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ABSTRACT: Pharmacokinetics (PK) applications can be seen as a special case of nonlinear, causal systems with memory. There are cases in
which prior knowledge exists about the distribution of the system parameters in a population. However, for a specific patient in a clinical
setting, we need to determine her system parameters so that the therapy can be personalized. This system identification is performed many
times by measuring drug concentrations in plasma. The objective of this work is to provide an irregular sampling strategy that minimizes the
uncertainty about the system parameters with a fixed amount of samples (cost constrained). We use Monte Carlo simulations to estimate
the average Fisher’s information matrix associated to the PK problem, and then estimate the sampling points that minimize the maximum
uncertainty associated to system parameters (a minimax criterion). The minimization is performed employing a genetic algorithm. We
show that such a sampling scheme can be designed in a way that is adapted to a particular patient and that it can accommodate any dosing
regimen as well as it allows flexible therapeutic strategies. C© 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J
Pharm Sci 104:2103–2109, 2015
Keywords: irregular sampling; Fisher information matrix; dynamic systems; pharmacokinetic time sampling; Pharmacokinet-
ics/pharmacodynamics; Computational; ADME; Dynamic simulation; Dose-response; Clinical pharmacokinetics

INTRODUCTION

Pharmacokinetics (PK) is the study of the time evolution of
the amount of a certain drug in the body as well as its con-
centration in different tissues and plasma.1 This evolution is of
crucial importance because for many drugs there is a therapeu-
tic window within which the drug is effective (below a certain
concentration, the drug has no effect; and above a certain con-
centration, the drug may become toxic). Following safety rec-
ommendations, the therapeutic window is assumed to be the
same for all patients. However, each patient has a different re-
sponse to a certain dose regimen. In fact, drug concentration in
plasma can be seen as the output of a nonlinear, causal system
with memory whose input is the dose applied at each time. In
general, it is accepted that the system belongs to a parametric
family of systems and that the response of a particular pa-
tient corresponds to a particular choice of system parameters.
Consequently, personalizing the therapeutic regimen to a par-
ticular patient allows identifying her system parameters and
specific dosing regimen. Thus, the expected drug concentration
in plasma is within the therapeutic window. This is normally
performed in an intensive care unit for certain pathologies and
with drugs whose therapeutic window is relatively tight.2–9

In order to determine the patient’s parameters, we need to
give a first dose (similar to a delta function) and monitor the
patient’s response (equivalent to her impulse response). This
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monitoring is performed by extracting blood samples from the
patient and analyzing the drug concentration in plasma. For
cost reasons and to avoid unnecessary inconveniences to the pa-
tient, the number of blood extractions is limited. Additionally,
for certain drugs, it would be preferable to be able to administer
multiple doses as there are parameters that do not “manifest”
their effects at low drug concentration.

The goal of this work is to provide a time sampling basis
that, on average over a population, minimizes the maximum
uncertainty about any of the system parameters and that can
accommodate any dosing regimen. We will presume that the
distribution of parameters within the general patient popula-
tion is known. Then, we will use Monte Carlo simulations to
determine which would be the distribution of the Fisher’s in-
formation matrix for any sampling scheme. Then, the sampling
scheme will be optimized using a global optimization algorithm
(in our implementation a genetic algorithm) so that the max-
imum uncertainty of the worse determined parameter is min-
imized. If there is a parameter we are particularly interested
in, we can minimize its uncertainty instead.

A similar approach has already been proposed,10–23 and it
is known as D-optimal or C-optimal sampling. Most of these
algorithms do differ on the optimization algorithm employed
and the use or not of the a priori distribution of model pa-
rameters. However, our approach differs in a number of points:
first, previous approaches presume knowledge of the closed-
form solution of the differential equation system being solved,
which is not true for any arbitrary dosing regimen; second,
our approach easily incorporates random nuisance parameters
that do not need to be estimated; third, our goal function is a
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minimax function that minimizes the maximum variance of
any of the parameters, instead of a global measurement of the
overall variance. The first two points make an important step
forward in the design of the optimal sampling point for highly
nonlinear systems. Additionally, our approach can be applied to
patient-specific parameters instead of providing sampling rules
for a general population. This is also an appealing feature of
our method as it can be readily used in clinical practice.

