modelo muy complejo que
uni�ca estas tres disciplinas en un único marco teórico. Por último, se muestran
posibles errores de modelado que normalmente no son comentados en los textos
farmacéuticos.

En el Apéndice se muestra un artículo actualmente en revisión sobre el uso
de la Matriz de Información de Fisher para la determinación de los instantes
óptimos de muestreo en un fármaco del que se conoce la distribución poblacional
de sus parámetros farmacocinéticos y en los que no se tienen acceso a otros
parámetros que también afectan a la respuesta (nuisance parameters).



Chapter 1

Introduction

1.1 The pharmaceutical problem

Pharmacokinetics refers to the study of the time evolution of the amount of
a certain drug in the body as well as its concentration at di�erent tissues and
plasma. This evolution is of crucial importance because for many drugs there is
a therapeutic window within which the drug is e�ective (below a certain concen-
tration, the drug has no e�ect; and above a certain concentration, the drug may
become toxic). Concentration alone may be useful to avoid toxicologic e�ects;
however, we are, most likely, also interested in understanding the physiological
e�ect of the drug on a certain parameter (e.g., blood pressure, temperature, or
heart rate). This is the domain of pharmacodynamics, which constructs a
model of the physiological e�ect that depends on the drug concentration. Ac-
curate models for the drug release, dissolution and absorption can be given from
biopharmaceutics. Altogether the �eld aims to characterize the ADME (Ab-
sorption, Distribution, Metabolization, and Excretion) features of a particular
drug as well as its toxicological and therapeutic e�ects.

The classical approach to all these modelling e�orts has addressed each e�ect
separately. It has also focused on giving closed-form formulas whose parameters
can be estimated from experimental samples obtained at the laboratory (see Fig.
1.1). Each case has to be explicitly solved, and due to the complexity of the un-
derlying mathematics, many times there are only formulas for relatively simple
situations. In contrast to this view we defend that biopharmaceutical, phar-
macokinetical and pharmacodynamical modelling can be jointly uni�ed from an
engineering perspective into a common signals and systems framework. The uni-
�ed model consists of a set of di�erential equations relating inputs and outputs to
the system. The continuous system constructed above is then discretized so that
accurate numerical simulations can be performed once the system parameters
are known. In fact, to identify the system parameters, a system identi�cation is
proposed in which measurement noise is modelled, and according to this model
the most likely system parameters can be determined. This identi�cation can
be performed for any arbitrary dosing regime and empirical con�dence intervals
can be determined.

In the following pages we discuss certain aspects not speci�cally covered in
the thesis but that can be easily derived from the framework proposed or that

1
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Figure 1.1: Example of drug concentration in plasma and its samples for an oral
dosis.

are superseded by the framework.
Non-compartmental pharmacokinetics

Non-compartmental pharmacokinetics has currently found its application
niche for evaluating drug exposure. This approach does not need any model
for the concentration and it exclusively relies on the experimental samples to
estimate parameters such as the Mean Residence Time (MRT; the mean time
that a drug molecule is inside the body), the Mean Absorption Time (MAT; the
mean time that takes the drug to pass into the body), the Clearance (the amount
of plasma whose drug is eliminated by unit time), etc. In all these analysis
the Area-under-the-curve (AUC) plays a central role (see Fig. 1.2). However,
accurate measurement of this area requires a �ne sampling of the curve (many
measurements) and require extrapolation techniques for the area after the last
experimental sample. Extrapolation is normally based on the assumption of an
exponential decay whose constant has to be estimated from the �nal part of the
curve. The main criticisms to this approach are that it is only valid for linear
systems (nonlinear e�ects cannot be handled), the AUC has no physiological
meaning and it confounds clearance and dose. Additionally, the formulas to
calculate MRT are only valid in speci�c administration regimes (single bolus,
constant rate infusion, etc.) and they are normally given as recipes.

Regression modelling

Alternatively, we may �t a suitable curve with few parameters and estimate
the AUC from this curve. In the example of Fig. 1.2, an appropriate function
is

C(t) = C0

(
e−Kt − e−Kat

)
(1.1)

By standard nonlinear regression we may estimate C0, K and Ka. As in the
previous case, the function does not have any physiological meaning and all its
merit is that it has a low error when approximating the experimental samples.
In nonlinear regression it is very important to have reasonable initial values for
the model parameters and there are �magic� formulas to estimate them.

Linear compartmental modelling
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Figure 1.2: Noncompartmental analysis of the concentration pro�le in Fig. 1.1.
AUC represents an estimate of the Area-under-the-curve from the experimental
samples. Note that the area after the last sample has to be extrapolated.

Compartmental modelling assumes that the body can be divided in di�erent
compartments within which the drug concentration is constant. For instance,
all the circulatory system may be a compartment (normally referred to as the
central compartment). Some organs with large blood �ows are also normally
considered to be included in the central compartment. Other tissues with less
blood �ow are normally included into one or several peripheral compartments.
Then, we must write a di�erential equation describing the evolution over time of
the concentration within each compartment. Actually, Eq. (1.1) is the solution
of the di�erential equation

dC(t)

dt
=
KaFDpo

V
e−Kat −KC(t) (1.2)

This equation models the absorption of an oral dose, e.g. at the intestine.
Ka is the absorption rate, F is the fraction of drug that actually gets into
the circulatory system, V is the volume of the compartment (which does not
necessarily coincide with the volume of blood due to plasma protein binding
and other e�ects discussed along the thesis), and K is the elimination rate. All
these parameters are further discussed in the thesis chapters. In Eq. (1.1), C0

represents C0 =
KaFDpo
V (Ka−K) . The di�erential equation above is linear and that is

why the methodology is called linear compartmental modelling.
Compartmental modelling is based on a physiological modelling of the drug

kinetics which is a clear advantange over other models since the model paramet-
ers intuitively represent physiological mechanisms. However, in its traditional
treatment, only those cases for which there exists a closed-form solution of the
di�erential equation are studied. This strongly narrows the possibilities of ex-
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ploring irregular doses regimes and limits the analysis of physiological processes
such as enzyme mediated reactions at di�erent levels. As in the previous cases,
�magic formulas� are given to provide initial estimates of the model parameters.
The amount of formulas needed to deal with these models can dauntingly grow,
and traditionally, compartmental modelling analysis is based on a huge list of
particular cases.

In fact, this was the motivation of the present thesis: to unify all these par-
ticular cases into a few general formulas that can handle multiple physiological
e�ects and any dosing regime. At the same time, all initial value formulas have
been substituted by intervals of feasibility and powerful global optimization
algorithms are employed to �nd the model parameters within these intervals.
As a result of the identi�cation methodology, we may even empirically provide
con�dence intervals for the modelling parameters.

Nonlinear compartmental modelling
Nonlinear compartmental modelling aims at faithfully modelling physiolo-

gical e�ects by incorporating di�erent aspects that make the di�erential equa-
tion to become nonlinear. Linearity or nonlinearity is a technical, mathematical
aspect. At this point it su�ces to point out that nonlinear di�erential equations
are more di�cult to solve and they require more accurate numerical approxim-
ations to guarantee their stability. One of the most important nonlinear e�ects
being modelled is the fact that many biochemical reactions are mediated by
enzymes, whose maximum processivity rate is normally bounded by its concen-
tration and that the reaction speed normally depends on the concentration of
the ligands involved. This directly translates into a concentration dependence of
the absorption and elimination rates, which are no longer constants but varying
over time. The framework developed in this thesis is capable of handling any
nonlinear e�ect that we may desire to model.

Population studies
Note that all the modelling above refers to estimating the model parameters

for a particular concentration pro�le from samples drawn from a single indi-
vidual (see Fig. 1.1). It is expected that di�erent individuals may respond
di�erently to the same dosis, in concentration as well as on physiological ef-
fects. This can be easily modelled by giving the statistical distribution of the
model parameters for a given population. For doing so, we would need to �nd
the parameters for di�erent individuals and gather all those parameter estim-
ates into a single statistical distribution. Interestingly, we may even classify
the population into responders and non-responders to the therapy and use the
model parameters to perform this classi�cation.

Exposure
Body exposure to a particular drug is an important parameter when try-

ing to determine the drug toxicological and therapeutical e�ects. There have
recently been several de�nitions of exposure all of them reasonable and accept-
able. It has been de�ned as: 1) the stedy state concentration of the drug after
regular intakes; 2) the maximum concentration after a single intake; 3) the
AUC after a single intake; 4) area under the concentration pro�le and above
the minimum therapeutic concentration. We may apply all these de�nitions to
the study of the total drug concentration or the free drug concentration (those
drug molecules that are not bound and sequestered, consequently without any
therapeutic or toxic e�ect). In any case, the methodology proposed in these
cases allows calculating any of the de�nitions above. Since the drug concentra-
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tion (total or unbound) can be readily by simulated after system identi�cation,
we simply need to measure the desired quantity to determine exposure.

Inter-species scaling

Many drugs are �rst tested in animals, in fact the FDA regulations require
testing in two roedents and one non-roedent before testing in humans, to char-
acterize their therapeutic and toxic e�ects. The e�ective doses used for animals
have to be scaled to humans so that in the �rst experiments with humans we
never induce any adverse e�ect (although we may not induce any bene�cial ef-
fect either). Then, the dose is progressively increased. The more accurate we
predict the e�ective doses needed for humans, the less experiments we will need
in clinical trials and the more cost e�ective will be our process. Inter-species
scaling deals with the problem of predicting several pharmacokinetical paramet-
ers from one species to another. This scaling is mostly based on the body weight
of the individuals.

1.2 Numerical solution of di�erential equations

The approach adopted in this thesis is tightly related to the numerical solution
of di�erential equations. Conceptually, discrete systems (the ones proposed
in this thesis to solve pharmacokinetics and pharmacodynamics problems) can
be viewed as a simple change of notation in the traditional �eld of numerical
solution of di�erential equations. Although this is true, it is only partially true
since discrete systems have given raise to a whole theory of its own, and not
only as numerical solutions of di�erential equations. In fact, this theory is what
makes our current world to be so �digital�. In the following paragraphs let us dive
deeper in the concepts traditionally involved in the numerical approximation of
di�erential equations.

Ordinary di�erential equations date back to the XVIIth century and they
were independently invented by the English physicist Isaac Newton and the
German mathematician Gottfried Leibniz about 1680 (Archibald et al., 2004).
Except in very limited occasions, di�erential equations do not have a closed-
form solution as in Eqs. (1.2) and (1.1). Alternatively, the �eld of applied
mathematics have developed approximate tools to handle the rest of cases. In
general, they approximate the solution C(t) as a Taylor series around a given
point (in the following example around t = 0):

C(t) =

∞∑

n=0

ant
n (1.3)

whose di�erential is

dC(t)

dt
=

∞∑

n=0

nant
n−1 (1.4)

Then, the homogeneous di�erential equation (Eq. (1.2)) becomes

∞∑
n=0

nant
n−1 = −K

∞∑
n=0

ant
n

0a0t
−1 + 1a1t

0 + 2a2t
1 + 3a3t

2 + ... = −K(a0t
0 + a1t

1 + a2t
2 + ...)

(1.5)
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or what is the same, a0 can be any arbitrary constant because from the term at
t−1 we learn that 0a0 = 0, and for n ≥ 1

(n+ 1)an+1 = −Kan ⇒ an+1 = − K
n+1an (1.6)

However, our di�erential equation (Eq. (1.2)) is non-homogeneous. We could
use the technique of dominant balance. However, note that this technique is
rather inconvenient because:

• This solution is only valid within the convergence radius of the Taylor
expansion. Beyond that time point, we need to re-expand around a point
within the convergence radius. In this way we can progress along the time
axis.

• The convergence of the Taylor sum may be rather slow, especially for
points far from the expansion time point.

• The recurrence equation (Eq. 1.6) may not be easily to solve, particularly
for non-linear equations.

An alternative approach, and the one followed in this thesis, proposes to
discretize the di�erential equation. Discretization is the process by which we
transform a continuous function into a discrete function. A continuous function
depends on a continuous variable t ∈ R:

f(t) : R→ R (1.7)

A discrete function depends on a discrete variable n ∈ Z

f [n] : Z→ R (1.8)

We normally make coincide the discrete function f [n] with values of the con-
tinuous one

f [n] = f(nTs) (1.9)

where Ts is called the sampling rate and is measured in time units. The dis-
cretization is based on the Taylor expansion of the function f(t)

f(t− h) = f(t) + f ′(t)(−h) +O(h2) (1.10)

where O(h2) are terms that depend on h2, h3, h4, ... and they are called second
order term, third order term, etc. If h is su�ciently small (for instance if h is
much smaller than 1), these terms tend to be much smaller than the �rst order
term and can be disregarded. Solving for f ′(t) we would have a simple way of
approximating the derivative

f ′(t) =
f(t)− f(t− h)

h
+
O(h2)

h
=
f(t)− f(t− h)

h
+O(h) (1.11)

If we make Ts = h and take into account Eq. (1.9) we would have

f ′(t) =
f [n]− f [n− 1]

Ts
+O(Ts) (1.12)
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We may increase the accuracy of this approximation by choosing more elements
in the Taylor expansion and more sample points. For instance:

f(t− h) = f(t) + f ′(t)(−h) + f ′′(t)
2 (−h)2 +O(h3)

f(t− 2h) = f(t) + f ′(t)(−2h) + f ′′(t)
2 (−2h)2 +O(h3)

(1.13)

Let us now multiply the �rst equation by a1 and the second by a2

a1f(t− h) = a1f(t) + a1f
′(t)(−h) + a1

f ′′(t)
2 (−h)2 + a1O(h3)

a2f(t− 2h) = a2f(t) + a2f
′(t)(−2h) + a2

f ′′(t)
2 (−2h)2 + a2O(h3)

(1.14)

and now let us sum both equations

a1f(t− h) + a2f(t− 2h) = (a1 + a2)f(t)− h(a1 + 2a2)f ′(t) + h2

2 (a1 + 4a2)f ′′(t) +O(h3)
(1.15)

We may set the coe�cient going with f ′(t) to 1 and the one going with f ′′(t)
to 0

a1 + 2a2 = 1
a1 + 4a2 = 0

(1.16)

whose solution is a1 = 2 and a2 = − 1
2 . the we have

2f(t− h)− 1
2f(t− 2h) = 3

2f(t)− hf ′(t) +O(h3)⇒
f ′(t) = 3f(t)−4f(t−h)+f(t−2h)

2h +O(h2)
(1.17)

As we did before, a more accurate approximation is obtained by the discretiza-
tion

f ′(t) =
3f [n]− 4f [n− 1] + f [n− 2]

Ts
+O(T 2

s ) (1.18)

The di�erential equation Eq. (1.2) becomes

3C[n]− 4C[n− 1] + C[n− 2]

Ts
=
KaFDpo

V
e−KanTs −KC[n] (1.19)

At this point we may solve for C[n]

C[n] =
1

3 +KTs

(
4C[n− 1]− C[n− 2] + Ts

KaFDpo

V
e−KanTs

)
(1.20)

This recursion is valid for n ≥ 0 since we are assuming that the extravascular
dose is given at t = 0. Consequently, C(t) = 0 for t < 0, which is referred to as
the rest condition. Consequently, C[n] = 0 for n < 0. The rest condition allows
us to calculate C[0] using C[−1] = C[−2] = 0.

At Eq. (1.19) we inadvertedly have already taken a decision that results in
what is called an implicit formula. It is implicit because to have a recursion
formula we have needed to solve for C[n] in Eq. (1.19). In this case, it was
relatively easy, but it might be rather di�cult in certain nonlinear cases. Explicit
and implicit schemes come after the following reasoning. Many of the equations
we deal with in pharmacokinetics and pharmacodynamics can be written in the
form

y′(t) = F (t, y(t)) (1.21)
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For the moment, let us consider the �rst order, backward approximation of the
derivative y′(t) ≈ y(t)−y(t−h)

h . If we discretize the di�erential equation as

y(t)− y(t− h)

h
= F (t, y(t))⇒ y(t) = y(t− h) + hF (t, y(t)) (1.22)

To have a recursion formula we need to solve for y(t) in the equation above. This
may not be an easy task if F is a non-linear function in y. Let us now consider
the �rst order, forward approximation of the derivative y′(t) ≈ y(t+h)−y(t)

h . The
discretized di�erential equation becomes

y(t+ h)− y(t)

h
= F (t, y(t))⇒ y(t+ h) = y(t) + hF (t, y(t)) (1.23)

The recursion is now much more straightforward.
We may get an explicit discretization of the di�erential equation at Eq.

(1.2) using the centered second order �rst derivative approximation y′(t) =
y(t+h)−y(t−h)

2h +O(h2). In this particular case, we would have

C[n+ 1]− C[n− 1]

2Ts
=
KaFDpo

V
e−KanTs −KC[n] (1.24)

which gives the recursion

C[n+ 1] = C[n− 1] + 2Ts
KaFDpo

V
e−KanTs − 2KTsC[n] (1.25)

If we change n by n− 1 in the equation above we get

C[n] = C[n− 2] + 2Ts
KaFDpo

V
e−Ka(n−1)Ts − 2KTsC[n− 1] (1.26)

Compare Eqs. (1.20) and (1.26). They are supposed to give di�erent approxim-
ations to the same di�erential equation. However, they have di�erent numerical
properties. Implicit methods are, maybe, much more stable than explicit meth-
ods (if this is the case, the di�erential equation is said to be sti� ). The theory
of stability of di�erential equations is well beyond the scope of this thesis. It
su�ces to know that explicit methods can be made more stable by choosing a
sampling rate, Ts, su�ciently small. In this thesis, we promote the use of im-
plicit methods. Additionally, since the computational burden is relatively low,
we can a�ord to have very small sampling rates, Ts in the order of 1 minute, as
compared to the rate at which physiological variables are supposed to change.



Chapter 2

Objectives

The objective of this thesis is to set the problems encountered in biopharmacy,
pharmakokinetics and pharmacodynamics in a discrete system scenario. In this
setting, all estimation problems reduce to a single system identi�cation prob-
lem. This problem is the same for any kind of system and can be used in
conjunction with non-parametric statistical procedures to estimate the variance
and covariance of the system parameters, the evaluation of its goodness of �t,
and the comparison among competing systems. This approach is also valid to
solve problems with time varying parameters as well as population parameters.
The developed framework must be general enough to deal with arbitrary dosing
regimens as well as for the design of the posology itself. Also, the framework
must deal simultaneously with extravascular and intravascular doses and with
any kind of drug concentration measurement (drug concentration at plasma,
urine, tissue, ...) including alternative measurements at di�erent time points.

Being so general, the framework should lend itself to relatively simple com-
puter implementations that allows the practitioner to concentrate on the model-
ling problem disregarding most �house-keeping� functions that should be provided
by the generic framework.

9
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Chapter 3

Materials and methods

3.1 Materials

The material required for this thesis is a computer and any programming lan-
guage. For simplicity, we will make use of MATLAB (http://www.mathworks.
com/products/matlab) for the design of the Graphical User Interfaces (GUIs)
and for the availability of its Global Optimization Toolbox (http://www.mathworks.
com/products/global-optimization) and Optimization Toolbox (http://www.
mathworks.com/products/optimization). Heavy calculations associated to
the model will be performed in C++ and compiled with any compiler (in Win-
dows we have compiled with Microsoft Visual C++ and in Linux with the GNU
gcc compiler). The C++ routines are bound to Matlab through the use of MEX
�les.

3.2 Methods

The discretization proposed in this thesis along with the system simulation and
system identi�cation approach proposed can be considered as the single method
of the thesis. As a rude approximation we may describe the method as:

1. Step 1: Write the di�erential equations describing the dynamics of the
system being analyzed including the doses as an external excitation of the
continuous system. In general, the set will describe a non-linear, non-
homogeneous, multiple-input, multiple-output, continuous system.

2. Step 2: Discretize the di�erential equation by a set of di�erence equations.
In general, the set will describe a non-linear, non-homogeneous, multiple-
input, multiple-output, discrete system.

3. Step 3: Identify the system parameters by minimizing with respect to
the system parameters the likelihood of the observed concentrations (the
system output) given knowledge about the system input (doses). This
system identi�cation step is independent of the type of system and can be
employed to estimate the variance and covariance of the system parameters
as well as empirical distributions of these parameters in a given population
of individuals.

11

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/global-optimization
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http://www.mathworks.com/products/optimization
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Once the system is identi�ed (estimates for its parameters are given), the system
can be simulated in order to distinguish among di�erent models or to design a
speci�c posology.

An important consequence of this method is that the three �elds (biophar-
maceutics, pharmacokinetics, and pharmacodynamics) collapse into a single dis-
cipline and most models normally studied in the literature become variations of
a single theme. The modelling process becomes a highly modular task in which
all our biological knowledge or assumptions go into Step 1. Step 2 is normally
largely disregarded in the standard pharmaceutical approach which prefers the
closed-form solution of the model at Step 1. However, this second approach
severely limits the complexity of the systems to analyze as well as the dose
regimens utilized. These are not limitations any longer in the approach defen-
ded in the thesis. Finally, Step 3 �nds the parameters of the model by �nding
a suitable optimization approach that maximizes some goal function normally
derived under �xed statistical assumptions on the measurement errors (another
aspect that is normally omitted in the standard pharmaceutical literature). In
this thesis we prefer a global+local optimizer approach, while in the standard
pharmaceutical literature it is preferred a local approach with ad hoc initial val-
ues for the parameters. Although equivalent, again this second approach limits
its applicability to relatively simple cases.

Being in summary relatively simple, most of the thesis is devoted to slowly
present this methodology and to show how to incorporate di�erent physiological,
biochemical and biophysical e�ects by the selection of the appropriate di�eren-
tial equation. We may consider the di�erent thesis sections as the building
blocks that have to be combined in order to construct a complex PKPD model.
In many cases, especially at the beginning, while the discretization methodology
is not well-established yet, we show how to discretize the di�erential equations.
As the text progresses, we assume that the discretization methodology is already
known and many times we omit this step. In the Results section, we show sev-
eral examples in which this methodology is applied. Particularly interesting is
a complete example in which building blocks from biopharmaceutics, pharma-
cokinetics and pharmacodynamics are combined in a single model. However,
the defended methodology does not need to model the whole system, it may
be used only to model a particular part of the system (biopharmaceutics or
pharmacokinetics or pharmacodynamics, or any combination of them).

3.3 Linear compartmental pharmacokinetics

3.3.1 One-compartment intravenous bolus

Maybe, this is the simplest model we can address. The drug is administered
directly into the blood stream at time t = 0, it is assumed to immediately
distribute in the whole distribution volume and its disappearance is related to
the elimination by some (unspeci�ed) mechanisms. The model is fully explained
in (Gabrielsson and Weiner, 2007)[Section 2.2].

Drug concentration at time 0 can be calculated as the ratio between the
intravenous bolus and the distribution volume

C(0) =
Doseiv
V

(3.1)
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This initial concentration decays over time as the drug is cleared. The clearance
model is assumed to follow a �rst order di�erential equation that states that
the variation of the amount of drug in the body (Ab(t)) over time decreases
since a small volume of blood (denoted as Cl, Clearance) is totally cleared.
Note that the amount of drug in this small volume is ClC(t) where C(t) is the
concentration at a given time point:

dAb(t)

dt
= −ClC(t) (3.2)

Since the concentration in the body is the total amount of drug in the body
over the distribution volume, we have

dC(t)

dt
=

1

V

dAb(t)

dt
= −Cl

V
C(t) (3.3)

Reorganizing the terms we have

dC(t)

C(t)
= −Cl

V
dt (3.4)

So the clearance have dimensions of [Volume/time] (normally mL/min or L/min).

The solution of this di�erential equation is (see Fig. 3.1)

C(t) = C(0)e−
Cl
V t =

Doseiv
V

e−
Cl
V t (3.5)

The ratio Cl
V is called the elimination rate constant (Ke) and has dimensions

[1/time]. Note that the model is fully described by the distribution volume V
and the clearance Cl. Note also that this concentration pro�le only makes sense
for t ≥ 0; otherwise, the drug concentration before giving the dose must be 0.
We may write this mathematically using the so-called step function, u(t). It is
de�ned as

u(t) =

{
0 t < 0
1 t ≥ 1

(3.6)

In this way, the concentration over time is

C(t) =
Doseiv
V

e−
Cl
V tu(t) (3.7)

From these parameters, we may derive some other interesting parameters.
For instance, the drug half-time is the time it takes to reduce concentration
by 1/2.

C(t 1
2
) = C(0)

2 = C(0)e
−ClV t 1

2

1
2 = e

−ClV t 1
2

− log 2 = −ClV t 1
2

t 1
2

= log 2 V
Cl = 0.693 V

Cl

(3.8)

The Mean Residence Time tries to estimate the mean time that a given
molecule stays in the body (Rosenbaum, 2011)[Section 10.2]. For a �rst order
elimination model, the amount of drug eliminated in a di�erential period of time
is (see Eq. (3.2))

dAe(t) = −dAb(t) = ClC(t)dt (3.9)
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Figure 3.1: Typical response of the concentration over time for a single intra-
venous bolus applied at time t = 0.

This amount of drug has been in the body a time t (this is its residence time).
The mean residence time can be calculated as the average over all molecules as

MRT =

∞∫
0

t(ClC(t)dt)

∞∫
0

ClC(t)dt

=

∞∫
0

tC(t)dt

∞∫
0

C(t)dt

=
AUMC∞0
AUC∞0

(3.10)

where AUC∞0 and AUMC∞0 are referred to as the Area-Under-the-Curve and
Area-Under-the-�rst-Moment-Curve, respectively.

In this case

AUC∞0 =
∞∫
0

C(t)dt =
∞∫
0

C(0)e−Ketdt = C(0)
Ke

AUMC∞0 =
∞∫
0

tC(t)dt =
∞∫
0

tC(0)e−Ketdt = C(0)
K2
e

(3.11)

The Mean-Residence-Time is calculated as

MRT =
AUMC∞0
AUC∞0

= 1
Ke

(3.12)

Classical estimation of parameters

In a real application, we need to estimate the model parameters. As we have
seen in the previous section, the model is fully determined by the volume of
distribution V and the clearance Cl. However, we may also estimate many
other secondary parameters that are derived from this two (AUC0∞, MRT ,
t 1

2
, ...)
In this model, the data available to estimate the parameters is normally the

amount of drug in the injected bolus (Doseiv) and di�erent measures of the
drug concentration along a number of time points. For instance, after injecting
10 mg of a given substance in the blood stream, its concentration over time
drops as shown in the table below:
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Figure 3.2: Logarithm of the concentration over time for a single intravenous
bolus applied at time t = 0.

Time (min) Concentration (µg/L)
10 920
20 800
30 750
40 630
50 610
60 530
70 520
90 380
110 350
150 200

At this point, the traditional pharmacological approach provides all kinds of
di�erent formulas to estimate the di�erent parameters as a function of the data
available. We have to admit that in the case of a single intravenous injection,
this may be an easy approach due to the simplicity of the concentration response.
However, this is not the general case and pharmacological applications currently
addresses more complex situations in which non-linear di�erential equations are
involved. At this point, it is illustrative to show how the traditional approach
proceeds.

It is normally exploited the fact that the logarithm of the concentration (Eq.
(3.5)) follows a straight line (see Fig. 3.2)

logC(t) = logC(0)− Cl

V
t = logC(0)−Ket (3.13)

The elimination rate Ke can be easily identi�ed as the slope of the line.
Let t0 and tF the �rst and last time points for which we have experimental
measurements. In this particular example, t0 = 10 and tF = 150

Ke = − log(C(tF ))− log(C(t0))

tF − t0
= − log(200)− log(920)

150− 10
= 0.0109min−1

(3.14)
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C(0) can be calculated as the intercept of the straight line with the vertical
axis in the logarithmic plot (see Fig. 3.2):

log(C(t0)) = log(C(0))−Ket0 ⇒
log(C(0)) = log(C(t0)) +Ket0

= log(920) + 0.011 · 10⇒ C(0) = 1.03 · 103
(3.15)

These estimates are normally re�ned using a least-squares �tting, normally
through a local minimization starting from these values as starting point. In
this case, these two values are re�ned to:

Ke = 0.0104min−1

C(0) = 1.011 · 103µg/L
(3.16)

We may recover the V and Cl parameters through the de�nition of Ke and
C(0):

C(0) = Doseiv
V ⇒ V = Doseiv

C(0) = 10·103

1.011·103 = 9.889L

Ke = Cl
V ⇒ Cl = KeV = 0.104 · 9.889 = 0.1033L/min

(3.17)

Finally, we can calculate parameters like the drug half-time, the MRT and
the AUC∞0 :

t 1
2

= log 2
Ke

= 66.39min
MRT = 1

Ke
= 95.78min

AUC∞0 = C(0)
Ke

= 1.011·103

0.0104 = 96.85mg· min / L
(3.18)

It has to be noted that the formulas shown in this section strictly applies
to the case of the application of one intravenous bolus, and cannot be extra-
polated to any other situation. In fact, traditional pharmacokinetics books now
enter into a wide profusion of formulas to handle di�erent cases. Instead, in this
thesis we promote the adoption of a holistic approach to pharmacokinetics and
pharmacodynamics through the use of the systems theory used in engineering.
This theory uni�es all kinds of compartimental and non-compartimental models
by considering the di�erent concentrations as output signals of a given system.
From an engineering point of view a system is any device that transforms one
or several input signals into one or several output signals. Mathematically, they
are often described as di�erential equations that are discretized so that they can
be implemented in a computer by a di�erence equation. From a pharmacokin-
etics point of view, a system is a tool that transforms the input to the system
(the administered dose, orally, intravenously or through any other means) into
di�erent outputs (drug concentrations at di�erent organs or locations). In the
following section we brie�y introduce systems and set the context in which they
can be used to solve pharmacokinetics problems.

3.3.2 A signal processing approach to pharmakokinetics

Signals, ...

The concentration of a drug in the blood stream over time is a signal, the amount
of cleared drug over time is a signal, the di�erent administered drug doses are
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Figure 3.3: Dirac's delta is often regarded as the limit of the function d∆(t)
when ∆ goes to 0.

signals, ... In fact, a signal is any function that goes from a domain onto another
domain:

s : U → V (3.19)

Of special interest in pharmacokinetics are those functions that express the
variation of a physical quantity over time:

s : R → R
t → s(t)

(3.20)

for instance, the concentration of a drug in plasma C(t). From a signal pro-
cessing point of view, these signals are called continuous signals because the
time domain varies in a continuous way (t can take any value). This implies
that systems (see below) are normally described as di�erential equations, in
which the concentration is the unknown.

Signals found as the solution of these di�erential equations need not be con-
tinuous (for instance, the concentration pro�le in Fig. 3.1 is not continuous).
Instead, they are normally found in a Sobolev space (Leoni, 2009), which in-
formally can be de�ned as a vector space of functions equipped with a norm
that combines the Lp-norm of the function itself and its derivatives up to a
given order. The functions in this space have su�cient derivatives to solve the
di�erential equation.

Particularly important in the context of pharmacokinetics is the Dirac's delta
(δ(t)). This delta is not a function but a distribution (a generalized function),
although it can be manipulated as if it were a function. Although incorrect, it
is customary to think of it as the limit of the pulse function below when ∆ goes
to 0 (see Fig. 3.3):

d∆(t) =

{
1
∆ 0 ≤ t ≤ ∆
0 otherwise

(3.21)
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Figure 3.4: Dirac's delta shifted to the time point t0

Two important properties of this generalized function are

∞∫
−∞

δ(τ)dτ = 1

∞∫
−∞

x(τ)δ(τ)dτ = x(t)
(3.22)

This is one of the reasons why Dirac's delta is not a function. A function that is
zero everywhere except at a single point should have a zero integral, but Dirac's
delta has integral 1.

Dirac's delta is often represented with an arrow at the location it occurs.
For instance, we may shift its location by simply changing its argument δ(t− t0)
(see Fig. 3.4)

The delta function is important because bolus can be described as delta
functions whose amplitude is the size of the bolus and that they are shifted to
the time instant at which the bolus is administered. Similarly, repeated doses
can be represented as a collection of delta functions, each one of the amplitude
corresponding to the bolus size. These bolus deltas will be input to the system
that will translate them into di�erent concentration pro�les. For instance, Fig.
3.5 shows a fancy dosing plan. A signal processing approach has no problem
in dealing with this kind of dosing plans. However, it would be impossible to
derive a single equation as was performed in Section 3.3.1.

..., systems, ...

A system is any physical set that transforms one or several input signals into one
or several output signals. For continuous signals, they are normally speci�ed
by a di�erential equation. In the case of pharmacokinetics, the system is the
patient's body that transforms the drug intake (a signal as we saw in the previous
section) into a drug concentration at the di�erent tissues and blood stream (see
Fig. 3.6).
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Figure 3.5: Dose plan in which 10 mg of a substance was administered at time
t = 0; 8 hours later, 5 mg; and 8 hours laters, 2 mg. Between the �rst and
second doses, the patient was administered 0.5 mg every hour.

Figure 3.6: A patient can be regarded as a system that transform the signal
corresponding to the drug doses into a plasma concentration of that drug.
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For instance, the system represented in Eq. (3.4) can be modelled as

dC(t)

dt
= −Cl

V
C(t) +

doseiv(t)

V
(3.23)

We see that Eq. (3.4) and Eq. (3.23) are rather similar. The di�erence is that
the latter includes an input signal (the drug dose over time). In fact, a single
dose at time 0 can be modelled as

doseiv(t) = Doseivδ(t) (3.24)

Then, the output of the system is

C(t) =
Doseiv
V

e−
Cl
V tu(t) (3.25)

Exactly, the same concentration pro�le as in Eq. (3.5). The advantage of the
model in Eq. (3.23) is that it can admit any kind of dose plan, not only a single
bolus at time 0. The concentration pro�le is no longer computed analytically
with closed forms as in Eq. (3.5) but numerically with the help of a computer.

To be able to use a computer program to solve the problem, we need to
discretize the problem and go from a continuous signal (with values for any
possible value of t) to a discrete approximation to this signal. This is normally
done by sampling the input signal every Ts minutes. If the sampling period
is small enough and all the signals in the system are bandlimited, Nyquist
theorem (Oppenheim and Schafer, 2010)[Chapter 4] guarantees that the original
continuous signal can be recovered exactly. For any continuous signal, xc(t), its
sampled discrete version is de�ned as

x[n] = xc(nTs) (3.26)

Continuous systems can be approximated by discrete systems (they trans-
form input discrete signals into discrete output signals). For instance, the system
of Eq. (3.23) can be easily approximated as

C[n]− C[n− 1]

Ts
= −Cl

V
C[n− 1] +

doseiv[n]

V
(3.27)

Note that Cl
V C(t) has been approximated by Cl

V C[n− 1] because its meaning is
the concentration decrease due to the drug clearing. Obviously, the drug cleared
is a function of the previous concentration, and not of the current concentration.
Interestingly, we see that the derivative in Eq. (3.23) is approximated by a �rst
di�erence

dC(t)

dt
= lim

∆t→0

C(t)− C(t−∆t)

∆t
≈ C[n]− C[n− 1]

Ts
(3.28)

Reorganizing the terms in Eq. (3.27) we arrive at

C[n] = (1−KeTs)C[n− 1] +
doseiv[n]

V
Ts (3.29)

where we have used the fact that Ke = Cl
V . In this way, we have de�ned

a recursive equation that we may use to calculate the current concentration
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based on the knowledge of the previous concentration. Obviously, before the
application of the bolus, the concentration is 0 (that is, C[n] = 0 for n < 0).

If we use this formula to reproduce Fig. 3.2, the error is in the order of
0.1% of the true values when Ts = 1min. We may achieve more accurate res-
ults by employing numerical techniques to solve di�erential equations. Given a
di�erential equation of the form

dC(t)

dt
= f(t, C(t)) (3.30)

Runge-Kutta's explicit method of order 4 states that we may follow the recursion
(Chapra and Canale, 2010)[Chapter 25]

C[n] = C[n− 1] +
1

6
(k1 + 2k2 + 2k3 + k4) (3.31)

with
k1 = Tsf((n− 1)Ts, C[n− 1])

k2 = Tsf((n− 1)Ts + Ts
2 , C[n− 1] + k1

2 )

k3 = Tsf((n− 1)Ts + Ts
2 , C[n− 1] + k2

2 )
k4 = Tsf((n− 1)Ts + Ts, C[n− 1] + k3)

(3.32)

In our case,
f(t, C(t)) = −KeC(t) (3.33)

this gives

k1 = −KeC[n− 1]Ts
k2 = −

(
Ke − Ts

2 K
2
e

)
C[n− 1]Ts

k3 = −
(
Ke − Ts

2 K
2
e +

T 2
s

4 K
3
e

)
C[n− 1]Ts

k4 = −
(
Ke − TsK2

e +
T 2
s

2 K
3
e − T 3

s

4 K
4
e

)
C[n− 1]Ts

(3.34)

Combining all together, we have the recursion (compare to Eq. (3.29))

C[n] =

(
1−KeTs +

1

2
K2
eT

2
s −

1

6
K3
eT

3
s +

1

24
K4
eT

4
s

)
C[n− 1] +

doseiv[n]

V
Ts

(3.35)
This time the numerical error is in the order of 10−9%.

Unfortunately, explicit Runge-Kutta recursions are not A-stable (Butcher,
2008)[Chapter 35]. Implicit Runge-Kutta recursions are much better behaved
in this regard. The implicit equivalent of Eq. (3.31) for order 4 is

C[n] = C[n− 1] + b1k1 + b2k2 (3.36)

with
k1 = Tsf((n− 1)Ts + c1Ts, C[n− 1] + a11k1 + a12k2)
k2 = Tsf((n− 1)Ts + c2Ts, C[n− 1] + a21k1 + a22k2)

(3.37)

and 


c1 a11 a12

c2 a21 a22

b1 b2


 =




1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2


 (3.38)



22 3.3. LINEAR COMPARTMENTAL PHARMACOKINETICS

This latter table is called the Butcher tableau of the Gauss-Legendre method
(Butcher, 2008)[Chapter 34].

In this case in which the function f is given in Eq. (3.33), we have to solve
the following equation system for k1 and k2:

k1 = −KeTs(C[n− 1] + a11k1 + a12k2)
k2 = −KeTs(C[n− 1] + a21k1 + a22k2)

(3.39)

The solution is

k1 = − 1+KeTs(a22−a12)
1+KeTs(a11+a22)+K2

eT
2
s (a11a22−a12a21)KeTsC[n− 1]

k2 = − 1+KeTs(a11−a21)
1+KeTs(a11+a22)+K2

eT
2
s (a11a22−a12a21)KeTsC[n− 1]

(3.40)

Let us de�ne

k′1 = 1+KeTs(a22−a12)
1+KeTs(a11+a22)+K2

eT
2
s (a11a22−a12a21)

k′2 = 1+KeTs(a11−a21)
1+KeTs(a11+a22)+K2

eT
2
s (a11a22−a12a21)

(3.41)

Then, the recursion becomes

C[n] =

(
1−KeTs

k′1 + k′2
2

)
C[n− 1] +

doseiv[n]

V
Ts (3.42)

The error drops down by a factor of magnitude, 10−10% and the recursion is
guaranteed to be A-stable (Butcher, 2008)[Chapter 34].

In any case, the system is a �rst order system with slightly di�erent coe�-
cients for the recursion. If we call a1 the coe�cient multiplying the term C[n−1],
we have
a1 = 0.989600000000000 for Eq. (3.29)
a1 = 0.989654080000000 for Eq. (3.35)
a1 = 0.989653893009263 for Eq. (3.42)

However, in all cases the model is of the form:

C[n] = a1C[n− 1] + b0doseiv[n] (3.43)

Additionally, we may introduce a lag to account for the delay between the dose
application and the arrival to blood. In the case of an intravenous bolus, this
delay is negligible. Notwithstanding, the more general model is

C[n] = a1C[n− 1] + b0doseiv[n− nlag] (3.44)

Note that this model is a generalization of the intravenous constant rate
infusion, which in traditional pharmacokinetics is treated as a separate case
with its own equations for the evolution of the concentration in blood over time
and its own methodology to estimate parameters. In our case, the constant rate
infusion is simply achieved by setting

doseiv[n] = RinTsu[n] (3.45)

where Rin is the infusion rate in mg/min.
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..., and noise

There can be a few sources of noise or imperfections in our system modelling:

• Noise related to the prescription: If the drug prescription is �take 10 mg

every 8 hours� the patient will hardly take the dose with an exact interval
of 8 hours. Most likely, there will be a time deviation of plus/minus 30
minutes, for example. In general, we may model this noise as a random
number uniformly distributed with a maximum value ∆Tmax. Therefore

∆tintake ∼ U(−∆Ti,max,∆Ti,max) (3.46)

Similarly, the dose is hardly made exactly of 10 mg of the compound.
Instead, it will have a slightly di�erent amount that can be modelled as
percentage deviation that is uniformly distributed between −Amax% and
Amax%. In this way, the real amount is actually:

Doseactual = Doseideal(1 +
∆A

100
) (3.47)

where
∆A ∼ U(−∆Amax,∆Amax) (3.48)

• Noise related to measurements: In the same way, blood or urine samples
will hardly be taken at the speci�ed time. If the nurse is instructed to take
a blood sample every 30 minutes, it is likely that there is a small deviation
of 1 or 2 minutes, while the annotated time is still 30 minutes. We can
similarly model this noise in time as a normally distributed variable whose
standard deviation is σt:

∆tm ∼ N(0, σ2
t ) (3.49)

Finally, all physical measurements have an associated uncertainty that is
normally modelled as a Gaussianly distributed random variable with zero
mean and standard deviation σm. The units of σm are the same as the
ones for the measurement. In this case, we will consider it to be [mg/L]
or ppm (parts per million).

εm ∼ N(0, σ2
m) (3.50)

This noise is said to be additive because the observed concentration is
presumed to be the true concentration plus some measurement error:

Cobs = Ctrue + εm (3.51)

This is normally the most accepted noise and it is the model used in
Least Squares (or, what is the same, Ordinary Least Squares; see next
section). However, there are analytical techniques whose error is within
a percentage of the drug concentration. That means that there is more
measurement noise when the concentration we are trying to estimate is
larger. A correct model for this measurement process would be

Cobs = Ctrue(1 + εm) (3.52)
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where εm is a normally distributed error. In this case, the noise model
is said to be multiplicative. To deal with this measurement process, we
should use Weighted Least Squares (see next section). Instead of assuming
that εm is normally distributed, we could assume that the distribution of
1 + εm is log-normal. That implies that if we take the logarithm

logCobs = logCtrue + log(1 + εm) (3.53)

we are back to the additive case (and consequently to the Ordinary Least
Squares).

