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Cryo Electron Microscopy is a powerful Structural Biology technique, allowing the elucidation of the
three-dimensional structure of biological macromolecules. In particular, the structural study of purified
macromolecules –often referred as Single Particle Analysis(SPA)– is normally performed through an iter-
ative process that needs a first estimation of the three-dimensional structure that is progressively refined
using experimental data. It is well-known the local optimisation nature of this refinement, so that the ini-
tial choice of this first structure may substantially change the final result. Computational algorithms aim-
ing to providing this first structure already exist. However, the question is far from settled and more
robust algorithms are still needed so that the refinement process can be performed with sufficient guar-
antees.

In this article we present a new algorithm that addresses the initial volume problem in SPA by setting it
in a Weighted Least Squares framework and calculating the weights through a statistical approach based
on the cumulative density function of different image similarity measures. We show that the new algo-
rithm is significantly more robust than other state-of-the-art algorithms currently in use in the field.

The algorithm is available as part of the software suite Xmipp (http://xmipp.cnb.csic.es) and Scipion
(http://scipion.cnb.csic.es) under the name ‘‘Significant’’.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Single Particle Analysis using the Electron Microscope is a pow-
erful experimental technique to elucidate the three-dimensional
structure of macromolecular complexes (Frank, 2006; Sorzano
et al., 2007). Thousands of two-dimensional projections of the
structure under study are collected with the Electron Microscope,
which are then used in most cases within iterative algorithms that
have as initial input a first estimation of the three-dimensional
structure. However, refinement algorithms are known to behave
as local optimizers (Sorzano et al., 2006; Henderson et al., 2012),
so that the dependence of the final result on the initial volume is
a major concern in the field. This situation is known as the ‘‘initial
volume problem’’. There exist several algorithms addressing the
task of reconstructing a 3D volume compatible either with the
2D experimental images or with their image class averages
(Penczek et al., 1996; Ogura and Sato, 2006; Singer et al., 2010;
Coifman et al., 2010; Elmlund et al., 2010; Sanz-García et al.,
2010; Singer and Shkolnisky, 2011; Elmlund and Elmlund, 2012;
Elmlund et al., 2013; Vargas et al., 2014). However, the problem
is far from settled due to several reasons: (1) It is an optimisation
problem in a high-dimensional space; (2) There are many local
minima and algorithms may get trapped into them. Except for
Elmlund et al. (2013), most algorithms aim at trying to avoid local
minima. Elmlund et al. (2013) takes a soft optimisation probabilis-
tic approach, in which an image can take multiple 3D orientations
with different weights calculated from some heuristically deter-
mined function within a subset of so-called feasible directions. This
idea is somehow similar to the one in Maximum Likelihood and
Bayesian reconstruction (Scheres et al., 2005, 2007; Scheres,
2012a), in which all projections can take all directions with differ-
ent weights (in this case, calculated from the assumed a priori dis-
tribution of noise (ML) and signal coefficients (Bayesian)). In turn,
Vargas et al. (2014) adopts a statistical approach with the goal of
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also avoiding the local minima by strongly reducing the search
space using image subsets, randomly assigning Euler angles and
checking which of the assignments was more successful. Unfortu-
nately, current practice shows that, despite the availability of all
these possibilities, more robust algorithms are still in need, since
there are occasions in which the existing programs fail to produce
a satisfactory result. Some recent approaches (like Optimod
(Lyumkis et al., 2013) or MyFirstMap) take the pragmatic approach
of generating many different volumes (preferably with different
algorithms) and rank the volumes according to their fit to the
experimental data.

The algorithm presented in this paper, which we will refer to as
Significant, follows previous approaches in the field in which an
image is allowed to have different projection directions with differ-
ent weights. However, instead of setting the problem as a closed
form optimisation of a given functional under a simplified set of
assumptions, which may be violated in practical works, it consid-
ers more realistic models at the expense of mathematical tractabil-
ity. We rely on the theory of Weighted Least Squares (WLS)
optimisation rather than, for instance, on Maximum Likelihood
(ML) optimisation. The rationale for this choice is that we are more
free to choose a different weight scheme in which we incorporate
more criteria evaluating the quality of the fitting between a given
particle and its candidate projection direction. The fact that the
functional is changed along iterations complicates its mathemati-
cal properties in the limit, so that the algorithm cannot be under-
stood as an iterative algorithm to solve a Weighted Least Squares
problem because the weights change from iteration to iteration.
In principle, no weighting scheme is better than another, and the
proof of its correctness can only be based on the results it
produces.