METHODS

Most PK models can be described with a first-order linear or
nonlinear differential equation of the form

dC
dt

= f(t, C, �, α) + g(t, X, �,α) (1)

where t is the continuous time variable, C(t) is a vector of con-
centrations measured at multiple locations (e.g., blood plasma
and urine), � is a vector with the model parameters (those that
we are interested in determining by the measurement process),
αis a vector of nuisance parameters (in which we are not inter-
ested but that also affect the concentration levels), and X(t) is
the input driving signal [in our case the dose given to the pa-
tient as a function of time; note that this dose is also a vector
allowing multiple dosage routes (oral, intravenous, . . . )].

The objective of system identification is to find the � pa-
rameters from a set of (tn, Cn) measurements. This is carried
out by least-squares regression of the model above evaluated at
the sampling times, producing the predicted observations [tn,
C(tn)], and comparing these predictions to the actual measure-
ments (tn, Cn). Measurements are supposed to be independent
and normally distributed with zero mean and a variance F2

C.
The variance on its turn depends on the concentration being
measured.24 Concisely, it depends on the assay sensitivity, AS,
and the coefficient of variation, CVassay,

F2
C = (AS + CVassayC)2 (2)

It can be proven25 that the asymptotic maximum-likelihood
estimate of the system parameters is unbiased and distributed
as a Gaussian

�̂MLE ∼ N
(
�true, I−1

T

)
(3)

where IT is Fisher’s information matrix calculated on the N
measurements performed at the time points in the set T. Ob-
viously, N must be larger than the number of � parameters,
otherwise there would not be any spare degree of freedom to
perform the regression, and the fitting would become an inter-
polation problem highly exposed to measurement errors.

The ij-th element of Fisher’s information matrix can be cal-
culated as:

IT,ij =
N∑

n=1

(
∂(Cn − C(tn))

∂�i

)T

�−1
Cn

∂(Cn − C(tn))
∂�j

=
N∑

n=1

(
∂C(tn)
∂�i

)T

�−1
Cn

∂C(tn)
∂�j

(4)

where �Cn is a diagonal matrix whose ii-th entry is the variance
associated to the i-th concentration measurement at the n-th
time point (Eq. (2). If we have some a priori distribution for
the system parameters, as is the case in the problem addressed
in this article, we should incorporate this information into the
Fisher’s information matrix. For instance, it can be shown26

that assuming that the parameters are independent and nor-
mally distributed amounts to add in the diagonal terms the
inverse of the variance of each one of the prior distributions. In
this way, the diagonal terms become

IT,ii = 1
F2

�i

+
N∑

n=1

(
∂C(tn)
∂�i

)T

�−1
Cn

∂C(tn)
∂�j

. (5)

We need to calculate the term ∂C(tn)
∂�i

. For doing so, let us define
the sensitivity with respect to the parameter �i as:

s�i = ∂C
∂�i

(6)

Obviously, this sensitivity is a vector that depends on t. In
Refs. 27 and 28, a similar derivation was performed for the case
of scalar, instead of vector, functions. Let us find a differential
equation that the sensitivity must satisfy in order to be able
to solve for the sensitivity at any time and, in particular, at
the time points tn. For doing so, we differentiate the previous
equation with respect to time

ds�i

dt
= d

dt

(
∂C
∂�i

)
(7)

Assuming that C(t) is a C2 function, we can interchange the
differentiation order (Clairaut’s theorem) to get

ds�i

dt
= ∂

∂�i

(
dC
dt

)

= ∂

∂�i

(
f + g

)

= ∂ f
∂C

∂C
∂�i

+ ∂f
∂�i

+ ∂g
∂�i

= ∂f
∂C

s�i + ∂f
∂�i

+ ∂g
∂�i

(8)

Note that the term ∂f
∂C is a full matrix, not a vector. This is an

ordinary differential equation with the initial value s�i(t0) =
0.27 We may use this equation to determine the vectors ∂C(tn)

∂�i
needed by Fisher’s Information matrix above. Note that these
vectors depend on our estimate of the system parameters, �̂,
and the nuisance parameters, α, as well as the time sampling
points tn (n = 1, 2, . . . , N). As these two sets of parameters are
random vectors, the sensitivity vectors are also random with
a distribution that, in principle, may not be assumed to follow
any known distribution (e.g., Gaussian).

As shown in Eq. (3), the uncertainty on the system parame-
ters estimate depend on Fisher’s information matrix, which in
its turn is also random (as it is calculated using random vec-
tors). So we propose to minimize this uncertainty by choosing a
set of N time points, T* that minimizes the maximum expected
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coefficient of variation of the system parameters

T∗ = arg min
T

max
k

E{CVk}

= arg min
T

max
k

E

⎧⎨
⎩

√(
I−1

T

)
kk

�k

⎫⎬
⎭ (9)

where (A)kk represents the kk-th element of the matrix A. If
we are particularly interested in minimizing the uncertainty
associated to a particular parameter �k, then we could mini-
mize

T∗ = arg min
T

E

⎧⎨
⎩

√(
I−1

T

)
kk

�k

⎫⎬
⎭ (10)

In the absence of any a priori preference, in the rest of the
article, we will stick to the first goal function instead of the
second.