System identi�cation

Related to the measurement noise model is system identi�cation. The goal of
this problem is to identify the parameters that de�ne the system. In the previous
example the clearance, Cl, and the distribution volume, V . Since we do not have
regular samples of the concentration, but irregularly distributed samples, the
problem is similar to that of curve �tting. Let us, at this point, reformulate
the problem in order to have a comprenhensive overview. Given a dose regimen
(input signal to the system) and the system parameters, that in general we will
refer to them as Θ, the system responds with a measurable concentration CΘ(t)
where we have used Θ as subscript to emphasize the dependence of C(t) with
the system parameters. Let us presume that the true underlying measurement
is given by the pair (tui , CΘ(tui )), that we will refer to as Xu

i . However, the
actual observation corresponds to a perturbed version of this truly underlying
measurement

Xi = Xu
i + εi (3.54)

System identi�cation using Maximum Likelihood tries to identify the system
parameters that maximize the likelihood of observing the ensemble of measure-
ments (presume we have N of such measurements). If these observations are
statistically independent, then the identi�cation problem becomes

Θ̂ = max
Θ

N∏

i=1

f(Xi|Θ) (3.55)

Since the logarithm is a monotonic function, optimizing a function or its log-
arithm does not change the location of the optimum. However, in this case,
the log-likelihood is normally optimized because it simpli�es the mathematical
expressions

Θ̂ = max
Θ

log

(
N∏

i=1

f(Xi|Θ)

)
= max

Θ

N∑

i=1

log(f(Xi|Θ)) (3.56)

The likelihood of observing a given vector Xi depends on its distance to the
actual measurement Xu

i (see Fig. 3.7)

εi = Xi −Xu
i (3.57)

and its probability density function fε(ε). However, the ideal measurement is
not accessible, and we have to evaluate all possibilities

f(Xi|Θ) =

∞∫

−∞

fε(Xi −Xu
i )dXu

i (3.58)
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Note that because the possible Xu
i points lie in a curve, the previous integral is

a line integral and can be expressed as an integral on a single parameter

f(Xi|Θ) =

∞∫

−∞

fε((ti, Ci)− (tui , CΘ(tui )))dtui (3.59)
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Figure 3.7: Example of concentration pro�le. The true measurement should
have been Xu

i . However, the observed value was Xi

Depending on the distribution we presume for the errors, we have di�erent
optimization problems:

• Least squares (LS): If we presume that there is no error in the time vari-
able and the measurement error is normally distributed, the statistical
distribution of the error is de�ned by the following probability density
function,

fε(εt, εm) = δ(εt)
1√

2πσ2
m

e
− ε2m

2σ2
m (3.60)

and the likelihood in Eq. (3.59) becomes (see Dirac's delta properties in
Eq. (3.22)):

f(Xi|Θ) =
∞∫
−∞

δ(ti − tui ) 1√
2πσ2

m

e
− (Ci−CΘ(tui ))2

2σ2
m dtui

= 1√
2πσ2

m

e
− (Ci−CΘ(ti))

2

2σ2
m

(3.61)
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Its logarithm is

log f(Xi|Θ) = −1

2
log(2πσ2

m)− (Ci − CΘ(ti))
2

2σ2
m

(3.62)

The optimization problem in Eq. (3.56) becomes:

Θ̂ = max
Θ

N∑
i=1

log(f(Xi|Θ))

= max
Θ

N∑
i=1

(
− 1

2 log(2πσ2
m)− (Ci−CΘ(ti))

2

2σ2
m

)

= max
Θ

{
−N2 log(2πσ2

m)− 1
2σ2
m

N∑
i=1

(Ci − CΘ(ti))
2

}

= max
Θ

{
− 1

2σ2
m

N∑
i=1

(Ci − CΘ(ti))
2

}

= max
Θ

{
−

N∑
i=1

(Ci − CΘ(ti))
2

}

= min
Θ

{
N∑
i=1

(Ci − CΘ(ti))
2

}

(3.63)

This is the famous Least Squares (LS) criterion, that is, by far the most
widely used optimization criterion in pharmacokinetics. In the derivation
provided in this thesis we have highlighted the fact that it is the maximum
likelihood estimate when we assume no errors in the time measurements
and a gaussian error in the concentration. Least Squares can be extended
to the case in which the variance of the measurements change over time
(Banks et al., 2009).

• Total least squares (TLS): If we, now, presume a gaussian error for both
measurements (time and concentration) we have

fε(εt, εm) =
1√

2πσ2
t

e
− ε2t

2σ2
t

1√
2πσ2

m

e
− ε2m

2σ2
m =

1

2πσmσt
e
−
(

ε2t
2σ2
t

+
ε2m

2σ2
m

)

(3.64)
The likelihood of observing a given vector is

f(Xi|Θ) =
∞∫
−∞

1
2πσmσt

e
−
(

(ti−tui )2

2σ2
t

+
(Ci−CΘ(tui ))2

2σ2
m

)

dtui

= 1
2πσmσt

∞∫
−∞

e
−
(

(ti−tui )2

2σ2
t

+
(Ci−CΘ(tui ))2

2σ2
m

)

dtui

(3.65)

Its logarithm is

log f(Xi|Θ) = − log(2πσmσt) + log

∞∫

−∞

e
−
(

(ti−tui )2

2σ2
t

+
(Ci−CΘ(tui ))2

2σ2
m

)

dtui

(3.66)
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The optimization problem in Eq. (3.56) becomes:

Θ̂ = max
Θ

N∑
i=1

log(f(Xi|Θ))

= max
Θ

{
N∑
i=1

(
− log(2πσmσt) + log

∞∫
−∞

e
−
(

(ti−tui )2

2σ2
t

+
(Ci−CΘ(tui ))2

2σ2
m

)

dtui

)}

= max
Θ

{
−N log(2πσmσt) +

N∑
i=1

log
∞∫
−∞

e
−
(

(ti−tui )2

2σ2
t

+
(Ci−CΘ(tui ))2

2σ2
m

)

dtui

}

= max
Θ

{
N∑
i=1

log
∞∫
−∞

e
−
(

(ti−tui )2

2σ2
t

+
(Ci−CΘ(tui ))2

2σ2
m

)

dtui

}

= min
Θ

{
−

N∑
i=1

log
∞∫
−∞

e
−
(

(ti−tui )2

2σ2
t

+
(Ci−CΘ(tui ))2

2σ2
m

)

dtui

}

(3.67)
Note that the parameters σt and σm are part of the model parameters and
are, generally, unknown. In this way, they have to be estimated from the
data itself. To do so, we can adopt an iterative approach (in fact, it is an
Expectation-Maximization approach):

1. Start with some initial values of σ(0)
t and σ(0)

m .

2. Construct the covariance matrix Σ(0) =

(
σ

(0)
t 0

0 σ
(0)
m

)

3. Estimate the rest of parameters of Θ by the optimization in Eq.
(3.67).

4. For each experimental observation Xi = (ti, Ci) �nd the point in
the curve Xu

i = (t, CΘ(t)) that minimizes the Mahalanobis distance
(Xi −Xu

i )T (Σ(k))−1(Xi −Xu
i )

5. Reestimate the covariance matrix as Σ(k+1) =
N∑
i=1

(Xi −Xu
i )(Xi −Xu

i )T

and set the o�-diagonal terms to 0.

6. Go back to Step 3 till convergence.

• Weighted Least Squares: Let us now assume the multiplicative noise model
in which εm is normally distributed, and there is no noise in the time
measurements. This case is much more di�cult because the true values
are unknown and the observed values have a distribution given by

Ci ∼ N(Cui , (C
u
i σm)2) (3.68)

If we approximate Cui by our estimate CΘ(ti), which is our best estimate
of the unknown true concentration value, then The probability density
function of our measurements would become

f(Xi|Θ) = 1√
2π(CΘ(ti)σm)2

e
− 1

2

(
Ci−CΘ(ti)

CΘ(ti)σm

)2

(3.69)

As we already did in the case of the Least Squares, we would have

Θ̂ = max
Θ

N∑
i=1

log(f(Xi|Θ))

= max
Θ

N∑
i=1

(
− 1

2 log(2π(CΘ(ti)σm)2)− 1
2

(
Ci−CΘ(ti)
CΘ(ti)σm

)2
) (3.70)
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which does not fall under any standard regression framework. If we ap-
proximate Cui by the measurement, a noisier estimate of the unknown true
concentration, then

Θ̂ = max
Θ

N∑
i=1

(
− 1

2 log(2π(Ciσm)2)− 1
2

(
Ci−CΘ(ti)
Ciσm

)2
)

= min
Θ

{
N∑
i=1

(Ci−CΘ(ti))
2

C2
i

} (3.71)

that is a Weighted Least Squares (WLS) problem and it is the approach
already taken in (Banks et al., 2009). If we now collect all measurements
and predicted values in vectors we could write the previous objective func-
tion as

Θ̂ = min
Θ

(C−CΘ)TW−1(C−CΘ) (3.72)

where W is a diagonal matrix whose ii-th entry is C2
i . If W were a full

matrix, then this technique would be called Generalized Least Squares and
we would be explicitly accounting for correlations among di�erent samples.
There are e�cient algorithms for all these problems (Bjork, 1996).

• Bayesian regression: If we have a priori knowledge about the distribution
of the system parameters, Θ, that is, we know the probability density
function fΘ(Θ), we would simply have to substitute the a priori likelihood
at Eq. 3.55 by its a posteriori counterpart

Θ̂ = arg max
Θ

N∏

i=1

f(Xi|Θ)fΘ(Θ) (3.73)

If, as is generally the case, fΘ(Θ) is an empirical distribution represen-
ted by a sum of Gaussians or a tabulated distribution, the problem above
does not have a closed-form solution as has to be numerically solved using
any optimization algorithm. However, this software makes a simpli�cation
that we explain below (Lacarelle et al., 1994). As we have seen, maxim-
izing a function or its logarithm does not change the parameters estimate
since the logarithm is a monotonic function. Consequently, we may also
�nd the parameters by maximizing

Θ̂ = arg max
Θ

log
N∏
i=1

f(Xi|Θ)fΘ(Θ)

= arg max
Θ

N∑
i=1

log f(Xi|Θ) +
N∑
i=1

log fΘ(Θ)

(3.74)

As we did in the case of Least Squares, above, let us assume a Gaussian
distribution for the measurement noise (Eq. (3.62)) and let us assume a
multivariate Gaussian distribution as the a priori for the parameters

fΘ(Θ) = (2π)−
p
2 |Σ|− 1

2 exp
(
− 1

2 (Θ− µ)TΣ−1(Θ− µ)
)
⇒

log fΘ(Θ) = −p2 log(2π)− 1
2 log |Σ| − 1

2 (Θ− µ)TΣ−1(Θ− µ)
(3.75)

where p is the number of parameters, µ is the expected mean of the set of
parameters and Σ is its covariance matrix. Maximizing Eq. (3.74) is the
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same as minimizing

Θ̂ = arg min
Θ

N∑
i=1

(
Ci−CΘ(ti)

σm

)2

+N(Θ− µ)TΣ−1(Θ− µ) (3.76)

If the parameters are independent, then the covariance matrix is diagonal
and the minimization problem above becomes

Θ̂ = arg min
Θ

N∑
i=1

(
Ci−CΘ(ti)

σm

)2

+N
p∑
k=1

(
Θk−µk
σk

)2

(3.77)

where σm is the standard deviation of the measurement noise and σp the
standard deviation of the p-th parameter. Except for the N in front of the
second summatory, which is normally dropped in pharmacokinetics books,
this is the expression normally referred to as Bayesian estimation in the
standard pharmaceutical literature (Shargel et al., 2012)[p.601], (Gabriels-
son and Weiner, 2007)[p.772]. This is in fact the approach followed by Ab-
bott's PKS pharmacokinetics software (Lacarelle et al., 1994). However, it
is important noting that the formula spread in the pharmaceutical literat-
ure does not weight correctly the prior probability according to a Bayesian
framework, and that it has been obtained under the simpli�cation that the
parameter distribution is a multivariate Gaussian with independent para-
meters. With the current computing power, these assumptions are not
needed anymore and more realistic modelling can be used in which the
joint distribution of parameters can be explicitly considered, or at least, it
can be accurately approximated by a Gaussian mixture. The drawback of
this approach is that the landscape of solutions of the optimization prob-
lem becomes much more complex and globally convergent optimization
algorithms are needed.

To measure the impact of noise in the time measurements we performed the
following experiment. We simulated 1,000 times the process of taking concen-
tration samples from a one-compartment intravenous bolus (see Section 3.3.1)
whose true parameters are Cl = 0.1 (L/min) and V = 10 (L). We assumed
that the measurement error is σm = 0.001 (ppm or, equivalently, mg/L; see Eq.
(3.50)). We performed three sets of experiments: in one of them we assumed
that there was no time measurement noise (σt = 0 (min)); in the second one, we
assumed that σt = 0.5 (min); in the third one, we assumed that σt = 2 (min).
Note that for a Gaussian distribution the typical measurement error is between
−3σt and 3σt. In Fig. 3.8 we show the 1,000 estimates of the model parameters
in the three cases. We �rst see that the joint distribution of parameters is not
Gaussian. The marginal distributions of the clearance parameter is not Gaus-
sian. However, the hypothesis that the marginal distribution of the elimination
rate constant is Gaussian is rejected in the case of σt = 0 (p-value=0.0455) and
cannot be rejected (with a Lilliefors test of normality) in the case of σt = 0.5
and σt = 2. In any case, we see that the average parameter values are unbiased
in the three cases (with a precision between 0.02% and 0.05% of the true value),
and the increase of measurement time noise is translated into a larger variance
of the estimates (especially, for the distribution volume). However, the standard
deviation of the two parameters is still rather low (for the clearance, it grows
from 1.09% (σt = 0) to 1.33% (σt = 2); while for the distribution volume, it
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grows from 0.93% (σt = 0) to 1.86% (σt = 2)). Additionally, a Kolmogorov-
Smirnov test for the equality of the two marginal distributions could be rejected
only for the case of σt = 2 and not for σt = 0.5. We see that the e�ect of an
increase of measurement time noise does not translate, in this experiment, into
a biased estimate of the underlying model parameters but in an increase of the
estimation variance (only signi�cant for a large time measurement noise), which
is still under acceptable conditions. Consequently, we do not explore the TLS
alternative any further.

Con�dence intervals and correlation for model parameters

An important issue when identifying a system is to estimate the uncertainty
associated to each of its parameters. In this way we determine their identi�-
ability. Bootstrapping is a common resampling technique aiming at estimating
the variance associated to each of the model parameters (Efron and Tibshirani,
1993). An interesting observation from Fig. 3.8 is that the distribution of the
estimated parameters is centered with respect to the true parameters. This
allows using the Bootstrap Percentile method for the estimation of con�dence
intervals (Efron and Tibshirani, 1993). This method goes as follows:

• Given a set of N measurements (ti, Ci) from a response pro�le, we con-
struct NB bootstrap samples by resampling with replacement N samples
from the original samples. Note that since the resampling is performed
with replacement, an original sample may be repeated several times in the
bootstrap sample. This is called Monte Carlo bootstrap resampling.

• We estimate the model parameters for each of the bootstrap samples using
any system identi�cation method (see Section 3.3.2). For each bootstrap
sample, we will get a model parameters estimate, Θb, that is, we get a
total of NB model parameters estimates.

• For each model parameter, i, we construct a con�dence interval of con�d-
ence level 1− α as [Θ

(i)
(α2 ),Θ

(i)
(1−α2 )].

Additionally, we may estimate the parameter covariance matrix from the NB
model parameters estimates as

Θ = 1
NB

NB∑
b=1

Θb

CΘ = 1
NB−1

NB∑
b=1

(Θb −Θ)(Θb −Θ)T
(3.78)

and detect signi�cant associations through the Spearman's rank correlation coef-
�cient (Kendall, 1970), that is a non-parametric equivalent of Pearson's correl-
ation coe�cient for which we can also test its signi�cance (Best and Roberts,
1975).

To illustrate this approach we performed the following experiment. We gen-
erated 16 samples in 8 hours from a one-compartment model with 0.1 (L/min) as
cleareance and 10 (L) as distribution volume. We set the measurement error to
0.001 (mg/L) and assumed no time measurement error. Then, we estimated with
1,000 bootstrap resamplings the con�dence interval for each one of the model
parameters. The 95% con�dence interval for the cleareance is [0.09792,0.10244]
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Figure 3.8: Estimates of the parameters of the one-compartment intravenous
model for σm = 0.001 (mg/L) and σt = 0 (min; top), σt = 0.5 (min; middle)
and σt = 2 (min; bottom).
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Figure 3.9: Bootstrap estimates of the parameters of the one-compartment in-
travenous model for σm = 0.001 (mg/L) and σt = 0. The true underlying
parameters are a clearance of 0.1 (L/min) and a distribution volume of 10 (L).

and for the distribution volume [9.6730,10.2415]. Interestingly, there is a negat-
ive association between these two parameters as shown in Fig. 3.9. The Spear-
man's rank correlation coe�cient is -0.6361 and its p-value is in the order of
10−105 (that is the correlation is signi�cantly di�erent from 0). This means that
if the clearance parameter is incorrectly overestimated, the estimation method
will tend to underestimate the distribution volume to compensate for this er-
ror and viceversa. In Fig. 3.9 we can see how for a particular realization of a
�tting (a single dataset with only 16 measurements), the bootstrap estimation
process may be biased. However, the method is not biased if the expectation
of the process is considered (repeating in�nite times the process of taking 16
samples from the same distribution and performing a bootstrap estimate of the
con�dence intervals).

Goodness of �t

In regression, there are a number of accepted measures of goodness of �t. All
of them make use of the residuals of the �tting, that are de�ned as the di�er-
ence between the observed concentrations and the predicted concentrations. In
particular, at any time ti with observed concentration Ci and predicted concen-
tration CΘ(ti), the residual is

εi = Ci − CΘ(ti) (3.79)

Let us assume that there are N pairs of observations (ti, Ci) and p parameters
in the model (in the example of the one-compartment, p = 2, clearance and
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distribution volume). Below we list the most widely used measures of goodness
of �t:

• Residual variance: σ̂2
ε = 1

N−1

N∑
i=1

(εi − ε̄)2.

• Coe�cient of determination: R2 = 1− σ̂2
ε

σ̂2
C
, where σ̂2

C is the variance of the
concentration measurements. This represents the fraction of unexplained
variance.

• Adjusted coe�cient of determination: R2
adj = 1 − (1 − R2) N−1

N−p−1 . The
adjusted coe�cient of determination is not a measure of �t but a relative
comparison of the suitability of di�erent nested models.

• Akaike's Information Criterion: AIC = log σ̂2
ε + 2 p

N .

• Bayesian Information Criterion: BIC = log σ̂2
ε + (logN) pN .

• Final Prediction Error: FPE = N+p
N−p σ̂

2
ε , whose logarithm (a monotonic

function of the FPE) can be written as LFPE = log σ̂2
ε + log N+p

N−p .

The goal is to minimize the residual variance (or optimize the coe�cient of
determination) without over�tting the data, that is not adding too many para-
meters to the model so that we compromise the capability of the model to
generalize the underlying behaviour. In general none of them are �correct� since
every measure has been derived under some assumptions that may not hold in
real data. In practice, one should check all of them and choose a model that is
in a sensible range provided by the di�erent measures (for instance, AIC may
favour a model with 5 parameters and BIC with 3 parameters; the true model
must be somewhere between 3, 4 or 5 parameters). Generally speaking, AIC
and BIC can be regarded as equivalent to a likelihood ratio test with di�erent
signi�cance thresholds(Burnham and Anderson, 2004). AIC becomes like a sig-
ni�cance test with α = 0.16 while BIC has a decreasing α as the number of
samples increases (α = 0.13 for N = 10, α = 0.032 for N = 100, α = 0.0086 for
N = 1000). In this way, as the number of samples increases AIC tends to prefer
models with more parameters than BIC.

3.3.3 One-compartment extravascular administration

1st order absorption

Let us assume now that we administer the drug extravascularly, e.g., with an oral
tablet. The amount of drug in the gut will be absorbed into the body and the
amount of drug in the body will consequently increase. The absorption process
involves dissolving the tablet and absorbing the drug across the gastrointestinal
membranes. Additionally, part of the drug may be degraded in the intestine and
more importantly at the liver (�rst pass e�ect). This gives raise to the concept
of bioavailability, that is the fraction of drug that actually reaches the systemic
circulation. If we look at the rate at which the amount of drug disappears
from the intestine, we can write a di�erential equation, assuming a �rst order
dissapearance, as

dAg(t)

dt
= −(Ka +Kd)Ag(t) (3.80)
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where Ka is the absorption coe�cient and Kd is the degradation coe�cient.
The solution of this equation is

Ag(t) = Dpoe
−(Ka+Kd)tu(t) (3.81)

where Dpo is the amount of drug in the oral (per os) dose (assumed to be given
at time t = 0). If we now look at the rate of input of the drug into the body,
we see that (for t ≥ 0)

dAb(t)

dt
= KaAg(t) = KaDpoe

−(Ka+Kd)t (3.82)

We may rewrite the previous equation as

dAb(t)

dt
= (Ka +Kd)FDpoe

−(Ka+Kd)t (3.83)

where we have de�ned

F =
Ka

Ka +Kd
(3.84)

F is called the bioavailability and has no units. Ideally, we would like F to
be 1, that is, there is no degradation in the administration route. However, in
practice, F is normally a number between 0 and 1. With the de�nition of the
bioavailability, we may de�ne the concept of apparent absorption that integrates
both absorption and degradation into a single constant

Kapp = Ka +Kd (3.85)

and rewrite the rate of drug input into the body as

dAb(t)

dt
= KappFDpoe

−Kappt (3.86)

which is a more standard way of writing the �rst order input system. However,
we prefer its original formulation given in Eq. (3.82). Now, considering that
the amount of drug into the body can be written as Ab(t) = V C(t) where V
is the volume of distribution and C(t) the concentration. We may rewrite the
previous di�erential equation as

V
dC(t)

dt
= KaDpoe

−(Ka+Kd)t (3.87)

To be complete, we have to add the rate at which the drug dissappears from
the body, that as in the case of the intravascular administration is given by a
clearance parameter

V
dC(t)

dt
= KaDpoe

−(Ka+Kd)t − ClC(t) (3.88)

This is the di�erential equation governing the concentration of drug in the body
assuming a �rst order absorption and degradation in the administration route,
and a �rst order elimination in the body (see Fig. 3.10 for a graphical repres-
entation of the model).
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Figure 3.10: Model of extravascular administration with absorption in the gut.

The closed form solution of this equation is given in classical textbooks (see
Section 2.2.4 of Gabrielsson and Weiner (2007)) as

C(t) =
KaDpo

V (Ka +Kd)− Cl
(
e−

Cl
V t − e−(Ka+Kd)t

)
u(t) (3.89)

In this model, we assume that the absorption process starts at a single anatom-
ical compartment (in this example, the gut). However, the tablet needs some
time to reach the gut which is normally modelled through a time lag as

C(t) =
KaDpo

V (Ka +Kd)− Cl
(
e−

Cl
V (t−ttransit) − e−(Ka+Kd)(t−ttransit)

)
u(t−ttransit)

(3.90)
The identi�cation of the model parameters (V , Cl, Ka, Kd) in classical

pharmacokinetics books involves a pletorah of equations and particular cases
(for instance, distinguishing the case in which Ka + Kd >

Cl
V and the case in

which Ka + Kd <
Cl
V , this is known in the pharmacokinetics literature as the

�ip-�op e�ect). Additionally, Eq. (3.90) is only valid for a single intake at time
t = 0 and it has to be modi�ed for repeated intakes and there is no closed form
solution for repeated intakes of di�erent amounts of drugs or at irregular time
intervals. Moreover, the model assumes that drug degradation starts at the same
time as absorption, but this may not be true. For instance, degradation may
start at the stomach much earlier and with a di�erent degradation constant with
respect to the degradation constant in the gut. If we adopt a �tting approach
based on di�erential equations, as defended in this thesis, we may overcome
all these di�culties and even generalize the previous model to deal with more
general situations. This will be addressed in Section 3.3.3.

0th order absorption

Although absorption is normally a complex, relatively slow process (and that
is why it is considered to be �rst order), there are certain molecules that are
rather fast to absorb. In this case, the absorption can be considered a zero-th
order process, that is, the absorption occurs at a constant rate independently
of the amount of drug in the intestine. The equivalent to Eq. (3.82) in this case
would be

dAb(t)

dt
= Rin (3.91)

where Rin is the rate (in mg/min) at which the drug passes from the gut to the
plasma. At this rate, a dose of Dpo mg will take Tabs =

Dpo
Rin

to get into the
plasma. The classical solution of the zero-th order absorption for t > Tabs is

C(t) =
Rin
Cl

(
1− e−ClV f(t)

)
e−

Cl
V (t−f(t)) (3.92)
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Figure 3.11: Typical response of a zero-th order absorption model.

with

f(t) =

{
t 0 ≤ t < Tabs
Tabs t ≥ Tabs (3.93)

Note that Eq. (3.91) is valid only for t < Tabs, since for t > Tabs there is no
drug in the gut to pass into blood, and dAb(t)

dt = 0. Note also that this model is
exactly the same as the constant rate infusion discussed at the end of Section
3.3.2. A typical concentration pro�le of this kind of systems is shown in Fig.
3.11.

It could also be that both processes (zero-th and �rst order) coexist. In this
case, the increase of drug in plasma is said to be of mixed order and it would
be given by

dAb(t)

dt
= Rin +KaAg(t) (3.94)

In this equation we clearly see that the word �order� refers to the exponent of
the di�erent terms of Ag(t). This equation is valid until Ag(t) = 0 because all
drug in the intestine has disappeared.

Absorption from multiple sites

In the previous model, we have assumed that absorption occurs in a single organ
(in our example, intestine). However, it might well be that it occurs at multiple
sites. To illustrate how to modify the model in this case, let us assume that we
are only interested in the bucal cavity and the intestine. An easy way to model
this situation is to divide the drug amount in two fractions: the fraction of drug
that is absorbed in the bucal cavity (with absorption rate Ka1) and the fraction
of drug that is absorbed in the intestine (with absorption rate Ka2). Let's call
α the �rst fraction (with 0 ≤ α ≤ 1) and 1−α the second fraction. The increase
of drug amount in plasma due to the two mechanisms of absorption would be
for t > ttransit (Gabrielsson and Weiner, 2007)[Section 2.2.11]

dAb(t)

dt
= αKa1Dpoe

−Ka1t + (1− α)DpoKa2e
−Ka2(t−ttransit) (3.95)

However, note that this model is not so well suited to the actual situation since
it predicts that for t > ttransit (that is, once the drug has reached the intestine)
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there is still absorption in the bucal cavity (which is rather unlikely). In practice
this is not a problem because Ka1 > Ka2 (there is a quicker absorption in the
bucal cavity than in the intestine) and in practical terms the �rst term can be
assumed to be 0 when t > ttransit. Moreover, degradation in the bucal cavity
and the intestine is neglected. A more appropriate model would have been to
distinguish between amount of drug in blood (Ab(t)) and in the extravascular
organs (Aev(t)). Then, we simply need to say that the absorption rate varies over
time (�rst it is absorbed at the bucal cavity, then at the stomach, then partly
at the stomach and partly in the intestine, then completely in the intestine, and
even inside the intestine we may assign di�erent absorption rates at its di�erent
segments)

dAb(t)

dt
= Ka(t)Aev(t) (3.96)

In the model above, we have assumed a �rst order absorption (although verying
over time) and neglected degradation. In next section, we propose a generalized
model that takes into account all the e�ects described in Sections 3.3.3, 3.3.3,
and 3.3.3.

Generalized model

As already introduced above, let us distinguish between the amount of drug in
blood (Ab(t)) and the amount of drug in the extravascular organs (Aev(t)). Let
us adhere to the symbols introduced in this section. Then, the following system
of di�erential equations fully describe absorption and degradation at multiple
sites as well as mixed order absorption. Moreover, it can be used with a single
or multiple intakes (even at irregular intervals and with di�erent drug doses).

dAev(t)
dt = −Rin(t)− (Ka(t) +Kd(t))Aev(t) +Dpo(t)

V dC(t)
dt = Rin(t) +Ka(t)Aev(t)− ClC(t)

(3.97)

Obviously, the identi�cation of this model is not an easy task because we need
to determine the functions Rin(t), Ka(t) and Kd(t). These functions have con-
tributions from all the extravascular organs through which the extravascular
doses are traversing. However, these functions may be discretized as accurately
as desired. Following the idea of de�ning ttransit as the transit time from the
bucal cavity to the intestine, we may discretize these functions in two parts be-
fore and after ttransit. It is also convenient to separate the extravascular organs
in two functions (one for the bucal cavity and another one for the intestine).
Let us consider �rst the e�ect on a single intake taken at time t = 0.

• For 0 ≤ t < ttransit:

dAev1(t)
dt = −Rin1 − (Ka1 +Kd1)Aev1(t) +Dpoδ(t)

V dC(t)
dt = Rin1 +Ka1Aev1(t)− ClC(t)

(3.98)

• For t ≥ ttransit:

dAev2(t)
dt = −Rin2 − (Ka2 +Kd2)Aev2(t) +Aev1(ttransit)δ(t− ttransit)

V dC(t)
dt = Rin2 +Ka2Aev2(t)− ClC(t)

(3.99)
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The model considers a single intake of Dpo (mg) at t = 0, 1st order absorption
and degradation as well as zero-th order absorption at the �rst extravascular
organ and it is valid till t = ttransit. At this time, the remaining amount of
drug in the extravascular organ 1 is passed to the extravascular organ 2, and
the absorption and degradation continues from this organ as it was done in the
�rst organ although with di�erent constants. Note that the models in Sections
3.3.3 and 3.3.3 are particular cases of this generalized model with ttransit = 0,
and Rin2 = 0 (Section 3.3.3) or Ka2 = Kd2 = 0 (Section 3.3.3). The model in
Section 3.3.3 is superseded by this one.

Since the model above is non-linear (due to its disruptive behavior at t =
ttransit), for multiple doses, we cannot simply compute the blood concentrations
due to each of the dosis and then add the results (application of the superposition
principle). Instead, we need to track each individual dosis. For each one of them,
consider whether it contributes to the �rst or the second extravascular organ
and calculate its particular contribution to absorption and degradation in that
organ.

In this thesis, we will only fully explain the discretization of one of the
branches (since the other one is totally analogous) which for simplicity will be
rewritten as

dAev(t)
dt = −Rin − (Ka +Kd)Aev(t) +Dpo(t)

V dC(t)
dt = Rin +KaAev(t)− ClC(t)

(3.100)

To solve this equation system we will make use of an explicit Runge-Kutta's
method of order 4 (see Eq. (3.31)). We will reformulate this method for equation
systems. Let y(t) be a vector function with n components (in our case n = 2)
meeting the equation system

dy(t)

dt
= f(t,y(t)) (3.101)

Then, we may iterate as

y[n] = y[n− 1] +
1

6
(k1 + 2k2 + 2k3 + k4) (3.102)

with
k1 = Tsf((n− 1)Ts,y[n− 1])

k2 = Tsf((n− 1)Ts + Ts
2 ,y[n− 1] + k1

2 )

k3 = Tsf((n− 1)Ts + Ts
2 ,y[n− 1] + k2

2 )
k4 = Tsf((n− 1)Ts + Ts,y[n− 1] + k3)

(3.103)

In our case,

f(t,y(t)) =

(
−Rin − (Ka +Kd)Aev(t)
Rin
V + Ka

V Aev(t)− Cl
V C(t)

)
(3.104)

The �nal recursion is

Aev[n] = caaAev[n− 1]− c0aRin +Dpo[n]Ts
C[n] = cccC[n− 1] + 1

V (cacKaAev[n− 1] + c0cRin)
(3.105)
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where we have de�ned

Kapp = Ka +Kd

Ke = Cl
V

caa = 1−KappTs + 1
2K
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2
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24 (Ka(K2
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e )T 4
s
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2
s + 1
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e )T 3
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− 1
24 (Kapp(K

2
app +KappKe +K2

e ) +K3
e )T 4

s

(3.106)

Fig. 3.12 shows the blood concentration over time for a number of systems
with varying absorption, clearance and constant infusion parameters. All ex-
periments were performed for a single dose at time t = 0 of 1 mg, a distribution
volume V = 10 (L) and a degradation constant Kd = 0.005 (min−1). For those
cases with Rin = 0 we have compared the results from this model from those of
Eq. 3.90. The mean error is in the order of 10−7%. Note that the model be-
haves as expected for the �rst order extravascular model and generalizes it as it
includes a zero-th order absorption. Additionally, the generalized model can be
easily put into the system identi�cation framework proposed in this thesis and
there is no need for closed or approximated formulas to estimate its parameters.
The framework can handle any dosing regime.

3.3.4 Multicompartment models

The one-compartment model is not appropriate for drugs with a rapid admin-
istration and when concentration measures are taken frequently. The reason is
that it takes time for the drug to distribute into tissues and reach equilibrium
(maybe due to perfusion or di�usion rate limited processes). In these cases,
a multicompartment model is better suited to the data modelling. A central
compartment represents blood and all those organs that are rapidly equilibrated
while peripheral compartments represent more slowly equilibrated organs. The
di�erent compartments may be all connected to the central compartment (mam-
millary model) or be connected in sequence (catenary model) (see Fig. 3.13).

To illustrate the methodology introduced in this thesis, let us consider one of
the most used multicompartmental models, the two compartment model. This
model considers a central compartment composed by blood and all tissues that
achieve a quick equilibrium with blood, and a peripheral compartment formed by
those tissues with a slow equilibirum with blood. Let us consider simultaneously
extravascular and intravenous administration. As done so far, we will focus on
the amount of drug that remains extravascularly and the concentration at the
di�erent compartments. Let us also assume that the central compartment has
a distribution volume Vc and the peripheral compartment Vp. The diagram in
Fig. 3.14 represents the drug �ow among the di�erent compartments. Note
that this model allows for �rst and zero-th order absorption as well as for any
arbitrary dosing regimen including oral and intravenous administration.



40 3.3. LINEAR COMPARTMENTAL PHARMACOKINETICS

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

t (min)

C
(t

) 
(m

g/
L)

 

 
K

a
=0.05, Cl=0.06, R

in
=0

K
a
=0.05, Cl=0.05, R

in
=0

K
a
=0.06, Cl=0.05, R

in
=0

K
a
=0.06, Cl=0.05, R

in
=0.002

0 20 40 60 80 100 120 140 160 180 200
−4

−3.5

−3

−2.5

t (min)

lo
g(

C
(t

))

 

 
K

a
=0.05, Cl=0.06, R

in
=0

K
a
=0.05, Cl=0.05, R

in
=0

K
a
=0.06, Cl=0.05, R

in
=0

K
a
=0.06, Cl=0.05, R

in
=0.002

Figure 3.12: Drug concentration pro�les in the blood stream for di�erent para-
meters (top) and its logarithm (bottom)
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Figure 3.13: Mamillary multicompartment model (top) and catenary multicom-
partment model (bottom).

Figure 3.14: Generalized two-compartment model
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The model can be described with the di�erential equation system

dAe(t)
dt = −(Rin + (Ka +Kd)Aev(t)) +Dpo(t)

Vc
dC(t)
dt = −(Cl + Clp)C(t) + ClpCp(t) +Rin +KaAev(t) +Div(t)

Vp
dCp(t)
dt = −ClpCp(t) + ClpC(t)

(3.107)

Note that the generalized one-compartment model in Eq. (3.100) is a par-
ticularization of this model with Clp = 0. In fact, a good starting point for Clp
is given by solving for Clp in the following equation

QVc = (Clp + Cl)Vblood (3.108)

where Q is the blood �ow into the organs contained in the peripheral compart-
ment and Vblood is the volume of blood of the individual. The equation is simply
assuming that Q ≈ Clp + Cl and Vc ≈ Vblood.

Now, following the methodology explained in Eq. (3.101) and subsequent
equations applied to the function

f(t,y(t)) =




−(Rin + (Ka +Kd)Aev(t))

−Cl+ClpVc
C(t) +

Clp
Vc
Cp(t) + Rin

Vc
+ Ka

Vc
Aev(t)

−ClpVp Cp(t) +
Clp
Vp
C(t)


 (3.109)

The resulting recursion is

Aev[n] = caaAev[n− 1]− c0aRin +Dpo[n]Ts
C[n] = cccC[n− 1] + 1

Vc
(cacKaAev[n− 1] + c0cRin) + cpcKpcCp[n− 1] + 1

Vc
Div[n]Ts

Cp[n] = ccpKppC[n− 1] + 1
Vc
Kpp (capKaAev[n− 1] + c0pRin) + cppCp[n− 1]

(3.110)
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Note that it seems counterintuitive that the recursion de�ned in Eq. (3.110)
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uses Aev[n − 1] and Rin to compute Cp[n] when in the model these two mag-
nitudes are not directly connected. However, we have to realize that this lack
of direct connection is correctly shown in the continuous model (Eq. (3.107),
but they become connected in the discrete recursion simply by the numerical
method used to solve the di�erential equation system. In fact, the coe�cients
cap and c0p do not contain �rst order terms, and consequently they would not
appear in a �rst order approximation of the derivative, as expected. It is also
remarkable the simplicity of Eq. (3.110) for a two-compartment model that
considers extravascular and intravenous administration in any dosing regimen,
�rst and zero-th order absorption, and degradation in the extravascular domain.

Additionally, this model allows the calculation of important pharmacological
parameters as the Mean Residence Time (MRT) of a molecule in the system and
the Mean Transit Time (MTT) of a molecule in the central compartment:

MRT =
Vc+Vp
Cl

MTT = Vc
Cl+Clp

(3.113)

In general, the mean time that a molecule stays in a combination of compart-
ments is the total volume associated to that combination divided by the clear-
ance of the combination. The MRT and MTT formulas above respond to this
general principle.

As an example, Fig. 3.15 shows the evolution of the extravascular amount of
drug and the concentration in the two compartments for a single intake of 1 mg of
drug in the case of oral and intravenous administration. The model parameters
are Ka = 0.0167 (1/min), Kd = 0.0033 (1/min), Cl = 0.1167 (L/min), Clp =
0.8333 (L/min), Rin = 0 (mg/min), Vc = 50 (L), Vp = 60 (L).

3.3.5 Clearance

The methodology proposed in this thesis can be extended to physiological mod-
elling. In this section, we develop the details for the physiological modelling of
clearance. Let us concentrate �rst on hepatic clearance as an example, in fact
one of the main mechanisms for drug elimination. Although the theory exposed
here is not limited to this organ. We understand as drug clearance any mech-
anism by which a drug ceases to perform its therapeutic task either because it
has been biochemically inactivated (for instance by hepatocytes in the liver) or
it has been eliminated from the body (for instance by kidneys). Actually, the
�rst mechanism has proved to be much more important than the second one for
many drugs, and both together are responsible for the elimination of 90% of the
drugs (Rosenbaum, 2011)[Section 5.1] (the other important elimination route is
through bile; minor routes involve sweat and exhalation). In general terms, one
could say that molecules whose molecular weight is below 500 Da are primarily
cleared by extracellular hydrolisis, between 500 Da and 1 kDa by carrier medi-
ated uptake into hepatocytes, between 1 and 50 kDa by glomerular �ltration,
between 50 and 200 kDa by receptor mediated endocytosis, and beyond this
weight by opsonization and phagocytosis.

Hepatic clearance

For a drug to be inactivated, it has to be biochemically accessible to an enzyme
that modi�es it producing a metabolite that is further metabolized or �nally
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Figure 3.15: Generalized two-compartment model response to 1 mg intraveously
(top) and orally (bottom).
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excreted in urine or bile. From the pharmacokinetics point of view, the drug
molecule has been eliminated. If the metabolite has some therapeutic or toxic
activity, it should be included in the pharmacokinetics study. This will be
performed in Section 3.4.5.

Enzymatic modi�cation is not possible for those drug molecules that has
been bound to plasma proteins at speci�c sites (there might be binding sites
that still leave the inactivation site accessible). In the literature, fu is de�ned as
the fraction of unbound drug molecules in plasma (or in some cases, in tissues).
We will stick to this nomenclature although fu would be better de�ned as the
fraction of drug molecules that cannot be enzymatically modi�ed because they
are bound.

Hepatic metabolism is normally classi�ed in two phases: Phase I and Phase
II (Rosenbaum, 2011)[Section 5.4]. Phase I metabolism is responsible for about
70% of hepatic clearance and it results in small chemical modi�cations, most
of the times oxidations (normally by adding hydroxil group or removing a
methyl group) although some reductions can occur. The Cytochrome P450
(CYP) enzyme system is by far the most important family of enzymes acting
at this phase. At Phase II, the drug itself or its Phase I product is conjug-
ated with a polar function such as a glucoronide, sulfate or glutathione. The
UDP-glucoronosyltransferases (UGTs) is the most important family of enzymes,
responsible for about 10% of the drugs cleared by metabolic elimination.

There are several hepatic models, mostly based on �uid dynamics and blood
�ow. In this quick summary, we will give the details for thewell-stirred model
and the results for the rest. The well-stirred model considers the liver to be an
homogeneous organ whose drug concentration is uniform. It considers the drug
concentration at its input Cin and at its output Cout, and relates both mag-
nitudes by an extraction factor EH , a number between 0 and 1 that represents
the fraction of drug concentration that is eliminated in the liver:

Cout = Cin(1− EH) (3.114)

It is said that a drug is highly cleared if EH > 0.7 and it is poorly cleared if
EH < 0.3.

Let us consider the following di�erential equation for the dynamics of the
amount of drug in the liver:

VH
dCH
dt

= QHCin −QHCout − fuClintCout (3.115)

where VH is the volume of the liver, CH is its drug concentration, QH is the
blood �ow into the liver and Clint is the intrinsic clearance, that is, the
maximal clearance capacity if the process would not be limited by blood �ow.
Note that the amount of drug eliminated is QHCin and that Cin is inversely
proportional to the distribution volume. Drugs with a large distribution volume
will also be poorly eliminated.

In steady state, there is no change of the drug concentration in liver, that
is, dCHdt = 0 and consequently

QHCin −QHCout − fuClintCout = 0⇒ Cout = Cin
QH

QH + fuClint
(3.116)
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Comparing this last equation with Eq. (3.114) we see that

1− EH =
QH

QH + fuClint
⇒ EH =

fuClint
QH + fuClint

(3.117)

The hepatic clearance is de�ned as the blood �ow into the liver times the ex-
traction factor

ClH = QHEH =
QHfuClint
QH + fuClint

(3.118)

The units of clearance are obviously the same units as for the blood �ow (e.g.,
L/min), and we see that the blood �ow into the liver is an upper bound for the
drug clearance. In fact for highly cleared drugs, the clearance process is said to
be limited by blood �ow (if blood �ow increases, clearance also increases), while
for poorly cleared drugs, clearance is limited by extraction (increases in blood
�ow do not translate into increases of clearance because the process is limited
by the biochemical reaction taking place).