We propose to estimate this expected value through a Monte
Carlo process by which we estimate the distribution of these
random variables. For doing so, for each time set T, we sim-
ply need to randomly sample the distributions of the vectors
� and α, estimate IT and calculate the coefficient of variation
for each system parameter. After repeating this process many
times (in our example below, 100 times), we can estimate the
mean of the different coefficients of variation and its maximum
expected value. Then, we can use a global optimization algo-
rithm to choose the best time set T. In our example below, we
use a genetic algorithm29 as implemented in Matlab Global
Optimization Toolbox, but any other global optimizer may be
employed. This optimizer constructs a population of candidate
samples. Each one consists of a vector with possible sampling
times and its length is constrained by the total cost of the mea-
surement (it is in this sense that we refer to our algorithm
as cost constrained). Then, the algorithm evaluates the fitness
(the value of the goal function in Eq. (9) for each one of the can-
didates. The more fit they are, the more chances they have of
influencing the new generation (offspring) of candidates. This
new population of candidates is, again, evaluated and the algo-
rithm is iterated until convergence. We have implemented all
the source code needed for this algorithm, except for the genetic
algorithm that comes under the name of ga with the standard
distribution of Matlab Global Optimization Toolbox, as a set
of Matlab routines that are available from the authors upon
request.

RESULTS

In order to show the validity of our methodology, we illustrate
it with the design of sampling time points for a patient needing
phenytoin. Phenytoin is a drug with antiepileptic activity.30,31

Its therapeutic window is relatively narrow: a concentration
of free drug in plasma below 1 mg/L is ineffective (although it
takes several days to reach this level because the maximum
intake per day is limited to 15 mg/kg) and above 2 mg/L is
toxic.32 Additionally, it has a nonlinear PK in the therapeutic
range. For this reason, it is very important to measure the pa-
tient system parameters so that the therapy can be carefully
adapted. We must distinguish between free drug in plasma and

total drug in plasma. The reason is that a fraction of the total
amount of drug is bound to plasma proteins, whereas another
fraction is freely dissolved in plasma. It is the fraction of free
drug that has a therapeutic effect. Additionally, the measure-
ment assays for free drug are much more accurate than those
for the total drug (assay sensitivity for the free fraction ASfree

= 0.1 mg/L; assay sensitivity for the total drug concentration
AStotal = 1 mg/L, see Eq. (2); CVassay in both cases).24

The system dynamics are defined by a constant rate absorp-
tion of the drug in the intestine and an enzymatically mediated
degradation.24 The following first-order differential equation
represents this process

Vd
dC(t)

dt
= − VmaxC(t)

Km + C(t)
+ K0

[
u(t) − u

(
t − Dsb

K0

)]
(11)

where C(t) is the total concentration of drug in plasma, Vd is the
apparent distribution volume (which is normally larger than
the volume of plasma because of the binding effect), Vmax is
the maximum degradation rate, Km is the drug concentration
at which half of the maximum degradation rate is attained,
K0 represents the constant rate absorption of the drug, u(t)
is the Heaviside step function, D is the administered dose (in
milligram), s is the tablet salt factor (drugs are many times
given in a salt form because of its better dissolution and storage
properties), and b is the bioavailability (not all the administered
drug is capable of crossing the intestine and hepatic first pass
barriers to reach the blood stream). Note that K0 refers to the
amount of drug effectively reaching the blood stream, and Dsb

K0
is the time to exhaust the tablet content.

As the assay sensitivity for the free drug is much more ac-
curate than that for the total amount of drug (free and bound
to plasma proteins), the measurements are aimed to the free
drug. The relationship between the concentration of free drug
and total concentration of drug is given by24

Cfree(t) = F(t)C(t) (12)

where

F(t) = 1
1 + f

[
Clcreatinine(t)

]
Calbumin(t)

(13)

where Clcreatinine(t) is the clearance of creatinine over time and
Calbumin(t) is the serum concentration in albumin over time. The
clearance of creatinine is, on its turn, estimated to be33

Clcreatinine(t) = (0.85)female (140 − age)LBW
72Ccreatinine(t)

(14)

where female is a variable that takes the value 1 (if the patient
is female) or 0 (if it is male), age is patient’s age in years, LBW
is the lean body weight (this the total body weight minus the fat
weight, because phenytoin does not dissolve in fatty tissues; the
lean body weight can be measured using some scales that esti-
mate it by using a current; otherwise, it is between 0.9 and 0.7
the total body weight for a nonobese person), and Clcreatinine(t)
is the serum concentration in creatinine over time. The factor
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f[Clcreatinine(t)] in Eq. (13) can be calculated as:

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10−4 0 ≤ x ≤ 10

1.5 · 10−4 10 < x ≤ 24

1.6 · 10−4 24 < x ≤ 80

1.9 · 10−4 80 < x

(15)

Summarizing, the model on which we will apply our method-
ology will be

dCfree(t)
dt

= − 1
Vd

FVmaxCfree(t)
FKm + Cfree(t)

+FK0

Vd

[
u(t) − u

(
t − Dsb

K0

)]
(16)

where F is a nuisance parameter (the fraction of free drug)
calculated using two nuisance parameters (the concentrations
of albumin and creatinine). Note that, in principle, it is diffi-
cult to predict, with a closed-form formula, the influence of the
variability of the nuisance parameters into the variability of
the optimal sampling times. However, we may investigate this
issue by running the proposed algorithm multiple times, each
time reducing the variability of the nuisance parameter, and
observing how the optimal sampling times are affected by this.

The whole model has a relatively large number of param-
eters. Some of them can be accurately measured in a not too
invasive way (female, age, and LBW). Some others such as K0, s,
and b are assumed to be fixed (with values K0 = 0.833 mg/min, s
= 0.92, and b = 0.84). Finally, the measurement of parameters
such as Clalbumin(t) and Clcreatinine(t) would increase the cost of
the blood tests required to determine the free drug concentra-
tion. They will be treated in this example as nuisance param-
eters for which an a priori distribution will be assumed. This
leaves Vd, Vmax, and Km as the only patient parameters that
need to be measured. Consequently, we need to perform four
blood tests in order to find these three parameters by weighted
least-squares regression (the weights are given by the concen-
tration dependent variance of each measurement).

The distribution of the nuisance parameters can be found
in the medical literature. For example, the albumin concen-
tration is expected to be between 34 and 54 g/L,34,35 whereas
the creatinine concentration is expected to be between 8.8 and
11.0 mg/L for women and between 10.0 and 12.9 mg/L for men.36

In the following, we will assume that the albumin and creati-
nine serum concentrations of a given patient do not change over
time.

The a priori distribution of the kinetic parameters is also
known.24 For instance, the distribution volume can be calcu-
lated as

Vd = BWvd (17)

where BW is patient’s body weight and vd is the normalized
distribution volume between 0.3 and 1.4 L/kg, with a mean
of 0.8 L/kg and a SD of 0.16 L/kg. Similarly, the maximum
degradation rate can be calculated as

Vmax = BWvmax (18)
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Figure 1. Solid red line: average response of a 40-year-old male pa-
tient of 80 kg and 20% of fat weight to 100 mg of phenytoin daily. Dashed
lines: minimum and maximum responses according to the distribution
of nuisance and system parameters.

where vmax is between 2.48 and 19.84 :g/(kg min), with a mean
of 5.46 :g/(kg min) and a SD of 1.63 :g/(kg min). Finally, the
concentration at half degradation rate Km is between 2 and
9 mg/L, with a mean of 5.89 mg/L and a SD of 2.95 mg/L.24 This
a priori distribution is used, along with the distribution of the
nuisance parameters, to calculate the expectation in Eq. (9).

We will exemplify our methodology with a 40-year-old male
patient of 70 kg and 20% of fat weight. Typical responses to
a tablet of 100 mg of phenytoin are depicted in Figure 1. For
the sake of the example, let us say that our plan is to give a
patient during 10 days a dose of 100 mg of phenytoin. We have
chosen this dosage because in the worse case it does not go
above the toxic concentration after 10 days of treatment and it
does not exceed the maximal daily dose of 15 mg/kg. However,
this dose has to be adjusted to each patient taking into account
his gender, age, weight, and body fat.