Note that we may substitute this expression in any of the models presented
so far (see Eqs. (3.42), (3.105), and (3.110)). The system dynamics would
not change at all and we simply would have to add the di�erent physiological
parameters to the system parameters to be identi�ed. Note that fu and Clint
are not uniquely identi�able (assume that the true parameters are fu and Clint,
then f ′u = Kfu, as long as 0 ≤ f ′u ≤ 1, and Cl′int = 1

KClint provide the same
product, fuClint = f ′uCl

′
int). Although, less obvious the same happens with

QH and fuClint. Let's say that QH and fuClint are the true parameters that
result in a clearance ClH . It can be veri�ed that

QH =
ClHfuClint
fuClint − ClH

(3.119)

If we incorrectly estimate the product fuClint to be KfuClint, then we can
compensate and still produce a clearance ClH by �nding a di�erent Q′H

Q′H =
ClHKfuClint
KfuClint − ClH

(3.120)

For this reason it is important to provide tight constraints to the physiological
parameters, if they are known. For instance, the average blood �ow into the liver
is estimated to be about 1.45 (L/min). We may performed a constrained least-
squares minimization forcing QH to be between 1.4 and 1.5. The same would
apply for fu. fu may be estimated in vitro or in vivo by any other means and we
may perform a constrained minimization. Note that physiological parameters
may greatly change among species. For instance, the liver blood �ow of a
mouse is about 1.8·10−3 (L/min). Similarly, di�erent species may have di�erent
plasma proteins, most of them will be evolutionary analogs of each other, but
their a�nity by a given drug compound may be di�erent and this translates
into di�erent fu.

Interestingly, our identi�cation framework allows for a more accurate, prob-
abilistic approach. In the paragraph above, we simply constrained QH to be
between 1.4 and 1.5. However, let's say that we know the likelihood of QH
taking any of the values in the interval. This is given by its probability density
function fQH (qH). Similarly, let's say we know the probability density function
for fu (fFu(fu)). This is not unreasonable since we may estimate these functions
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in our experiments to estimate the mean values of those quantities. In these
circumstances we may estimate the probability density function of Clint in the
following way:

• Take regular or random samples ofQH and fu within the speci�ed interval.

Let's refer to a speci�c realization of this pair as
(
Q

(s)
H , f

(s)
u

)
.

• We know that the likelihood of observing this pair is

fQHFu

(
Q

(s)
H , f (s)

u

)
= fQH

(
Q

(s)
H

)
fFu

(
f (s)
u

)
(3.121)

• We then �t our pharmacokinetic model by setting QH and fu to �xed

values
(
Q

(s)
H , f

(s)
u

)
and get an estimate of Clint, that we will refer to as

Cl
(s)
int

• Repeat this process to obtain S tuples (Q
(s)
H , f

(s)
u , Cl

(s)
int).

At this point we may calculate the marginal distribution of Clint with a kernel
estimator

fClint(clint) =
∫ ∫

fClint(clint|qh, fu)fQHFu(qh, fu)dqhdfu

≈
S∑
s=1

Kσ

(
clint − Cl(s)int

)
fQHFu

(
Q

(s)
H , f

(s)
u

) (3.122)

where fClint(clint|qh, fu) is the conditional probability of Clint given qh and fu
and Kσ(x) is a kernel whose width is parameterized by σ with the property that
∞∫
−∞

Kσ(x)dx = 1. The reader interested in kernel estimators may read Tsybakov

(2008).
We may substitute the well-stirred liver model by more realistic models

(Gabrielsson and Weiner, 2007)[Section 2.5]. For instance, the parallel tube
model explictly accounts for the larger drug uptake of hepatocytes at the portal
venous entry of the liver than at the hepatic vein (the liver output). In this case,
the extraction factor is modelled as

EH = 1− exp

(
−fuClint

QH

)
(3.123)

The distributed model further re�nes this concept by considering the liver
to be composed of parallel small tubes. In each of them, the clearance process
takes place. Since not all the small tubes are exactly equal, there is a variance
associated to the di�erent clearing capability of the tubes modelled by a constant
ε2. In this case,

EH = 1− exp

(
−fuClint

QH
− 1

2
ε2
(
fuClint
QH

)2
)

(3.124)

Finally, the dispersion model considers the blood mixing that takes place
within the hepatic sinusoids. It is parameterized by the dispersion number DN

and the e�ciency number RN so that

a =
√

1 + 4RNDN

EH = 1− 4a
(1+a)2 exp( a−1

2DN
)−(1−a)2 exp( a+1

2DN
)

(3.125)
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Additionally, this latter model is connected to the previous ones because RN =
fuClint
QH

.
All clearance models above can be used within our system identi�cation

framework and the probabilistic methodology developed in this section, taking
into account the identi�ability considerations already discussed.

Let us now concentrate on the intrinsic clearance. This parameter is basically
determined by the di�erent metabolic routes through which the drug molecule is
metabolized. Let's assume that each enzyme that degrades our drug responds to
the Michaelis-Menten enzyme kinetics equation and that we know its maximum
metabolic rate Vmax (mg/min) and its Michaelis-Menten constant Km (mg/L).
Then, the intrinsic clearance can be calculated as

Clint =
∑ Vmax,i

Km,i + C
(3.126)

being C the drug concentration in the liver, which for the moment will be con-
sidered to be a constant (in a subsequent section on nonlinear pharmacokinetics
we will drop this assumption). As expected from its equation, Clint can also be
quite di�erent among di�erent species since analog enzymes may exhibit quite
di�erent a�nities and e�ciencies with respect to a particular molecule.

Renal clearance

Clearance of a drug can occur through multiple mechanisms. So far, we have
only considered metabolic clearance (normally performed, although not exclus-
ively, in the liver). However, renal clearance is another common route to dispose
a drug. The kidney daily �lters about 200 L of plasma and produces between
1 and 2 L of urine. Part of the drug may be excreted this way. An advant-
age of such excretion path is that we may measure the concentration in plasma
and/or urine. Obviously, having both measurements results in a more robust
identi�cation of the system. In this section we will illustrate how to model urine
data in the proposed framework by assuming that we have a one-compartment
model with intravenous administration. As we already know from Eq. (3.4),
the di�erential equation governing plasma concentration is

dC(t)

dt
= −Cl

V
C(t) (3.127)

However, clearance now has two components: one coming from metabolic clear-
ance (ClH) and another one from renal clearance (ClR):

Cl = ClH + ClR (3.128)

On the other side, the total amount of excreted drug, Ae(t), responds to the
following di�erential equation:

dAe(t)

dt
= ClRC(t) (3.129)

that states that the increase in the excreted amount of drug is proportional to
the plasma concentration.
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At this point we apply the methodology developed in Eq. (3.101) (and
subsequent equations) applied to the function

f(t,y(t)) =

(
−ClV C(t)
ClRC(t)

)
(3.130)

The recursion for the plasma concentration, C(t), is exactly the same as the one
in Eq. (3.35). For the excreted amount, Ae[n], it is

Ae[n] = Ae[n−1]+ClR

(
Ts −

1

2
KeT

2
s +

1

6
K2
eT

3
s −

1

24
K3
eT

4
s

)
C[n−1] (3.131)

The regression can now be performed simultaneously on the plasma and the
urine data. Let us assume that we have N measurements of both magnitudes
together (ti, Ci, Aei). We can estimate the model parameters that minimize the
Least-Squares error (see Eq. (3.63))

Θ̂ = min
Θ

{
N∑
i=1

(Ci − CΘ(ti))
2 + (Aei −AeΘ(ti))

2

}
(3.132)

Renal clearance can also be explained in physiological terms. For instance,
we may decompose ClR as

ClR = fuGFR+ ClTS − TR (3.133)

The �rst term models the glomerular �ltration rate (GFR) that takes place at
the glomerulus. Water and many small molecules, including drugs, are forced
to go into the renal tubule by passive di�usion caused by hydrostatic pressure.
This mechanism is not so e�ective for negatively charged molecules since the
glomerular wall is negatively charged and repels anions and for molecules whose
diameter is larger than 8 nm (in fact, between 4 nm and 8 nm the e�ciency of
this mechanism is inversely proportional to the molecule diameter). The normal
GFR for a human adult is 125 mL/min and corrections to this value can easily
be calculated through Cockcroft-Gault formula as a function of the age, gender
body weight and creatinine concentration in serum (Cockcroft and Gault, 1976).
However, this �ltration cannot occur if the molecule is bound to a plasma protein
and its e�ective diameter is larger than 8 nm, that is why we need to multiply
GFR by the fraction of unbound molecule, fu. After the glomerulus, blood
goes into the peritubular capillaries that surround the renal tubule. Further
secretion of drug molecules can occur at this site, normally mediated by active
membrane transporters. The e�ect of this second mechanism (tubular secretion)
is summarized into the parameter ClTS . Finally, as the �ltrate moves through
the proximal tubule and the loop of Henle, water is reabsorbed into blood along
with some small molecules. This e�ect is represented by the third term TR
(tubular reabsorption). The reabsorption of a drug depends on its lipophilicity
(the more lipophilic it is, the easier it is to be reabsorbed), the �ltrate pH
(non-ionized drug molecules can be reabsorbed), and �ltrate �ow through the
tubule (the higher the �ow, the less chances there are to reabsorb any molecule).
As we discussed for the physiological modelling of hepatic clearance, the terms
in Eq. (3.133) are not uniquely identi�able (we can arbitrarily modify one of
the parameters and compensate through the other two) and tight optimization
constraints are needed to successfully identify the physiological parameters.
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3.3.6 Turnover

Some therapies include the administration of proteins, peptides, or antibodies.
These are large molecules sometimes already constructed and destroyed by the
own patient (for instance, diabetes patients are administered human insulin that
adds on top of their own generated insulin, whose generation rate is rather low
and that is why they need external supplements). In these cases, clearance is not
performed only at the liver or the kidneys, but there are speci�c mechanisms
to digest these macromolecules and reuse its components. The methodology
proposed in this thesis is also compatible with this situation. We only need
to add the internal generation rate to the di�erential equation de�ning the
system. For instance, for the two-compartments model we simply need to add
the internal generation to the second equation

dAe(t)
dt = −(Rin + (Ka +Kd)Aev(t)) +Dpo(t)

Vc
dC(t)
dt = −(Cl + Clp)C(t) + ClpCp(t) +Rin +Rinternal +KaAev(t) +Div(t)

Vp
dCp(t)
dt = −ClpCp(t) + ClpC(t)

(3.134)
The clearance parameter gathers the contribution from the hepatic clearance,
renal clearance and any other degradation mechanism acting on the macro-
molecule. Note that Rinternal is identi�able and cannot be confounded with
Rin because it does not appear in the �rst equation while Rin does. Now, we
simply need to apply the same methodology as the one described in Section
3.3.4 for numerically solving the di�erential equation system.

Turnover rate refers to the amount of compound that is generated and des-
troyed per unit time in the steady state. In the absence of external inputs, in
the long term the concentrations in the central and peripheral compartments
will equilibrate and there will not be any real change of the concentration in the
central compartment. The second equation in the equation system above would
become:

0 = dC(t)
dt = −ClCss +Rinternal (3.135)

where Css is the steady-state concentration

Css =
Rinternal

Cl
(3.136)

The amount of drug inside the central compartment in the steady-state is

Ass = VcCss (3.137)

Knowing that the generation rate is Rinternal, the time needed to achieve this
amount of drug is

tt =
Ass

Rinternal
(3.138)

This time is called the turnover time and its inverse is called the fractional
turnover rate. Since at the steady-state Rinternal = ClCss (see Eq. (3.135)),
we have

tt =
VcCss
ClCss

=
Vc
Cl

(3.139)

This equation is formally identical to the equation of the Mean Residence Time
(Eq. (3.12)). In fact, tt can be considered to be the MRT of any drug molecule
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once the steady-state is achieved. The half-life time is simply

t 1
2

= log(2)tt (3.140)

3.3.7 Inter-species scaling (Allometry)

It has been found that many pharmacological parameters scale with the power of
the body weight among most terrestrial mammalians. This is particularly true
for parameters that depend on the body size as can be the distribution volume
(assuming that protein binding does not signi�cantly change) or hepatic or renal
clearance (as long as the biochemical routes involved do not change). For a given
body weight, BW , it has been proposed that many parameters (in particular,
clearance, distribution volume of the di�erent compartments, Mean Residence
Time, turnover time, and half-life time) they all depend as

Xi = aBW b
i (3.141)

meaning that an species with a body weight BWi would result in a parameter
Xi (being X any of the parameters mentioned above). Parameters a and b are
constants and do not depend on the species. Note that this power modelling is
needed for pharmacokinetical parameters, but it is not for physiological para-
meters (e.g., we do not need to extrapolate the blood �ow into the liver for
humans, but there have been experimental studies directly aimed at estimat-
ing it). Also it is needed for parameters that depend on the organ size (for
instance, the intrinsic clearance, a parameter that depends mostly on the bio-
chemical capabilities of hepatocytes, does not change; but the hepatic clearance
does since it depends on the number of hepatocytes and the blood �ow into the
liver).

The power dependence can be used in di�erent ways:

1. Extrapolation from a single species: If we have measured a parameter
Xanimal for a given species whose weight is BWanimal, we may extra-
polate this paramater to humans by simply applying

Xman = Xanimal

(
BWman

BWanimal

)b
(3.142)

This extrapolation can be performed for a single point estimate (resulting
in a point prediction for humans) or for the limits of a con�dence interval
(resulting in a predicted con�dence interval).

2. Extrapolation from multiple species: If we have measured the parameter
X for multiple species, we may �t paramters of Eq. (3.141) to the species
at hand and then extrapolate to the body weight of humans.

3. Inter-species modelling: We may integrate the power scaling law into the
modelling equations. Let us take as an example the one-compartment
model with intravenous administration. Let us consider a particular an-
imal with a body weight BWi and clearance and distribution volume Cli
and Vi, respectively. The di�erential equation governing the concentration
in the compartment becomes

Vi
dC(t)
dt = −CliC(t) +Div(t)

aBW b
i
dC(t)
dt = −cBW d

i C(t) +Div(t)
(3.143)



3.4. NONLINEAR COMPARTMENTAL PHARMACOKINETICS 53

Instead of looking for the parameters Cli and Vi for each animal, we look
for the parameters a, b, c and d. We may perform the identi�cation of
these parameters for several animal individuals simultaneously.

Extrapolation always involves a prediction error. This error is more import-
ant the further the body weights of the di�erent animals are from the human
weight. This means that extrapolating pharmacological parameters from mice
(whose average body weight is about 23 g) has much more error than from a
dog (whose average body weight is about 14 kg). In practice, several di�erent
species can be used: mice (23 g), rats (250 g), rabbits (1.5 kg), monkeys (4.7
kg), dogs (14 kg). Human weight is estimated to be about 70 kg.

3.4 Nonlinear compartmental pharmacokinetics

All the di�erential equation systems explained so far are of the form

dy(t)

dt
= b +Hy(t) + x(t) (3.144)

where y(t) is a vector of system variables like amount of drug at a given site
or concentration, H is a matrix of constant values, b is a vector of constant
values, and x(t) is a vector of inputs, in our systems, input doses. If b = 0, this
equation de�nes a linear system. Linear systems are characterized because of
two properties:

• Doubling the input dose results in doubling the system response. In fact,
this property holds for any multiple of the input kx(t).

• The superposition principle: the system response to two di�erent doses is
the sum of the individual response of the system to each one of the doses
independently.

The introduction of b breaks this linearity assumption. For instance, internal
generation of a molecule (see Eq. (3.134)) or zero-th order absorption (see Eq.
(3.94)) fall into this category.

However, in the standard pharmacokinetics literature, the word nonlinear is
not referred to this technical detail but to physiological e�ects such as enzyme
capacity saturation, enzyme induction, time dependent system parameters, etc.
These nonlinearities are particularly important at high drug concentrations. In
this section we will study how to incorporate these e�ects into the modelling
framework introduced in this thesis.

3.4.1 Enzymatic capacity saturation

Michaelis-Menten model for enzymatic reactions states that an enzyme mediated
reaction rate is related to the substrate concentration as

v =
d[P ]

dt
=

Vmax[S]

Km + [S]
(3.145)

where v is the reaction rate, [P ] is the concentration of the reaction product, [S]
is the concentration of substrate, Vmax is the maximum reaction rate and Km
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is the Michaelis-Menten constant that determines the substrate concentration
at which the reaction rate is one half of the maximum rate. Using this model
it has been established that it translates into an intrinsic clearance given in Eq.
(3.126) and reproduced here for a single enzyme

Clint =
Vmax

Km + C
(3.146)

Remind from Eq. (3.118) that the hepatic clearance is given by

ClH =
QHfuClint
QH + fuClint

(3.147)

where QH is the blood �ow into the liver and fu is the fraction of unbound
drug. Substituting the intrinsic clearance by its value we get

ClH =
QHVmaxfu

Vmaxfu + CQH +KmQH
(3.148)

We need to realize that fu and Vmax are not uniquely identi�able, but its product
is. In many textbooks (Gabrielsson and Weiner, 2007)[Section 2.7.2], this clear-
ance is approximated by ClH = Vmax

Vmax+C to make the mathematical resolution
more tractable. In this example, we will keep its full form. Note that the hepatic
clearance depends on the drug concentration in the liver, C, which is normally
considered to be the same as in the central compartment. To concentrate on
the nonlinear e�ect of this dependence, we will illustrate how this nonlinear
clearance re�ects in the one-compartment intravenous bolus model. The di�er-
ential equation governing the behavior of drug concentration over time is (see
Eq. (3.23))

dC(t)

dt
= −ClH

V
C(t) +

doseiv(t)

V
(3.149)

If we now substitute ClH by its expression we get

dC(t)

dt
= − 1

V

QHVmaxfu
Vmaxfu + C(t)QH +KmQH

C(t) +
doseiv(t)

V
(3.150)

which is clearly a nonlinear di�erential equation. However, the methodology
developed at Eq. (3.101) is still valid in this case. For the sake of clarity,
instead of applying the 4th order Runge-Kutta's method (which gives a rather
complicated expression) we will simply use a �rst order Runge-Kutta's method
(also known as Euler's method) given by the general recursion

y[n] = y[n− 1] + k1 (3.151)

with
k1 = Tsf((n− 1)Ts,y[n− 1]) (3.152)

For this speci�c model, the recursion is

C[n] =
(

1− Ts
V

QHVmaxfu
Vmaxfu+C[n−1]QH+KmQH

)
C[n− 1] + doseiv[n]Ts

V (3.153)

This numerical method is not very accurate since it is only �rst order. How-
ever, it already illustrates the main features of our methodology: 1) any model
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can be handled by simply writing its di�erential equation; 2) the di�erential
equation is transformed into a di�erence equation; 3) the system is responsive
and valid to any dosing regimen; 4) there is no need for approximations and
limiting cases; 5) model parameters can be determined by system identi�cation;
6) the empirical probability density function of the model parameters can be
easily obtained. In this particular case, we see that the recursion is nonlinear
in C[n− 1] and, therefore, de�nes a nonlinear system.

3.4.2 Enzymatic induction or inhibition

Let us assume that the concentration of a given enzyme responds to a model
similar to the one studied for turnover (see Section 3.3.6):

dCE(t)

dt
= RE − ClECE(t) (3.154)

A certain drug may increase the enzyme concentration by increasing the ex-
pression of the enzyme (making RE larger) or by decreasing its degradation
(making ClE smaller). Contrarily, the drug may decrease the enzyme concen-
tration by decreasing its expression or increasing its degradation. In all cases we
talk of either a stimulation or an inhibition. In both cases, the e�ect size can be
modelled by a fractional change named S for stimulation and I for inihbition.
S = 0.3 or I = 0.3 would mean a 30% increase or decrease of the magnitude
a�ected. S and I are de�ned as

S = SmaxC(t)
SC50+C(t)

I = ImaxC(t)
IC50+C(t)

(3.155)

where Smax and Imax are the maximal possible fraction stimulation and inhibi-
tion that can be achieved, SC50 is the concentration of drug at which S = Smax

2
(analogously for IC50, and C(t) is the drug concentration. With these de�nitions
we can model enzymes whose concentration is increased or decreased because of
a drug. We can distinguish four possibilities (Rosenbaum, 2011)[Section 17.4]:

• Stimulation of enzyme expression: dCE(t)
dt = RE(1 + S)− ClECE(t)

• Inhibition of enzyme expression: dCE(t)
dt = RE(1− I)− ClECE(t)

• Stimulation of enzyme degradation: dCE(t)
dt = RE − ClE(1 + S)CE(t)

• Inhibition of enzyme degradation: dCE(t)
dt = RE − ClE(1− I)CE(t)

All these are nonlinear di�erential equations that can be solved using the Euler's
method (see Eq. (3.151)). The concentration of the enzyme a�ects the max-
imum capacity of the enzymatic reaction (see Eq. 3.145). It is normally accepted
that this e�ect is linear:

Vmax = aCE(t) (3.156)

where a is simply a proportionality constant.
The case presented so far is called heteroinduction or heteroinhibition be-

cause the drug a�ects the concentration of an enzyme that, in its turn, has an
e�ect on some other macromolecules or metabolites. The drug is said to have
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an indirect e�ect (it a�ects an enzyme that has a direct e�ect). Of particular in-
terest is the case in which the enzyme a�ects its own metabolism. This is called
autoinduction (if it inhibits its own degradation) or autoinhibition (if it stimu-
lates its own degradation). We will further expand this example to illustrate the
autoinduction case for the one-compartment intravenous model. Autoinduction
occurs when the drug inhibits its own degradation. Let us assume that a certain
enzyme E mediates the degradation of a drug and that the drug promotes the
degradation of the enzyme. As seen in Eq. (3.148), metabolic clearance can be
calculated as

ClH =
QHVmaxfu

Vmaxfu + C(t)QH +KmQH
=

QHaCE(t)fu
aCE(t)fu + C(t)QH +KmQH

(3.157)
Then, we can write the dynamical equations for the concentration of the drug
and the concentration of the enzyme

dCE(t)
dt = RE − ClE(1 + S)CE(t) = RE − ClE

(
1− SmaxC(t)

SC50+C(t)

)
CE(t)

dC(t)
dt = −ClHV C(t) + doseiv(t)

V = − 1
V

QHaCE(t)fu
aCE(t)fu+C(t)QH+KmQH

C(t) + doseiv(t)
V

(3.158)
Applying Euler's method to this equation system we get

CE [n] = CE [n− 1] +RETs − ClETs
(

1 + S SmaxC[n−1]
SC50+C[n−1]

)
CE [n− 1]

C[n] = C[n− 1]− Ts
V

QHaCE [n−1]fu
aCE [n−1]fu+C[n−1]QH+KmQH

C[n− 1] + doseiv[n]Ts
V

(3.159)
whose parameters to be identi�ed are RE , ClE , Smax, SC50, V , QH , afu (which
are not separately identi�able), and Km. Fig. 3.16 shows the evolution over
time of the drug concentration and the hepatic clearance in the case of no
autoinduction Smax = 0 and autoinduction Smax = 0.3. The rest of parameters
are RE = 0.01 (mg/min), ClE = 0.005 (L/min), SC50 = 0.02 (mg/L), V = 10
(L), QH = 1.45 (L/min), fu = 1, a = 0.01 (1/min), Ts = 1 (min), Km = 0.1
(mg/L).

3.4.3 E�ects on blood �ow

Certain drugs a�ect blood �ow either by increasing it or decreasing it. This may
be modelled with coe�cients similar to the stimulation and inhibition factors
in Eq. (3.155). So that the e�ective blood �ow becomes QH = Q

(0)
H (1 + S) or

QH = Q
(0)
H (1−I). Let us develop here the case of blood �ow stimulation for the

one-compartment intravenous bolus. The increase of blood �ow directly a�ect
the metabolic clearance

ClH = QHfuClint
QH+fuClint

=
Q

(0)
H (1+S)fuClint

Q
(0)
H (1+S)+fuClint

=
Q

(0)
H fuClint

Q
(0)
H +fuClint

1
1+S

=
Q

(0)
H fuClint

Q
(0)
H +fuClint

C+SC50
C(1+Smax)+SC50

(3.160)

and this increased metabolic clearance is the one that must be used in the model
for the concentration

V dC(t)
dt = −ClHC(t) + doseiv(t)

= − Q
(0)
H fuClint

Q
(0)
H +fuClint

C(t)+SC50
C(t)(1+Smax)+SC50

C(t) + doseiv(t)
(3.161)
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Figure 3.16: Drug concentration pro�le C(t) for the case of no autoinduction
and autoinduction after a bolus administration of 1mg (top) and the evolution
of the metabolic clearance ClH(t) (bottom).
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We may apply any of the discretizing methods already seen.

3.4.4 Protein binding

Disregarding drug uptake into the blood cells, drug in plasma is circulating
either bound to plasma proteins (like albumin and α1-acid glycoprotein) or
unbound. In our models so far, we considered the fraction of unbound drug
to be �x, fu. However, this may not be the case and protein binding can
vary as a function of the drug concentration. It is normally accepted that
the concentration of bound drug in blood follows an equation similar to the
Michaelis-Menten modelling of enzymatic reaction (see Eq. (3.145)):

Cb =
BmaxCu
Kd + Cu

(3.162)

where Bmax is the maximum binding capacity, Cu is the unbound concentration,
andKd is the dissociation constant at equilibrium. The total drug concentration
in blood is

C = Cb + Cu = Cu

(
1 +

Bmax
Kd + Cu

)
(3.163)

If the concentration in blood of the binding protein is CP and each protein can
bind to n drug molecules, then the maximum binding capacity is Bmax = nCP .
The unbound fraction can be calculated as

fu =
Cu
C

=
1

1 + nCP
Kd+Cu

(3.164)

Now, we can transform a di�erential equation on C into a di�erential equation
in Cu as follows. Consider, for instance, the one-compartment intravenous bolus
model

V dC(t)
dt = −ClHC(t) + doseiv(t) (3.165)

by substituting C(t) by its expression as a function of Cu(t) we get

V
d
(
Cu(t)

(
1+

nCP
Kd+Cu(t)

))

dt = −ClHCu(t)
(

1 + nCP
Kd+Cu(t)

)
+ doseiv(t)

(3.166)
We simply have now to calculate the derivative on the left

d
(
Cu(t)

(
1+

nCP
Kd+Cu(t)

))

dt = dCu(t)
dt

(
1 + nCP

Kd+Cu(t)

)
+ Cu(t)

(
− nCP

(Kd+Cu(t))2

)
dCu(t)
dt

= dCu(t)
dt

(
1 + nCP

Kd+Cu(t)

(
1− Cu(t)

Kd+Cu(t)

))

(3.167)
and substitute into Eq. (3.166):

V dCu(t)
dt

(
1 + nCP

Kd+Cu(t)

(
1− Cu(t)

Kd+Cu(t)

))
= −ClHCu(t)

(
1 + nCP

Kd+Cu(t)

)
+ doseiv(t)

(3.168)
At this point we may apply any of the discretization techinques already used in
the thesis.
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Figure 3.17: Model for a drug that is �rst converted into a metabolite with
therapeutic e�ects.

3.4.5 Metabolite models

The modelling framework presented in this thesis also allows for modelling drugs
that are �rst degraded into a metabolite with therapeutic e�ects and then elim-
inated. This model is schematically represented in Fig. 3.17. The model can
be easily be represented in di�erential equations using the standard approach
presented along the thesis

Vc
dC(t)
dt = −(Clm + Clp)C(t) + ClpCp(t) +Div(t)

Vp
dCp(t)
dt = −ClpCp(t) + ClpC(t)

Vm
dCm(t)
dt = −ClCm(t) + ClmC(t)

(3.169)

The model above is linear, but we may consider non-linear enzymatic kinetics
at the metabolization of the drug. Let us consider a Michaelis-Menten enzymatic
reaction as in Eq. (3.146). Then, it su�ces to substitute Clm in the previous
equation by Clm = Vmax

Km+C(t) .

3.4.6 Reaction rate

We may be particularly interested at the drug disappearance due to its binding
to a particular receptor or molecule. In general, let us assume that the chemical
reaction is of the form

dD +mM ↔ pDM (3.170)

where D represents the drug, M the molecule it binds to, and DM the drug-
molecule complex. In the general case, we assume that the chemical reaction is
reversible. The case of irreversible binding is easily handled below.

The reaction rate is de�ned as

v = −1

d

d[D]

dt
= − 1

m

d[M ]

dt
=

1

p

d[DM ]

dt
(3.171)

and it can be calculated as a function of the di�erent species concentrations as

v = kf [D]d
′
[M ]m

′ − kb[DM ]p
′

(3.172)
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where kf is a constant (although with an important dependence on temperature)
for the forward reaction, kb is a constant for the backwards reaction, d′, m′

and p′ are constants that have to be experimentally determined. For reactions
occurring in a single step, these coe�cients equal the stoichiometric coe�cients
d′ = d, m′ = m, and p′ = p. The case of irreversible binding of the drug and
the molecule simply requires setting kb = 0. Note that v is normally given in
(mol·L−1 ·s−1) and the units normally used along the thesis aremg·L−1 ·min−1.
Consequently, we must also express concentrations in mg ·L−1. At equilibrium,
the net reaction rate is 0 implying

kf [D]d
′
[M ]m

′
= kb[DM ]p

′ ⇒ K =
kf
kb

=
[DM ]p

′

[D]d′ [M ]m′
(3.173)

that is the standard formula for the equilibrium constant. However, note that
in the methodology proposed in this thesis we are not restricted to study the
equilibrium state, but that we can study the dynamics of the full system at any
time.

Let us incorporate the reaction rate to the one-compartment intravenous
bolus model. We simply need to add the corresponding disappearance of drug
and keep track of the concentration of the other species involved in the reaction
(to be consistent with our notation we will change [D] by C(t), [M ] by CM (t),
[DM ] by CDM(t)) :

V dC(t)
dt = −ClHC(t)− dv + doseiv(t)

= −ClHC(t)− d(kfC
d′(t)Cm

′
M (t)− kbCp

′

DM (t)) + doseiv(t)
dCM (t)
dt = −mv = −m(kfC

d′(t)Cm
′

M (t)− kbCp
′

DM (t))
dCDM (t)

dt = pv = p(kfC
d′(t)Cm

′
M (t)− kbCp

′

DM (t))
(3.174)

In order to fully keep track of all species it is important that we know the con-
centration of the molecule M at t = 0 (when it is supposed that we administer
the drug). Note also that nothing precludes this model of incorporating other
nonlinear e�ects as turnover (see Section 3.3.6) of the molecule M .

3.5 Pharmacodynamics

Pharmacodynamics models the therapeutic e�ect of a certain drug at a given
concentration. Administering a drug has a certain physiological target (regu-
lating the body temperature, heart rate, blood pressure, etc.). Measuring drug
concentration alone does not tell us how the target parameter, E, evolves over
time. Pharmacodynamics places mathematical models to predict the e�ect of
the drug at a particular concentration on the desired variable E. In this chapter
we revise the pharmacodynamics literature under the light of the system mod-
elling approach defended in this thesis.

3.5.1 E�ect size and receptor binding

The most widely accepted model suggests that variable E is related to the occu-
pancy of a number of receptors (may be cell receptors or extracellular receptors)
that are involved in the physiological events �nally resulting in a certain body
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response E. A drug may act as: 1) an agonist by binding to these receptors
and activating their response; 2) an inverse agonist by binding to the receptors
and causing an e�ect opposite to that of the agonist; 3) as an antagonist by
binding to the receptors and blocking their action. In any case, the drug e�ect
is directly linked to its binding to a certain receptor. A comprehensive review
of receptor binding is given by Krohn and Link (2003).

It has been proposed that the response variable E can achieve a maximum
value, Emax, when all involved receptors are occupied. Let us assume that there
is a total of Ntot of these receptors and that each one has an intrinsic e�cacy ε
(that is de�ned as the part of the response caused by a single receptor). In this
case, we could compute the maximum e�ect as

Emax = Ntotε (3.175)

In practice, it is di�cult to estimate any of these two parameters and it has been
alternatively proposed to compute Emax as a function of the concentration of
receptors. Let us denote CR as the concentration of receptors per volume unit
in a certain compartment, which for the moment is assumed to be �xed. Then,

Emax = αCR (3.176)

where α is a proportionality constant. This maximum response is presumed to
be achieved when all receptors are activated. If not all of them are activated,
then the actual response would be proportional to the fraction of activated
receptors:

E(t) = Emax
CR,activated(t)

CR
(3.177)

where CR,activated is the concentration of activated receptors. Let us study the
e�ect of an agonist drug. The binding of this drug to the receptor results in
an increase of the physiological response E because the fraction of occupied
receptors increases. The variation of the bounded receptors can be modelled
through the law of mass action applied to the following reaction

D +Rfree ↔ DR (3.178)

where Rfree is a free receptor and DR is a receptor bound to a drug molecule.
The concentration of activated receptors can then be calculated as

CR,activated(t) = C0
R,activated + CDR(t) (3.179)

where CDR(t) is the concentration of receptors occupied by a drug molecule and
C0
R,activated is the concentration of activated receptors when the drug has not

yet been administered (the basal state). The corresponding basal level of the re-

sponse variable will be denoted as E0 (which is equal to E0 = Emax
C0
R,activated

CR
).

The concentration of receptors occupied by drug molecules can be calculated
with the law of mass action:

dCDR(t)

dt
= kfCR,free(t)C(t)− kbCDR(t) (3.180)

where k1 is the rate constant of the forward reaction and kb is the rate constant
of the backwards reaction. Note that at any moment it must hold:

CR,free(t) + CDR(t) + C0
R,activated = CR (3.181)



62 3.5. PHARMACODYNAMICS

that is, the total concentration of receptors is the sum of those that are still
free, those that are bound to a drug molecule, and those that are bound at the
basal state. In particular, at t = 0 this makes

CR,free(0) = CR − C0
R,activated (3.182)

and obviously, CDR(0) = 0. Eq. (3.180) has to be combined with the equation
monitoring the amount of free receptors and an equation governing the drug
concentration. For simplicity we will consider the one-compartment with in-
travenous doses, although nothing in the theory precludes more sophisticated
models. The set of di�erential equations to be solved is:

dCDR(t)
dt = kfCR,free(t)C(t)− kbCDR(t)

dCR,free(t)
dt = −kfCR,free(t)C(t) + kbCDR(t)

1
V
dC(t)
dt = −ClC(t)− kfCR,free(t)C(t) + kbCDR(t) +Doseiv(t)

(3.183)
The previous set of equations give the full dynamics of the concentration

of all the species involved. However, some of its parameters may be di�cult
to estimate like the concentration of occupied receptors in the basal state and
the total concentration of receptors. For this reason, in the following we will
try to simplify this equation into a more tractable form. If the change of drug
concentration over time is relatively slow with respect to the time that it takes
to reaction in Eq. (3.178) to achieve equilibrium. We may consider that this
reaction is at equilibrium. This gives

dCDR(t)
dt = kfCR,free(t)C(t)− kbCDR(t) = 0⇒ kb

kf
=

CR,free(t)C(t)
CDR(t) = KD

(3.184)
where KD is the dissociation constant of the receptor-drug complex. Consider-
ing that from Eq. (3.181) we have that

CR,free(t) = CR − CDR(t)− C0
R,activated (3.185)

we can rearrange Eq. (3.184) to write

CDR(t) = (CR − C0
R,activated)

C(t)

KD + C(t)
(3.186)

The fraction of activated receptors would be

C0
R,activated + CDR(t)

CR
(3.187)

If we refer to the fraction of occupancy as p, and we de�ne the basal fraction of

occupancy as p0 =
C0
R,activated

CR
, then we have

p =
C0
R,activated+CDR(t)

CR

= p0 +
CR−C0

R,activated

CR

C(t)
KD+C(t)

= p0 + (1− p0) C(t)
KD+C(t)

(3.188)
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The corresponding response

E = Emaxp

= Emax

(
p0 + (1− p0) C(t)

KD+C(t)

)

= E0 + (Emax − E0) C(t)
KD+C(t)

(3.189)

We may rewrite the expression above by using the maximum e�ect of the drug,
ED,max, instead of the maximum physiological response:

E = E0 + ED,max
C(t)

KD+C(t) (3.190)

In this way we may deal in the same way with drugs that increase the basal
e�ect (ED,max > 0) or that decrease it (ED,max < 0).

In some textbooks (Gabrielsson and Weiner, 2007)[Sec. 3.3], E0 is disreg-
arded yielding the well-known dependency

E = Emax
C(t)

KD+C(t) (3.191)

However, it is worth noting that this expression has been obtained after two
simpli�cations: the basal response is negligible (E0 = 0), and that the receptor-
drug binding reaction is much faster than the decay of the drug concentration.

Within the framework defended in this thesis we are not restricted to these
simpli�ed e�ect models in which the receptor binding is assumed to be faster
than the drug concentration changes. Instead, we may integrate the e�ect within
the full dynamical description of the system as follows. Let us consider the dy-
namical equations in Eq. (3.183). We simply need to calculate the instantaneous
proportion of activated receptors and the corresponding e�ect:

dCDR(t)
dt = kfCR,free(t)C(t)− kbCDR(t)

dCR,free(t)
dt = −kfCR,free(t)C(t) + kbCDR(t)

1
V
dC(t)
dt = −ClC(t)− kfCR,free(t)C(t) + kbCDR(t) +Doseiv(t)

p(t) = CDR(t)
CDR(t)+CR,free(t)

E = Emaxp(t)
(3.192)

Multiple receptor binding

It might well be that the drug binds to multiple receptors with di�erent a�nities
and that each receptor has a di�erent e�ect size. We may model this as two
chemical reactions:

D +Rfree,1 ↔ DR1

D +Rfree,2 ↔ DR2
(3.193)

We only need to consider the additive e�ect of both receptors by modifying Eq.
(3.177) to

E(t) = Emax,1
CR1,activated(t)

CR1

+ Emax,2
CR2,activated(t)

CR2

(3.194)
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and the equation system at Eq. (3.183) to track the number of free receptors of
type 2:

dCDR1
(t)

dt = kf1
CR1,free(t)C(t)− kb1CDR1

(t)
dCR1,free

(t)

dt = −kf1
CR1,free(t)C(t) + kb1CDR1

(t)
dCDR2

(t)

dt = kf2CR2,free(t)C(t)− kb2CDR2(t)
dCR2,free

(t)

dt = −kf2CR2,free(t)C(t) + kb2CDR2(t)
1
V
dC(t)
dt = −ClC(t)− kf1

CR1,free(t)C(t) + kb1CDR1
(t)

−kf2CR2,free(t)C(t) + kb2CDR2(t) +Doseiv(t)

(3.195)

This equation system fully describes the dynamics of the system. As we did
before, we may assume that receptor binding to both receptor types quickly
achieves equilibrium so that Eq. (3.189) becomes

E = E0,1 + (Emax,1 − E0,1) C(t)
KD1

+C(t)+

E0,2 + (Emax,2 − E0,2) C(t)
KD2

+C(t)

(3.196)

Multiple site binding

Some receptors need multiple drug molecules to be activated. Let us say we
need n drug molecules to activate the receptor

nD +R↔ DRn (3.197)

The system dynamics are described by (equivalent to Eq. (3.183))

dCDR(t)
dt = kfCR,free(t)C

n(t)− kbCDR(t)
dCR,free(t)

dt = −kfCR,free(t)Cn(t) + kbCDR(t)
1
V
dC(t)
dt = −ClC(t)− kfCR,free(t)Cn(t) + kbCDR(t) +Doseiv(t)

(3.198)
This equation assumes that the binding of n drug molecules is performed sim-
ultaneously to the receptor and receives the name of Hill model. This is rather
unrealistic experimentally. However, this assumption results in a sigmoidal de-
pendency that �ts relatively well in experimental situations with a small modi�c-
ation. As we have done before, we assume that the receptor binding equilibrium
is much faster than changes in the concentration. This makes that

dCDR(t)
dt = 0⇒ CDR(t) =

kf
kb
CR,free(t)C

n(t) (3.199)

Following a reasoning similar to the one developed at the beginning of this
section, we would arrive to an e�ect size

E = E0 + (Emax − E0) Cn(t)
KD+Cn(t) (3.200)

This situation is experimentally unrealistic because it is di�cult that n drug
molecules simultaneously bind to the receptor. However, macroscopically we
observe that only a fraction of those n actually bind per unit time. This is
easily modelled by replacing n by h (the Hill coe�cient, with h ≤ n)

E = E0 + (Emax − E0) Ch(t)
KD+Ch(t)

(3.201)
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The Hill coe�cient also helps to explain cooperative binding. Let us imagine
that a single drug molecule binds a single receptor. However, once it is bound
it helps other drug molecules to bind nearby receptors. This is referred to as
positive cooperative binding and it is modelled by h > 1. Let us imagine the
opposite situation in which once a drug molecule binds a receptor it prevents
the binding in nearby receptors. This is called negative cooperative binding and
it is modelled by h < 1.

Sequential binding

Let us now consider that drug molecules bind sequentially the receptor according
to the following reactions

D +Rfree ↔ DR
D +DR↔ D2R

(3.202)

The system dynamics is described by

dCDR(t)
dt = kf1

CR,free(t)C(t)− kb1CDR(t)+
kb2CD2R(t)− kf2

CDR(t)C(t)
dCR,free(t)

dt = −kf1
CR,free(t)C(t) + kb1CDR(t)

dCD2R
(t)

dt = kf2
CDR(t)C(t)− kb2CD2R(t)

1
V
dC(t)
dt = −ClC(t)− kf1

CR,free(t)C(t) + kb1CDR(t) +Doseiv(t)
−kf2

CDR(t)C(t) + kb2CD2R(t) +Doseiv(t)
(3.203)

As we did before, we may assume that the receptor binding is much faster than
the drug concentration changes. In this situation, both binding equilibria are
achieved. At steady state

0 =
dCR,free(t)

dt = −kf1
CR,free(t)C(t) + kb1CDR(t)⇒ KD1

=
kb1
kf1

=
CR,free(t)C(t)

CDR(t)

0 =
dCD2R

(t)

dt = kf2CDR(t)C(t)− kb2CD2R(t)⇒ KD2 =
kb2
kf2

= CDR(t)C(t)
CD2R

(t)

(3.204)
From these two equations we deduce

CDR(t) = 1
KD1

CR,free(t)C(t)

CD2R(t) = 1
KD2

CDR(t)C(t) = 1
KD1

KD2
CR,free(t)C

2(t)
(3.205)

The total amount of receptors must remain constant

C0
R,activated + CR,free(t) + CDR(t) + CD2R(t) = CR (3.206)

Substituting the concentrations above we have

C0
R,activated+CR,free(t)+

1

KD1

CR,free(t)C(t)+
1

KD1KD2

CR,free(t)C
2(t) = CR

(3.207)
From which we deduce

CR,free(t) =
CR − C0

R,activated

1 + C(t)
KD1

+ C2(t)
KD1

KD2

(3.208)
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and, consequently,

CD2R(t) = 1
KD1

KD2
CR,free(t)C

2(t) = (CR − C0
R,activated)

C2(t)
KD1

KD2

1+
C(t)
KD1

+
C2(t)

KD1
KD2

= (CR − C0
R,activated)

C2(t)
KD1

KD2
+KD2

C(t)+C2(t)

(3.209)
The fraction of activated receptors can be calculated as

p =
C0
R,activated+CD2R

(t)

CR

=
C0
R,activated+(CR−C0

R,activated)
C2(t)

KD1
KD2

+KD2
C(t)+C2(t)

CR

= p0 + (1− p0) C2(t)
KD1

KD2
+KD2

C(t)+C2(t)

(3.210)

Finally, the e�ect size is

E = E0 + (Emax − E0) C2(t)
KD1

KD2
+KD2

C(t)+C2(t)
(3.211)

Competitive binding

Let us now consider that some exogeneous or endogenous molecules bind to
the same site as the drug, but with no e�ect. Let us call such a molecule an
antagonist A. The chemical reactions are

D +Rfree ↔ DR
A+Rfree ↔ AR

(3.212)

The system dynamics is described by

dCDR(t)
dt = kfCR,free(t)C(t)− kbCDR(t)

dCAR(t)
dt = kfACR,free(t)CA(t)− kbACAR(t)

dCR,free(t)
dt = −kfCR,free(t)C(t) + kbCDR(t)

−kfACR,free(t)CA(t) + kbACAR(t)
dCA(t)
dt = −kfACR,free(t)CA(t) + kbACAR(t)

1
V
dC(t)
dt = −ClC(t)− kfCR,free(t)C(t) + kbCDR(t) +Doseiv(t)

(3.213)
As usual, we assume that receptor binding achieves equilibrium much faster than
there are signi�cant changes in the drug concentration. At this equilibrium there
is no net variation of the bound concentrations

dCDR(t)
dt = 0⇒ CDR(t) = 1

KD
CR,free(t)C(t)

dCAR(t)
dt = 0⇒ CAR(t) = 1

KDA
CR,free(t)CA(t)

(3.214)

Assuming that the total amount of receptors is kept constant, we have

C0
R,activated + CR,free(t) + CDR(t) + CAR(t) = CR (3.215)

Substituting the values calculated above we get

C0
R,activated + CR,free(t) +

1

KD
CR,free(t)C(t) +

1

KDA

CR,free(t)CA(t) = CR

(3.216)
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From where

CR,free(t) = (CR − C0
R,activated)

1

1 + 1
KD

C(t) + 1
KDA

CA(t)
(3.217)

The fraction of occupied receptors becomes (only those receptors with some
e�ect on the physiological variable are accounted)

p =
C0
R,activated+CDR(t)

CR

= p0 +
CR−C0

R,activated

CR
1
KD

CR,free(t)C(t)

= p0 + (1− p0)
1
KD

C(t)

1+ 1
KD

C(t)+ 1
KDA

CA(t)

= p0 + (1− p0) C(t)

KD+C(t)+
KD
KDA

CA(t)

= p0 + (1− p0) C(t)(
1+

CA(t)

KDA

)
KD+C(t)

(3.218)

The corresponding e�ect is

E = E0 + (Emax − E0) C(t)(
1+

CA(t)

KDA

)
KD+C(t) (3.219)

Note that the e�ect of the competitor is a decrease in the e�ective KD which
results in an increase in the drug concentration to achieve the same e�ect. The
competitor receives the name of a competitive antagonist.

The competitor instead may have the same e�ect as the drug (it is called a
full agonist, full because it has the same maximum e�ect as the drug), then
the proportion of activated receptors would become

p =
C0
R,activated+CDR(t)+CAR(t)

CR

= p0 + (1− p0)
C(t)
KD

+
CA(t)

KDA

1+
C(t)
KD

+
CA(t)

KDA

(3.220)

and the corresponding e�ect

E = E0 + (Emax − E0)
C(t)
KD

+
CA(t)

KDA

1+
C(t)
KD

+
CA(t)

KDA

(3.221)

We may also consider that the agonist molecule only causes a fraction of the
full e�ect Emax,A = αEmax (with 0 ≤ α ≤ 1; it is then called partial agonist).
Then, we separate the two e�ects. The �nal e�ect becomes

E = E0 + (Emax − E0)
C(t)
KD

+α
CA(t)

KDA

1+
C(t)
KD

+
CA(t)

KDA

(3.222)

An inverse agonist is a molecule that causes a contrarian e�ect to that of
our drug. The e�ect equation is exactly the one for a partial agonist, only that
α < 0.
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Non-competitive binding

An exogenous or endogeneous molecule may bind to an allosteric site of the
receptor. It does not compete with the drug for the binding site but it modi�es
the structure of the site and reduces or increases the maximum e�ect attainable
by the drug. The chemical reactions are

D +Rfree ↔ DR
A+Rfree ↔ AR
D +AR↔ DAR

(3.223)

The system dynamics is described by

dCDR(t)
dt = kfCR,free(t)C(t)− kbCDR(t)

dCAR(t)
dt = kfACR,free(t)CA(t)− kbACAR(t)

−kfARC(t)CAR(t) + kbARCDAR(t)
dCR,free(t)

dt = −kfCR,free(t)C(t) + kbCDR(t)
−kfACR,free(t)CA(t) + kbACAR(t)

dCA(t)
dt = −kfACR,free(t)CA(t) + kbACAR(t)

+kfARC(t)CAR(t)− kbARCDAR(t)
dCDAR(t)

dt = kfARC(t)CAR(t)− kbARCDAR(t)
1
V
dC(t)
dt = −ClC(t)− kfCR,free(t)C(t) + kbCDR(t)

−kfARC(t)CAR(t) + kbARCDAR(t) +Doseiv(t)

(3.224)

Assuming that the receptor binding is much faster than the variations of the
drug concentration, we would have that the binding equations are at equilibrium:

dCDR(t)
dt = 0⇒ CDR(t) = 1

KD
CR,free(t)C(t)

dCDAR(t)
dt = 0⇒ CDAR(t) = 1

KDAR
C(t)CAR(t)

dCAR(t)
dt = 0 = kfACR,free(t)CA(t)− (kbA + kfARC(t))CAR(t) + kbARCDAR(t)

= kfACR,free(t)CA(t)− (kbA + kfARC(t))CAR(t) + kbAR
1

KDAR
C(t)CAR(t)

= kfACR,free(t)CA(t)−
(
kbA +

(
kfAR − kbAR 1

KDAR

)
C(t)

)
CAR(t)

= kfACR,free(t)CA(t)−
(
kbA +

(
kfAR − kbAR

kfAR
kbAR

)
C(t)

)
CAR(t)

= kfACR,free(t)CA(t)− (kbA + (kfAR − kfAR)C(t))CAR(t)
= kfACR,free(t)CA(t)− kbACAR(t)
= 0⇒ CAR(t) = 1

KDA
CR,free(t)CA(t)

(3.225)
In fact, we may reexpress CDAR(t) at equilibrium as

CDAR(t) = 1
KDAR

C(t)CAR(t) = 1
KDARKDA

C(t)CR,free(t)CA(t) (3.226)

The amount of total receptors is �xed. Consequently,

C0
R,activated + CR,free(t) + CDR(t) + CAR(t) + CDAR(t) = CR (3.227)

Substituting the values above

C0
R,activated + CR,free(t)

(
1 +

C(t)

KD
+
CA(t)

KDA

+
C(t)CA(t)

KDARKDA

)
= CR (3.228)



3.5. PHARMACODYNAMICS 69

From which

CR,free(t) = (CR − C0
R,activated)

1

1 + C(t)
KD

+ CA(t)
KDA

+ C(t)CA(t)
KDARKDA

(3.229)

As we did in the case of competitive binding (previous paragraph), let us pre-
sume that only the DR receptors are e�ective for the physiological response
being studied. We may calculate the proportion of e�ectively bounded recept-
ors as

p = p0 + (1− p0)
C(t)
KD

1+
C(t)
KD

+
CA(t)

KDA
+

C(t)CA(t)

KDAR
KDA

(3.230)

whose corresponding e�ect is

E = E0 + (Emax − E0)
C(t)
KD

1+
C(t)
KD

+
CA(t)

KDA
+

C(t)CA(t)

KDAR
KDA

= E0 + (Emax − E0) C(t)

KD+C(t)+
KDCA(t)

KDA
+
KDC(t)CA(t)

KDAR
KDA

= E0 + (Emax − E0) C(t)(
1+

CA(t)

KDA

)
KD+

(
1+

KDCA(t)

KDAR
KDA

)
C(t)

(3.231)

Note that the antagonist has modi�ed both, the e�ective KD (that is increased
as in the case of the competitive antagonist) and the maximum achievable e�ect
(that is decreased; the limit when C(t) goes to in�nity is E0 + Emax−E0

1+
KDCA(t)

KDAR
KDA

).

If, as we did in the case of competitive binding, we presume that the DA and
DAR complexes have some partial e�ect on the physiological response, then we
have that the total e�ect is

E = E0 + (Emax − E0)
C(t)
KD

+α
CA(t)

KDA
+β

C(t)CA(t)

KDAR
KDA

1+
C(t)
KD

+
CA(t)

KDA
+

C(t)CA(t)

KDAR
KDA

(3.232)

Activated and inhibited binding

Let us consider the case in which the receptor has to be in a relaxed form to
be chemically active. Otherwise, the receptor is said to be in a taut (inactive)
form. Let us refer to the relaxed, free form as Rfree and as Rtaut to the receptor
in its taut form. The chemical reactions involved are

Rfree ↔ Rtaut
D +Rfree ↔ DR

(3.233)

System dynamics are described by

dCDR(t)
dt = kfCR,free(t)C(t)− kbCDR(t)

dCR,taut(t)
dt = kf,tautCR,free(t)− kb,tautCR,taut(t)

dCR,free(t)
dt = −kfCR,free(t)C(t) + kbCDR(t)+

−kf,tautCR,free(t) + kb,tautCR,taut(t)
1
V
dC(t)
dt = −ClC(t)− kfCR,free(t)C(t) + kbCDR(t) +Doseiv(t)

(3.234)
Assuming that the drug concentration changes relatively slowly with respect to
the rest of chemical reactions, we can assume that the receptor binding is at
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equilibrium. Then, as was reasoned in the previous case,

KD =
CR,free(t)C(t)

CDR(t) ⇒ CDR(t) =
CR,free(t)C(t)

KD

KT =
CR,free(t)
CR,taut(t)

⇒ CR,taut(t) =
CR,free(t)

KT

(3.235)

The total number of receptors must be constant, so

C0
R,activated + CR,taut(t) + CR,free(t) + CDR(t) = CR (3.236)

Substituting the concentrations above

C0
R,activated +

CR,free(t)

KT
+ CR,free(t) +

CR,free(t)C(t)

KD
= CR (3.237)

From where

CR,free(t)

KT
+ CR,free(t) +

CR,free(t)C(t)

KD
= CR − C0

R,activated (3.238)

and

CR,free(t) = (CR − C0
R,activated)

1
1
KT

+ 1 + C(t)
KD

(3.239)

E = E0 + (Emax − E0)
C(t)
KD

1
KT

+1+
C(t)
KD

= E0 + (Emax − E0) C(t)(
1+ 1

KT

)
KD+C(t)

(3.240)

When there are inhibitors and activators, inhibitors can bind to the taut form
(unbalancing the equilibrium towards taut) and activators to the relaxed form
(unbalancing equilibrium towards relaxed). The factor 1

KT
becomes

1

KT

(
1 + CI(t)

KI

1 + CA(t)
KA

)
(3.241)

where CI(t) and CA(t) are the concentrations of the inhibitor and the activator,
and KI and KA are the dissociation constant of the inhibitor-receptor com-
plex and the activator-receptor complex, respectively. Finally, the e�ect size in
presence of inhibitors and activators becomes

E = E0 + (Emax − E0) C(t)
1+ 1

KT


 1+

CI (t)
KI

1+
CA(t)
KA




KD+C(t) (3.242)

Binding of enantiomers

A drug may alternate between two enantiomeric states. Each one binding the
target receptor with di�erent a�nity. Now, we will derive what is the combined
e�ect of both conformations. The biochemical equation may be represented as

DL ↔ DRDL +Rfree ↔ DLR
DR +Rfree ↔ DRR

(3.243)
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Let us study �rst the equilibrium between the two enantiomers in the absence
of any other e�ect. Their dynamical behaviour respond to

dCDL (t)

dt = −k1CDL(t) + k−1CDR(t)
dCDR (t)

dt = k1CDL(t)− k−1CDR(t)
(3.244)

At equilibrium both variations are zero, and the relationship between the two
concentrations at equilibrium are

k1CDL(t) = k−1CDR(t)⇒ K = k1

k−1
=

CDR (t)

CDL (t) (3.245)

The fraction of the left enantiomer and the right enantiomer become

fL =
CDL (t)

CDL (t)+CDR (t) =
CDL (t)

CDL (t)+KCDL (t) = 1
1+K

fR =
CDR (t)

CDL (t)+CDR (t) =
KCDL (t)

CDL (t)+KCDL (t) = K
1+K

(3.246)

The full system dynamics is given by

dCDLR(t)

dt = kfLCR,free(t)CDL(t)− kbLCDLR(t)
dCDRR(t)

dt = kfRCR,free(t)CDR(t)− kbRCDRR(t)
dCR,free(t)

dt = −kfLCR,free(t)CDL(t) + kbLCDLR(t)
−kfRCR,free(t)CDR(t)− kbRCDRR(t)

1
V

dCDL (t)

dt = −ClCDL(t)− k1CDL(t) + k−1CDR(t) + fLDoseiv(t)
1
V

dCDR (t)

dt = −ClCDR(t) + k1CDL(t)− k−1CDR(t) + fRDoseiv(t)
(3.247)

Assuming that the receptor binding is much faster than the variations of the
drug concentration, we would have that the binding equations are at equilibrium:

dCDLR(t)

dt = 0⇒ CDLR(t) = 1
KDL

CR,free(t)CDL(t)
dCDRR(t)

dt = 0⇒ CDRR(t) = 1
KDR

CR,free(t)CDR(t)
(3.248)

The amount of total receptors is �xed. Consequently,

C0
R,activated + CR,free(t) + CDLR(t) + CDRR(t) = CR (3.249)

Substituting the values above

C0
R,activated + CR,free(t)

(
1 +

CDL(t)

KDL

+
CDR(t)

KDR

)
= CR (3.250)

From which

CR,free(t) = (CR − C0
R,activated)

1

1 +
CDL (t)

KDL
+

CDR (t)

KDR

(3.251)

We may calculate the proportion of bounded receptors of each kind (left and
right enantiomers)

pL = (1− p0)

CDL
(t)

KDL

1+
CDL

(t)

KDL
+
CDR

(t)

KDR

pR = (1− p0)

CDR
(t)

KDR

1+
CDL

(t)

KDL
+
CDR

(t)

KDR

(3.252)
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Let us assume that the e�ect of the right enantiomer is a fraction, α, of that of
the left enantiomer. The combined e�ect is

E = E0 + (Emax − E0)

CDL
(t)

KDL
+α

CDR
(t)

KDR

1+
CDL

(t)

KDL
+
CDR

(t)

KDR

(3.253)

Non-speci�c binding

We may consider the non-speci�c binding of the drug to other receptors with
no therapeutic e�ect (Lau�enburger and Linderman, 1993)[Sec. 2.2]. Let us
generically refer to these non-speci�c receptors as RNS . This binding moment-
arily sequesters drug molecules and later releases them. Let us assume that
non-speci�c binding occurs with a pool of receptors much larger than the num-
ber of drug molecules. If this is the case, we do not need to worry about the
number of free receptors, which does not signi�cantly change over time, and we
may assume its concentration to be constant CRNS . The equation system at
Eq. (3.183) becomes:

dCDRNS (t)

dt = kfNSCRNSC(t)− kbNSCDRNS (t)
1
V
dC(t)
dt = −ClC(t)− kfNSCRNSC(t) + kbNSCDRNS (t) +Doseiv(t)

(3.254)
At equilibrium, there is no variation of the concentration of non-speci�c bounded
complexes

dCDRNS (t)

dt
= 0⇒ CDRNS (t) =

kfNS
kbNS

CRNSC(t) (3.255)

That is, the concentration of non-speci�cally bounded receptors is proportional
to the drug concentration. Let us call this proportionality constant KNS =
kfNS
kbNS

CRNS , that is,

CDRNS (t) = KNSC(t) (3.256)

which is a well-accepted model for non-speci�c binding (Gabrielsson and Weiner,
2007)[Sec. 3.4.1]. However, note that this model has been constructed un-
der the assumption that the pool of non-speci�c receptors is much larger than
the number of drug molecules, and that the non-speci�c binding reaction has
reached equilibrium. In these circumstances, the e�ective concentration of drug
decreases and its e�ect becomes (see Eq. (3.189))

E = E0 + (Emax − E0) (1−KNS)C(t)
KD+(1−KNS)C(t) (3.257)

3.5.2 Generic models

Previous section dealt with e�ects as a direct consequence of the drug binding
to speci�c receptors. Some physiological evidence supports this approach, and
system identi�cation with these models aims at physiologically explaining the
observed drug e�ects. However, a more pragmatic approach could be taken
and suitable mathematical functions may be employed simply for the reason
that they ��t� the data. There is no other justi�cation for them apart their
explanatory power in a particular case. These models can be used after acute
dosing or when studying the steady state. Being, memoryless systems, they are
assuming that there are no metabolites involved. A list of common mathematical
functions used at this point is given below:
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• Linear response:
E = E0 + SC(t) (3.258)

This model has the advantage that, thanks to Taylor expansion, it can be
proved that any nonlinear e�ect response can be locally approximated by
a linear function.

• Log-linear response:
E = m log(C(t) + C0) (3.259)

C0 is simply a parameter that helps to �t the model and does not have
a real physiological meaning. However, it has been referred to as the
�endogenous agonist� meaning by this that when there is no drug C(t) = 0,
C0 de�nes the basal response, and it would, in this way, represent a kind
of �internal� concentration. Note that this model is unbounded (there is
no limit for E), which violates physiological principles.

• Saturated e�ect:

E = E0 +
EmaxC(t)

EC50 + C(t)
(3.260)

This model is the same as the one in Eq. (3.189). That one was obtained
based on receptor binding considerations, while this one is simply used
because it �ts the data. EC50 is the drug concentration that causes an
e�ect size that is 50% of the maximum response. EC50 is related to
the potency of the drug: the lower EC50 the higher its potency (from
the receptor binding model, the lower EC50, the lower its dissociation
constant and the higher its receptor a�nity). This model represents an
agonistic e�ect (the e�ect increases with the drug concentration). We
may also model antagonistic e�ects (the e�ect decreases with the drug
concentration) by simply changing the additive sign in the formula

E = E0 −
ImaxC(t)

IC50 + C(t)
(3.261)

• Sigmoid e�ect:

E = E0 +
EmaxC

h(t)

ECh50 + Ch(t)
(3.262)

This model is similar to the one in Eq. (3.201) for multiple site binding
and obviously we can construct its equivalent for inhibition as we did in
the previous paragraph.

• Other sigmoid e�ects: A family of mathematical functions with sigmoidal
shapes can be used:

� Gompertz function:

E = α exp(− exp(β − γC(t))) (3.263)

� Logistic function: in its di�erent ��avours�

E = α
1+exp(β−γC(t))

E = 1
α+exp(β−γC(t))

E = α
1+β exp(−γC(t))

E = 1
α+β exp(−γC(t))

(3.264)
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� Richards function:

E =
α

(1 + exp(β − γC(t)))
1
δ

(3.265)

� Morgan-Mercer-Flodin function:

E =
βγ + αCδ(t)

γ + Cδ(t)
(3.266)

� Weibull function:

E = α− β exp(−γCδ(t)) (3.267)

• Hyperbolic e�ect:

S = S0 + SmaxC
h1 (t)

SC
h1
50 +Ch1 (t)

E = E0 + EmaxS
h2 (t)

EC
h2
50 +Sh2 (t)

(3.268)

This is an easy way of producing steep responses with relatively low vari-
ations in concentration.

• Composite e�ect:

E = E0 +
Emax,1C

h1(t)

ECh1
50,1 + Ch1(t)

− Imax,2C
h2(t)

ECh2
50,2 + Ch2(t)

(3.269)

This equation models the e�ect of the drug on two di�erent reactions. In
one of the them the drug act as an agonist of the physiological response
being studied, while in the other one, the drug acts as an antagonist.
The overall result is a U-shaped e�ect response as a function of the drug
concentration.

• Drug interactions:

E = E0 + Emax

C(t)
EC50

+ αCA(t)
EA50

+ β C(t)CA(t)
EAR50EA50

1 + C(t)
EC50

+ δCA(t)
EA50

+ γ C(t)CA(t)
EAR50E50

(3.270)

This model allows accounting for a single antagonist or agonist that in-
teracts with the same receptor our drug binds to. See previous section for
a complete discussion of competitive and non-competitive binding. Note
that, in addition to the model developed in that section, two new constants
(δ and γ have been added just for the sake of a better �tting; however,
one would expect these constants to be close to 1).

Depending on the system, the model may be used with the total drug concen-
tration C(t) or with the unbound concentration Cu(t) (see Sec. 3.4.4). In fact,
in some examples it has been shown that the e�ect model based on unbound
concentration is identical across di�erent species.
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3.5.3 Indirect models

Turnover driven models

Let us assume that the drug does not directly in�uence on the physiological
variable of interest but on an intermediate. The drug concentration would af-
fect the intermediate E and the intermediate would a�ect the �nal variable R.
In this way, we may model time delays between the administration of the drug
and its raise in concentration, and the changes observed in the �nal physiolo-
gical variable. One of the most accepted models for the variable R is a linear
di�erential equation

dR(t)

dt
= k0 − k1R(t) (3.271)

Note that this model is identical to the one in Sec. 3.3.6 and that is why
this e�ect model is sometimes referred to as Turnover driven. k0 plays the
role of internal generation and k1 plays the role of elimination. However, their
interpretation in this indirect pharmacodynamic context may not correspond to
the turnover case.

The intermediate e�ect variable E a�ects either the order zero coe�cient

dR(t)

dt
= k0E(t)− k1R(t) (3.272)

or the order one coe�cient

dR(t)

dt
= k0 − k1E(t)R(t) (3.273)

Depending on whether the e�ect E(t) increases or decreases, the drug may act
as an agonist or antagonist on R.

We may extend the model to incorporate enzymatic saturation e�ects, for
instance, at its elimination, by substituting k1 by k1 = Vmax

Km+R(t) , or at its

generation, by substituting k0 by k0 = Vmax
Km+R(t) .

An important extension is the so-called irreversible turnover e�ect. In
this model, one of the constants (k0 or k1) is a�ected directly by the drug
concentration so that they disappear when there is no drug. They become
k0 = k0C(t) or k1 = k1C(t). A good example of this extension is the e�ect of
an antibiotics: in the absence of drug there is no elimination of bacteria and
their number stays or grows:

dR(t)

dt
= −k1C(t)R(t) (3.274)

where R(t) represents the number of bacteria at a given time, and k1 their
elimination. This is called the Drecker function. We may add cell growth to
the equation by simply adding a factor that depends on the current amount of
bacteria

dR(t)

dt
= k0R(t)− k1C(t)R(t) (3.275)

An important concept at this point is the Minimum inhibitory concentra-
tion that is the concentration that stops the growth of bacteria. This happens
when dR(t)

dt = 0 and it is required a drug concentration of

C(t) =
k0

k1
(3.276)
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We may also incorporate the dependence of k0 on the substrate concentra-
tion:

dR(t)

dt
=
k0,maxCS(t)

K + CS(t)
R(t)− k1C(t)R(t) (3.277)

as well as feedback on the maximum number of bacteria that can live in a certain
environment, Rmax. As the number of bacteria approaches this value, growth
is progressively slowed down:

dR(t)

dt
=
k0,maxCS(t)

K + CS(t)

(
1− R(t)

Rmax

)
R(t)− k1C(t)R(t) (3.278)

Oscillatory turnover models

Some biological processes markedly follow periodic patterns. For instance, there
are a clear periodicity of metabolic activity every 24h, women experience strong
hormone cycles every 28 days, etc. These changes may strongly a�ect some of
the e�ect constants in some of the equations (e.g., Eq. (3.273)). Values like k0

or k1 (or, in fact, any of the constants involved) are not constants any longer
but have a cyclic behaviour. This is called oscillating turnover rates. These
models are also called baseline models because the basal value of the variable R
is not constant.

Note that a time varying coe�cient is compatible with the methodology
developed along the thesis. We simply need to use the corresponding value at
each time during the simulation of the discrete time system. The identi�cation of
so many values from experimental data may be impossible if the data available
is insu�cient. However, since we expect a periodic behaviour, we may use a
Fourier approximation. Fourier decomposition theorem states that any periodic
signal (with some technical constraints like being square integrable within its
period) can be exactly represented by an in�nite sum of sinusoidal waves. Let
us assume that we want to represent k0(t) whose period is T . Then, k0(t) can
be exactly represented by the series

k0(t) = a0

∞∑

i=1

ak cos

(
2π

T
kt+ φk

)
(3.279)

for some suitable constants ak (k = 0, 1, ...) and φk given by the theorem and
out of the scope of the discussion required at this point. In practice, it has
been found that we do not need in�nite constants to approximate reasonably
well periodic signals. This means that we do not need to identify those many
values from the experimental data at hand. Instead, we may use a shorter
representation

k0(t) ≈ a0

N∑

i=1

ak cos

(
2π

T
kt+ φk

)
(3.280)

with only 2N + 1 constants. In this way, we strongly simplify the identi�cation
problem. We may similarly decompose any other constant that is suspicious of
periodic behaviour. By calculating the con�dence interval (see Sec. 3.3.2) for
the ak coe�cients we may correctly �nd the periodic dependence over time of
each coe�cient.
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3.5.4 Link models

Link models are applicable to those drugs whose e�ect does not occur from the
central compartment but from a peripheric one. In the language of link models,
the compartment from which the e�ect is exerted is called the biophase. In
this way, the concentration that must be used to calculate the e�ect is the
concentration of the compartment and not the concentration in plasma. Note
that being outside the central compartment involves a further delay due to the
time needed to take the drug into that compartment. The model developed in
this thesis is fully compatible with these models and we have already presented
all the blocks needed to construct such a model. However, for completeness, we
will illustrate this model with a three-compartment model (central, peripheral
and tissue or biophase) with extravascular administration. We will assume that
the e�ect is exerted from the biophase. We will start from Eq. (3.107) and
add the necessary equations to include the pharmacodynamics model. We will
assume a simple interaction of the drug with a single type of receptor as in Eq.
(3.192). The full dynamics of the system is described by the following system
of equations

dAe(t)
dt = −(Rin + (Ka +Kd)Aev(t)) +Dpo(t)

Vc
dC(t)
dt = −(Cl + Clp + Clb)C(t) + ClpCp(t) + ClbCb(t) +Rin +KaAev(t)

Vp
dCp(t)
dt = −ClpCp(t) + ClpC(t)

Vb
dCb(t)
dt = −ClbCb(t) + ClbC(t) + Vb(−kfCR,free(t)Cb(t) + kbCDR(t))

dCDR(t)
dt = kfCR,free(t)Cb(t)− kbCDR(t)

dCR,free(t)
dt = −kfCR,free(t)Cb(t) + kbCDR(t)

p(t) = CDR(t)
CDR(t)+CR,free(t)

E = Emaxp(t)
(3.281)

Obviously identifying all parameters of this model at once can be a daunt-
ing task. Normally, the identi�cation of these parameters can be performed
by highly directed experiments particularly aimed at isolating individual ef-
fects (absorption, distribution among compartments, clearance and e�ect on
the physiological variable of interest).

3.5.5 Transduction and transit compartment models

Transduction is the mechanism by which a certain signal (e.g. drug concentra-
tion) is e�ectively transformed into some measurable e�ect. During transduc-
tion, the stimulus may enter in a cascade of events that may include G-protein
activation, second messengers, ion channel activation and gene translation that
�nally result in the measurable e�ect we are interested to. This cascade of events
is normally modelled as a set of sequential systems that transform the initial
e�ect into the n-th e�ect according to the following set of di�erential equations:

dE1(t)
dt = 1

τ (E(t)− E1(t))
dE2(t)
dt = 1

τ (E1(t)− E2(t))
...

dEn(t)
dt = 1

τ (En−1(t)− En(t))

(3.282)
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where τ is the mean transit time in each one of the event compartments. For-
tunately, this model has an analytical solution in signal theory and we may
calculate the �nal e�ect En(t) without any di�erential equation. Let us make
the Laplace transform of each one of the equations and calculate their system
transfer function

H1(s) = E1(s)
E(s) =

1
τ

s+ 1
τ

H2(s) = E2(s)
E1(s) =

1
τ

s+ 1
τ

...

Hn(s) = En(s)
En−1(s) =

1
τ

s+ 1
τ

(3.283)

So the overall transfer function is

H(s) = En(s)
E(s) = H1(s)H2(s)...Hn(s) =

(
1
τ

s+ 1
τ

)n
(3.284)

whose inverse Laplace transform is

h(t) =
1
τ

(n−1)!

(
t
τ

)n−1
e−

t
τ u(t) (3.285)

So, the �nal response is the convolution of the initial response and this function

En(t) = E(t) ? h(t) (3.286)

3.5.6 Tolerance and rebound models

It is well known that certain drugs develop tolerance, that is, after regular ad-
ministration, the drug ceases to cause the desired physiological e�ect or at least
decreases its e�ect. This can be explained by several reasons: the number of
receptors may be downregulated by cells, their a�nity may change by some
conformational change, some cofactors or precursors may be depleted, or the
body may have developed antibodies against the drug (this e�ect is only valid
for large drugs). Some of these actions correspond to the natural physiological
response to maintain homeostasis. The time needed to develop tolerance may go
from a few hours to several months. Rebound is an e�ect related to tolerance.
Once the tolerance mechanism has been set, after ceasing the drug administra-
tion, the e�ect temporarily goes below the basal level and progressively recovers
its basal line (see Fig. 3.18). Rebound is sometimes manifested as withdrawal
symptoms or abstinence.

There are several ways to model tolerance. We may classify them as non-
physiology based or physiology based

• Non-physiological

� Negative feedback: If we consider any of the equations that relate
the physiological e�ect E to the drug concentration C(t) (e.g., Eq.
(3.189)), we may add a negative feedback loop by subtracting an
amount that depends on E.

E(t) = E0 + (Emax − E0) C(t)
KD+C(t) − Ef (t)

dEf (t)
dt = k1(E(t)− E0)

(3.287)
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Figure 3.18: Illustration of the tolerance and rebound e�ects.

This model tends to stabilize the physiological variable around its
basal value E0. When E(t) > E0, Ef (t) becomes positive so that
E(t) decreases. On the contrary, when E(t) < E0, Ef (t) is negative
and E(t) increases. We may add second or third order e�ects as in

dEf (t)
dt = k1(E(t)− E0) + k2(E(t)− E0)2 + k3(E(t)− E0)3

(3.288)
This model is very versatile but it has no physiological meaning.
Moreover, it is based on an equation (Eq. (3.189)) that was ob-
tained after the assumption that receptor binding is much faster than
changes in the drug concentration, which may not hold in certain
cases. We may also incorporate a negative feedback in an indirect
model as (see Eq. (3.273))

dR(t)

dt
= k0 − k1(R(t)−R0)E(t)R(t) (3.289)

or
dR(t)

dt
= k0(R0 −R(t))− k1E(t)R(t) (3.290)

The di�erence between R(t) and R0 controls the internal generation
or elimination of the response variable.

� Time dependent parameters: We may model the decrease of response
by making Emax or KD to decay over time as in

Emax(t) = Emax(1−Q(1− e−Kt)) (3.291)

or
KD(t) = KD(1 +Q(1− e−Kt)) (3.292)

and then using these varying constants in any of the models relating
E to C(t) (see, for instance, Eq. (3.189)). For indirect models, we
may include the time decay in any of the parameters governing the
di�erential equation for R (see Eq. (3.273))

dR(t)

dt
= k0 − k1(1−Q(1− e−Kt))E(t)R(t) (3.293)
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This model has the additional drawback that it is valid only for a
single dose administration due to its exponential decay normally as-
sociated to a single �shot� e�ect.

• Physiological

� Negative feedback through mediator: Let us assume that homeostasis
is achieved through a mediator molecule that is controlled by the level
of response R.

dCM (t)

dt
= kiMR(t)− koMCM (t) (3.294)

Let us now incorporate this equation into the general dynamics of
the system given by the equation system at Eqs. (3.192) and (3.273)

dCDR(t)
dt = kfCR,free(t)C(t)− kbCDR(t)

dCR,free(t)
dt = −kfCR,free(t)C(t) + kbCDR(t)

1
V
dC(t)
dt = −ClC(t)− kfCR,free(t)C(t) + kbCDR(t) +Doseiv(t)

p(t) = CDR(t)
CDR(t)+CR,free(t)

E = Emaxp(t)
dCM (t)
dt = kiMR(t)− koMCM (t)
dR(t)
dt = k0 − k1E(t)CM (t)

(3.295)
In this model, an increase of the response results in an increase of
the mediator, which in its turn decreases the response. There might
be variations to this model. For instance, we may substitute the last
equation by

dR(t)
dt = k0 − k1E(t)CM (t)R(t) (3.296)

which would reinforce the self-limitation of R. Note that this is not
the only possible negative feedback mechanism. For instance, an
increase of the response R may result in a decrease of the elimination
of the mediator, which would result in an increase of the generation
of R. The last two equations in the equation system above should
be, then, substituted by

dCM (t)
dt = kiM − koMR(t)CM (t)
dR(t)
dt = k0CM (t)− k1E(t)R(t)

(3.297)

� Antagonistic metabolite: Let us assume that the drug promotes the
generation of a metabolite that has an antagonistic e�ect while the
drug is agonistic. Let us assume that the metabolite concentration
responds to the di�erential equation

dCM (t)

dt
= kiMC(t)− koMCM (t) (3.298)

Let us now incorporate this equation into the general dynamics of
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the system given by the equation system at Eq. (3.192)

dCM (t)
dt = kiMC(t)− koMCM (t)− kfMCR,free(t)CM (t) + kbMCMR(t)

dCDR(t)
dt = kfCR,free(t)C(t)− kbCDR(t)

dCMR(t)
dt = kfMCR,free(t)CM (t)− kbMCMR(t)

dCR,free(t)
dt = −kfCR,free(t)C(t) + kbCDR(t)

−kfMCR,free(t)CM (t) + kbMCMR(t)
1
V
dC(t)
dt = −ClC(t)− kfCR,free(t)C(t) + kbCDR(t) +Doseiv(t)

pD(t) = CDR(t)
CDR(t)+CR,free(t)+CMR(t)

pM (t) = CMR(t)
CDR(t)+CR,free(t)+CMR(t)

E = EmaxpD(t)− EM,maxpM (t)
(3.299)

� Precursor pool: In some situations, the physiological response R de-
pends on some endogenous precursor, P , which may be depleted due
to the action of the drug. Without any drug, the precursor and the
response variable respond to the equation system:

dCP (t)
dt = k0P − k1PCP (t)
dR(t)
dt = k0RCP (t)− k1RR(t)

(3.300)

It might also be that the level of precursor is controlled by the re-
sponse variable as in

dCP (t)
dt = (k0P − kRPR(t))− k1PCP (t) (3.301)

Whichever the case, the drug may a�ect positively or negatively on
any of the constants (k0P , k1P , k0R, k1R, kRP ). In all cases, the
overall e�ect of the drug on the response variable C exhibits some
tolerance degree.

3.5.7 Discrete physiological response

All the pharmacodynamical analysis performed so far has assumed a continuous
e�ect variable E. This is valid for variables like blood pressure or temperature,
but it is not for a variable like death or not. Death is discrete variable that
either takes a 0 value (no death) or a 1 value (death occurred). Our pharmaco-
dynamical model must then account for the probability of the discrete variable
taking value 1 at a given drug concentration. This is normally performed by
a logistic regression. The probability of variable E taking a value 1 is π(C(t))
that is calculated as

π(C(t)) =
eL(t)

eL(t) + 1
(3.302)

where
L(t) = α0 + α1C(t) + β1S1 + β2S2 + ... (3.303)

S1, S2, ... are variables (discrete or not) that describe the patient situation
(they may be discrete variables like sepsis or not, renal severe damage or not;
or continuous variables like heart rate or blood pressure). The system identi-
�cation task is now to identify the variables αi and βi which is done through a
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logistic regression. Given pairs of values (Ci, πi), logistic regression proceeds by
transforming the probabilities through the logit function

li = log

(
πi

1− πi

)
(3.304)

and performing the standard Least-Squares regression of the data set (Ci, li).
The methodology developed in this thesis is compatible with this other kind

of modelling. We would make use of the pharmacokinetical model to predict
the behaviour of C(t) and then change to the logistic regression to identify the
drug e�ect on the physiological variable E.

3.6 Biopharmaceutics

Biopharmaceutics deals with the accurate modelling of the early stages of drug
administration: release, dissolution and absorption. We will treat these e�ects
separatedly and show how to include them in the modelling framework defen-
ded in the thesis. However, we have to note that the direct identi�cation of
drug absorption (biopharmaceutics), drug distribution (pharmacokinetics) and
its e�ects (pharmacodynamics) is not straightforward from a single plasma con-
centration pro�le and it is recommended to perform multiple experiments aimed
at isolating the di�erent e�ects.

3.6.1 Di�usion

Di�usion is the process by which a certain molecule spreads in space, normally
by random motion, from regions of high concentration to regions of low concen-
tration. Di�usion laws are the biophysical way of modelling how the concen-
tration of that molecule changes over time and space. Many biopharmaceutical
equations are directly based on the di�usion laws and, for that reason, we will
reproduce here a suitable derivation of those that will help us to further under-
stand the accurate modelling in biopharmaceutics.

Fick's laws are the standard di�usion equations normally accepted. Fick's
�rst law states that the �ux of molecules J(r) at a given spatial location r
(de�ned as amount of molecules per unit area and per unit time; its international
units are mol ·m−2 · s−1) is proportional to the gradient of concentration C(x)
(whose units are mol ·m−3):

J(r) = −D(r)∇C(r) (3.305)

Note that C(r) is a scalar function while J is a vector function pointing in the
direction of maximal (negative) gradient (in fact, the negative sign in Fick's
�rst law indicates that the �ux goes down the gradient (from regions of high
concentration to regions of low concentration). The operator ∇ is de�ned as(
∂
∂x ,

∂
∂y ,

∂
∂z

)
. D(r) is the di�usivity and it is measured in m−2 · s−1. Einstein,

in this theory of Brownian motion, proposed that d�usivity can be calculated
as

D =
kT

6πµ(r)a
(3.306)
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where k is Boltzmann's constant, T is the absolute temperature, µ(r) is the
coe�cient of viscosity for the solute and a is the radius of the solute molecule.
For non spherical molecules, the formula can be generalized to

D =
kT

f
(3.307)

where f is the Stokes frictional coe�cient. The molecular weight of a spherical
molecule of density ρ is M = 4

3πa
3ρ from where we deduce that

D =
kT

3µ

( ρ

6π2M

) 1
3

(3.308)

The following table gives the di�usivity for some biochemical species

Substance Molecular weight (Da) D(cm−2 · s−1)
Hydrogen ion 1 4.5·10−5

Oxygen 32 2.1·10−5

Glucose 192 6.6·10−6

Insulin 5,734 2.1·10−6

Ureasae 482,700 3.5·10−7

Fick's �rst law is a steady-state equation that gives the �ux assuming that
concentrations do not change over time. However, they normally do precisely
due to the di�usion process. We may incorporate the time dependence as follows.
Let us �rst do it in 1D, and we will extend it to 3D later. Consider a small slab
in the x direction. Let J(x) be the �ux of molecules incoming into the slab and
J(x+ dx) the �ux of molecules going out. If they are not equal, then there is a
raise or decrease of the concentration in the slab that we can write as

∂C(x, t)

∂t
=
J(x, t)− J(x+ dx, t)

dx
= −∂J(x, t)

∂x
=

∂

∂x

(
D(x, t)

∂C(x, t)

∂x

)

(3.309)
The general three-dimensional formula is

∂C(r, t)

∂t
= ∇ · (D(r, t)∇C(r, t)) (3.310)

We may add an external input of molecules (our doses) which is diluted in a
volume V

∂C(r, t)

∂t
=
Dose(r, t)

V
+∇ · (D(r, t)∇C(r, t)) (3.311)

In case that the di�usivity is a constant we get

∂C(r, t)

∂t
=
Dose(r, t)

V
+D∇2C(r, t) (3.312)

which is the most standard form of Fick's second law. ∇2 is often referred
to as the Laplacian operator and represented by 4. On the other extreme, we
may consider the di�usivity to be anisotropic, time and space dependent. Then
D(r, t) becomes a tensor with di�erent values at each location and time.

This law has been obtained under certain assumptions: 1) Pressure is con-
stant; 2) There is no thermal di�usion; 3) There is no chemical reaction. The
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�rst two conditions are reasonable for a drug. However, the last one is not be-
cause the drug can be readily modi�ed by enzymes at the absorption site. This
problem is then called of di�usion-reaction and it is studied below.