At this point, we pose the differential equations of the sensi-
tivity functions

dsVmax (t)
dt

= ∂ f
∂Cfree

(t)sVmax (t) − 1
Vd

FCfree(t)
FKm + Cfree(t)

dsVd (t)
dt

= ∂ f
∂Cfree

(t)sVd (t) + 1
V2

d

FVmaxCfree(t)
FKm + Cfree(t)

− FK0

V2
d

[
u(t) − u

(
t − Dsb

K0

)]

dsKm (t)
dt

= ∂ f
∂Cfree

(t)sKm (t) + 1
Vd

F2VmaxCfree(t)[
FKm + Cfree(t)

]2 (19)

where

∂ f
∂Cfree

(t) = − F2KmVmax

Vd
[
FKm + Cfree(t)

]2 . (20)
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Figure 2. Sensitivity values to each one of the parameters to be determined for an averagely responding person.

Figure 2 shows the sensitivity values for the three parame-
ters Vmax, Vd, and Km and the average response of the patient
in Figure 1.

We now follow the methodology developed in this article and
minimize the maximum coefficient of variation of any of the
three system parameters to be determined Vd, Vmax, and Km.
The methodology suggests to take samples after 7880, 9307,
9439, and 13,894 min after starting the treatment, or what is
the same 5.5, 6.5, 6.6, and 9.6 days. The volume of distribution,
Vd, can be determined with an average coefficient of variation
of 0.2%, Km with an average coefficient of variation of 7.1%, and
Vmax with an average coefficient of variation of 1233.3%. The
reason why Vmax is so badly determined is that the administered
dose (100 mg, daily) causes a plasma concentration of free drug
after 10 days of treatment that is far below the concentration
needed to induce the maximum degradation.

For comparison purposes, we can easily extend our method-
ology to the D-optimal design10–12 and implemented in the free
R-package PFIM37 by calculating

T∗ = arg min
T

E {− |IT|} (21)

where Fisher’s information matrix is calculated as suggested in
this article through differential equations for the sensitivities.
The D-optimal design for the case above provides the sampling
times 649, 6034, 7281, and 11,584 min after starting the treat-
ment. The determinant of the Fisher’s information matrix is
14.51 (whereas for our solution, it is 13.29; as expected, the de-
terminant is larger in the D-optimal design as compared with
our design, as D-optimal design looks for the sampling times
that maximizes this determinant). However, the coefficients of

variation for the three parameters are 0.2%, 8.2%, and 1406%,
respectively (compared with our coefficients of variation 0.2%,
7.1%, and 1233.3%).

The fact that the concentration is so low that the reaction is
far from maximum degradation suggests a two-stage approach
to the system identification: in the first stage, of a week of
duration, we determine Vd and Km with a low dose (as we have
already performed); in the second stage, we increase the dose, in
order to faster reach the therapeutic window, and we take extra
samples to better determine Vmax. We illustrate this second
phase in this example. In the second phase, of another 10 days,
we increase the dose to 300 mg of phenytoin in the morning and
200 mg after 12 h (the daily maximum for a patient of 70 kg
is 1.05 g) so that the therapeutic window can be reached (see
Fig. 3). During this second phase, our method suggests to take
one sample on day 14.5 (minute 20,987) so that the coefficient
of variation of Vmax drops to 24.5%; the coefficient of variation
of Vd drops to about 1.6%, and the one of Km to about 5.8%.
Obviously, these optimal sampling minutes can be modified to
fit the clinical needs.

Interestingly, Vmax is dominating the design because it is the
parameter on which samples bring least information about.
This is true for our design as well as for D-optimal or any
other design based on Fisher’s information matrix. However,
as shown in this example, we can follow a two-phase de-
sign. During the first phase, we use a low dose to have a
first estimate of the kinetic parameters while being sure of
not reaching the toxic range; in the second phase, we in-
crease the dose to reach more quickly the therapeutic win-
dow and increase the information about the most limiting
parameter.
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Figure 3. Free drug concentration after 10 days with a daily dose of
100 and 300 mg (morning) and 200 mg (evening) after that period.

CONCLUSIONS

In this article, we have presented a methodology to adapt the
sampling time points to any patient taking into account all the
a priori information available (a priori distribution of system
and nuisance parameters). The methodology is rather flexible
and can deal with any nonlinear PK model, as long as it can be
expressed in the form of a differential equation, and any dosing
regimen. In this way, we avoid the need of a close-form solution
of the model. Notwithstanding, the selection of the time points
is performed based on a solid theory using Fisher’s information
matrix to maximize the information carried by the measure-
ments on the system parameters. Additionally, we can handle
nuisance parameters (parameters that affect the concentration
but that cannot be measured) through their distribution in a
population. Our theory is valid for multiple simultaneous mea-
surements (plasma, urine, . . . ), although in our example, we
have only used plasma concentration. It is our hope that in the
future the use of algorithms such as the one presented in this
article will help medicine toward a more personalized therapy.
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