Let us consider the case in which the drug is irreversably degraded according
to the equation

D → D′ (3.313)

where D′ has no therapeutic e�ect. Let k1 be the reaction rate of the degrada-
tion, which is assumed to be constant along time and space. Then, Fick's second
law has to include the lost of concentration due to the degradation

∂C(r, t)

∂t
=
Dose(r, t)

V
+D∇2C(r, t)− k1C(r, t) (3.314)

In the same way we could model reversible binding to some biochemical sub-
stance that is also di�using

D + S ↔ DS (3.315)

only that now we have to keep track of the concentrations of D, S and DS:

∂CD(r,t)
∂t = Dose(r,t)

V +DD∇2CD(r, t)− k1CD(r, t)CS(r, t) + k−1CDS(r, t)
∂CS(r,t)

∂t = DS∇2CS(r, t)− k1CD(r, t)CS(r, t) + k−1CDS(r, t)
∂CDS(r,t)

∂t = DS∇2CDS(r, t) + k1CD(r, t)CS(r, t)− k−1CDS(r, t)
(3.316)

In the equation above we have assumed that the molecule S is much larger than
D (which is often the case for small drug molecules bound to a protein) and,
consequently, the di�usivity of S is approximately the same as the di�usivity of
DS. If we sum the second and third equations we get

∂CS(r,t)+CDS(r,t)
∂t = DS∇2(CS(r, t) + CDS(r, t)) (3.317)

But the concentration of CS(r, t) + CDS(r, t) does not change in a di�erential
time t (because the S molecules are either free or bound, but their total amount
in a given space location does not change over time). This means that

0 = ∇2(CS(r, t) + CDS(r, t)) (3.318)

In fact, at t = 0 (when the drug is supposed to be given), this equation must
also hold for CS because CDS(r, 0) = 0:

0 = ∇2(CS(r, 0)) (3.319)

If the binding reaction between S and D is much faster than the changes in
concentration of D, then the reaction is at equilibrium, that is at any point

k1CD(r, t)CS(r, t) = k−1CDS(r, t) (3.320)

Additionally, locally the concentration of S and DS molecules must remain
constant (since their sum do not change over time)

CS(r, t) + CDS(r, t) = CS(r, 0)⇒ CDS(r, t) = CS(r, 0)− CS(r, t)
(3.321)
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So we may calculate at any time the concentration of unbound S as

k1CD(r, t)CS(r, t) = k−1(CS(r, 0)− CS(r, t))⇒ CS(r, t) =
KeqCS(r, 0)

Keq + CD(r, t)
(3.322)

where Keq = k−1

k1
. If we subtract the �rst and second equations of Eq. (3.316)

we get

∂(CD(r,t)−CS(r,t))
∂t = Dose(r,t)

V +DD∇2CD(r, t)−DS∇2CS(r, t) (3.323)

By substituting CS(r, t) by its value, we get the nonlinear equation

∂
∂t

(
CD(r, t)− KeqCS(r,0)

Keq+CD(r,t)

)
= Dose(r,t)

V +DD∇2CD(r, t)−DS∇2
(
KeqCS(r,0)
Keq+CD(r,t)

)

(3.324)
As we have done along the thesis, this equation may be discretized, both in time
and space, and be numerically simulated for any arbitrary dose regime.

3.6.2 Dissolution

Many times drugs are orally given in tablets that dissolve in the stomach and
intestine. Epidermal patches also dissolve their content through the skin till
it reaches the bloodstream. In both cases, di�usion is the key process that
mainly describes the drug spread into the intestine �uids or the dermis. Let
us generally refer to the tablet or the patch as the pharmaceutical dosage form
and for consistency with the notation in Sec. 3.3.3 let us refer to the amount
of drug available for absorption as Ag(t). For the moment, we will not consider
the absorption process and we will concentrate on how the dosage dissolves and
becomes available for absorption. Several models have been proposed for this
dissolution process (Costa and Sousa Lobo, 2001; Zarzycki et al., 2010):

• Zero-order kinetics: This model is valid for pharmaceutical dosages that
do not disaggregate and release the drug slowly (assuming the release area
does not change over time). The amount of drug available for absorption
at a given di�erential time dt is constant

dAg(t)

dt
= K (3.325)

This equation is valid till the total dose in the dosage is available. The
integration of the equation above gives:

Ag(t) = Ktu(t) (3.326)

• First-order kinetics: This model explicitly considers the solubility, Cmax
of the drug in the �uid in which it is being dissolved and is applicable
to water-soluble drugs in porous matrices. The solubility determines the
maximum concentration achievable in the �uid. The di�erential equation
governing this solution process is

dAg(t)

dt
=
DS

V h
(V Cmax −Ag(t)) (3.327)
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where D the drug di�usivity, S is the surface through which the drug is
di�used, V is the volume in which the drug is dissolved, and h is the width
of the di�usion layer. Its solution is

Ag(t) = V Cmax

(
1− exp

(
−DS
V h

t

))
u(t) (3.328)

• Fractional-order kinetics: We may generalize the model above to any frac-
tional order. These models propose that Ag(t) ful�lls

Aαmax − (Amax −Ag(t))α = α
DS

V h
t (3.329)

where Amax is the total amount of drug in the dosage. One of the most
accepted models is for α = 1

3 that is called the cube-root law (Macheras
and Iliadis, 2006)[Sec. 5.1.1]. Let us derive this equation with respect to t

− α(Amax −Ag(t))α−1

(
−dAg(t)

dt

)
= α

DS

V h
(3.330)

from where
dAg(t)

dt
=
DS

V h
(Amax −Ag(t))1−α (3.331)

We see that this equation is the generalization of Eq. (3.327) for any
arbitrary order. This fractional order appears after making fractal con-
siderations on the structure of the matrix.

• Weibull model: This model simply �ts a curve to the amount of drug
available. This model states that the amount of drug available is

Ag(t) = Amax
(
1− exp

(
−λtb

))
u(t) (3.332)

where Amax is the total amount in the dosage. If b = 1, this model is
the same as the �rst order kinetics. If b > 1, the amount available has a
sigmoid shape. If b < 1, the model is said to be parabolic. We may set
this model in the di�erential equation modelling framework of this thesis
by di�erentiating the curve

dAg(t)

dt
= Amaxλbt

b−1 exp
(
−λtb

)
(3.333)

This seemingly empirical model is actually based on chemical kinetics the-
ory (Macheras and Iliadis, 2006)[Sec. 5.1.3]. Assume that the layer sur-
rounding the pharmaceutical dosage is homogeneous, and that its intrinsic
dissolution rate constant can be modelled as

k(t) = k0

(
t

t0

)−γ
(3.334)

for some suitable constants k0, t0 and γ. Then, it can be proved (Macheras
and Iliadis, 2006)[Sec. 5.1.3] that the amount of drug released follows a
Weibull model with

λ = 1
t0

(
k0t0
1−γ

) 1
1−γ

b = 1− γ
(3.335)
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• Higuchi model: Higuchi developed several methods to describe drug re-
lease from porous matrices. One of his models dealed with drug release
through a planar surface that does not change over time (e.g., an epidermal
patch). The amount of drug released is

Ag(t) =
√
tDCmax(2C0 − Cmax)u(t) (3.336)

where D is the di�usivity of the drug, Cmax its solubility, and C0 is the
initial drug concentration in the patch. We may also include parameters
describing the matrix pores. Particularly, its tortuosity factor τ and the
matrix porosity ε:

Ag(t) =

√
tDCmax

ε

τ
(2C0 − εCmax)u(t) (3.337)

In any of the two cases the model is of the form:

Ag(t) = AmaxKHt
1
2u(t) (3.338)

where KH is called the Higuchi constant. We can put this model in a
di�erential equation framework as

dAg(t)

dt
= Amax

KH

2
t−

1
2 (3.339)

It has been argued that the conditions under which the Higuchi model is
valid do not hold when 60% of Amax has been released (Macheras and
Iliadis, 2006). For this reason it is recommended that the model is �tted
with data before this critical point.

• Korsmeyer-Peppas model: Korsmeyer and Peppas proposed that a generic
model would be

Ag(t) = Amaxat
m (3.340)

where a and m are empirical parameters to be determined. The release
exponent m is particularly interesting because it is directly linked to the
release mechanism. For a thin �lm, if m = 0.5 drug dissolution perfectly
follows Fick's di�usion laws; drug transport within the pharmaceutical
dosage is referred to as Case I. If m = 1, the polymer in which the drug is
embedded swells and the drug release follow a zero-order kinetics, much
faster than what would be predicted only by di�usion; the transport of
drug within the dosage is referred to as Case II. If 0.5 < m < 1, then the
transportation is said to be anomalous and it is between Case I and Case
II and this response is normally related to the penetration of solvent �uid
into the pharmaceutical form. If m > 1, it is Supercase II. The following
table shows the limits normally accepted for Case I and Case II transports
and di�erent geometries (Macheras and Iliadis, 2006)

Thin �lm Cylinder Sphere Release mechanism
m = 0.5 m = 0.45 m = 0.43 Case I

0.5 < m < 1.0 0.45 < m < 0.89 0.43 < m < 0.85 Anomalous transport
m = 1.0 m = 0.89 m = 0.85 Case II
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The release dynamics is given by the following di�erential equation:

dAg(t)

dt
= Amaxamt

m−1 (3.341)

As with Higuchi's model, it has been argued that parameter �tting should
be performed before 60% of the dosage is released (Costa and Sousa Lobo,
2001) although some other authors defend that the model is valid for the
full data range (Macheras and Iliadis, 2006).

• Hixson-Crowell model: Hixson and Crowell recognized that the tablet area
is proportional to the cubic root of its volume. As the drug dissolves, its
volume decreases and so does its interface area. With this e�ect in mind,
they proposed the following model for the amount of drug available

Ag(t) = Amax(1− (1−Kβt)
3) (3.342)

where Kβ is a constant that depends on the surface, shape and density of
the tablet, the drug di�usivity, its solubility and the width of the di�usion
layer. It has been proposed (Macheras and Iliadis, 2006) that for spherical
dosages Kβ = k0

C0r0
where k0 is the Case II relaxation constant, C0 is the

initial concentration of the drug in the matrix and r0 is the radius of the
sphere. This function obeys the di�erential equation

dAg(t)

dt
= Amax3Kβ(1−Kβt)

2 (3.343)

• Baker-Lonsdale model: this model describes the drug controlled release
from a spherical matrix. It responds to the equation

3

2

(
1−

(
1− Ag(t)

Amax

) 2
3

)
− Ag(t)

Amax
=

3DmCmax
r2
0C0

t (3.344)

whereDm is the di�usivity of the drug in the matrix, Cmax is the solubility
of the drug in the matrix, r0 is the radius of the spherical matrix, and C0

is the initial concentration of the drug in the matrix. Note that this model
does not provide a closed-form for Ag(t) and, consequently, it is not easy to
�t the parameters and simulate this function. However, in the framework
defended in this thesis with di�erential equations, it is rather easy. Let us
derive with respect to t both sides of the equation above

−
(

1− Ag(t)
Amax

)− 1
3
(
− 1
Amax

dAg(t)
dt

)
− 1

Amax

dAg(t)
dt = 3DmCmax

r2
0C0

dAg(t)
dt = Amax

3DmCmax
r2
0C0

((
1− Ag(t)

Amax

)− 1
3 − 1

)−1 (3.345)

Note that the slope of Ag(t) for t = 0 is in�nite because Ag(0) = 0. This
is a problem if we want to approximate the continuous system by a causal
discrete system but it is not if we approximate it by an anticausal discrete
system. Since this is not normally the case, we will omit the mathematics
needed to simulate this process. Note that the approximation normally
adopted that Ag(t)

Amax
≈ kt for low t aducing a linearization of Ag(t) is

incorrect, because the Taylor approximation of the left-hand side of Eq.
(3.344) lacks a linear term.
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• Hopfenberg model: This model addresses drug release from an erodible
matrix. The amount of drug released is supposed to follow

Ag(t) = Amax

(
1−

(
1− k0t

C0a0

)n)
(3.346)

where k0 is the erosion rate constant, C0 the initial drug concentration in
the matrix, a0 is the radius of the sphere or cylinder (assuming the matrix
has this shape) or half the size of a slab (e.g. a patch), and n is 1 for a
slab, 2 for a cylinder, and 3 for a sphere. The corresponding di�erential
equation is

dAg(t)

dt
= Amax

(
1− k0t

C0a0

)n−1
k0

C0a0
(3.347)

There are two important e�ects that may be important depending on the speci�c
situation:

• Lag time: Sometimes, the drug has to traverse a membrane before becom-
ing available for absorption. We may include the time needed by the drug
to go through the membrane as a time delay and subsitute t by t− tlag in
all the expressions above, where

tlag =
h2

6D
(3.348)

being h the membrane thickness and D the drug di�usivity in the mem-
brane.

• Initial burst: Initial burst occurs when the drug desorpbs from the mat-
rix at the beginning. This is normally solved by better manufacturing
processes and more controlled release rates are normally sought. If initial
burst is important, then we may add an exponential term to the di�er-
ential equation. For instance, for the Korsmeyer-Peppas model above we
would have

dAg(t)

dt
= Amaxant

n−1 +B exp(−kt) (3.349)

Along this section we have disregarded the possibility of having multiple doses.
For including this possibility, let us introduce a new variable that we will refer
to as the available amount Aa(t) and let us consider any of the models above,
for instance, the �rst order kinetics. One possible way of considering multiple
doses and drug release at the same time is by the following system of di�erential
equations

dAa(t)
dt = Dose(t)− DS

V h (V Cmax −Ag(t))
dAg(t)
dt = DS

V h (V Cmax −Ag(t))
(3.350)

This equation system is valid as long as Aa(t) > 0. When the amount of drug
available is depleted (Aa(t) = 0), then

dAa(t)

dt
=
dAg(t)

dt
= 0 (3.351)
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3.6.3 Absorption

Absorption is the process by which the drug molecules enter into the blood-
stream from the location where they are administered so that they are dis-
tributed to all the body. We already introduced one of the most widely used
models in Sec. 3.3.3, namely 1st order absorption, which we reproduce here for
convenience:

dAg(t)

dt
= −KaAg(t) (3.352)

The previous equation explains how the amount of drug available for absorption
disappears over time. It has two contributions, one from the absorption process
itself, Ka, and another by some �rst order degradation, Kd, that we have as-
sumed to be 0 for illustration purposes. If we compare this equation with Fick's
�rst law (see Eq. 3.305) for the di�usion across a membrane of thickness h and
di�usivity D, we would have

J = −DCg(t)− C(t)

h
(3.353)

being J the �ux (in mol ·m−2 ·s−1) from the gut (where we assume that we have
administered the dosage, although the reasoning is valid for any other location)
to the central compartment. If we now multiply by the area, A, at which this
absorption takes place we have

JA = −DACg(t)− C(t)

h
(3.354)

JA is exactly the amount of drug that is lost in the instestine. Rearranging the
di�erent terms we have

dAg(t)
dt = JA

= −DACg(t)−C(t)
h

= −DAh Cg(t) + DA
h C(t)

= −DAh
Ag(t)
Vg

+ DA
h C(t)

= −DA
hVg

Ag(t) + DA
h C(t)

(3.355)

Comparing Eq. (3.352) and Eq. (3.355) we see that they are identical when
Ka = DA

hVg
and C(t) = 0, that is, �rst order absorption in Sec. 3.3.3 is a

simpli�ed absorption process in which it is assumed that drug concentration in
blood is much smaller than drug concentration at the absorption site. This is
most likely correct for most drug dosages, although we now know which are the
limitations of this assumption. Actually, since there is a variation of the drug
concentrations over time, Fick's second law should have been used instead of
Fick's �rst law.

An important issue in drug absorption is that electrically neutral drugs are
better absorbed than ionized drugs because they are more lipophilic. The small
intestine, where most drugs are absorbed, is slightly acidic (pH=6.5). Consider
the following reactions for a acidic drug HDa and a basic drug Db

HDa ↔ H+ +D−a
H+ +Db ↔ DbH

+ (3.356)
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The Henderson-Hasselbach equation states the equilibrium condition for both
reactions

pH = pKa+ log10

C
D
−
a

CHDa
⇒ CHDa = CD−a 10pH−pKa

pH = pKa+ log10
CDb

CDbH+
⇒ CDb = CDbH+10pKa−pH

(3.357)

The corresponding fraction of unionized drug is

fun =
CHDa

CHDa+C
D
−
a

= 10pH−pKa

10pH−pKa+1

fun =
CDb

CDb+CDbH+
= 10pKa−pH

10pKa−pH+1

(3.358)

The actual di�usion coe�cient across the membrane is given a weighted aver-
age between the di�usion coe�cient for the unionized form and the di�usion
coe�cient for the ionized form:

D = funDun + (1− fun)Di (3.359)

Since the gastrointestinal tract moves forward its �uids by a peristaltic move-
ment, we may also model the longitudinal evolution of drug concentration that
is available for absorption. Let us name L the total length of the small intest-
ine, and v the speed of the �uids in the small intestine (typically, L = 4m and
v = 1.76cm ·min−1). Let us assume that the amount of drug dissolved has a z
dependence, where z is a spatial variable that goes from 0 to L and denotes the
location within the small intestine. We may modify any of the dissolution mod-
els above to include the spatial dependence as follows. dAg(t)

dt gives the amount
of drug that becomes available at time t. However, this drug is distributed in a
spatial region

∂Ag,l(z, t)

∂t
=
dAg(t)

dt

1√
2πσ

exp

(
−1

2

(
z − vt
σ

)2
)

(3.360)

that is, the drug dissolution is delocalized in a Gaussian of variance σ2 whose
center is at z = vt. Ag,l is the linear density of mass. If we now divide by the

lumen area, S, we have the contribution to the local concentration as 1
S
∂Ag,l(z,t)

∂t .
Overall, the concentration at any point z changes as

∂Cg(z, t)

∂t
= D

∂2Cg(z, t)

∂z2
−v ∂Cg(z, t)

∂z
−ka(Cg(t)−C(t))−kdCg(t)+

1

S

∂Ag,l(z, t)

∂t
(3.361)

The �rst term accounts for di�usion along the intestine, the second term ex-
plains the movement of �uids towards the large intestine, the third one explains
absorption, the fourth one drug degradation, and the �fth one the increase of
concentration thanks to drug dissolution.

Wagner-Nelson method (Wagner and Nelson, 1963) is a widespread method
to evaluate the amount of absorbed drug and the kinetics order of its absorption.
It presumes that all absorbed drug at a given moment, dAb(t)dt , either remains in
the body or it is excreted. In this way,

dAb(t)

dt
= V

dC(t)

dt
+ ClC(t) (3.362)
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Equivalently
dAb(t) = V dC(t) + ClC(t)dt (3.363)

Integrating the equation

Ab(t) = V C(t) +

t∫

−∞

ClC(τ)dτ (3.364)

If the dose consists of a single dose at time t = 0, it must be lim
t→∞

C(t) = 0, then

the total amount of drug absorbed is

Amaxb = lim
t→∞

Ab(t) = Cl

∞∫

−∞

C(τ)dτ (3.365)

If we calculate now the di�erence to the known dose, A, we can calculate the
bioavailability f

Amaxb = fA (3.366)

and the remaining amount in the absorption site (e.g., the gut)

Ag(t) = A− 1

f
Ab(t) (3.367)

tell us the kinetics order (order 0, 1, ...) of the absorption. For instance, if the
absorption is of order 1, then

Ag(t) = A− 1

f
Ab(t) = Ae−Katu(t) (3.368)

3.7 Technical details

There are some important technical issues that deserve our attention: how to
choose the sampling rate (Ts) so that our approximation is accurate and stable
and how accurate our estimates of the system parameters will be. The following
two sections cover those two aspects.

3.7.1 Selection of the sampling rate

As already introduced in Section 1.2, the approach defended in this thesis is the
general use of numerical methods to solve the set of non-homogeneous di�eren-
tial equations. We have set the problem as one of discrete systems. However, we
could have set it equivalently using the standard notation of the numerical solu-
tion of di�erential equations. In fact, the two procedures that we have mostly
used along the thesis are the explicit and implicit Euler methods. The problem
of how to choose the sampling rate (the step size in the terminology of numer-
ical di�erential equations) have been extensively studied. The main goal of the
discretization is to be able to calculate the solution with a computer. At the
same time, we want this calculation to be accurate (it faithfully represents the
correct answer) and stable (it does not blow up or oscillates around the correct
answer). In fact the two concepts are very much related and we will address the
two aspects at the same time.

The selection of the sampling rate (Ts, the time di�erence between two
consecutive samples in the discretization) depends on:
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1. the numerical method that is being used, which determines the local trun-
cation error.

2. how smooth the solution is, which determines how large the high-order
derivatives are.

3. the required accuracy, which in its turn is determined the measurement
noise.

4. the stability of the numerical method.

We already saw in Section 3.3.2 that we could have a precision in the solution
ranging from 0.1 to 10−10%. In this section we will show how the sampling rate
determines this accuracy and numerical stability.

In order to perform a rigorous approch to the subject, let us de�ne a number
of concepts (we will here assume the numerical literature notation and call h to
Ts; y to the functions that are bound by the di�erential equation, in our case,
they normally are concentrations; t to the continuous time variable and n to the
discrete time variable):

• Vector sequence: A vector sequence, a = {an} (with n = 1, 2, 3, ...), is a
�nite or in�nite collection of vectors.

• Norm of a vector sequence: the l∞ norm of a sequence is its maximum
module

‖a‖∞ = max
n
‖an‖ (3.369)

while the module of a vector is de�ned in the standard way in a Hilbert
space ‖an‖ =

√
〈an,an〉.

• Initial Value Problem (IVP) of �rst order: most problems treated in this
thesis are of this kind. All of them can be stated as

y(t)

dt
= f(t,y(t)) (3.370)

with the initial value y(t0) = y0.

• Existence and uniqueness: before attempting to numerically calculate a
solution of the IVP, we must be sure that such a solution exists and,
preferrably, that it is unique. If f(t,y(t)) is continuous in the interval
t ∈ [t0, tF ] and satis�es the Lipschitz condition

‖f(t,y1(t))− f(t,y2(t))‖ ≤ L(f)‖y1(t)− y2(t)‖ (3.371)

for all t,y1(t),y2(t) and some constant L(f) that depends on f , then there
exists a unique solution to the Initial Value Problem in the interval [t0, tF ]
for every initial value y(t0) = y0. Fortunately, all problems encountered
in pharmacokinetics, pharmacodynamics and biopharmaceutics meet this
Lipschitz condition.

• Numerical IVP method: is any method that estimates y at discrete time
points (tn,yn). Normally, tn is within a time frame tn ∈ T = [t0, tF ] such
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that tn = t0+nh. Let us consider as an example the explicit Euler method
(its justi�cation is explained below). It can be written as

yn+1 = yn + hf(tn,yn) (3.372)

or what is the same

yn+1 = yn + hF (tn,yn, h, f) (3.373)

where F is referred to as the increment function and allows as to move
from one time point to the next. It can be shown (Epperson, 2014)[p. 375]
that any numerical method for a single unknown (y(t)) can be written in
the form

yn+1 =

N∑

k=0

akyn−k + h

M∑

k=−1

bkf(tn−k, yn−k) (3.374)

• Convergence: a numerical IVP method is convergent if its global error
within a time frame T satis�es

‖εn‖∞ ≤ Chp (3.375)

where εn is the global error at tn

εn = y(tn)− yn (3.376)

C is a constant and p is the order of convergence. Note that if a method
is convergent, then

lim
h→0
‖εn‖∞ = 0 (3.377)

Intituively, a method is convergent if it gives the correct answer to the
di�erential equation when the time step goes to 0.

• Consistency: a numerical IVP method is consistent if its local error (that
is the error introduced at a single time step) is o(h). The local error
is de�ned as the di�erence between the correct value y(tn+1) and yn+1

assuming that we had perfect knowledge of y(t) up to t = tn. In this is
the case, our estimate would be

y∗n+1 = y(tn) + hF (tn,y(tn), h, f) (3.378)

The di�erence between y∗n+1 and y(tn+1) is the local error:

τn+1 = y(tn+1)− y∗n+1 (3.379)

If the local error is o(h) it means that

∀ε > 0⇒ ∃H > 0 such that ∀0 < h < H ⇒ ‖τn+1‖ < εh (3.380)

Intituively, a method is consistent if it gives the correct prediction for tn+1

if we know exactly the solution of the di�erential equation up to tn. It
can be shown that if F is di�erentiable, a numerical IVP is consistent if
and only if F (t,y, 0, f) = f(t,y) (Suli and Mayers, 2003)[p.321].
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• Stability: A method is said to be stable if

‖τn+1‖ ≤ (1 + ρ(h))‖εn‖ (3.381)

for some constant ρ(h) that depends on h and that it tends to 0 as h tends
to 0 ( lim

h→0
ρ(h) = 0).

• Zero-stability: Let us assume that yn is the solution found by a numerical
IVP method to the initial value problem

y(t)

dt
= f(t,y(t)) (3.382)

with the initial value y(t0) = y0. Let us assume that we perturb the initial
condition so that y(t0) = y0 + δ0 and that we perturb every evaluation
of f by adding some small noise (δn; this is a roundo� error). Then, the
numerical IVP method is zero-stable if there exist h0 > 0, K > 0 and
ε0 > 0 such that ∀h ∈ (0, h0], ∀ε ∈ (0, ε0] it is veri�ed that if ‖δn‖ ≤ ε,
then the new solution {ỹn} ful�lls

‖ỹn − yn‖ < Kh (3.383)

Intuitively, a numerical IVP method is zero-stable if the round-o� error
does not make the solution to blow up. The importance of zero-stability
is that it can be shown that if a numerical IVP method is zero-stable and
consistent, then it is convergent (Lax and Richtmyer, 1956).

zero-stability + consistency ⇒ convergence

• Absolute stability: Zero-stability is sometimes di�cult to verify. Alternat-
ively, an easy way to determine the stability of our method is through the
absolute stability that is de�ned considering the following IVP problem

y(t)

dt
= λy(t) (3.384)

with the initial value y(t0) = y0 and with λ ∈ C (its exact solution is
y(t) = y0e

λt). This problem is referred to as the model problem.

For a numerical IVP method in the form of Eq. (3.374) we de�ne the
stability polynomial as

σ(z) = zN+1 −
N∑

k=0

akz
N−k (3.385)

The numerical IVP method is stable if all its roots zk (k = 1, ..., N + 1)
ful�ll the root condition

|zk| ≤ 1 (3.386)

and if |zk| = 1, then it is a simple root.

For instance, when we apply the explicit Euler method (Eq. (3.372)) to
the model problem, we get the recursion

yn+1 = yn + hλyn = (1 + hλ)yn (3.387)
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Figure 3.19: Stability region for the explicit Euler method. If the product hλ is
within the shaded region, then the method is stable.

Its stability polynomial is given by

σ(z) = z − (1 + hλ) (3.388)

Its single root is 1 + hλ (remind that λ is a complex number). So the
region of stability is de�ned for those h that ful�ll (see Fig. 3.19)

|1 + hλ| ≤ 1 (3.389)

A numerical IVP method is absolutely stable (A-stable) if and only if the
region of stability contains the left semiplane (hλ < 0). For an extensive
review of A-stability see LeVeque (2007)[Chap. 7] and Ascher and Petzold
(1998)[Chaps. 4 and 5]. A consequence of this de�nition is that the
solution of any A-stable numerical IVP method to a model problem with
Re{λ} < 0 ful�lls

lim
n→∞

yn = 0 (3.390)

It may seem that the absolute stability has been de�ned for a rather
limited problem. However, this de�nition has a great importance in prac-
tical terms because all di�erential equations locally behave like the model
problem. To show this let us linearize any Initial Value Problem around
a given point (tn, y(tn)). Let us consider a nearby point that is also a
solution of the di�erential equation de�ned as (tn + t′, y(tn) + y′). Let us
call t = tn + t′ and y(t) = y(tn) + y′. Since the new y(t) is also a solution
of the di�erential equation, it must ful�ll

dy(t)
dt = f(t, y(t))

= f(tn + t′, y(tn) + y′)
(3.391)

The left hand side can be calculated as

dy(t)
dt = d(y(tn)+y′)

dt′
dt′

dt

= dy(tn)
dt′

dt′

dt + dy′

dt′
dt′

dt

(3.392)
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But t′ = t− tn, so dt′

dt = 1 and y(tn) is a constant, so dy(tn)
dt′ = 0. Finally

we have
dy(t)
dt = dy′

dt′
(3.393)

For the right hand side, let us perform a Taylor approximation of �rst
order of f around the point (tn, y(tn))

f(tn + t′, y(tn) + y′) ≈ f(tn, y(tn)) + ∂f(t,y(t))
∂t′

∣∣∣
tn,y(tn)

t′ + ∂f(t,y(t))
∂y′

∣∣∣
tn,y(tn)

y′

(3.394)
Normally ∂f(t,y(t))

∂t′ = 0 because otherwise we would have a time-varying
system (its response depends on the time of excitation), so

f(tn + t′, y(tn) + y′) ≈ f(tn, y(tn)) + ∂f(t,y(t))
∂y′

∣∣∣
tn,y(tn)

y′ (3.395)

Combining Eqs. (3.393) and (3.395) we have

dy′

dt′ ≈ f(tn, y(tn)) + ∂f(t,y(t))
∂y′

∣∣∣
tn,y(tn)

y′ (3.396)

This is a non-homogeneous di�erential equation whose stability properties
are determined by its homogeneous equation. If we call λ(tn, y(tn)) =
∂f(t,y(t))

∂y′

∣∣∣
tn,y(tn)

, then the homogeneous equation becomes

dy′

dt′ = λ(tn, y(tn))y′ (3.397)

That is, locally, if we linearize the right hand side of the di�erential equa-
tion, any di�erential equation behaves as the model problem. This is also
true for di�erential equation systems. In this case, instead of a scalar value
(as λ above), what we obtain is a matrix J(tn,yn)

dy′

dt′ = J(tn,y(tn))y′ (3.398)

where J(tn,yn) is the Jacobian of f

J(tn,yn) =




∂f1(t,y)
∂y1

∂f1(t,y)
∂y2

... ∂f1(t,y)
∂yp

∂f2(t,y)
∂y1

∂f2(t,y)
∂y2

... ∂f2(t,y)
∂yp

... ... ... ...
∂fp(t,y)
∂y1

∂fp(t,y)
∂y2

...
∂fp(t,y)
∂yp


 (3.399)

Additionally, we can always diagonalize the Jacobian as

J(tn,y(tn)) = P (tn,y(tn))D(tn,y(tn))P (tn,y(tn))−1 (3.400)

Make a change of variables

y′′ = P−1(tn,y(tn))y′ (3.401)

so that the di�erential equation system becomes

dy′′

dt′ = D(tn,y(tn))y′′ (3.402)
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In this new equation system, each variable y′′i is independent of the rest,
and its di�erential equation is exactly the model problem

dy′′i
dt′ = λi(tn,y(tn))y′′i (3.403)

In fact, when analyzing di�erential equation systems, instead of a single
di�erential equation, the concept of sti�ness appears. A problem is sti�
if the ratio between the largest and the smallest eigenvalues of the matrix
J(tn,y(tn)) is much larger than 1. In this case, the largest eigenvalue
determines which is the maximum time step (h) we can use in the dis-
cretization. Additionally, the eigenvalues of the Jacobian may determine
the behaviour of the system. For instance, if the real part of any of
the eigenvalues is positive, there cannot be any stable method dealing
with this problem. Also, there cannot be any stable solution if there are
multiple roots (roots with multiplicity larger than 1) and the associated
eigenvectors are not linearly independent.

Given all these de�nitions we are now ready to study the stability of the
discretization procedures used in the thesis, mostly, implicit or explicit Euler
methods. Let us at this point establish the di�erence between an explicit and an
implicit method. Remind that the problems handled in the thesis are �rst-order
di�erential equation systems with some initial value as shown in Eq. (3.370)
and reproduced here for convenience

y(t)

dt
= f(t,y(t)) (3.404)

We may discretize the equation in two di�erent ways

yn+1−yn
h = f(tn,yn)

yn+1−yn
h = f(tn+1,yn+1)

(3.405)

That give the two recursions

yn+1 = yn + hf(tn,yn)
yn+1 = yn + hf(tn+1,yn+1)

(3.406)

The �rst equation is very straightforward to calculate since to calculate the
sample at n+1 we only need to perform calculations on the current values at n.
However, the second one is not that simple because to calculate yn+1 we need
to evaluate f at yn+1 (which we do not know). In general, if f is a nonlinear
function, this recursion implies solving a nonlinear equation system for which
again we need some numerical method. However, paying this extra cost may
have its bene�ts in terms of stability. We have already seen in Eq. (3.388)
that the stability region of the explicit Euler method is restricted to the region
|1 +hλ| ≤ 1. However, the recursion of the Euler implicit method for the model
problem is

yn+1 = 1
1−λhyn (3.407)

and its the stability polynomial

σ(z) = z − 1
1−λh (3.408)
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Figure 3.20: Stability region for the implicit Euler method. If the product hλ
is within the shaded region, then the method is stable.

The condition for stability is then
∣∣∣ 1

1−λh

∣∣∣ ≤ 1 (see Fig. 3.20). That is, the

method is absolutely stable.
Di�erent discretization schema have di�erent stability properties. Generally

speaking, all implicit methods are A-stable (LeVeque, 2007)[Chap. 7] although
their regions of stability normally di�er. It can also be shown that both Euler
methods are consistent and convergent, that is, if the sampling rate is small
enough, the calculations are very accurate.

The model problem for di�erential equation systems is

dy(t)
dt = Ay(t) (3.409)

with the initial condition y(0) = y0. The corresponding explicit Euler recursion
would be

yn+1 = yn + hAyn = (I + hA)yn = (I + hA)ny0 (3.410)

To be stable, we need that all eigenvalues of the matrix I+hA have unit module
or a module smaller than 1. Otherwise, the term (I +hA)n would explode with
increasing n.

Let's for the moment put aside this discussion on stability and concentrate
on the other constraint for the sampling rate, approximation accuracy, we would
like the discrete system to represent faithfully the continuous system. In the
terminology of di�erential equations this is related to the local error. Let us
study how some of the methods are derived to understand how the approxima-
tion error is treated in each case. Let us start with the two Euler methods. The
two recursions

yn+1 = yn + hf(tn,yn)
yn+1 = yn + hf(tn+1,yn+1)

(3.411)

mean that for moving from tn to tn+1 we should move a distance h in the
direction of the gradient at the time tn (explicit) or tn+1 (implicit). Let's analyze
the local error of each one. If we knew exactly y(tn), the explicit Euler method
would make the prediction

y∗n+1 = y(tn) + hf(tn,yn) (3.412)
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But we know from Taylor expansion at t = tn that

y(tn+1) = y(tn) + hDy(tn) +O(h2)
= y(tn) + hf(tn,yn) +O(h2)

(3.413)

where we have de�ned the operator Dy(t) = dy(t)
dt and Dy(tn) is the value of

the operator applied on y(t) and then evaluated at t = tn. So, the local error is

τ (tn+1) = y(tn+1)− y∗n+1 = O(h2) (3.414)

When the local error is O(hp) the method is said to be of consistency order
p− 1 (it can be shown that when the local error is O(hp), then the global error
is O(hp−1) due to the error propagation e�ect). So, the explicit Euler method
is of order 1.

The implicit Euler method is also of consistency order 1. From the Taylor
expansion at t = tn+1 we know

y(tn) = y(tn+1)− hDy(tn+1) +O(h2)
= y(tn+1)− hf(tn+1,yn+1) +O(h2)

(3.415)

Rearranging the terms we get

y(tn+1) = y(tn) + hf(tn+1,yn+1) +O(h2) (3.416)

Proceeding analogously as to the explicit Euler method we could calculate

τ (tn+1) = y(tn+1)− y∗n+1 = O(h2) (3.417)

Consequently, we see that the fact that the method is implicit or explicit does
not a�ect its consistency, it only a�ects its stability.

Let us try to get a more accurate recursion. Instead of moving in the direc-
tion of the gradient at tn (as the explicit method), or the gradient at (tn+1), let
us try to move in the direction of the average of the two

yn+1 = yn + h f(tn,yn)+f(tn+1,yn+1)
2

(3.418)

Let us calculate its order of consistency. If we knew exactly the data up to tn+1

our prediction would be

y∗n+1 = y(tn) + h f(tn,y(tn))+f(tn+1,y(tn+1))
2

(3.419)

Let us now repeat the Taylor expansion at t = tn+ 1
2

y(tn+1) = y(tn+ 1
2
) + h

2Dy(tn+ 1
2
) +

(h2 )
2

2 D2y(tn)1 +O(h3)

y(tn) = y(tn+ 1
2
)− h

2Dy(tn+ 1
2
) +

(h2 )
2

2 D2y(tn)1 +O(h3)
(3.420)

If we now subtract the two equations we have

y(tn+1)− y(tn) = hDy(tn+ 1
2
) +O(h3) (3.421)

Let us now compute the Taylor expansion of Dy(t) at t = tn+ 1
2

Dy(tn+1) = Dy(tn+ 1
2
) + h

2D
2y(tn+ 1

2
) +

(h2 )
2

2 D3y(tn) +O(h4)

Dy(tn) = Dy(tn+ 1
2
)− h

2D
2y(tn+ 1

2
) +

(h2 )
2

2 D3y(tn)1 +O(h4)
(3.422)
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Let us now sum the two equations and divide by 2

Dy(tn)+Dy(tn+1)
2 = Dy(tn+ 1

2
) +

(h2 )
2

2 D3y(tn) +O(h5) (3.423)

Now we solve for Dy(tn+ 1
2
)

Dy(tn+ 1
2
) = Dy(tn)+Dy(tn+1)

2 +O(h3) (3.424)

and substitute in Eq. (3.421)

y(tn+1)− y(tn) = hDy(tn)+Dy(tn+1)
2 +O(h3) (3.425)

From where we get

y(tn+1) = y(tn) + hDy(tn)+Dy(tn+1)
2 +O(h3)

= y(tn) + h f(tn,y(tn))+f(tn+1,y(tn+1))
2 +O(h3)

(3.426)

If we now calculate the local error

τ (tn+1) = y(tn+1)− y∗n+1 = O(h3) (3.427)

So, the trapezoidal rule has a consistency rate of 2.
The trapezoidal method is implicit because in order to calculate yn+1 we

need to evaluate f at (tn+1,yn+1). Predictor-corrector methods use a similar
strategy to the trapezoidal rule but they try to avoid the implicit scheme. They
use a explicit Euler method to predict the yn+1

Predictor:ỹn+1 = yn + hf(tn,yn) (3.428)

Then, they use this predicted value to evaluate the trapezoidal rule

Corrector:yn+1 = yn + h f(tn,yn)+f(tn+1,ỹn+1)
2

(3.429)

It can be proved that the scheme is still of consistency rate 2, but now the
scheme is not implicit. Actually, we can be very creative and use many di�erent
prediction-correction formulas to obtain di�erent levels of accuracy.

Alternatively, we could have linearized the evaluation of f at (tn+1,yn+1) by
performing a Taylor expansion

f(tn+1,yn+1) ≈ f(tn+1,yn) + J(tn+1,yn)(yn+1 − yn) (3.430)

Note that we still keep tn+1 in the evaluation of the Jacobian and f since we
know tn+1, what we do not know is yn+1. Then the trapezoidal rule becomes

yn+1 ≈ yn + h f(tn,yn)+f(tn+1,yn)+J(tn+1,yn)(yn+1−yn)
2

(3.431)

Knowing that in pharmaceutical problems, the system is time invariant we have
that f(tn,yn) = f(tn+1,yn) and J(tn+1,yn) = J(tn,yn). So we may explicitly
solve for yn+1 by computing

yn+1 = yn + h(I − h
2J(tn,yn))−1f(tn,yn) (3.432)

Notwithstanding, Runge-Kutta's methods are normally the preferred explicit
and implicit methods for high-order accuracy. They are developed on similar
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grounds to the error analysis developed so far and their theory will not be
developed here. It is enough to know that they respond to the general scheme

yn+1 = yn +
p∑
i=1

biki (3.433)

where

ki = hf

(
tn + cih,yn +

p∑
j=1

aijkj

)
(3.434)

If aij = 0 for i < j, then the scheme is explicit; otherwise, it is implicit.
Coe�cients ci, bi and aij are calculated for each Runge-Kutta method so that
they reach an order of accuracy of p.

All the methods presented so far are one-step methods in which an increase
of accuracy is achieved by a clever combination of points beyond tn. They
are called one-step because from tn we try to predict the value at tn+1. How-
ever, there is another family of methods in which the increase in accuracy is
achieved by using previous information (tn, tn−1, tn−2, ...), they are called lin-
ear multistep methods (LMMs). Among these methods the most popular are
Adams-Bashforth (explicit), Adams-Moulton (implicit), and BDF (backwards
di�erentiation formula; implicit). We will not enter into the details of these
methods. Instead it is enough to state that they all respond to the general
scheme

yn+1 =
N∑
k=0

akyn−k + h
M∑

k=−1

bkf(tn−k,yn−k) (3.435)

In the following we will show how to apply all these ideas to the selection of
the sampling rate in a practical pharmaceutical problem. For doing so, we will
make use of the non-linear example of a drug with autoinduction (see Section
3.4.2). The system can be modelled with a pair of di�erential equations (Eq.
(3.158)) and reproduced here for convenience:

dCE(t)
dt = RE − ClE

(
1− SmaxC(t)

SC50+C(t)

)
CE(t)

dC(t)
dt = − 1

V
QHaCE(t)fu

aCE(t)fu+C(t)QH+KmQH
C(t) + doseiv(t)

V

(3.436)

Let us assume the system parameters: Smax = 0.3, RE = 0.01 (mg/min),
ClE = 0.005 (L/min), SC50 = 0.02 (mg/L), V = 10 (L), QH = 1.45 (L/min),
fu = 1, a = 0.01 (1/min), Ts = 1 (min), and Km = 0.1 (mg/L) (see Fig. 3.16).
We may write this equation in the form

dy(t)
dt = f(t,y(t)) + f0(t,x(t)) (3.437)

where y(t) is the response variable in which we are interested in, and x(t) is the
excitation to the system. We simply need to make the following assignments

y(t) =

(
CE(t)
C(t)

)

x(t) =

(
1

doseiv(t)

)

f(t,y(t)) =

(
−ClE

(
1− SmaxC(t)

SC50+C(t)

)
CE(t)

− 1
V

QHaCE(t)fu
aCE(t)fu+C(t)QH+KmQH

C(t)

)

f0(t,x(t)) =

(
RE

doseiv(t)
V

)

(3.438)
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The stability analysis is determined by the homogeneous part of the equation,
that, is that de�ned by f(t,y(t)). As stated in Eq. (3.398), the stability prop-
erties can be studied through the Jacobian of the function f .

J(tn,yn) =

(
∂f1(t,y)
∂CE(t)

∂f1(t,y)
∂C(t)

∂f2(t,y)
∂CE(t)

∂f2(t,y)
∂C(t)

)∣∣∣∣∣
t=tn,y(t)=yn

=


 −ClE

(
1− SmaxC[n]

SC50+C[n]

)
SmaxClE

CE [n]SC50

(SC50+C[n])2

− 1
V

C[n]Q2
Hafu(C[n]+Km)

(aCE [n]fu+C[n]QH+KmQH)2 − 1
V
CE [n]QHafu(KmQH+CE [n]afu)
(aCE [n]fu+C[n]QH+KmQH)2




(3.439)
Remind that the condition for the explicit Euler method to be stable was that
|1 + hλ| ≤ 1 where λ is any of the eigenvalues of J(tn,yn). It is easy to show
that this condition is equivalent to

Ts = h ≤ −Re{λ}
‖λ‖2 (3.440)

Figs. 3.21 and 3.22 show the real part of the two eigenvalues of J(tn,yn) and
the maximum sampling rate allowed at each moment. As it should, the two
eigenvalues have negative real parts (otherwise, the system would not be stable;
the drug concentration would grow inde�nitely which does not make sense in a
pharmaceutical setting). As stated in Fig. 3.22, the sampling rate cannot be
larger than 1.92 if we want to use the explicit Euler scheme in a stable way.
Interestingly, before one hour (approximately) the two eigenvalues are complex
conjugates of each other, while beyond one hour they are not anymore. This
has a number of implications in the properties of the dynamic system and it is
related to bifurcation theory. This theory is beyond the scope of this thesis and
the interested reader is referred to Hirsch et al. (2013).

The other aspect we have been discussing in this section is accuracy. Fig.
3.23 shows the order of magnitude of each one of the three �rst terms in the
Taylor expansion of the concentration C(t) (it shows the logarithm in base 10

of |C(t)|,
∣∣∣hdC(t)

dt

∣∣∣ and
∣∣∣h2

2
d2C(t)
dt2

∣∣∣). At the sight of this �gure we can safely state

that the second order terms are much smaller (2 orders of magnitude smaller)
than the �rst order terms, and consequently, it is safe to use the explicit Euler
method to discretize the continuous system. However, if we still wanted a larger
accuracy we should have used an order 2 or higher numerical scheme.

3.7.2 Sensitivity and identi�ability

Along the thesis we have concentrated on establishing a model that represents
our data and estimating its parameters. Let's say we already got an estimate
of those parameters. In the Statistical literature, this is called a point estimate.
In this section we address the question �how sure can I be that these are the
true parameters and not others?�. This question can be answered in two ways:

1. If I change a little bit the parameters, does my response change a lot?
This question is answered by a sensitivity analysis (Saltelli et al., 2004).
We study which is the variation of the measurements (normally concen-
trations) if we change the parameters. We will discover that there are
parameters that are very sensitive and parameters that are not sensitive
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Figure 3.23: Order of magnitude of each one of terms in the Taylor expansion
of C(t).

at all. These latter are specially bad news, because that means that we
can change the parameter in a wide range and still do not see any signi�c-
ant variation in the drug concentrations. Sensitivity analysis is something
that has already been addressed by the pharmaceutical literature (Bon-
ate, 2011)[p. 564], (Kimko and Du�ull, 2003)[p. 153], (Parrott and Lavé,
2002), although except in a few exceptions it is restricted to a static, linear
analysis. We will show how sensitivity changes over time and how the lin-
ear approach cannot predict the correct behaviour of non-linear systems.
We will also perform a second-order approach, in which we will pose the
question if I change one parameter, can I move another parameter in a
di�erent direction to compensate?

2. If I change a little bit the measurements, do my parameters change a
lot? This is the reverse question. We can imagine that the uncertainty
(measurement noise) that we have in our observed variables translate into
an uncertainty in the model parameters. When we perform a model �t-
ting with a standard pharmacokinetics program, it reports the variance
of each parameter. We will show that there is a theoretical minimum for
this variance, that is for a certain amount of measurement noise, there
is a minimum amount of variance for a given parameter, no matter how
sophisticated is our estimation method. This is called the Crámer-Rao
bound and it has been largely overlooked in the pharmaceutical literature
(Ette and Williams, 2007)[Sec. 5.2.4.3].
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From parameters to measurements

Traditional sensitivity analysis in pharmacokinetics has concentrated on the
e�ect of a given parameter on drug concentration using closed-form formulas
(Bonate, 2011)[p. 564],(Kimko and Du�ull, 2003)[p. 153]. For instance, let
us consider the closed-form formula of the response with an extravascular dose
(Eq. (3.89)) and reproduced here for convenience

C(t) =
KaDpo

V (Ka +Kd)− Cl
(
e−

Cl
V t − e−(Ka+Kd)t

)
u(t) (3.441)

Linear sensitivity analysis follows from a �rst order Taylor expansion about a
given time point and the realization that C(t) is actually a convenient short-
name for a function that actually depends on t and all the model parameters

C(t,Θ0 + ∆Θ) = C(t,Θ0) +
p∑
i=1

∂C(t,Θ)
∂Θi

∣∣∣
t,Θ0

∆Θi +O(‖∆Θ‖2) (3.442)

The term ∂C(t,Θ)
∂Θi

∣∣∣
t,Θ0

is the so-called sensitivity index, that is normally taken

in absolute value since at this point we do not care if the function increases or
decreases when the parameter increases. In this particular case, we have

SDpo(t) =
∣∣∣∂C(t)
∂Dpo

∣∣∣ =
∣∣∣ Ka
V (Ka+Kd)−Cl

(
e−

Cl
V t − e−(Ka+Kd)t

)∣∣∣
SKa(t) =

∣∣∣∂C(t)
∂Ka

∣∣∣ =
∣∣∣ Dpo
V (Ka+Kd)−Cl

∣∣∣
∣∣∣
(
e−

Cl
V t − e−(Ka+Kd)t

)(
1− 1

V (Ka+Kd)−Cl

)

+Kate
−(Ka+Kd)t

∣∣
SKd(t) =

∣∣∣∂C(t)
∂Kd

∣∣∣ =
∣∣∣ DpoKa
V (Ka+Kd)−Cl

∣∣∣
∣∣∣te−(Ka+Kd)t −

(
e−

Cl
V t − e−(Ka+Kd)t

)
V

V (Ka+Kd)−Cl

∣∣∣
SCl(t) =

∣∣∣∂C(t)
∂Kd

∣∣∣ =
∣∣∣ DpoKa
V (Ka+Kd)−Cl

∣∣∣
∣∣∣ tV e−

Cl
V t +

(
e−

Cl
V t − e−(Ka+Kd)t

)
V

V (Ka+Kd)−Cl

∣∣∣
SV (t) =

∣∣∣∂C(t)
∂Kd

∣∣∣ =
∣∣∣ DpoKa
V (Ka+Kd)−Cl

∣∣∣
∣∣∣CltV 2 e

−ClV t +
(
e−

Cl
V t − e−(Ka+Kd)t

)
1

V (Ka+Kd)−Cl

∣∣∣
(3.443)

An important aspect of this sensitivity analysis is that sensitivity has a strong
dependence on time. This is easly seen in Fig. 3.24 in which we see the time
dependence of all these sensitivities for Dpo = 10 mg, Cl = 3 L/h, V = 10
L, Ka = 0.6 h−1, Kd = 1.8 h−1. The �rst 5-6 hours is the region with larger
sensitivity and where these parameters are more accurately determined.

In the previous experiment Dpo and V are apparently the most di�cult
parameters to determine. This is simply because their nominal values are much
larger than the rest. To account for this fact, the normalized sensitivity index
has been de�ned (Kimko and Du�ull, 2003)[p. 153] as

S̃Θi(t) =
∣∣∣∂C(t)/C(t)

∂Θi/Θi

∣∣∣ =
∣∣∣ Θi
C(t)

∂C(t)
∂Θi

∣∣∣ =
∣∣∣ Θi
C(t)

∣∣∣SΘi(t) (3.444)

Although mathematically appealing because there is a double normalization, it
gives the false impression that parameters a�ect equally at all times (see Fig.
3.25). For instance, note how S̃Dpo is a constant; however, it does not equally
a�ect the drug concentration just after administration than after a long period.

Instead we propose to normalize only by the parameter value (as is done in
other �elds like �lter design with the Q factor (Siebert, 1985)[p.497]); see Fig.
3.26.

S̃Θi(t) = |Θi|SΘi(t) (3.445)
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Figure 3.24: Sensitivity index for each one of the parameters of the oral dose.
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Figure 3.26: Singly normalized sensitivity index for each one of the parameters
of the oral dose.

This normalization is more in accordance with the Taylor expansion since all we
are doing is normalizing the variations of the parameters to set them in unitary
changes.

C(t,Θ0 + ∆Θ) = C(t,Θ0) +
p∑
i=1

∂C(t,Θ)
∂Θi

∣∣∣
t,Θ0

Θi
∆Θi
Θi

+O(‖∆Θ‖2)

(3.446)
Now, it is clearly seen that the most important parameter is the amount of

drug in the oral dose and that as time goes on, the e�ect of parameter changes
on the concentration is more and more di�cult to see due to the measurement
noise. Interestingly, we see that there are moments at which the sensitivity may
vanish (for instance, the sensitivity to the distribution volume vanishes at about
4 hours; this means that if we have to determine the distribution volume using
only samples at about 4 hours, we would have a huge variability).

All the sensitivity analysis described so far can be named linear sensitivity

because it has been developed after linearizing the closed-form expression of the
drug concentration. Alternatively, recent advances in sensitvity analysis have
introduced the concept of variance based sensitivity analysis (Saltelli et al., 2004)
that has been translated into pharmacokinetics in the following way (Kimko and
Du�ull, 2003)[p. 153]

Var{C(t)} =
p∑
i=1

(
∂C(t,Θ)
∂Θi

∣∣∣
t,Θ0

)2

Var{Θi} (3.447)

However, this decomposition is only an approximation of the real variance be-
cause it assumes that the di�erent parameters are independent of each other
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(that is, when we estimate one parameter, this estimate is not a�ected by errors
in the estimation of other parameters). But this is not usually the case because
the regression process normally compensates errors in one variable by changing
its estimate for another variable. This can be done because the Hessian of the
concentration is not a diagonal matrix. The Hessian is de�ned as shown below

H(t) =




∂2C(t)
∂Θ2

1

∂2C(t)
∂Θ1∂Θ2

... ∂2C(t)
∂Θ1∂Θp

∂2C(t)
∂Θ1∂Θ2

∂2C(t)
∂2Θ2

... ∂2C(t)
∂Θ2∂Θp

... ... ... ...
∂2C(t)
∂Θp∂Θ1

∂2C(t)
∂Θp∂Θ2

... ∂2C(t)
∂2Θp




(3.448)

We may de�ne the normalized Hessian as a matrix such that is ij-th index is
H̃ij(t) = Hij(t)ΘiΘj . Then, when we consider the second order terms in the
Taylor expansion we have

C(t,Θ0 + ∆Θ) ≈ C(t,Θ0) +
p∑
i=1

∂C(t,Θ)
∂Θi

∣∣∣
t,Θ0

Θi
∆Θi
Θi

+

1
2

p∑
i=1

p∑
j=1

∂2C(t,Θ)
∂Θi∂Θj

∣∣∣
t,Θ0

ΘiΘj
∆Θi
Θi

∆Θj
Θj

(3.449)

It is more di�cult to show how the Hessian evolves over time. However, let us
inspect the normalized Hessian at a given time point, for instance, 1 hour after
giving the oral dose:

H̃(60) =




0.0000 0.1482 −0.1126 −0.0370 −0.1488
0.1482 −0.0629 −0.0762 −0.0318 −0.1165
−0.1126 −0.0762 0.1090 0.0156 0.0969
−0.0370 −0.0318 0.0156 0.0085 0.0654
−0.1488 −0.1165 0.0969 0.0654 0.2321




(3.450)
O�-diagonal, large values in this matrix indicate that the two parameters may
compensate each other. For instance, the following parameters can have a strong
cross-talk with each other: Dpo and V (-0.1488), Dpo and Ka (0.1482), Dpo and
Kd (-0.1126), Ka and V (-0.1165), Ka and Kd (-0.0762), Kd and V (0.0969),
and Cl and V (0.0654).

Additionally, there is a key aspect that cannot be overlooked. The sensitivity
analysis is only valid in a neighbourhood of the current parameters. As soon as
we get away from them, the Taylor expansion is no longer valid. Let us take as
an example the sensitivity to the distribution volume of the drug concentration
at 1 hour after adminitering the oral dose. At this point, the Taylor expansion
gives

C(60, V + ∆V ) ≈ C(60)− SV (60)∆V (3.451)

Since we know that concentration measurements can be accurate up to 15%,
we may be interested in realizing which is the ∆V range that produces such a
change. Solving for ∆V , we get

∆V =
C(60)(1−K)

SV (60)
(3.452)

where K is 1.15 or 0.85 depending on whether we are interested in positive
or negative deviations from the nominal concentration. In this particular case
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∆V = 1.86 meaning that V = 10 + 1.86 L is predicted to result in a change
of -15% in the nominal concentration, and V = 10 − 1.86 L is predicted to
result in a change of +15% in the nominal concentration. However, in reality
it results in a change of -13.08% and 17.55%. This is because the relationship
between C(t) and V is non-linear, and the linearized Taylor expansion cannot
fully account for the non-linear e�ects of V on C(t). Additionally, we may be
interested not only at a particular time point (t = 60) but in the whole time
range and wonder which is the range of V in which the drug concentration
at any time does not depart from its nominal value more than 15% in each
direction. For doing so, we simply have to simulate the model with di�erent
distribution volumes and check which ful�ll this condition. We easily identify
that the distribution volume must be between 9.74 and 10.24 L (note that the
∆V range is assymetric, ∆V ∈ [−0.26, 0.24], due to the non-linearity).

All this analysis means that a careful prediction of the variance of C(t) or
the sensitivity of C(t) to its parameters cannot be oversimpli�ed. The approach
that is put forward in this thesis is a Monte-Carlo simulation of the drug concen-
tration curve (Binder and Heermann, 2010). Ideally, the Montecarlo simulation
should take parameter values from the distribution observed in a population
PKPD study. Additionally, Monte-Carlo simulation solves the problem that all
the previous sensitivity analysis needed closed-form formulas, while the meth-
odology defended in this thesis is based on sets of di�erential equations. In
Monte-Carlo simulation, we vary the model parameters in a known region (for
instance, ±1% of their nominal value) and see how these variations translate
into di�erent C(t) curves. Based on these simulations we may establish all kind
of distributional properties. Fig. 3.27 shows an example of some of the simu-
lated curves. Note how the variance di�ers at di�erent time points (in the peak
the concentration varies more than anywhere else).

From measurements to parameters

In this section we wonder how much information is actually present in our
measurements in order to estimate the system parameters. During our discus-
sion we will learn that there is a lower bound for the variance of each parameter.
Additionally we will learn how to design the data collection strategy so as to
maximize the amount of information.

Fisher's information is a way of measuring how much information there is
in a random variable X with respect to a set of model parameters Θ. For the
moment let us assume that X is a univariate random variable. It is de�ned in
terms of the conditional probability function of X given Θ

I = E

{(
∂ log f(x|Θ)

∂Θ

)2
∣∣∣∣∣Θ
}

=

∫ ( ∂f(x|Θ)
∂Θ

f(x|Θ)

)2

f(x|Θ)dx (3.453)

which we may understand in the following way. Let's say that we have an
observed value x. This value brings a lot of information if x is in a region of
low likelihood ( 1

f(x|Θ) ) and there is some variation of likelihood in that area

(it does not bring much information in a very �at area close to 0; ∂f(x|Θ)
∂Θ ).

Additionally, we do not care whether this variation is positive or negative, (·)2.
It can be proven (Cover and Thomas, 2006) that we may also compute Fisher's
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Figure 3.27: Several simulated curves varying the model parameters within a
neighbourhood of their nominal values.
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information as

I = V ar

{
∂ log f(x|Θ)

∂Θ

}
= −E

{
∂2 log f(x|Θ)

∂Θ2

∣∣∣∣Θ
}

(3.454)

The function ∂ log f(x|Θ)
∂Θ receives the name of score function, that is, in its turn,

another random variable.
Let us consider now n independent and identically distributed (i.i.d.) vari-

ables X1, X2, ..., Xn. Each one with a marginal distribution f(x|Θ). The
Fisher's information of the whole dataset about Θ is n times the information of
a single observation (Cover and Thomas, 2006):

In = nI (3.455)

Crámer-Rao inequality states that the variance of any unbiased estimator of the
model parameters Θ̂ based on the n observations has a variance such that

V ar{Θ̂} ≥ 1

In
(3.456)

Consequently, Fisher's information has a very important meaning, it sets a
lower bound to the variance of any estimate of the model parameter. No matter
how �clever� we design our estimation procedure, there is always a lower bound
on the variance of our estimate. In fact, an estimator that reaches this lower
bound is said to be e�cient (e.g., the mean estimate of the mean of a Gaussian

distribution, µ̂ = 1
n

n∑
i=1

xi is an e�cient estimator). Another interesting result is

that as n goes to in�nity, the asymptotic distribution of a Maximum Likelihood
Estimate of the parameters Θ is distributed as

Θ̂MLE ∼ N
(

Θtrue,
1

In

)
(3.457)

We can extend these results to multiple parameters. Fisher's information be-
comes a Fisher's information matrix de�ned as

I = E

{
∂ log f(x|Θ)

∂Θ

(
∂ log f(x|Θ)

∂Θ

)T ∣∣∣∣∣Θ
}

(3.458)

so that the ij-th element is

Iij = E

{
∂2 log f(x|Θ)

∂Θi∂Θj

∣∣∣∣Θ
}

(3.459)

The Crámer-Rao inequality becomes

V ar{Θ̂i} ≥ (I−1)ii (3.460)

that is the lower bound of the variance of each estimator is given by the diagonal
of the inverse of the information matrix. And the asymptotic distribution of the
maximum likelihood estimate becomes

Θ̂MLE ∼ N (Θtrue, In) (3.461)
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With this asymptotic distribution we may estimate con�dence intervals for
ΘMLE as ellipsoids centered on Θ̂MLE . In fact, Fisher's information matrix
can be interpreted as the expected Hessian of the log-likelihood function at
Θ̂MLE (Komorowski et al., 2011). Let us refer as λi to the eigenvalues of this
matrix. Then, there exists a change of variable such that the log-likelihood
around the true estimate can be calculated as

log f(Θ̂MLE + ∆Θ) ≈ log f(Θ̂MLE)− 1

2

p∑

i=1

λi∆Θ2
i (3.462)

So we see that the higher the eigenvalues of I, the more robust our estimate is;
or equivalently, the more information carry the observed samples on the system
parameters. In fact, the number of non-zero eigenvalues of I is the number of
system parameters that can be identi�ed.

Based on Fisher's information matrix we may de�ne sensitivity in a new
way. Let us diagonalize this matrix as

I = PDP−1 (3.463)

The new set of parameters Θ′ = P (Θ − Θ̂) has D as its Fisher's information
matrix (Komorowski et al., 2011). We may regard

Sij = λ
1
2
i Pij (3.464)

as the contribution of parameter Θj to the information on Θ′i. If we sum all the
contributions for all i's we have a sensitivity value de�ned for the j-th parameter:

Sj =

p∑

i=1

S2
ij (3.465)

This is a very important result because it de�nes a sensitivity for a system
parameter not based on how the concentration change by varying the parameter,
but based on the actual samples we have observed, and this sensitivity increases
as we add more samples to our measurements.

Two interesting matrices in the context of pharmaceutical modeling are the
Fisher's information matrices of the univariate Gaussian (N(µ, σ2))

I =

(
1
σ2 0
0 1

2σ4

)
(3.466)

and the multivariate Gaussian whose mean depends on a set of parameters but
its covariance does not N(µ(Θ),Σ)

Iij =

(
∂µ(Θ)

∂Θi

)T
Σ−1 ∂µ(Θ)

∂Θj
(3.467)

This is the most common case encountered in Least Squares estimations. In
this case the multivariate Gaussian is the presumed distribution of the residuals
after performing the �tting. Let us assume that Θ̂ is our estimate of the model
parameters. The residual of the �tting for a particular point (ti, Ci) is

εi = Ci − C(ti, Θ̂) (3.468)
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Since we have single realization of this random variable, we estimate its mean
as

µi = Ci − C(ti, Θ̂) (3.469)

and its variance as the variance of the �tting

σ2
i = σ2

ε (3.470)

Then we can rewrite Eq. (3.467)

Iij = 1
σ2
ε

N∑
n=1

∂(Cn−C(tn,Θ̂))
∂Θi

∂(Cn−C(tn,Θ̂))
∂Θj

= 1
σ2
ε

N∑
n=1

∂C(tn,Θ̂)
∂Θi

∂C(tn,Θ̂)
∂Θj

(3.471)

We need to calculate the terms ∂C(tn,Θ̂)
∂Θi

, but the dependence of the drug con-
centration on the system parameters is through the di�erential equation

dC

dt
= f(t, C,Θ) (3.472)

where for simplicity we have dropped the dependence of the drug concentration,
C, on t and Θ, at any moment we may show any of the depedencies again to
highlight them. If we now di�erentiate the left hand side of the equation above
with respect to Θi we have

∂

∂Θi

(
dC

dt

)
=

d

dt

(
∂C

∂Θi

)
(3.473)

where we have assumed that C(t) is a C2 function (that is, it is continuous,
its �rst derivative is continuous, and its second derivative is continuous) when
we have interchanged the di�erentiation order (Clairaut's Theorem). Now, we
di�erentiate the right hand side:

∂

∂Θi
(f(t, C,Θ)) =

∂f

∂C

∂C

∂Θi
+

∂f

∂Θi
(3.474)

Let us de�ne

sΘi(t) =
∂C(t)

∂Θi
(3.475)

Then, the di�erentiation of Eq. (3.472) with respect to Θi can be written as

dsΘi(t)

dt
=
∂f

∂C
sΘi(t) +

∂f

∂Θi
(3.476)

that is an Ordinary Di�erential Equation with the initial value sΘi(t0) = 0.
Summarizing, all we have to do is:

1. Perform the Least Squares �tting to �nd Θ̂ and σ2
ε .

2. Solve numerically the di�erential equation system

dsΘi (t)

dt = ∂f
∂C sΘi(t) + ∂f

∂Θi
i = 1, 2, ..., p (3.477)

presuming that the system is at rest before being excited (C(t) = sΘi(t) =
0 ∀t < 0,∀i = 1, 2, ..., p) particularizing the system parameters with
those found during the Least Squares.
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3. Calculate Fisher's information matrix as

Iij =
1

σ2
ε

N∑

n=1

sΘi(tn)sΘj (tn) (3.478)

4. Calculate the number of identi�able parameters by analyzing the eigen-
values of I.

5. Calculate the sensitivity for each parameter as in Eq. (3.465).

Interestingly, using Fisher's information matrix we can even design where to
perform the concentration measurements to maximize their information content
about each one of the parameters. This can be done through the Generalized
Sensitivity Function (Thomaseth and Cobelli, 1999; Batzel et al., 2006; Banks
et al., 2009). It has been shown that we can reduce the variance associated
to each system parameter by placing samples at the time intervals with large
generalized sensitivity (Banks et al., 2007). The Generalized Sensitivity Analysis
is de�ned at a given time tn0

as

gsΘi(n0) =
1

σ2
ε

n0∑

n=0

(I−1sΘ(tn))isΘi(tn) (3.479)

where sΘ(tn) is a vector with all the sensitivities computed in the previous ana-
lysis. It can be easily shown that gsΘi(N) = 1, that is, all generalized sensitiv-
ities go to 1 at the end of the observed period, this is called the �Forced-to-one�
artifact (Banks et al., 2007) and one should be careful of not overinterpret-
ing some high values close to the end of the analyzed period. Note that the
generalized sensitivity can be computed recursively as

gsΘi(n0) = gsΘi(n0 − 1) +
1

σ2
ε

(I−1sΘ(tn0
))isΘi(tn0

) (3.480)

Let us illustrate next how to apply all this theory to a speci�c case in PKPD
modelling. Let us use the same example of the drug concentration in plasma fol-
lowing an oral dose. However, we now use the constitutive di�erential equations
(see Section 3.3.3) instead of its closed-form solution:

dAg(t)
dt = −(Ka +Kd)Ag(t) +Dpo(t)

V dC(t)
dt = −ClC(t) +KaAg(t)

(3.481)

Fig. 3.28 shows the samples taken and the �tted model.
Let us formalize the previous equations as

dAg(t)
dt = fAg (t, Ag(t), C(t), Dpo(t),Θ)
dC(t)
dt = fC(t, Ag(t), C(t), Dpo(t),Θ)

(3.482)

Now we have to write the di�erential equations for the sensitivity. As we showed
in Eq. (3.476), we may calculate the di�erential equation for the sensitivity of
Ag(t) to the i-th parameter, sAgΘi

as

ds
Ag
Θi

dt =
∂fAg
∂Ag

s
Ag
Θi

+
∂fAg
∂C sCΘi +

∂fAg
∂Dpo

s
Dpo
Θi

+
∂fAg
∂Θi

(3.483)
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Figure 3.28: Drug concentration over time (samples and �tted model).

Similarly for C(t). In this particular case it gives

ds
Ag
Ka

(t)

dt = −Kas
Ag
Ka

(t)−Ag(t)
ds
Ag
Kd

(t)

dt = −Kds
Ag
Kd

(t)−Ag(t)
dsCKa (t)

dt = Ka
V s

Ag
Ka

(t)− Cl
V s

C
Ka

(t) + 1
V Ag(t)

dsCKd
(t)

dt = Ka
V s

Ag
Kd

(t)− Cl
V s

C
Kd

(t)
dsCCl(t)
dt = −ClV s

Ag
Cl (t)− 1

V C(t)
dsCV (t)
dt = −ClV sCV (t) + Cl

V 2C(t)− Ka
V 2Ag(t)

(3.484)

Figures 3.29 and 3.30 show the sensitivity of Ag(t) and C(t) to all parameters.
Note that the results in Fig. 3.30 are slightly di�erent to those in Fig. 3.24
because the ones in Fig. 3.24 did not take into account the interplay between
the sensitivitis of Ag(t) and C(t).

At this point we can calculate Fisher's information matrix, we will do it only
for the drug concentration (the order is Ka, Kd, Cl, V ).

I = 106




9.1813 −2.3869 −0.3270 −0.0108
−2.3869 1.5674 0.4615 0.0033
−0.3270 0.4615 0.1895 0.0005
−0.0108 0.0033 0.0005 0.0000


 (3.485)

Its eigenvalues are 9.89 ·106, 1.03 ·106, 2.41 ·104, 2.34 ·10−2. It does not have any
null eigenvalue but it is very ill-conditioned (the ratio between the largest and
the smallest eigenvalues is very large). It would seem that there is a parameter
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Figure 3.29: Sensitivity of Ag(t) to its parameters.
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Figure 3.31: Generalized sensitivity of C(t) to its parameters.

(V ) that cannot be identi�ed. However, this is not correct due to the very
di�erent ranges of the parameters. Let us analyze the Crámer-Rao lower bound
for each one of the estimates. For doing so, we calculate the inverse of the
matrix above and keep its diagonal. In the following table we report the lower
bound as well as its coe�cient of variation (standard deviation divided by the
nominal value of the parameter)

Parameter Variance lower bound Coe�cient of variation (%)
Ka 1.95 · 10−5 44.20
Kd 3.77 · 10−5 20.46
Cl 9.00 · 10−5 18.97
V 22.62 47.56

Finally, we calculate the generalized sensitivity functions to learn where we
can put more samples so that they are maximally informative. The idea is to
place samples at time points where the slope of the generalized sensitivity is
positive and high. Fig. 3.31 shows the generalized sensitivity of C(t) to the
di�erent parameters.



Chapter 4

Results

In this chapter we present a number of applications of the methodology de-
veloped along the thesis. These are only examples of its power and its applic-
ations are not restricted to the examples given in this chapter. Most of the
examples are taken from the pharmaceutical literature which, by its traditional
approach, are normally rather limited in the complexity they can a�ord.

4.1 Pharmacokinetics

Griseofulvin is an antifungal drug used to treat fungal infections of the skin. It
is produced by the mold Penicillium griseofulvum and is administered orally. It
binds to keratin in keratin precursor cells of the host and when his hair or skin
is replaced by the keratin-griseofulvin complex it is transferred to the infectious
fungus. Then, it binds to the microtubule of the fungus cells and interferes with
mitosis. A human subject was given 100mg of griseofulvin intravenously and
500mg orally. Table 4.1 shows the plasma concentration values at di�erent times
after administration (Rowland et al., 1968). We are interested in the system
parameters governing the kinetics of this drug.

Let us follow the methodology developed in this thesis. First, we write the
di�erential equations governing the system. Let us assume a two-compartments
model (see Sections 3.3.3 and 3.3.4).

dAg(t)
dt = −KaAg(t) +Dpo(t)

V dC(t)
dt = KafAg(t)− ClC(t)− Clp(C(t)− Cp(t)) +Div(t)

Vp
dCp(t)
dt = Clp(C(t)− Cp(t))

(4.1)

In this model we have integrated both kinds of doses, extravascular and in-
travascular. This is a feature that cannot be done with the traditional pharma-
cokinetics approach. The experiment with an intravascular dose (Experiment
1) can be modelled with the double input

Dpo,1(t) = 0
Div,1(t) = 100δ(t)

(4.2)

While the experiment with an oral dose (Experiment 2) can be modelled with

119
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Time (h) Conc. (mg/L) i.v. Conc. (mg/L) p.o.
0 0 0
1 1.4 0.40
2 1.1 0.95
3 0.98 1.15
4 0.90 1.15
5 0.80 1.05
7 - 1.20
8 0.68 1.20
12 0.55 0.90
24 0.37 1.05
28 - 0.90
32 0.24 0.85
35 - 0.80
48 0.14 0.50

Table 4.1: Concentration in plasma of griseofulvin after an intravenous bolus or
an oral dose.

the double input

Dpo,2(t) = 500δ(t)
Div,2(t) = 0

(4.3)

We now discretize the di�erential equations (�rst, the homogeneous equation
and then we add the inhomogeneous term)

Ag[n]−Ag [n−1]
Ts

= −KaAg[n− 1] +Dpo[n]

V C[n]−C[n−1]
∆t = KafAg[n− 1]− ClC[n− 1]− Clp(C[n]− Cp[n− 1]) +Div[n]

Vp
Cp[n]−Cp[n−1]

∆t = Clp(C[n− 1]− Cp[n− 1])
(4.4)

and reorganize the terms to produce a useful recursion

Ag[n] = (1−Ka∆t)Ag[n− 1] +Dpo[n]

C[n] =
(
1− Cl∆t

V

)
C[n− 1] + Ka∆t

V Ag[n− 1]− Clp∆t
V (C[n− 1]− Cp[n− 1])+

1
V Div[n]

Cp[n] = Cp[n− 1] +
Clp∆t
Vp

(C[n− 1]− Cp[n− 1])

(4.5)
Interestingly, we can use both experiments at the same time to estimate all
model parameters Ka (absorption constant), f (bioavailability), V (distribution
volume in the central compartment), Cl (clearance from the �rst compartment),
Vp (distribution volume in the second compartment), Clp (transfer constant
between the �rst and second compartments). This is so because in our setting
the optimizer proposes a set of values for the three parameters and checks which
is the likelihood of these parameters. Then, using this information proposes a
new set of values till the maximum likelihood parameters are found. Note
that this is not possible in the traditional pharmacokinetics approach, each
experiment is treated separately and a consensus set of parameters is produced
from the di�erent parameter estimates. If we �t the parameters to the data
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Figure 4.1: Concentration measurements and corresponding �tted values for
intravenous (IV) and extravascular (PO) administration.

we get Ka = 0.18h−1, f = 37.82%, V = 52.06L, Cl = 2.77L/h, Vp = 70.21L,
Clp = 13.90L/h (see Fig. 4.1).

4.2 Clinical pharmacokinetics

Vancomycin is a glycopeptide antibiotic rather e�ective for Gram-positive bac-
teria that can be isolated from the bacteria Amycolatopsis orientalis. It is nor-
mally used in patients with bacterial infections resistant to other antibiotics. It
acts by inhibiting cell wall synthesis by: 1) preventing the polymerization of the
N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) in the backbone
of the cell wall; and 2) preventing cross-linking of the cell wall polymers (Cho
et al., 2007). Since it is a large molecule (its molecular weight is 1448 g/mol)
it used to be non-dyalizable. Boehler et al. (1992) studied the dialyzability of
vancomycin with high-�ux, high molecular weight cuto� membranes. A patient
was infused 1g of vancomycin during 1 hour and then was hemodialyzed on
days 3, 5 and 7 (periods of hemodialysis: 66-70h, 110-114h, 158-162h). Table
4.2 shows the plasma concentration of vancomycin for a number of time points.

We will develop a three-compartments model (central connected to peri-
pheral 1, and peripheral 1 connected to peripheral 2). This problem is interest-
ing because clearance from the central compartment has two di�erent constants
(one when the patient is not being hemodialyzed and another during hemodia-
lysis). Let us de�ne a function, dial(t) that takes the value 1 during hemodialysis
and 0 otherwise. If t is expressed in hours, this function can be analytically be
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Time (min) Vancomycin concentration (mg/L)
1 31.3
4 22.0
6 18.7
24 12.5
66 10.0
66.5 8.65
67.5 8.02
70 6.40
71 8.01
73 8.50
76 8.74
110 7.33
114 5.22
120 6.72
158 5.64
162 3.74
167 4.75

Table 4.2: Concentration in plasma of vancomycin after an intravenous infusion
with 3 hemodialysis periods.

written as

dial(t) = (u(t−66)−u(t−70))+(u(t−110)−u(t−114))+(u(t−158)−u(t−162))
(4.6)

With this function we may setup the following continuous system

V dC(t)
dt = −(Cl + Cldialdial(t))C(t)− Clp1(C(t)− Cp1(t)) +Div(t)

Vp1
dCp1(t)
dt = Clp1(C(t)− Cp1(t))− Clp2(Cp1(t)− Cp2(t))

Vp2
dCp2(t)
dt = Clp2(Cp1(t)− Cp2(t))

(4.7)
With this time varying clearance, it is impossible to get a closed-form solution
for the concentration in the main compartment.

The discretization of this system yields the following recursion

C[n] = C[n− 1]− (Cl+Cldialdial[n−1])∆t
V C[n− 1]− Clp1∆t

V (C[n− 1]− Cp1[n− 1])+
1
V Div[n− 1]

Cp1[n] = Cp1[n− 1] +
Clp1∆t
Vp1

(C[n− 1]− Cp1[n− 1])− Clp2∆t
Vp1

(Cp1[n− 1]− Cp2[n− 1])

Cp2[n] = Cp2[n− 1] +
Clp2∆t
Vp2

(Cp1[n− 1]− Cp2[n− 1])

(4.8)

After �tting the parameters we get V = 29.55L, Cl = 0.2501L/h, Cldial =
2.8774L/h, Clp1 = 4.3180L/h, Vp1 = 35.29L, Clp2 = 0.6245L/h, Vp2 = 13.08L.
See Fig. 4.2 to see the �tting.
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Figure 4.2: Concentration measurements and corresponding �tted values in a
problem with hemodialysis.

4.3 Toxicokinetics

Monomethyl Hydrazine (MMH) is a toxic, volatile hydrazine believed to be the
main responsible of the toxicity of the fungus Gyromitra esculenta. It is also
used as rocket propellant and the National Institute of Occupational Safety
and Health (NIOSH) has speci�c recommendations and maximum limits for
exposure. In particular, it forbids to be exposed to a concentration higher than
8·10−5 mg/L for more than 2 hours or spills on the skin with a concentration
higher than 3.5·10−4 mg/L. MMH is also thought to be carcinogen.

Six groups of pregnant rats were infused MMH with a constant infusion rate
of values 0, 0.1, 0.2, 0.3 and 0.6 mg/L. They were infused from day 6 to 13 of
gestation, and the o�spring were evaluated at day 21. The survival rate of each
group is shown in the Table 4.3.

Using this data we may model survival rate as a sigmoid function (see Section
3.5.2)

SurvivalRate = S0

(
1− CαMMH

LDα
50 + CαMMH

)
(4.9)

Fitting the data results in S0 = 82.25%, α = 6.692, and LD50 = 0.3489 mg/L
(the �tting has an adjusted coe�cient of determination of 0.9927). LD50 is the
dose at which 50% of the rat o�springs die because of MMH.We may extrapolate
this value to the case of humans. For doing so, we would need to calculate (see
Section 3.3.7)

LDman
50 = LDrat

50

(
BWman

BWrat

)b
(4.10)
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MMH concentration (mg/L) Survival rate (%)
0 86.4

0.072 80.0
0.21 77.3
0.31 57.1
0.5 7.00
0.6 0.0

Table 4.3: Survival rate of the o�spring of pregnant rats with di�erent levels of
MMH.

Time (min) MMH concentration (mg/L)
5 2.71
30 2.9
60 4.08
90 3.75
120 3.4
150 2.21
180 2.24
210 1.52
240 1.38
270 0.96
300 0.95
330 0.88
360 0.66
390 0.64
420 0.42
450 0.38
480 0.305

Table 4.4: Concentration of MMH in plasma after a fast infusion.

Although we do not have access to any allometric study to correctly estimate b,
assuming it is b = 1, we would have

LDman
50 = 0.3489

70

0.25
= 97.7mg/L (4.11)

We see that the NIOSH limit is at least 5 orders of magnitude below.

In order to characterize kinetically MMH, 12 rats were infused during 3
minutes a total of 2.19 mg of MMH. 3 or 4 plasma samples were extracted from
each rat and the values were averaged to produce the plasma concentration
shown in Table 4.4 (each sample is the average of 3 or 4 animals).

For this compound it is known that part of the MMH infused is sequestered
in the stomach and then released back into the blood stream at a di�erent rate.
Let us call f the fraction of the infused dosis that is sequestered. We may
describe the system calculating the MMH concentration in blood, C, and the
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Figure 4.3: Concentration measurements and corresponding �tted values of the
MMH concentration in plasma.

sequestered amount As using the following di�erential equations:

V dC(t)
dt = −ClC(t) +KaAs(t) + (1− f)Div(t)

dAs(t)
dt = −KaAs(t) + fDiv(t)

(4.12)

Note that the methodology developed in this thesis is capable of splitting the
input dose in two di�erent fractions undergoing di�erent physiological processes.
The corresponding discrete system is given by

C[n] = C[n− 1]− Cl∆t
V C[n− 1] + Ka∆t

V As[n− 1] + 1
V (1− f)Div[n− 1]

As[n] = As[n− 1]−Ka∆tAs[n− 1] + fDiv[n− 1]
(4.13)

The �tted parameters are V = 0.326L, Cl = 0.15L/h, f = 66.46%, Ka =
1.15h−1 (see Fig. 4.3).

4.4 Pharmacodynamics

Cortisol is the main steroid hormone secreted by the adrenal cortex in mam-
malians. Adrenocoricotropic hormone (ACTH) is presumed to stimulate the
production of cortisol. However, cortisol secretion is moderated by an endo-
genous moderator M . Urquhart and Li (1969) performed some experiments to
unveil the interplay between cortisol production, ACTH stimulation and the
endogeneous moderator. For doing so, they infused ACTH at a constant rate
of 1µU/(mL.min) for 1 hour, then 2 µU/(mL.min) during the second hour, and
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Figure 4.4: Concentration measurements and corresponding �tted values for
cortisol under ACTH stimulation.

back to 1 µU/(mL.min) during the third hour. They measured the cortisol
concentration at di�erent time points (see Table 4.5)

The time plot of this concentration clearly shows a rebound when the infusion
rate is changed. This can be successfully modelled by a negative feedback loop
between cortisol and its moderator (see Section 3.5.6). The cortisol and its
moderator are supposed to interact according to the following model

dCcortisol(t)
dt = K0CD

N
ACTH(t)−K1CCmoderator(t)

dCmoderator(t)
dt = K0MCcortisol(t)−K1MCmoderator(t)

(4.14)

where DACTH(t) is the instantaneous ACTH dose. Discretizing the equation
and reorganizing the terms, we arrive at

Ccortisol[n] = Ccortisol[n− 1] +K0C∆tDN
ACTH [n− 1]−K1C∆tCmoderator[n− 1]

Cmoderator[n] = Cmoderator[n− 1] +K0M∆tCcortisol[n− 1]−K1M∆tCmoderator[n− 1]
(4.15)

Figure 4.4 shows the �tted curve. The parameters found are K0C = 19.55h−1,
K1C = 9.88h−1, K0M = 11.11h−1, K1M = 11.50h−1, N = 0.7644.

4.5 Biopharmaceutics

Tolazamide is an oral drug to lower blood glucose level in Diabetes Type II
patients. Its mechanism of action has not yet been clearly established and it
belongs to the family of sulfonylurea hypoglycemic drugs. Welling et al. (1982)
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Time (min) Cortisol concentration (µU/mL)
35 2
40 1.9
46 2
50 2.1
60 2
63 2.25
65 2.95
66 3.45
67 3.55
68 3.45
69 3.75
70 3.55
71 3.75
72 3.87
73 3.8
74 3.8
75 3.6
75 3.65
78 4.25
80 4
82 3.8
83 3.63
85 3.1
91 3.5
96 3.1
101 3.6
105 3.32
110 3.25
115 3.5
122 3.62
123 3.5
123 3.2
125 3.45
126 2.95
127 2.7
128 2.5
129 2.25
131 1.83
132 1.78
133 1.65
134 1.75
136 1.75
138 1.78
140 1.78
142 1.78
144 1.85
146 1.85
151 2
155 2.1
161 2.1
166 2
171 2
176 2

Table 4.5: Concentration in plasma of cortisol during a continuous infusion of
ACTH.
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Time (min) Tolazamide concentration (mg/L)
0 1.3
1 2.8
2 4.4
3 5.7
4 6.6
5 6.6
6 6.8
8 6.6
12 5.5
16 4.6
24 3.1

Table 4.6: Concentration in plasma of tolazamide after administration of a
tolazamide formulation.

studied four di�erent formulations and how it was absorbed using Wagner-
Nelson's method. For one of the formulations they found the tolazamide con-
centration in blood shown in Table 4.6.

Instead of using Wagner-Nelson method, which does not model the absorp-
tion process itself, but only the observed amount of absorbed drug, we will use
the folllowing description of the continuous system (see Section 3.6.3):

dAg(t)
dt = −KaAg(t)

V dC(t)
dt = KaAg(t)− ClC(t)

(4.16)

whose discretization gives the recursion

Ag[n] = Ag[n− 1](1−Ka∆t)
C[n] = C[n− 1]− Cl∆t

V C[n− 1] +Ka∆tAg[n− 1]
(4.17)

Note that we do not know the dosis of the formulation (the data source simply
does not state it, Shargel et al. (2012)[pp. 447]). However, we can estimate
it with our model. The �tted values are Ka = 0.3640h−1, V = 23.45L,Cl =
1.26L/h,A0 = 220.9mg (Tolinase is a commercial brand of Tolazamide, and it
has a recommended dosage of 250mg/day). Fig. 4.5 shows the measured points
as well as the �tted curve.

4.6 Modelling pitfalls

One may incur in many modelling pitfalls unadvertedly. Modelling programs are
not fullproof and do not report of all possible situations. It is the insight of the
researcher and her posterior interpretation what must provide an overall sense
to the numerical results. In the following sections we illustrate some possible
pitfalls. They do not cover all possibilities and are shown only as a caution
warning on the di�culties of modelling.
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Figure 4.5: Concentration measurements and corresponding �tted values cor-
responding to the absorption of a tolazamide formulation.

4.6.1 Low-power or underdetermined models

Warfarin is an anticoagulant used to prevent thrombosis and thromboembolism.
It acts by inhibiting the synthesis of clotting factors II, VII, IX and X, as well
as the regulatory factors protein C, S and Z (Ansell et al., 2008). Warfarin
prevents the carboxylation of the glutamic acid residues of their precursors
that allow these factors to bind to the phospholipid surface of the vascular
endothelium. The enzyme that performs this carboxylation (gamma-glutamil
carboxylase) requires oxidizing at the same time the reduced form of vitamin K.
The oxidized form of vitamin K is then reduced back by the vitamin K epoxide
reductase. Warfarin inhibits this enzyme and, as a consequence, the clotting
factors stay in their precursor form. Warfarin e�ect is measured through the
Prothrombin Complex Activity (PCA) measured in seconds(Pitsiu et al., 1993).
A single intravenous bolus of 5 mg of warfarin was administered to a person.
Table 4.7 shows the PCA at di�erent measurement times.

Let us presume a model for warfarin with a single compartment.

V
dC(t)

dt
= −ClC(t) +Div(t) (4.18)

We may model the inhibitory e�ect of warfarin as a function of its concentration

I(C(t)) =
1

1 +
(
C(t)
IC50

)n (4.19)

Since warfarin is acting on the reduction-oxidation cycle of vitamin K, let us
call Cred the concentration of vitamin K in its reduced form, and Coxi the
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Time (h) PCA (s)
0 124.40
12 92.00
24 56.77
36 40.01
48 40.78
60 42.98
72 53.00
96 77.49
120 99.22
144 100.80

Table 4.7: Prothrombin Complex Activity after a single intravenous bolus of
warfarin.

concentration of vitamin K in its oxidized form.
dCred(t)

dt = k1,oxiI(C(t))Coxi(t)− k1,redCred(t)
dCoxi(t)

dt = k1,redCred(t)− k1,oxiI(C(t))Coxi(t)
(4.20)

But in fact, these two equations are redundant because

Cred(t) + Coxi(t) = CK (4.21)

where CK is the total concentration of vitamin K. In this way we may simplify
the previous equation system to

dCred(t)
dt = k1,oxiI(C(t))(CK − Cred(t))− k1,redCred(t) (4.22)

Finally, we can relate the PCA to the concentration of reduced vitamin K:

PCA(t) = ACred(t) +B (4.23)

Although this line of reasoning is correct and with a physiological background
we only have 10 measurements to determine 9 parameters (V , Cl, IC50, n, CK ,
k1,oxi, k1,red, A and B). The problem is severely ill-posed (it has low-power
in Statistical language). If we had more parameters than measurements, the
problem would be undetermined. In multiple regression it is normally recom-
mended to have a sample size in the order of 50 + 8p (Newton and Rudestam,
1999)[pp.250], being p the number of parameters to estimate. This number of
measurements is seldom encountered in many pharmaceutical studies. A thor-
ough design of the number of samples needed for regression must be based on a
power design (Faul et al., 2009). In fact, we can indirectly evaluate the power
of the model through the Adjusted Coe�cient of Determination (see Section
3.3.2) (Newton and Rudestam, 1999)[pp.251]. When the number of paramet-
ers approaches the number of samples, the model loses its generalization power
(most likely, this model is over�tting the observed data and it does not explain
the underlying physiology).

4.6.2 Incorrect modelling

The case study shown in the previous section was addressed in Gabrielsson and
Weiner (2007)[pp. 925]. In their analysis, they identify that warfarin acts by
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Time (h) Plasma concentration (mg/L)
0.25 91
0.5 120.6
1 100.4
2 128
3 81.5
4 51.6
6 25.6

Table 4.8: Plasma concentration of felodipine after an oral dose of 10 mg of the
drug.

inhibiting a precursor molecule according to the di�erential equation

dCpre(t)
dt = k0,preI(C(t))− k1,preCpre(t) (4.24)

where I(C(t)) is the same as in Eq. (4.19). Then, the PCA response is modelled
as

dPCA(t)
dt = k0,PCACpre(t)− k1,PCAPCA(t) (4.25)

In steady state there is no variation with respect to time, and if we presume
there is no medication, we can write

k0,pre = k1,preC
(0)
pre ⇒ C

(0)
pre =

k0,pre

k1,pre

k0,PCAC
(0)
pre = k1,PCAPCA

(0) ⇒ PCA(0) = C
(0)
pre

k0,PCA

k1,PCA

(4.26)

Then, the model is simpli�ed by setting k0,PCA = k1,PCA arguing that in their
�tting there is a unitary correlation between the two. It is important to note
that they can only be equal numerically, because their units are di�erent (k0,PCA

has units of L/mg, while k1,PCA has units of s−1); and also that a unitary
correlation implies a linear relationship between the two and not that they are
equal. Additionally, if these two constants are equal, then

PCA(0) = C
(0)
pre (4.27)

which only makes sense because PCA is the measure of the complex activity
(in seconds) and Cpre is the concentration of the precursor (in mg/L). In fact,
the modelling error comes because in the WinNonLin code used for �tting the
model k0,PCA was missing. However, the last equation PCA(0) = C

(0)
pre should

have raised a warning �ag in the interpretation of the results.

4.6.3 Presence of outliers

Felodipine is an antagonist of calcium in calcium channels. It is used to reduce
hypertension because it relaxes blood vessels. An experiment was set up in rats
to determine its absorption and elimination (data kindly provided by Dr. Pérez
de la Cruz Moreno) after administering 10mg of felodipine. Table 4.8 shows the
drug concentration in plasma at a number of time points for a single rat.

At this dose we do not expect to see any nonlinear e�ect. The accepted
model is made of linear absorption and elimination processes (the same model
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as in Section 4.5):
dAg(t)
dt = −KaAg(t)

V dC(t)
dt = KaAg(t)− ClC(t)

(4.28)

For its discretization see Section 4.5.
The �tting of this data with the model above gives V = 5.15L, Cl =

16.84L/h, Ka = 0.264h−1. The coe�cient of determination is R2 = 0.8913
and the adjusted coe�cient of determination R2

adj = 0.6739, which is not too
good. We suspected that there were outliers in the data. However, with so
little time points, it was di�cult to identify which ones. The bootstrap method
presented in Section 3.3.2 helped us to identify the outliers with so little data.
We took 100 bootstrap samples of the original data, and for each sample we
�tted the model above. Then, we measured the residuals of each one of the
observations and averaged them in absolute value. After computing the mean,
we see that the measurements at 1h and 2h have residuals much larger than
the rest of time points. If we remove the two outliers and re�t the data, we get
V = 7.23L. Cl = 18.34L/h, Ka = 0.349h−1. The coe�cient of determination is
R2 = 0.9934 and the adjusted coe�cient of determination R2

adj = 0.9803, con-
�rming our suspicion that these two measurements did not �t with the proposed
model. See Fig. 4.6 for the �tting of both models.

However, outliers may also point out an incorrect pharmaceutical modelling
instead of an error in the measurements. How to decide whether the model is
correct (and the measurements are not) or incorrect (and the measurements are
good) requires the revision of the literature related to the drug as well as the
whole measurement process.

4.6.4 Incomplete studies

The study in the previous section was aimed at identifying pharmacokinetics
di�erences between taking felodipine with food and without food. For doing so,
two rats were given felodipine along with food and two other rats after fasting.
The drug concentration in plasma was measured at the same time points as in
the previous case. Following the same bootstrapping methodology described in
the previous paragraph we were able to compute the covariance matrix of the
model parameters:

1.0000 0.5174 0.9910
0.5174 1.0000 0.5743
0.9910 0.5743 1.0000

A naive analysis of this covariance matrix would indicate that there are two
parameters that are highly redundant (parameters 1 and 3; V and Ka) so that
one of them could be eliminated from the model. However, using the same
methodology we can compute the histograms of each one of the parameters (see
Fig. 4.7). The allegedly redundant parameters have bimodal distribution due
to the fact that we have analyzed two animals, and the high correlation in the
covariance matrix is indicating that the two parameters are highly dependent of
the animal being analyzed. We draw, thus, the consequence that more animals
should have been studied if we wanted to analyze the di�erences between fasting
and not fasting when taking felodipine. A standard procedure to minimize the
number of animals to study is to add animals one by one to each one of the
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Figure 4.6: Concentration measurements and corresponding �tted values cor-
responding to the absorption of felodipine.

groups until the population distribution of parameters does not change. The
change of the distribution can be detected with a Kolmogorov-Smirnov test
(Massey Jr, 1951). The problem of analyzing the di�erences using only two
animals per group is that the conclusions are too tied to the two exemplars
being analyzed and that those conclusions cannot be generalized to the whole
population.

4.7 Biopharmaceutics+Pharmacokinetics

+Pharmacodynamics

4.7.1 Modeling

As an illustration of the methodology developed in this thesis, let us construct
a complex model in which we will incorporate many of the building blocks
developed along the thesis (dissolution, absorption, compartmental analysis,
nonlinear kinetics, clearance, and pharmacodynamics of the therapeutic e�ect).
For doing so we will progressively construct our model to incorporate all e�ects.

We start assuming a Korsmeyer-Peppas dissolution pro�le (Eq. (3.341)).
For a single dose, the di�erential equations governing the process are

dAa(t)
dt = Dose(t)−Amaxamtm−1

dAg(t)
dt = Amaxamt

m−1
(4.29)

Knowing that the integrated curve is Ag(t) = Amaxat
m and that we are dealing
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Figure 4.7: Bootstrap histograms for each one of the pharmacokinetics para-
meters in the two fasting animals.

with a single dose (this is because di�erent doses have di�erent absorption sites
and this is not well handled by time systems, we would need spatial-time sys-
tems), we may adopt momentarily a di�erent approach to the standard discret-
ization approach defended in this thesis. The amount released between (n−1)Ts
and nTs is Ag(nTs)−Ag((n− 1)Ts), so that the discrete system becomes

Aa[n] = TsDose[n]−Amaxa((nTs)
m − ((n− 1)Ts)

m)
Ag[n] = Amaxa((nTs)

m − ((n− 1)Ts)
m)

(4.30)

For illustration purposes, let us assume Amax = 5mmol, m = 0.7 and a =
0.02min−0.7. Fig. 4.8 shows the functions Aa(t) and Ag(t). Note that we have
not included yet the absorption and that is why the drug does not disappear
(Ag(t) does not decrease). It can be seen that the tablet is totally dissolved
before 5 hours.

Now, we may calculate the linear density of mass along the small intestine.
Let us consider its length L = 700cm and the speed of the �uid inside the
intestine v = 1.76cm ·min−1. The linear density of available mass becomes (see
Eq. (3.360))

∂Ag,l(z, t)

∂t
=
dAg(t)

dt

1√
2πσ

exp

(
−1

2

(
z − vt
σ

)2
)

(4.31)

The local concentration can be calculated as Cg,l(z, t) =
Ag,l(z,t)

S . Let us assume
σ = 5cm, and the small intestine to have a diameter of 2.75 cm. Fig. 4.9 shows
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Figure 4.8: Dissolution pro�le for a Korsmeyer-Peppas model with Amax =
5(mmol), n = 0.7, a = 0.02min−0.7.

the local concentration along time and space due only to the dissolution of the
tablet. We see that the tablet is dissolved before 5 hours and that it takes place
before 5 m of the small intestine.

At this point, we have to discretize Eq. (3.361). A direct discretization gives

Cg [k,n]−Cg[k,n−1])
Ts

= D
Cg [k,n]−2Cg[k−1,n]+Cg [k−2,n]

h2

−vCg[k,n]−Cg [k−1,n]
h

−ka(Cg[k, n− 1]− C[n− 1])− kdCg[k, n− 1]
(4.32)

We may reorganize it as
(

1
Ts

+ v
h − D

h2

)
Cg[k, n] =

(
v
h − 2 Dh2

)
Cg[k − 1, n] + D

h2Cg[k − 2, n]

+kaC[n− 1] +
(

1
Ts
− ka − kd

)
Cg[k, n− 1]

(4.33)
and, then

Cg[k, n] = 1
1
Ts

+ v
h− D

h2

((
v
h − 2 Dh2

)
Cg[k − 1, n] + D

h2Cg[k − 2, n]

+kaC[n− 1] +
(

1
Ts
− ka − kd

)
Cg[k, n− 1]

) (4.34)

We still need to add the contribution from the dosage dissolution

Cg[k, n] = 1
1
Ts

+ v
h− D

h2

((
v
h − 2 Dh2

)
Cg[k − 1, n] + D

h2Cg[k − 2, n]

+kaC[n− 1] +
(

1
Ts
− ka − kd

)
Cg[k, n− 1]

)
+ Cg,l[k.n]

(4.35)
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Figure 4.9: Local concentration of released drug along time and space
Cgl(z, t) and some pro�les for z = 100, 200, 300, 400, 500 cm and t =
5, 65, 125, 185, 245min.
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Fig. 4.10 shows the local concentration along time and space due to the dissol-
ution of the tablet, its transport along the small intestine (v = 1.76cm ·min−1),
its di�usion (D = 0.01cm2 ·min−1), its absorption (considering for the moment
that the central compartment behaves as a perfect sink; ka = 0.025min−1) and
its degradation inside the intestine (kd = 0.005min−1). We see that all pro�les
widen with respect to the corresponding pro�les in Fig. 4.9.

We now consider the total amount of drug entering into the central com-
partment. This is given by the contribution of all the absorption taking place
along the whole tube. It can be calculated as

Aev(t) =

L∫

0

ka(Cg(z, t)− C(t))dz (4.36)

Assuming that the central compartment behaves as a perfect sink, we will re-
move this assumption later, the pro�le of such absorption is shown in Fig. 4.11.
We see that absorption ceases after about 6 hours. The total amount of ab-
sorbed drug is 1.5033 mmol (which is equal to the integral of the two curves in
Fig. 4.11). Biodisponibility can be calculated as this amount divided by the
initial given amount (5 mmol)

F =
1.5033

5
= 30.07% (4.37)

In practice, this biodisponibility will decrease when we include the e�ect that
the body is not a perfect sink. Note that if we take the logarithm of the absorbed
time (Fig. 4.12), it is not exactly represented by straight lines clearly indicating
nonlinear e�ects.

Let us now model the patient as a three-compartment system: a central
compartment and two peripheral compartments attached to the central one.
Only one of the peripheral compartments exert a therapeutic e�ect. Let us
presume that the central compartment has a distribution volume of 10 L (V ),
that the �rst peripheral compartment has a distribution volume of 3 L (Vp1)
and the second peripheral compartment 1 L (Vp2). Let us also assume that the
clearance coe�cient from the central compartment to the peripheral is Clp =
50mL/min and the hepatic clearance is ClH = 100mL/min. See Sec. 3.3.4 for
a complete description of the model. The equations governing the dynamics of
the compartment model are

V dC(t)
dt = −ClHC(t)− Clp(C(t)− Cp1(t))− Clp(C(t)− Cp2(t)) +Aev(t)

Vp1
dCp1(t)
dt = Clp(C(t)− Cp1(t))

Vp2
dCp2(t)
dt = Clp(C(t)− Cp2(t))

(4.38)
An Euler discretization of this equation system yields

C[n]−C[n−1]
Ts

= −ClHV C[n− 1]− Clp
V (C[n− 1]− Cp1[n− 1])

−ClpV (C[n− 1]− Cp2[n− 1]) + 1
V Aev[n]

Cp1[n]−Cp1[n−1]
Ts

=
Clp
Vp1

(C[n− 1]− Cp1[n− 1])
Cp2[n]−Cp2[n−1]

Ts
=

Clp
Vp2

(C[n− 1]− Cp2[n− 1])

(4.39)
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Figure 4.10: Local concentration of drug along time and space Cgl(z, t) and
some pro�les for z = 100, 200, 300, 400, 500 cm and t = 5, 65, 125, 185, 245min
considering drug release, transportation, absorption, and degradation.
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Figure 4.11: Top: Absorption pro�le along time (amount of drug transferred
from the small intestine into the central compartment per time unit). Bottom:
Absorption pro�le along the small intestine.
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Figure 4.12: Logarithm of the absorption pro�le along time.

Finally, we may use the following recursive formula

C[n] = C[n− 1]− ClHTs
V C[n− 1]− ClpTs

V (2C[n− 1]− (Cp1[n− 1] + Cp2[n− 1])) + Ts
V Aev[n]

Cp1[n] = Cp1[n− 1] +
ClpTs
Vp1

(C[n− 1]− Cp1[n− 1])

Cp2[n] = Cp2[n− 1] +
ClpTs
Vp2

(C[n− 1]− Cp2[n− 1])

(4.40)
The concentration of each of the compartments are shown in Fig. 4.13. Note
the nonlinear e�ects of the absorption, but its linear elimination. In Fig. 4.14
we show how the amount of drug transferred from the intestine to the central
compartment is modi�ed due to the concentration increase in the central com-
partment so that it does not behaves as a perfect sink. In practice, there is not
a signi�cant di�erence and Eq. (4.36) can be approximated by

Aev(t) ≈
L∫

0

kaCg(z, t)dz (4.41)

Let us assume that our drug acts in the second peripheral compartment on
a receptor with which it has a dissociation constant of 10−5. Let us assume that
our drug increases blood �ow. According to Eq. (3.189), it exerts a variation of
blood �ow described by

QH(Cp2(t)) = Q
(0)
H + (QmaxH −Q(0)

H )
Cp2(t)

KD + Cp2(t)
(4.42)

Let us assume that the basal �ow is 1.5 L/min, and that the drug can cause an
increase up to 30%. Fig. 4.15 shows the predicted blood �ow if the concentration
in the second compartment were given by that in Fig. 4.13. However, note that
this is not the right concentration because an increase of blood �ow would
result in an increase of hepatic clearance. This e�ect is modelled below. Let
us assume that the product of the fraction of unbound drug and the intrinsic
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Figure 4.13: Concentration at each of the compartments (top) and its logarithm
(bottom).
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clearance is 107 ml/min. With a basal blood �ow of 1.5 L/min, this results
in a clearance of 100 mL/min (see Eq. (3.147)). However, if the blood �ow
increases as much as 30%, this results in a small variation of about 1.25% as
shown by Fig. (4.16). The peripheral clearance changes accordingly. We may
now fully include this clearance variation into the dynamic equations in Eq.
4.39. This small variations do not make any signi�cant di�erence in the blood
concentration (see Fig. 4.17).

4.7.2 Implementation

Although it is not customary to include implementation details in a Ph.D. thesis,
we provide here a few implementation details that illustrate the power of the
modelling framework developed in this thesis. The whole idea has been based
on modelling pharmaceutical and physiological e�ects through di�erential equa-
tion systems that are discretized later. These di�erence equations have to be
implemented in some computer language. We have chosen Matlab for several
reasons:

• It is a wide-spread program with a wide programming community.

• It is speci�cally focused on numerical algorithms.

• It allows some object-oriented programming features.

• It has optimization libraries well suited to the problem at hand.

We have developed a number of classes that provide basic support to the
de�nition of the kind of models (pharmacokinetics, pharmacodynamics and bio-
pharmaceutics) developed in this thesis. In this way, a new model, like the one
developed in this Results section only needs to concentrate on the de�nition of
its speci�cities. See, for instance, the Matlab code below to de�ne the model.
It contains only those lines speci�c to the model.
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Figure 4.17: Concentration in the central compartment with basal blood �ow,
and a nonlinear variation of the blood �ow.

c l a s s d e f pkpd_modelComplex < pkpd_model
methods ( S t a t i c )

func t i on p=numberOfParameters ( )
p=17;

end
func t i on s t r=t i t l e ( )

s t r='Complex model ' ;
end

end

methods
func t i on s t r=getTemplate ( obj )

s t r={ ' D i s s o l u t i on a (min^−n)= ' ,
% a=0.02
' D i s s o l u t i on m=' ,
% m=0.7
' D i s s o l u t i on sigma (cm)= ' ,
% sigma=5
' Small i n t e s t i n e l ength L (cm)= ' ,
% L=700
' Small i n t e s t i n e speed v (cm/min)= ' ,
% v=1.76
' Small i n t e s t i n e diameter d (cm)= ' ,
% d=2.75
' Small i n t e s t i n e d i f f u s i o n D (cm^2/min)= ' ,
% D=0.01∗60
' Absorbtion ra t e at i n t e s t i n e ka (min^−1)= ' ,
% ka=0.025
' Degradation ra t e at i n t e s t i n e kd (min^−1)= ' ,
% kd=0.005
' D i s t r i bu t i on volume c en t r a l compartment V (mL)= ' ,
% V=10e3
' D i s t r i bu t i on volume pe r i ph e r a l compartment1 Vp1 (mL)= ' ,
% Vp1=3e3
' D i s t r i bu t i on volume pe r i ph e r a l compartment2 Vp2 (mL)= ' ,
% Vp2=1e3
' Clearance to p e r i ph e r a l compartment Clp (mL/min)= ' ,
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% Clp=50
' Basal hepat i c c l e a r anc e ClH (mL/min)= ' ,
% ClH=100
' Basal hepat i c f low (mL/min)= ' ,
% QH0=1500
'Maximum hepat i c f low (mL/min)= '
% QHmax=1950
' Concentrat ion ha l f e f f e c t KD (mmol/mL)= '
% KD=1e−5
} ;

end

func t i on [C, Agl , Cp1 ,Cp2 , Cgl ]=responseToDose ( obj , Dose )
h=1; % Sampling space in i n t e s t i n e l ength
[C, Agl , Cp1 ,Cp2 , Cgl ]=pkpd_modelComplex_response (Dose , obj . x , obj . Ts , h ) ;

end
end

end

However, Matlab is relatively slow when implementing loops. Complement-
arily, we may use C++ code to actually implement the di�erence equations.
We have to bind this code to Matlab, so that Matlab is able to interact with it.
This is done through the Mex extension of Matlab. See the C++ code below
that actually calculates the time response of each one of the signals involved
(C[n], Cp1[n], Cp2[n], ...). The complexity of the simulation has been shifted
from Matlab to C++ gaining a time factor larger than 4 (the C++ code is
more than 4 times faster than the equivalent Matlab code). Additionally, we
may distribute the C++ compiled code (not its source), so that the �know-how�
of the models may remain private to a given institution if desired. In any case,
it can also be seen that the C++ code is only related to the speci�cities of the
model at hand, all the support functions to de�ne a model are provided by the
Matlab classes from which any model inherits.

#inc lude <mex . h>
#inc lude <math . h>

/∗ Test code
∗
∗ path ( path , ' . . / . . / v2 ' )
∗ dosePlan=pkpd_doseprescr ipt ion ( ) ;
∗ dosePlan=dosePlan . load ( ' p r e s c r i p t i on_de l t a . txt ' ) ;
∗ [ t , tdose ]=dosePlan . c r e a t e I n s t anc e (0 ,0 , −1 ,24) ;
∗ tdose=tdose ∗5 ;
∗ p lo t ( t , tdose )
∗ x=[0.02 0 .7 5 700 1 .76 2 .75 0 .01∗60 0 .025 0 .005
∗ 10 e3 3e3 1e3 50 100 1500 1950 1e−5] ;
∗ [C, Agl , Cp1 ,Cp2 , Cgl ]=pkpd_modelComplex_response ( tdose , x , 1 , 1 ) ;
∗/

#i f n d e f PI
#de f i n e PI 3.14159265359
#end i f

i n t myRound( double x ) { re turn ( i n t ) f l o o r ( x+0.5) ; }

void pkpd_ComplexModel_computeAgl ( double ∗Agl , double ∗dose , s i z e_t N,
s i ze_t Nz , double Ts , double h , double a , double m, double v ,
double sigma )

{
double K=1.0/ sq r t (2∗PI∗ sigma ) ;
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double Ksigma=−0.5/( sigma∗ sigma ) ;
i n t gauss ianLength=( i n t ) c e i l (6∗ sigma/h ) ;
double ∗e=new double [ 2∗ gauss ianLength +1] ;

f o r ( s i ze_t n=0; n<N; ++n)
{

i f ( dose [ n ] !=0) {
// There i s a dose
double Amax_a=dose [ n ]∗ a ;
double n0=1;
double Aremaining=dose [ n ] ;
f o r ( s i z e_t np=n+1; np<N; ++np , ++n0 )
{

i f ( Aremaining==0)
break ;

// Pointer to the cor re spond ing column o f Agl
double ∗Agl_np=Agl+Nz∗np ;

// Compute how much i s d i f f u s e d at t h i s sample
double de l t a=Amax_a∗(pow(n0 ,m)−pow(n0−1,m) ) ;

// This i s the d e f i n i t e i n t e g r a l
i f ( de l ta>Aremaining )

de l t a=Aremaining ;
Aremaining−=de l t a ;

// Compute Gaussian around the l o c a t i o n o f maximal r e l e a s e
double zmax=v∗n0 ; // where the maximal r e l e a s e i s
i n t idx_zmax=myRound(zmax/h ) ;
double sum_e=0.0;
double z=(idx_zmax−gauss ianLength )∗h ;
i n t idx=0;
f o r ( i n t k=idx_zmax−gauss ianLength ;

k<=idx_zmax+gauss ianLength ; ++k , ++z , ++idx )
{

i f (k>=0 && k<Nz)
{

double z d i f f=z−zmax ;
double aux_e=K∗exp (Ksigma∗ z d i f f ∗ z d i f f ) ;
e [ idx ]=aux_e ;
sum_e+=aux_e ;

}
}

// Actua l ly d i s t r i b u t e
double Kd i s t r i bu t i on=de l t a /sum_e ;
idx=0;
f o r ( i n t k=idx_zmax−gauss ianLength ;

k<=idx_zmax+gauss ianLength ; ++k , ++idx )
i f (k>=0 && k<Nz)

Agl_np [ k]=Kd i s t r i bu t i on ∗e [ idx ] ;
}

}
}
d e l e t e e ;

}

void pkpd_ComplexModel_actualResponse ( double ∗C, double ∗Agl , double ∗Cp1 ,
double ∗Cp2 , double ∗Cgl , double ∗dose , s i z e_t N, s i ze_t Nz ,
double ∗x , double Ts , double h)

{
// Input model parameters
double a =x [ 0 ] ; // D i s s o l u t i on a (min^−n)
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double m =x [ 1 ] ; // D i s s o l u t i on m
double sigma=x [ 2 ] ; // D i s s o l u t i on sigma (cm)
double L =x [ 3 ] ; // Small i n t e s t i n e l ength L (cm)
double v =x [ 4 ] ; // Small i n t e s t i n e speed v (cm/min )
double d =x [ 5 ] ; // Small i n t e s t i n e diameter d (cm)
double D =x [ 6 ] ; // Small i n t e s t i n e d i f f u s i o n D (cm^2/min )
double ka =x [ 7 ] ; // Absorbtion ra t e at i n t e s t i n e ka (min^−1)
double kd =x [ 8 ] ; // Degradation ra t e at i n t e s t i n e kd (min^−1)
double V =x [ 9 ] ; // D i s t r i b vo l c e n t r a l compartment V (mL)
double Vp1 =x [ 1 0 ] ; // D i s t r i b vo l p e r i ph e r a l compartment1 Vp1 (mL)
double Vp2 =x [ 1 1 ] ; // D i s t r i b vo l p e r i ph e r a l compartment2 Vp2 (mL)
double Clp =x [ 1 2 ] ; // Clearance to p e r i ph e r a l compartment Clp (mL/min )
double ClH =x [ 1 3 ] ; // Basal hepat i c c l e a r anc e ClH (mL/min )
double QH0 =x [ 1 4 ] ; // Basal hepat i c f low (mL/min )
double QHmax=x [ 1 5 ] ; // Maximum hepat i c f low (mL/min )
double KD =x [ 1 6 ] ; // Hepatic f low KD (mmol/mL)

// Derived model parameters
double S=PI ∗(d /2 . 0 )∗ ( d / 2 . 0 ) ; // Diameter o f the i n t e s t i n e
double iS =1.0/S ;
double f uC l i n t=QH0∗ClH/(QH0−ClH ) ;

// Fract ion unbound ∗ I n t r i n s i c Clearance ( Centra l )
double fuCl in tp=QH0∗Clp /(QH0−Clp ) ;

// Fract ion unbound ∗ I n t r i n s i c Clearance ( Pe r iphe ra l )
double iV=1.0/V;

// Some u s e f u l cons tant s
double h2=h∗h ;
double a0=1/Ts−D/h2+v/h ;
double b0p=(−kd+1/Ts ) ;
double i a0 =1.0/a0 ;
double b0pia0=b0p∗ i a0 ;
double a1=(v/h−2∗D/h2 ) ;
double a2=D/h2 ;
double TsiV=Ts/V;
double TsiVp1=Ts/Vp1 ;
double TsiVp2=Ts/Vp2 ;

// Compute how the t ab l e t d i s s o l v e s
pkpd_ComplexModel_computeAgl (Agl , dose , N, Nz , Ts , h , a , m, v , sigma ) ;

// Compute the f u l l dynamics
double ∗Aev=new double [N ] ; // Extravascu lar amount
double ∗Aevk=new double [Nz ] ; // Extravascu lar amount along z
double ∗b=new double [Nz ] ; // Aux i l i a ry va r i ab l e f o r Cgl

// Compute concen t ra t i on s f o r n=0;
Aev [ 0 ]=0 ;
f o r ( s i ze_t z=0; z<Nz ; ++z )
{

Cgl [ z ]=Agl [ z ]∗ iS ;
Aev[0]+=Cgl [ z ] ;

}

double QHt=QH0;
double ClHt=QHt∗ f uC l i n t /(QHt+fuC l i n t ) ;
double Clpt=QHt∗ fuC l in tp /(QHt+fuCl in tp ) ;
f o r ( s i ze_t n=1; n<N; ++n)
{

// Update c l e a r anc e parameters and blood f low
s i ze_t n_1=n−1;
ClHt=QHt∗ f uC l i n t /(QHt+fuC l i n t ) ;
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Clpt=QHt∗ fuC l in tp /(QHt+fuCl in tp ) ;
QHt=QH0+(QHmax−QH0)∗Cp1 [ n_1 ] / (KD+Cp1 [ n_1 ] ) ;
double ClHTsiV=ClHt∗TsiV ;
double ClpTsiVp1=Clpt∗TsiVp1 ;
double ClpTsiVp2=Clpt∗TsiVp2 ;
double ClpTsiV=Clpt∗TsiV ;

// Ca l cu la te b
double ∗Cgln_1=Cgl+(n−1)∗Nz ; // Cgl ( : , n−1)
double ∗Agln=Agl+n∗Nz ; // Agl ( : , n )
Aev [ n ]=0;
f o r ( s i ze_t z=0; z<Nz ; ++z )
{

Aevk [ z ]=ka∗Cgln_1 [ z ]−C[ n−1] ;
i f (Aevk [ z ]<0)

Aevk [ z ]=0;
Aev [ n]+=Aevk [ z ] ;
b [ z]=−Aevk [ z ]∗ i a0+b0pia0 ∗Cgln_1 [ z ]+Agln [ z ]∗ iS ;

}

// Update Cgl
double ∗Cgln=Cgl+n∗Nz ; // Cgl ( : , n )
Cgln [0 ]=b [ 0 ] ;
Cgln [1 ]=( a1∗Cgln [ 0 ] ) ∗ i a0+b [ 1 ] ;
f o r ( s i z e_t z=3; z<Nz ; ++z )
{

Cgln [ z ]=(Cgln [ z−1]∗a1+Cgln [ z−2]∗a2 )∗ i a0+b [ z ] ;
i f ( Cgln [ z ]<0)

Cgln [ z ]=0;
}

// Update C, Cp1 and Cp2
C[ n]=C[ n−1]−ClHTsiV∗C[ n−1]−ClpTsiV ∗(2∗C[ n−1]−Cp1 [ n−1]−Cp2 [ n−1])

+iV∗Aev [ n ] ;
Cp1 [ n]=Cp1 [ n−1]+ClpTsiVp1 ∗(C[ n−1]−Cp1 [ n−1 ] ) ;
Cp2 [ n]=Cp2 [ n−1]+ClpTsiVp2 ∗(C[ n−1]−Cp2 [ n−1 ] ) ;

}
d e l e t e Aev ;
d e l e t e Aevk ;
d e l e t e b ;

}

/∗ the gateway func t i on ∗/
void mexFunction ( i n t nlhs , mxArray ∗ plhs [ ] ,

i n t nrhs , const mxArray ∗prhs [ ] )
{

/∗ check f o r proper number o f arguments ∗/
i f ( nrhs !=4)
mexErrMsgTxt ( "4 inputs r equ i r ed . " ) ;

/∗ Get dose ∗/
const mxArray ∗mDose=prhs [ 0 ] ;
double ∗dose=mxGetPr(mDose ) ;
mwSize N=mxGetN(mDose)∗mxGetM(mDose ) ;

/∗ Get parameters ∗/
const mxArray ∗mX=prhs [ 1 ] ;
double ∗x=mxGetPr(mX) ;
mwSize Nx=mxGetN(mX)∗mxGetM(mX) ;
i f (Nx!=17)

mexErrMsgTxt ( "Model needs exac t l y 17 parameters " ) ;
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/∗ Get sampling r a t e s ∗/
double Ts=mxGetScalar ( prhs [ 2 ] ) ;
double h=mxGetScalar ( prhs [ 3 ] ) ;

/∗ s e t the output po in t e r to the output matr i ce s ∗/
p lhs [0 ]=mxCreateDoubleMatrix (N, 1 , mxREAL) ;
double ∗C=mxGetPr( p lhs [ 0 ] ) ;
double L =x [ 3 ] ; // Small i n t e s t i n e l ength L (cm)
s i ze_t Nz = ( s i ze_t )myRound(L/h ) ;
p lhs [1 ]=mxCreateDoubleMatrix (Nz ,N, mxREAL) ;
double ∗Agl=mxGetPr( p lhs [ 1 ] ) ;
p lhs [2 ]=mxCreateDoubleMatrix (N, 1 , mxREAL) ;
double ∗Cp1=mxGetPr( p lhs [ 2 ] ) ;
p lhs [3 ]=mxCreateDoubleMatrix (N, 1 , mxREAL) ;
double ∗Cp2=mxGetPr( p lhs [ 3 ] ) ;
p lhs [4 ]=mxCreateDoubleMatrix (Nz ,N, mxREAL) ;
double ∗Cgl=mxGetPr( p lhs [ 4 ] ) ;

/∗ c a l l the C subrout ine ∗/
pkpd_ComplexModel_actualResponse (C, Agl , Cp1 , Cp2 , Cgl , dose , N,

Nz , x , Ts , h ) ;
}

4.7.3 System identi�cation

An interesting fact about simulation is that it allows to easily identifying the
model parameters by simulating what would be the response of the system for
di�erent system parameters. Then, we can see whether the simulated pro�le
matches or not the observed concentration values as shown in Section 3.3.2. To
illustrate this application, let us simulate the blood concentration of the system
in the previous section when an intake of 5 mmol is given every 4 hours during
3 days. Fig. 4.18 shows the simulated pro�le along with samples taken every
hour. The error in the samples is presumed to be Gaussianly distributed and to
have a maximum coe�cient of variation of 15% which is the maximum allowed
by Committee for Medicinal Products for Human Use (CHMP) (2011).

Note that pro�le simulation and regression is the only approach available
that can exploit the transient samples at the beginning and at the end of the
treatment (non-stationary parts of the signal). Also, there is no closed form for
the stationary part for this particular model.

For the sake of illustrating the simulation framework developed in this thesis,
consider the Matlab code needed to perform this simulation:

path ( path , ' . . / . . / v2 ' )

%% Def ine p r e s c r i p t i o n
p r e s c r i p t i o n=pkpd_doseprescr ipt ion ( ) ;
p r e s c r i p t i o n=p r e s c r i p t i o n . addRepeatedIntake ( 0 , 7 2 , 4 , 5 ) ;
[ t , tdose ]= p r e s c r i p t i o n . c r e a t e I n s t an c e (0 ,0 , −1 ,80) ;
p r e s c r i p t i o n . save ( ' p r e s c r i p t i o n . txt ' ) ;

%% Create t rue model
trueModel=pkpd_modelComplex ( ) ;
trueModel . x=[0.02 0 .7 5 700 1 .76 2 .75 0 .01∗60 0 .025 0 .005 . . .

10 e3 3e3 1e3 50 100 1500 1950 1e−5] ;
trueModel . Ts=1; % min
[C, Agl , Cp1 ,Cp2 , Cgl ]=trueModel . responseToDose ( tdose ) ;
Ctrue=C;
t t ru e=t ;
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Figure 4.18: Concentration in the central compartment with basal blood �ow,
and a nonlinear variation of the blood �ow.



4.7.
BIOPHARMACEUTICS+PHARMACOKINETICS+PHARMACODYNAMICS151

save ( ' trueModel . mat ' , ' trueModel ' , ' Ctrue ' , ' t t ru e ' ) ;

%% Take samples
samples=pkpd_samples ( ) ;
samples=samples . takeRegularSample ( t ,C, 0 , 6 0 , 0 . 5 , 1 5 ) ;
p l o t ( t /60 ,C)
hold on
samples . show ( )
x l ab e l ( ' t (h) ' )
y l ab e l ( ' Concentrat ion in plasma (mmol/mL) ' )
samples . wr i t e ( ' samples . mat ' ) ;

It clearly allows the user to concentrate on the task at hand since it hides
many �administrative� tasks handled by high-level classes like pkpd_doseprescription,
pkpd_model and pkpd_samples.

Let us assume that we are given the concentration samples, and we are asked
to estimate the model parameters. This is a system identi�cation problem. We
will assume that we know the input to the system (the administered dose) and
that we observe its output at given time points. Then, we need to determine
the parameters de�ning the model. Let us say that we are rather certain about
the dissolution parameters and that we would like to characterize the distribu-
tion and clearance parameters as well as the e�ect of the drug on the blood
�ow. In the search limits for the global optimizer we leave no room for optimiz-
ing the dissolution parameters and introduce our uncertainty about the rest of
parameters. See the Matlab code for the �tting below:

path ( path , ' . . / . . / v2 ' )

%% Load p r e s c r i p t i o n and samples
p r e s c r i p t i o n=pkpd_doseprescr ipt ion ( ) ;
p r e s c r i p t i o n=p r e s c r i p t i o n . load ( ' p r e s c r i p t i o n . txt ' ) ;
samples=pkpd_samples ( ) ;
samples=samples . load ( ' samples . mat ' ) ;

%% Def ine model and i t s l im i t s
model=pkpd_modelComplex ( ) ;
model . x0=[0.02 0 .7 5 700 1 .76 2 .75 0 .01∗60 0 .025 0 .005 . . .

8 e3 2e3 0 .5 e3 40 80 1300 1750 0 .5 e−5] ;
model . xF=[0.02 0 .7 5 700 1 .76 2 .75 0 .01∗60 0 .025 0 .005 . . .

12 e3 4e3 1 .5 e3 60 120 1700 2150 1 .5 e−5] ;
model . Ts=1; % min

%% Fit model
f i t t e r=pkpd_modelFitter ( samples , p r e s c r i p t i on , model )
f i t t e r=f i t t e r . produceS ide In fo ( )
f i t t e r=f i t t e r . g loba lOpt imizat ion ( )
f i t t e r=f i t t e r . l o ca lOpt im i za t i on ( )
f i t t e r . r epo r t ( )
f i t t e r . show ( )
y l ab e l ( 'C(mmol/mL) ' )

%% Ver i fy curve
load ( ' trueModel . mat ' )
hold on
p lo t ( t t ru e /60 , Ctrue , ' k ' ) ;
l egend ( ' Pred ic ted concent ra t i on ' , ' Observed concent ra t i on ' , ' True concent ra t i on ' )

With this very simple code we get the report below and as can be seen in
Fig. 4.19, we can see that the �tting to the true concentration is nearly perfect.

Model ================================
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Complex model

Dissolution a (min^-n)= 0.02 Search: [0.02,0.02]

Dissolution m= 0.7 Search: [0.7,0.7]

Dissolution sigma (cm)= 5 Search: [5,5]

Small intestine length L (cm)= 700 Search: [700,700]

Small intestine speed v (cm/min)= 1.76 Search: [1.76,1.76]

Small intestine diameter d (cm)= 2.75 Search: [2.75,2.75]

Small intestine diffusion D (cm^2/min)= 0.6 Search: [0.6,0.6]

Absorbtion rate at intestine ka (min^-1)= 0.025 Search: [0.025,0.025]

Degradation rate at intestine kd (min^-1)= 0.005 Search: [0.005,0.005]

Distribution volume central compartment V (mL)= 10778.5464 Search: [8000,12000]

Distribution volume peripheral compartment1 Vp1 (mL)= 2688.9248 Search: [2000,4000]

Distribution volume peripheral compartment2 Vp2 (mL)= 500.0002 Search: [500,1500]

Clearance to peripheral compartment Clp (mL/min)= 54.497 Search: [40,60]

Basal hepatic clearance ClH (mL/min)= 100.9584 Search: [80,120]

Basal hepatic flow (mL/min)= 1511.8799 Search: [1300,1700]

Maximum hepatic flow (mL/min)= 2031.6893 Search: [1750,2150]

Concentration half effect KD (mmol/mL)= 8.2757e-06 Search: [5e-06,1.5e-05]

Max. Impulse Response(1-day) (mmol/L) = 6.7729e-06

Max. Impulse Response(1-day) (min) = 255

Goodness of fitting ==================

Coefficient of determination R2= 0.91818

Adjusted coefficient of determination R2= 0.89538

Correlation (observed,predicted)= 0.95822

Variance of residuals= 4.6597e-12

Akaike Information Criterion= -25.6617

Bayesian Information Criterion= -25.1518

Final Prediction Error= 7.215e-12

Fitting ==============================

Time (min) Observed Conc.(mg/L) Predicted Conc. (mg/L) Residue (mg/L) z-score

0 0 0 0 -0.020011

60 1.8527e-05 1.8368e-05 1.5992e-07 0.054073

120 2.7421e-05 2.8855e-05 -1.4334e-06 -0.68405

180 3.756e-05 3.267e-05 4.8895e-06 2.2451

240 3.5154e-05 3.371e-05 1.4444e-06 0.6491

300 4.7661e-05 4.4256e-05 3.4048e-06 1.5573

360 4.2338e-05 4.4578e-05 -2.24e-06 -1.0577

420 4.1965e-05 4.2859e-05 -8.9478e-07 -0.43452

480 4.0058e-05 4.0458e-05 -4.0029e-07 -0.20545

540 5.1511e-05 4.8367e-05 3.1441e-06 1.4365

600 4.6793e-05 4.7215e-05 -4.221e-07 -0.21555

660 4.6368e-05 4.4593e-05 1.7754e-06 0.80244

720 3.7586e-05 4.1609e-05 -4.0237e-06 -1.884

780 4.8742e-05 4.907e-05 -3.2732e-07 -0.17164

840 4.6071e-05 4.7666e-05 -1.5945e-06 -0.75865

900 4.1679e-05 4.4889e-05 -3.2103e-06 -1.5072

960 4.319e-05 4.1806e-05 1.3836e-06 0.62095

1020 5.0482e-05 4.919e-05 1.2927e-06 0.57882

1080 4.8187e-05 4.7743e-05 4.4451e-07 0.18591

1140 4.2243e-05 4.494e-05 -2.6968e-06 -1.2693

1200 4.4541e-05 4.184e-05 2.7016e-06 1.2315
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1260 5.068e-05 4.921e-05 1.4698e-06 0.66087

1320 4.7446e-05 4.7756e-05 -3.1006e-07 -0.16365

1380 4.5325e-05 4.4948e-05 3.7675e-07 0.15452

1440 4.162e-05 4.1845e-05 -2.2533e-07 -0.1244

1500 4.5454e-05 4.9214e-05 -3.7599e-06 -1.7618

1560 4.74e-05 4.7758e-05 -3.5813e-07 -0.18592

1620 4.3393e-05 4.495e-05 -1.5563e-06 -0.74097

1680 4.0158e-05 4.1846e-05 -1.6889e-06 -0.80239

1740 4.6922e-05 4.9214e-05 -2.2921e-06 -1.0818

1800 4.6885e-05 4.7758e-05 -8.7347e-07 -0.42465

1860 4.0696e-05 4.495e-05 -4.254e-06 -1.9907

1920 4.4208e-05 4.1847e-05 2.3611e-06 1.0738

1980 5.1097e-05 4.9214e-05 1.8825e-06 0.85207

2040 4.8081e-05 4.7758e-05 3.2224e-07 0.12927

2100 4.5197e-05 4.495e-05 2.4724e-07 0.094523

2160 4.0491e-05 4.1847e-05 -1.3553e-06 -0.64785

2220 5.2322e-05 4.9214e-05 3.1078e-06 1.4197

2280 4.7849e-05 4.7759e-05 9.0813e-08 0.022059

2340 4.3658e-05 4.495e-05 -1.2916e-06 -0.61835

2400 4.5024e-05 4.1847e-05 3.1775e-06 1.452

2460 4.9242e-05 4.9214e-05 2.7825e-08 -0.007121

2520 4.6671e-05 4.7759e-05 -1.0873e-06 -0.52369

2580 4.4611e-05 4.495e-05 -3.3904e-07 -0.17707

2640 4.0386e-05 4.1847e-05 -1.4602e-06 -0.69646

2700 4.7024e-05 4.9214e-05 -2.1901e-06 -1.0346

2760 5.4208e-05 4.7759e-05 6.4491e-06 2.9676

2820 4.9024e-05 4.495e-05 4.0737e-06 1.8671

2880 4.2823e-05 4.1847e-05 9.7635e-07 0.43229

2940 4.6672e-05 4.9214e-05 -2.5428e-06 -1.198

3000 4.6046e-05 4.7759e-05 -1.7123e-06 -0.81322

3060 4.4927e-05 4.495e-05 -2.2697e-08 -0.030526

3120 4.3896e-05 4.1847e-05 2.0495e-06 0.92944

3180 4.6485e-05 4.9214e-05 -2.7293e-06 -1.2844

3240 4.2522e-05 4.7759e-05 -5.2363e-06 -2.4457

3300 4.1948e-05 4.495e-05 -3.0023e-06 -1.4108

3360 4.2878e-05 4.1847e-05 1.0311e-06 0.45766

3420 5.0776e-05 4.9214e-05 1.562e-06 0.70361

3480 4.9216e-05 4.7759e-05 1.4574e-06 0.65513

3540 4.5032e-05 4.495e-05 8.2121e-08 0.018032

3600 4.2562e-05 4.1847e-05 7.1519e-07 0.3113

3660 4.8601e-05 4.9214e-05 -6.1329e-07 -0.30412

3720 5.0203e-05 4.7759e-05 2.4449e-06 1.1126

3780 4.2193e-05 4.495e-05 -2.7566e-06 -1.297

3840 4.3134e-05 4.1847e-05 1.2874e-06 0.57637

3900 4.7689e-05 4.9214e-05 -1.5258e-06 -0.72686

3960 4.7323e-05 4.7759e-05 -4.3544e-07 -0.22173

4020 4.6527e-05 4.495e-05 1.5774e-06 0.7107

4080 4.4366e-05 4.1847e-05 2.519e-06 1.1469

4140 4.7019e-05 4.9214e-05 -2.1955e-06 -1.0371

4200 5.1119e-05 4.7759e-05 3.3601e-06 1.5366

4260 4.677e-05 4.495e-05 1.8204e-06 0.82329

4320 4.2082e-05 4.1847e-05 2.3534e-07 0.089012

4380 4.9316e-05 4.9214e-05 1.0141e-07 0.026967

4440 4.7564e-05 4.7759e-05 -1.9423e-07 -0.10999
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Figure 4.19: Predicted, observed and true concentration in plasma

4500 4.464e-05 4.495e-05 -3.0956e-07 -0.16342

4560 4.2223e-05 4.1847e-05 3.7644e-07 0.15437

4620 3.5795e-05 3.5545e-05 2.4994e-07 0.095776

4680 2.4871e-05 2.3971e-05 9.0082e-07 0.3973

Although we have opted for a scripting solution to report the results in this
thesis, we have also developed a Graphical User Interface (see Fig. 4.20) in
which adding a new model is just adding 3 lines of code.

In the following table we compare the estimated and the true parameters for
this experiment, we also report the corresponding relative error:

Parameter Estimated value True value Relative error (%)

Distribution volume central compartment 10778.5464 10000 7.79
Distribution volume peripheral compartment1 2688.9248 3000 -10.37
Distribution volume peripheral compartment2 500.0002 1000 -50
Clearance to peripheral compartment 54.497 50 8.99
Basal hepatic clearance 100.9584 100 0.96
Basal hepatic �ow 1511.8799 1500 0.79
Maximum hepatic �ow (mL/min) 2031.6893 1950 4.19
Concentration half e�ect 8.2757e-06 1e-05 -17.24

Most parameters have a relative error around or below 10%. Vp2 has a large
relative error, although its absolute error is not so large. Interestingly, those
parameters related to body clearance (Cl(0)

H and Q(0)
H have a large precision. To

�nd out whether this is just by chance (due to a speci�c realization of noise)
or not, we construct the con�dence intervals for each one of the parameters by
performing bootstrapping (see Section 3.3.2). Note that using this method is
just as the previous one but changing one line. This is thanks to the object-
oriented classes programmed for this thesis.

NB=100; % Number o f boots t rap samples
alpha =0.05; % For the trim mean
f i t t e rB=pkpd_modelFitterBootstrap ( samples , p r e s c r i p t i on , model ,NB, alpha ) ;
f i t t e rB=f i t t e rB . produceS ide In fo ( ) ;
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Figure 4.20: Example of Graphical User Iterface to �t a model to a set of
samples.

f i t t e rB=f i t t e rB . g loba lOpt imizat ion ( ) ;
f i t t e rB=f i t t e rB . l o ca lOpt im i za t i on ( ) ;
f i t t e rB . r epo r t ( )

Model ================================

Complex model

Dissolution a (min^-n)= 0.02 Search: [0.02,0.02]

Dissolution m= 0.7 Search: [0.7,0.7]

Dissolution sigma (cm)= 5 Search: [5,5]

Small intestine length L (cm)= 700 Search: [700,700]

Small intestine speed v (cm/min)= 1.76 Search: [1.76,1.76]

Small intestine diameter d (cm)= 2.75 Search: [2.75,2.75]

Small intestine diffusion D (cm^2/min)= 0.6 Search: [0.6,0.6]

Absorbtion rate at intestine ka (min^-1)= 0.025 Search: [0.025,0.025]

Degradation rate at intestine kd (min^-1)= 0.005 Search: [0.005,0.005]

Distribution volume central compartment V (mL)= 10341.7348 Search: [8000,12000]

Distribution volume peripheral compartment1 Vp1 (mL)= 2570.8181 Search: [2000,4000]

Distribution volume peripheral compartment2 Vp2 (mL)= 925.1495 Search: [500,1500]

Clearance to peripheral compartment Clp (mL/min)= 55.119 Search: [40,60]

Basal hepatic clearance ClH (mL/min)= 100.9712 Search: [80,120]

Basal hepatic flow (mL/min)= 1487.8382 Search: [1300,1700]

Maximum hepatic flow (mL/min)= 1963.8717 Search: [1750,2150]

Concentration half effect KD (mmol/mL)= 1.017e-05 Search: [5e-06,1.5e-05]

Max. Impulse Response(1-day) (mmol/L) = 6.7896e-06

Max. Impulse Response(1-day) (min) = 254

Confidence intervals 95% =========================
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Dissolution a (min^-n)= [0.02,0.02]

Dissolution m= [0.7,0.7]

Dissolution sigma (cm)= [5,5]

Small intestine length L (cm)= [700,700]

Small intestine speed v (cm/min)= [1.76,1.76]

Small intestine diameter d (cm)= [2.75,2.75]

Small intestine diffusion D (cm^2/min)= [0.6,0.6]

Absorbtion rate at intestine ka (min^-1)= [0.025,0.025]

Degradation rate at intestine kd (min^-1)= [0.005,0.005]

Distribution volume central compartment V (mL)= [8602.3957,11829.776]

Distribution volume peripheral compartment1 Vp1 (mL)= [2000.125,3779.4006]

Distribution volume peripheral compartment2 Vp2 (mL)= [505.7916,1472.76]

Clearance to peripheral compartment Clp (mL/min)= [40.4545,59.9921]

Basal hepatic clearance ClH (mL/min)= [99.4016,103.2389]

Basal hepatic flow (mL/min)= [1300.99,1693.7996]

Maximum hepatic flow (mL/min)= [1753.5506,2147.077]

Concentration half effect KD (mmol/mL)= [5.2423e-06,1.4913e-05]

We see that the 95% con�dence interval always contains the true value. We
show below the table of relative error, that has reduced signi�cantly from the
previous estimate. This is because a single point estimate is more a�ected by
the random errors of the measurements, while the bootstrap estimate is based
in an unbiased procedure involving averaging over multiple estimates.

Parameter Estimated value True value Relative error (%)

Distribution volume central compartment 10341.7348 10000 3.42
Distribution volume peripheral compartment1 2570.3131 3000 -14.32
Distribution volume peripheral compartment2 925.1495 1000 -7.48
Clearance to peripheral compartment 55.119 50 10.23
Basal hepatic clearance 100.9712 100 0.97
Basal hepatic �ow 1487.8382 1500 -0.81
Maximum hepatic �ow 1963.8717 1950 0.71
Concentration half e�ect 1.017e-05 1e-05 1.7

Additionally, thanks to the bootstrap approach we may estimate the covari-
ance matrix among the di�erent parameters. We �nd a signi�cant correlation
between the basal hepatic clearance, the basal hepatic �ow and the maximum
hepatic �ow.

1.0000 -0.1378 -0.1362 -0.1880 0.0616 -0.0729 0.0031 -0.0181
-0.1378 1.0000 0.1122 -0.0202 -0.0126 -0.0731 0.1439 -0.2514
-0.1362 0.1122 1.0000 0.0570 0.1741 0.2588 -0.1105 -0.0095
-0.1880 -0.0202 0.0570 1.0000 0.1287 -0.0279 -0.1344 -0.0523
0.0616 -0.0126 0.1741 0.1287 1.0000 0.5881 -0.6022 0.1147
-0.0729 -0.0731 0.2588 -0.0279 0.5881 1.0000 -0.3117 0.2125
0.0031 0.1439 -0.1105 -0.1344 -0.6022 -0.3117 1.0000 -0.0434
-0.0181 -0.2514 -0.0095 -0.0523 0.1147 0.2125 -0.0434 1.0000

We may also use this environment for estimating population parameters.
Let us assume that the drug has no e�ect on 20% of the population (that is
QmaxH = Q

(0)
H ). We now measure the concentration in plasma as we did for

the previous experiments for 100 individuals and concentrate on the estimate
of QmaxH . Figure 4.21 (top) shows the histogram of the estimated values. We
do not see the separation between the two poplations. This illustrates the fact
that parameters with a relatively small e�ect cannot be identi�ed when the
level of noise and uncertainty about the rest of parameters is high. If we reduce
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Figure 4.21: Histogram of QmaxH in a population of 100 individuals under large
(top) and low (bottom) uncertainty conditions.

the level of measurement noise to 2% and allow no uncertainty about the rest
of parameters, then the two populations become clearly visible using the same
identi�cation scheme (see Figure 4.21 (bottom)).

4.7.4 Therapeutic planning

We may also use the methodology developed in this thesis to establish a thera-
peutic prescription. Let us presume that the therapeutic window of our drug
in between two concentration limits Cmin and Cmax. Below Cmin the drug has
no e�ect and beyond Cmax the drug may have toxic e�ects. We may de�ne a
given therapy based on a set of parameters. For instance, �Take X mmol every
Y hours�. The therapy is described by a two component vector Θ = (X,Y ) and
we may optimize this therapy with the goal of reducing the number of intakes
and the period of time in which the drug is ine�ective. We can achieve this by
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Figure 4.22: Concentration in plasma for the optimal therapeutic plan.

the following optimization problem:

Θ∗ = arg min
∞∫
−∞

(Cmin − CΘ(t))u(Cmin − CΘ(t))dt+ λn

s.t. CΘ(t) < Cmax

(4.43)

where u(x) is the step (Heaviside) function, n is the number of intakes, and λ is
a parameter that balances the relative importance of the two terms being min-
imized. For instance, let us assume that in our case Cmin = 3 ·10−5 (mmol/mL)
and Cmax = 5 ·10−5 (mmol/mL). Let us choose λ = 10−5. The optimal therapy
would be to take 6.45 mmol every 5.84 hours. Since the time interval (5.84
hours) is not realistic, we may set Y = 6 (h) and repeat the optimization with
λ = 0. The optimal is found for X = 6.51. Fig. 4.22 shows the concentration
pro�le obtained for this plan.



Chapter 5

Discusion

The traditional approach to pharmacokinetics and pharmacodynamics (PKPD)
is based on relatively simple linear models with simple dosing regimes. The
practitioner is overloaded with tons of equations with di�erent goals (normally,
providing initial or �nal estimates for model parameters or calculating some
derived parameter), particular cases (if this parameter is greater than some-
thing, then ...) and calculation recipes (�t a line to the �rst samples, look
at the slope of the concentration decay in logarithmic scale). Although, it is
true that nonlinear e�ects are also considered by standard PKPD practition-
ers, normally they only �nd an analytical equation for relatively simple dosing
regimens. Alternatively, PKPD programs normally o�er the possibility of per-
forming nonlinear regression, but starting from a relatively close initial guess
of the model parameters. Most PKPD programs are rather fragmented into
independent modules implementing speci�c models and it is not easy to add a
physiological e�ect unforeseen by the program developers. On top of this, we
have to add the extremely high price of the program licenses that hinder their
widespread use. Biopharmaceutics problems are normally treated separately
from PKPD problems, when in practice they are tightly coupled. On the other
side, the pharmaceutical industry is increasingly recognizing the importance of
mathematical modelling of all these issues and progressively demands more and
more professionals with modelling skills. However, given the overall outlook of
the current situation given above, these skills are only accessible to a few highly
experienced professionals with a wide background education.

In this thesis we have addressed the problems in pharmacokinetics, phar-
macodynamics and biopharmaceutics from a holistic, signal processing point of
view. The problems are formulated in terms of input signals that are trans-
formed by a system (not necessarily linear) into output signals. Multiple input
and output parameters are allowed and they can follow any dosing regimen. The
system is �rst formulated on a continous time basis using di�erential equations.
Then, the system is discretized into a di�erence equation that is recursively
solved using normally previous samples. This is the same approach tradition-
ally followed in numerical analysis for di�erential equations. The accuracy with
which the equation is discretized is variable mostly depending on the complex-
ity of the resulting di�erence equation. The lost of accuracy comes from the
discrete approximation of the derivative. In very sensitive cases in which long
simulations are needed, it might be worthy to work with accurate derivative
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approximations with which the errors do not accumulate. A brute force ap-
proach can �ght this e�ect by reducing the sampling rate (the time di�erence
between two discrete samples). However, as has been shown along the thesis we
can control the accuracy of the result by choosing a higher-order discretization
method. The complexity obviously increases, but also the payo� in accuracy. In
any case, we have shown that it is always possible to construct a discrete, causal
system. Additionally, we have shown how the methodology can be applied to a
wide variety of physiological situations.

An important issue is the identi�ability and sensitivity of the di�erent model
parameters. Identi�ability depends mostly on four aspects of the problem all
of them related to uncertainty: 1) measurement noise: the more accurate our
samples are, the easier it is to �nd the model parameters; 2) the size of the
parameter e�ect: it is di�cult to identify the small e�ects of a parameter,
especially, if these small di�erences are masked by high-levels of noise (in the
signal processsing language the relationship between the two is called the Signal-
to-Noise Ratio); 3) the search space: small search spaces (tight bounds) on the
di�erent parameters reduces the uncertainty on the parameters; 4) parameter
independence: dependent parameters are di�cult to identify because errors in
one of the parameters can be compensated by its related parameters. We have
explored several ways of measuring sensitivity. Particularly interesting has been
our analysis of Fisher's information matrix because we have learnt that there is
a lower bound for the variance of each parameter (no matter how sophisticated
is our identi�cation methodology) and because we can design the experiment
(when to take blood samples) so that we can collect as much information as
possible.

In any case, identi�cation is performed by optimizing some function normally
based on some statistical assumption about the distribution of the measurement
errors. We may also incorporate a priori information about the distribution of
the model parameters. We would be, then, under a Bayesian framework. The
identi�cation problem is numerically solved by some nonlinear optimization al-
gorithm. The goal function is normally non-convex and for this reason local
optimization algorithms normally get trapped in local minima. It is then im-
portant to initialize the set of model parameters with values as close as possible
to their �nal values. This can be achieved by spliting the pharmaceutical prob-
lem into di�erent subproblems (dissolution, absorption, tissue uptake, ...) and
designing laboratory experiments speci�cally aimed at identifying a small set of
parameters. Alternatively, in this thesis we have used global optimization al-
gorithms (in particular, genetic algorithms). Although there exist convergence
theorems for some of them, in practice, they may also get trapped in a local
minimum, although with a much smaller probability than their local optimizer
counterparts.

The methodology developed in the thesis is still compatible with other phar-
macokinetics approaches like the non-parametric ones. For those combinations
of signals and systems in which it makes sense, we can still report paramet-
ers like the Mean-Residence-Time or the Area-Under-the-Curve. However, a
parametric methodology supersedes non-parametric approaches by o�ering a
greater explanatory power. Additionally, there are statistical criteria helping to
discriminate plausible models from non-plausible or even choosing among a set
of di�erent plausible models by likelihood inference tests.

We have implemented a number of classes in Matlab that greatly simplify
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the task of adding a new model for testing and provide a graphical interface
for it at a very low programming cost. The complex numerical calculations are
written in C and bound to Matlab through the Mex capabilities of Matlab. In
this way, we can bene�t from a fast C code for the heavy numerical calculations
while exploiting Matlab libraries for data visualization, graphical interfaces and
optimization routines.

Beside system simulation and identi�cation (which we have also illustrated
for population PKPD studies), we have shown that there are more applications
to the methodology developed along the thesis. In particular, we have shown
how to use it to design a therapeutic plan meeting some optimization criteria.
Many other applications could be explored like drug-drug interactions, inter-
action with cellular components, the analysis of biochemical pathways, their
control, and systems biology in its more pharmacological aspects.

Summarizing, we have introduced a very general methodology based on an
engineering approach capable of handling a wide variety of physiological situ-
ations and applications. The methodology lends itself to an easy implement-
ation. The methodology has to be complemented with deep biological and
pharmaceutical knowledge that guides its application to speci�c problems. As
in many other scienti�c �elds, once more it is demonstrated that most successful
approaches are multidisciplinary.
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Conclusions

1. We have developed a general methodology for data analysis in biophar-
maceutics, pharmacokinetics and pharmacodynamics.

2. This methodology starts with a di�erential equation system that is dis-
cretized and numerically implemented.

3. We have given special attention to the precision and stability issues of the
system.

4. We have studied and proposed solutions for the sensitivity aspects and
the selection of the sampling rate within the proposed methodology.

5. We have shown some of the limitations of the traditional approach from
the new methodology perspective.

6. The proposed methodology allows the estimation of the parameter uncer-
tainty for any error distribution and any system model.

7. As opposed to the traditional methods, the methodology proposed in this
thesis does not require very precise initial guesses of the parameters, it
allows handling unobservable parameters and time-varying parameters.

8. It also allows the simultaneous use of multiple administration rputes and
measurement methods.

9. We have integrated a wide variety of the existing models in biopharmaceut-
ics, pharmacokinetics and pharmacodynamics into the new framework.

10. The new framework allows the integration of the three disciplines in a
single model.

11. We have developed an infrastructure in Matlab and C that allows the
rapid development of a new model.

12. We have shown di�erent applications in simulation, system identi�cation,
optimal sampling design and posology design.
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Conclusiones

1. Se ha desarrollado una metodología general para el análisis de datos en
biofarmacia, farmacocinética, y farmacodinamia.

2. Esta metodología parte de un sistema de ecuaciones diferenciales que es
discretizado e implementado de forma numérica.

3. Se ha prestado especial atención a la precisión y estabilidad del sistema.

4. Se han estudiado y propuesto soluciones para los aspectos de sensibilidad
y selección del periodo de muestreo en el marco propuesto.

5. Se han evidenciado algunas limitaciones de la aproximación tradicional a
la luz de la nueva metodología.

6. El marco propuesto permite estimar la incertidumbre para cualquier tipo
de distribución de errores y modelo del sistema.

7. A diferencia de los métodos habituales, la solución propuesta en esta
tesis no hace necesario estimaciones iniciales de parámetros muy precisas,
permite manejar parámetros no observables, y parámetros variables con
el tiempo.

8. También permite el uso de diferentes tipos de vías de administración y
métodos de medida.

9. Se ha integrado en el nuevo marco una gran variedad de modelos de bio-
farmacia, farmacocinética y farmacodinamia.

10. La nueva metodología permite integrar en un único problema las tres
disciplinas.

11. Se ha desarrollado una infraestructura en Matlab y C que permite desar-
rollar muy rápidamente un nuevo modelo.

12. Se han mostrado distintas aplicaciones en simulación, identi�cación de
sistemas, diseño de tiempos óptimos de muestreo, y diseño de la posología.
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Cost-constrained optimal sampling for system
identification in pharmacokinetics applications with

population priors and nuisance parameters
C.O.S. Sorzano, M.A. Pérez-de-la-Cruz Moreno, J. Burguet-Castell, C. Montejo, A. Aguilar Ros

Abstract—Pharmacokinetics applications can be seen as a
special case of non-linear, causal systems with memory. There
are cases in which there exists prior knowledge about the
distribution of the system parameters in a population. However,
for a specific patient in a clinical setting we need to determine
her system parameters so that the therapy can be personalized.
This system identification is many times performed by measuring
drug concentrations in plasma. The objective of this work is
to provide an irregular sampling strategy that minimizes the
uncertainty about the system parameters with a fixed amount
of samples (cost-contrained). We use Monte Carlo simulations to
estimate the average Fisher’s Information Matrix associated to
the pharmacokinetic problem, and then estimate the sampling
points that minimize the maximum uncertainty associated to
system parameters (a minimax criterion). The minimization is
performed employing a genetic algorithm. We show that such
a sampling scheme can be designed in a way that is adapted
to a particular patient and that it can accommodate any dosing
regimen as well as it allows flexible therapeutic strategies.

Index Terms—Irregular sampling, Fisher information matrix,
Dynamic systems, Pharmacokinetic time sampling

I. INTRODUCTION

Pharmacokinetics (PK) is the study of the time evolution
of the amount of a certain drug in the body as well as its
concentration in different tissues and plasma [1]. This evo-
lution is of crucial importance because for many drugs there
is a therapeutic window within which the drug is effective
(below a certain concentration, the drug has no effect; and
above a certain concentration, the drug may become toxic).
Following safety recommendations, the therapeutic window is
assumed to be the same for all patients. However, each patient
has a different response to a certain dose regimen. In fact,
drug concentration in plasma can be seen as the output of
a non-linear, causal system with memory whose input is the
dose applied at each time. In general, it is accepted that the
system belongs to a parametric family of systems and that
the response of a particular patient corresponds to a particular
choice of system parameters. Consequently, personalizing the
therapeutic regimen to a particular patient allows to identify
here system parameters and particularized dosing regime.
Thus, the expected drug concentration in plasma is within the
therapeutic window. This is normally done in an intensive care

C.O.S.Sorzano and J. Burguet-Castell: Natl. Center of Biotechnology
(CSIC), Madrid, Spain.

C.O.S.Sorzano and M.A. Pérez-de-la-Cruz Moreno: KineStat Pharma,
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unit for certain pathologies and with drugs whose therapeutic
window is relatively tight [2], [3], [4], [5], [6], [7], [8], [9].

In order to determine the patient’s parameters, we need to
give a first dose (similar to a delta function) and monitor the
patient’s response (equivalent to her impulse response). This
monitorization is performed by extracting blood samples from
the patient and analyzing the drug concentration in plasma.
For cost reasons and to avoid unnecessary inconveniences
to the patient, the number of blood extractions is limited.
Additionally, for certain drugs it would be preferrable to be
able to administer multiple doses since there are parameters
that do not “manifest” their effects at low drug concentration.

The goal of this work is to provide a time sampling basis
that, on average over a population, minimizes the maximum
uncertainty about any of the system parameters and that can
accommodate any dosing regimen. We will presume that the
distribution of parameters within the general patient population
is known. Then, we will use Monte Carlo simulations to
determine which would be the distribution of the Fisher’s
Information matrix for any sampling scheme. Then, the sam-
pling scheme will be optimized using a global optimization
algorithm (in our implementation a genetic algorithm) so that
the maximum uncertainty of the worse determined parameter
is minimized. If there is a parameter we are particularly
interested in, we can minimize instead its uncertainty.

A similar approach has been already proposed [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22] and
it is known as D-optimal or C-optimal sampling. Most of these
algorithms do differ on the optimization algorithm employed
and the use or not of the a priori distribution of model pa-
rameters. However, our approach differs in a number of points:
first, previous approaches presume knowledge of the closed-
form solution of the differential equation system being solved,
which is not true for any arbitrary dosing regimen; second,
our approach easily incorporates random nuisance parameters
that do not need to be estimated; third, our goal function is a
minimax function which minimizes the maximum variance of
any of the parameters, instead of a global measurement of the
overall variance. The first two points make an important step
forward in the design of the optimal sampling point for highly
nonlinear systems. Additionally, our approach can be applied
to patient specific parameters instead of providing sampling
rules for a general population. This is also an appealing feature
of our method since it can be readily used in clinical practice.
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II. METHODS

Most PK models can be described with a first-order linear
or non-linear differential equation of the form

dC
dt = f(t,C,Θ,α) + g(t,X,Θ,α) (1)

where t is the continuous time variable, C(t) is a vector
of concentrations measured at multiple locations (e.g., blood
plasma and urine), Θ is a vector with the model parameters
(those that we are interested in determining by the measure-
ment process), α is a vector of nuisance parameters (in which
we are not interested but that also affect the concentration
levels), and X(t) is the input driving signal (in our case the
dose given to the patient as a function of time; note that this
dose is also a vector allowing multiple dosage routes (oral,
intravenously, ...)).

The objective of system identification is to find the Θ
parameters from a set of (tn,Cn) measurements. This is
done by least-squares regression of the model above evaluated
at the sampling times, producing the predicted observations
(tn,C(tn)), and comparing these predictions to the actual
measurements (tn,Cn). Measurements are supposed to be
independent and normally distributed with zero mean and
a variance σ2

C . The variance on its turn depends on the
concentration being measured [23]. Concisely, it depends on
the assay sensitivity, AS, and the coefficient of variation,
CVassay ,

σ2
C = (AS + CVassayC)2 (2)

It can be proven [24] that the asymptotic Maximum Likelihood
Estimate of the system parameters is unbiased and distributed
as a Gaussian

Θ̂MLE ∼ N
(
Θtrue, I

−1
T
)

(3)

where IT is Fisher’s information matrix calculated on the
N measurements performed at the time points in the set T .
Obviously, N must be larger than the number of Θ parameters,
otherwise there would not be any spare degree of freedom
to perform the regression, and the fitting would become an
interpolation problem highly exposed to measurement errors.

The ij-th element of Fisher’s information matrix can be
calculated as

IT ,ij =
N∑
n=1

(
∂(Cn−C(tn))

∂Θi

)T
Σ−1

Cn

∂(Cn−C(tn))
∂Θj

=
N∑
n=1

(
∂C(tn)
∂Θi

)T
Σ−1

Cn

∂C(tn)
∂Θj

(4)

where ΣCn
is a diagonal matrix whose ii-th entry is the

variance associated to the i-th concentration measurement at
the n-th time point (Eq. (2)). If we have some a priori
distribution for the system parameters, as is the case in the
problem addressed in this article, we should incorporate this
information into the Fisher’s Information matrix. For instance,
it can be shown [25] that assuming that the parameters are
independent and normally distributed amounts to add in the
diagonal terms the inverse of the variance of each one of the
prior distributions. In this way the diagonal terms become

IT ,ii = 1
σ2

Θi

+
N∑
n=1

(
∂C(tn)
∂Θi

)T
Σ−1

Cn

∂C(tn)
∂Θj

. (5)

We need to calculate the terms ∂C(tn)
∂Θi

. For doing so, let us
define the sensitivity with respect to the parameter Θi as

sΘi
=

∂C

∂Θi
(6)

Obviously, this sensitivity is a vector that depends on t. In
[26], [27] a similar derivation was performed for the case of
scalar, instead of vector, functions. Let us find a differential
equation that the sensitivity must satisfy in order to be able
to solve for the sensitivity at any time and, in particular, at
the time points tn. For doing so, we differentiate the previous
equation with respect to time

dsΘi

dt
=

d

dt

(
∂C

∂Θi

)
(7)

Assuming that C(t) is a C2 function, we can interchange the
differentiation order (Clairaut’s Theorem) to get

dsΘi

dt = ∂
∂Θi

(
dC
dt

)

= ∂
∂Θi

(f + g)

= ∂f
∂C

∂C
∂Θi

+ ∂f
∂Θi

+ ∂g
∂Θi

= ∂f
∂CsΘi + ∂f

∂Θi
+ ∂g

∂Θi

(8)

Note that the term ∂f
∂C is a full matrix, not a vector. This

is an Ordinary Differential Equation with the initial value
sΘi

(t0) = 0 [26]. We may use this equation to determine the
vectors ∂C(tn)

∂Θi
needed by Fisher’s Information matrix above.

Note that these vectors depend on our estimate of the system
parameters, Θ̂, and the nuisance parameters α, as well as the
time sampling points tn (n = 1, 2, ..., N ). Since these two sets
of parameters are random vectors, the sensitivity vectors are
also random with a distribution that, in principle, may not be
assumed to follow any known distribution (e.g., Gaussian).

As shown in Eq. (3), the uncertainty on the system param-
eters estimate depend on Fisher’s information matrix, which
in its turn is also random (since it is calculated using random
vectors). So we propose to minimize this uncertainty by choos-
ing a set of N time points, T ∗ that minimizes the maximum
expected coefficient of variation of the system parameters

T ∗ = arg min
T

max
k

E{CVk}

= arg min
T

max
k

E

{√
(I−1
T )

kk

Θk

}
(9)

where (A)kk represents the kk-th element of the matrix A.
If we are particularly interested in minimizing the uncertainty
associated to a particular parameter Θk, then we could mini-
mize

T ∗ = arg min
T

E

{√
(I−1
T )

kk

Θk

}
(10)

In the absence of any a priori preference, in the rest of the
article we will stick to the first goal function instead of the
second.

We propose to estimate this expected value through a Monte
Carlo process by which we estimate the distribution of these
random variables. For doing so, for each time set T we simply
need to randomly sample the distributions of the vectors Θ
and α, estimate IT and calculate the coefficient of variation
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for each system parameter. After repeating this process many
times (in our example below, 100 times), we can estimate the
mean of the different coefficients of variation and its maximum
expected value. Then, we can use a global optimization
algorithm to choose the best time set T . In our example below,
we use a genetic algorithm [28] as implemented in Matlab
Optimization Toolbox, but any other global optimizer may be
employed.

III. RESULTS

In order to show the validity of our methodology, we illus-
trate it with the design of sampling time points for a patient
needing phenytoin. Phenytoin is a drug with antiepileptic
activity [29], [30]. Its therapeutic window is relatively narrow:
a concentration of free drug in plasma below 1 mg/L is
ineffective (although it takes several days to reach this level
because the maximum intake per day is limited to 15 mg/kg)
and above 2 mg/L is toxic [31][Chap. 20]. Additionally, it
has a non-linear pharmacokinetics in the therapeutic range.
For this reason, it is very important to measure the patient
system parameters so that the therapy can be carefully adapted.
We must distinguish between free drug in plasma and total
drug in plasma. The reason is that a fraction of the total
amount of drug is bound to plasma proteins, while another
fraction is freely dissolved in plasma. It is the fraction of free
drug the one that has a therapeutic effect. Additionally, the
measurement assays for free drug are much more accurate
that those for the total drug (ASfree = 0.1 mg/L, AStotal = 1
mg/L, see Eq. (2); CVassay = 0.15 in both cases) [23].

The system dynamics is defined by a constant rate absorp-
tion of the drug in the intestine and an enzymatically mediated
degradation [23]. The following first order differential equation
represents this process

Vd
dC(t)
dt = −VmaxC(t)

Km+C(t) +K0

[
u(t)− u

(
t− Dsb

K0

)]

(11)
where C(t) is the total concentration of drug in plasma, Vd
is the apparent distribution volume (which is normally larger
than the volume of plasma due to the binding effect), Vmax is
the maximum degradation rate, Km is the drug concentration
at which half of the maximum degradation rate is attained, K0

represents the constant rate absorption of the drug, u(t) is the
Heaviside step function, D is the administered dose (in mg),
s is the tablet salt factor (drugs are many times given in a
salt form due to its better dissolution and storage properties),
and b is the bioavailability (not all the administered drug is
capable of crossing the intestine and hepatic first pass barriers
to reach the blood stream). Note that K0 refers to the amount
of drug effectively reaching the blood stream, and Dsb

K0
is the

time to exhaust the tablet content.
Since the assay sensitivity for the free drug is much more

accurate than that for the total amount of drug (free and bound
to plasma proteins), the measurements are aimed to the free
drug. The relationship between the concentration of free drug
and total concentration of drug is given by [23]

Cfree(t) = F (t)C(t) (12)

where

F (t) =
1

1 + f(ClCreatinine(t))CAlbumin(t)
(13)

being ClCreatinine(t) the clearance of creatinine over time and
CAlbumin(t) the serum concentration in albumin over time.
The clearance of creatinine is, on its turn, estimated to be
[32]

ClCreatinine = (0.85)female (140−age)LBW
72CCreatinine(t) (14)

where female is a variable that takes the value 1 (if the patient
is female) or 0 (if it is male), age is the patient’s age in years,
LBW is the Lean Body Weight (this the total body weight
minus the fat weight, because phenytoin does not dissolve in
fatty tissues; the lean body weight can be measured using
some scales that estimate it by using a current; otherwise
it is between 0.9 and 0.7 the total body weight for a non-
obese person), and CCreatinine(t) is the serum concentration
in creatinine over time. The factor f(ClCreatinine(t)) in Eq.
(13) can be calculated as

f(x) =





10−4 0 ≤ x ≤ 10
1.5 · 10−4 10 < x ≤ 24
1.6 · 10−4 24 < x ≤ 80
1.9 · 10−4 80 < x

(15)

Summarizing, the model on which we will apply our
methodology will be

dCfree(t)
dt = − 1

Vd

FVmaxCfree(t)
FKm+Cfree(t)

+FK0

Vd

[
u(t)− u

(
t− Dsb

K0

)] (16)

where F is a nuisance parameter (the fraction of free drug)
calculated using two nuisance parameters (the concentrations
of albumin and creatinine).

The whole model has a relatively large number of param-
eters. Some of them can be accurately measured in a not too
invasive way (female, age and LBW ). Some others like K0,
s and b are assumed to be fixed (with values K0 = 0.833
mg/min, s = 0.92 and b = 0.84). Finally, the measurement
of parameters like CAlbumin(t) and CCreatinine(t) would
increase the cost of the blood tests required to determine the
free drug concentration. They will be treated in this example
as nuisance parameters for which an a priori distribution will
be assumed. This leaves Vd, Vmax and Km as the only patient
parameters that need to be measured. Consequently, we need to
perform four blood tests in order to find these three parameters
by weighted least squares regression (the weights are given by
the concentration dependent variance of each measurement).

The distribution of the nuisance parameters can be found in
the medical literature. For example, the albumin concentration
is expected to be between 34 and 54 g/L [33], [34], while
the creatinine concentration is expected to be between 8.8 and
11.0 mg/L for women and between 10.0 and 12.9 mg/L for
men [35]. In the following, we will assume that the albumin
and creatinine serum concentration of a given patient does not
change over time.

The a priori distribution of the kinetic parameters is also
known [23]. For instance, the distribution volume can be
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Fig. 1. Solid red line: average response of a 40-years old, male patient of
80 kg and 20% of fat weight to 100 mg. of phenytoin daily. Dashed lines:
minimum and maximum responses according to the distribution of nuisance
and system parameters.

calculated as

Vd = BWvd (17)

where BW is the patient’s body weight and vd is the nor-
malized distribution volume between 0.3 and 1.4 L/kg, with
a mean of 0.8 L/kg and a standard deviation of 0.16 L/kg.
Similarly, the maximum degradation rate can be calculated as

Vmax = BWvmax (18)

where vmax is between 2.48 and 19.84 µg/(kg·min), with a
mean of 5.46 µg/(kg·min) and a standard deviation of 1.63
µg/(kg·min). Finally, the concentration at half degradation rate
Km is between 2 and 9 mg/L, with a mean of 5.89 mg/L and
a standard deviation of 2.95 mg/L [23].

We will exemplify our methodology with a 40-years old,
male patient of 70 kg and 20% of fat weight. Typical responses
to a tablet of 100 mg. of phenytoin are depicted in Fig. 1. For
the sake of the example, let us say that our plan is to give
a patient during 10 days a dose of 100 mg of phenytoin. We
have chosen this dosis because in the worse case it does not
go above the toxic concentration after 10 days of treatment
and it does not exceed the maximal daily dose of 15 mg/kg.
However, this dose has to be adjusted to each patient taking
into account his gender, age, weight and body fat.

At this point we pose the differential equations of the
sensitivity functions

dsVmax (t)
dt = ∂f

∂Cfree
(t)sVmax(t)− 1

Vd

FCfree(t)
FKm+Cfree(t)

dsVd
(t)

dt = ∂f
∂Cfree

(t)sVd
(t) + 1

V 2
d

FVmaxCfree(t)
FKm+Cfree(t)

−FK0

V 2
d

[
u(t)− u

(
t− Dsb

K0

)]

dsKm (t)
dt = ∂f

∂Cfree
(t)sKm

(t) + 1
Vd

F 2VmaxCfree(t)
(FKm+Cfree(t))2

(19)
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Fig. 2. Sensitivity values to each one of the parameters to be determined for
an averagely responding person.

where
∂f

∂Cfree
(t) = − F 2KmVmax

Vd(FKm + Cfree(t))2
. (20)

Fig. 2 shows the sensitivity values for the three parameters
Vmax, Vd and Km and the average response of the patient in
Fig. 1.

We now follow the methodology developed in this article
and minimize the maximum coefficient of variation of any of
the three system parameters to be determined Vd, Vmax, and
Km. The methodology suggests to take samples after 7880,
9307, 9439 and 13894 minutes after starting the treatment, or
what is the same 5.5, 6.5, 6.6 and 9.6 days. The volume of
distribution, Vd, can be determined with an average coefficient
of variation of 0.2%, Km with an average coefficient of
variation of 7.1%, and Vmax with an average coefficient of
variation of 1233.3%. The reason why Vmax is so badly
determined is that the administered dose (100 mg, daily)
causes a plasma concentration of free drug after 10 days of
treatment that is far below the concentration needed to induce
the maximum degradation.

This fact suggests a two stage approach to the system
identification: in the first stage, of a week of duration, we
determine Vd and Km with a low dose (as we have already
done); in the second stage, we increase the dose, in order to
faster reach the therapeutic window, and we take extra samples
to better determine Vmax. We illustrate this second phase in
this example. In the second phase, of another 10 days, we
increase the dose to 300 mg of phenytoin in the morning and
200 mg 12 hours later (the daily maximum for a patient of 70
kg is 1.05 g) so that the therapeutic window can be reached
(see Fig. 3). During this second phase our method suggests
to take one sample on day 14.5 (minute 20987) so that the
coefficient of variation of Vmax drops to 24.5%;The coefficient
of variation of Vd drops to about 1.6% and the one of Km

to about 5.8%. Obviously these optimal sampling minutes can
be modified to fit the clinical needs.
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Fig. 3. Free drug concentration after 10 days with a daily dose of 100 mg
and 300 mg (morning) and 200mg (evening) after that period.

IV. CONCLUSIONS

In this article we have presented a methodology to adapt
the sampling time points to any patient taking into account
all the a priori information available (a priori distribution of
system and nuisance parameters). The methodology is rather
flexible and can deal with any nonlinear pharmacokinetic
model, as long as it can be expressed in the form of a
differential equation, and any dosing regimen. In this way,
we avoid the need of a close-form solution of the model.
Notwithstanding, the selection of the time points is perfomed
based on a solid theory using Fisher’s Information Matrix to
maximize the information carried by the measurements on
the system parameters. Additionally, we can handle nuisance
parameters (parameters that affect the concentration but that
cannot be measured) through their distribution in a population.
Our theory is valid for multiple simultaneous measurements
(plasma, urine, ...), although in our example we have only used
plasma concentration. It is our hope that in the future the use
of algorithms such as the one presented in this article will help
medicine towards a more personalized therapy.
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