Following the rational just introduced, Significant has been
developed so that similarity measures are certainly addressed
within statistically significant intervals; additionally, we have
incorporated a number of new ‘‘desired properties’’ of a solution.
In this way, we introduce the notion of ‘‘images being important
for a projection’’ and of ‘‘projections being important for an image’’,
the explicit consideration of the spatial neighbourhood of projec-
tion directions and, finally, the combined use of several image sim-
ilarity measures (the correlation coefficient and the IMED (IMage
Euclidean Distance) (Wang et al., 2005), an image metric that takes
into account pixel neighbourhoods). In the Results section we com-
pare our new algorithm with a number of common methods in the
field.

2. Methods

Let us call Ii the ith image in a collection of N images (they can
be experimental images or class averages, from the point of view of
our algorithm the only difference is a larger execution time in the
case of experimental images, since there are many more experi-
mental images than class averages). In order to construct a first ref-
erence volume, we assign random angles to each one of the images
and make a first reconstruction, that we will refer to as V ð0Þ. This
first reconstruction normally looks as a smooth sphere whose
radius coincides with the particle radius. If a better prior exists
(the volume is approximately a cylinder, or even a previous 3D
reconstruction of a related molecule), we may use it instead.

Let us now refine the first reconstruction using the following
iterative method

V ðkþ1Þ ¼ arg min
V

XN

i¼1

XM

j¼1

wðkÞij keIðkÞij � PjVk2 ð1Þ

where Pj denotes the projection operator along the direction j
(assuming that we are exploring a discrete library of M projections),
and eIðkÞij is the image resulting of aligning, rotationally and transla-
tionally, the ith image to the jth projection of V ðkÞ. wðkÞij is a weight
(note that normally weights are between 0 and 1, and this is indeed
the case in our method, although this is not strictly necessary) that
controls whether the ith image should be considered to come from
the jth direction at iteration k. Note that many of the 3D reconstruc-
tion formalisms can be set in this generic framework: Projection
Matching (Scheres et al., 2008) has wðkÞij ¼ 1 for only one of the M
directions; in Maximum-Likelihood 3D (Scheres et al., 2007) all
weights can, in principle, be different from 0 and they are calculated
based on the a priori assumption of Gaussianly distributed noise;
similarly, Relion calculates weights based on the previous assump-
tion and the assumption that Fourier coefficients are Gaussianly
distributed (Scheres, 2012a). This type of algorithms is referred as
Weighted Least Squares (WLS).

In this article, we also adopt a probabilistic approach for the
weight calculation, although in this case based on the concept of
statistical significance. Let us consider the case of Projection
Matching. It compares, after alignment, the ith image to all M pro-
jections generated from the volume at iteration k. This comparison
is usually performed by calculating Pearson’s correlation coeffi-
cient between the two images, qðkÞij , and the algorithm selects the
direction with maximum correlation. However, since images are
noisy, the correlation coefficient itself is a random variable. If both
the experimental images and the reprojections were to follow a
normal distribution, the one-sided confidence interval associated
to their cross correlation could be easily computed through Fisher’s
transformation (Sheskin, 2004, Chap. 28)

q 2 tanh tanh�1 max
j
fqðkÞij g

� �
� z1�aðkÞffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 3
p

� �
;max

j
fqðkÞij g

� �
ð2Þ

where tanh is the hyperbolic tangent, a is the level of confidence,
z1�aðkÞ is the 1� aðkÞ percentile of the Gaussian distribution, and N
is the number of pixels on which the correlation has been calcu-
lated. The idea is that, because of the noise, all those directions
whose correlation coefficient lay in this confidence interval are sta-
tistically indistinguishable from the maximum (with a confidence
level aðkÞ), and consequently, they should all be kept as feasible
solutions. However, the assumption of normality does not hold in
practical cases (this issue will be further discussed along this work),
which makes inaccurate the simple computation of Fisher’s trans-
formation. At this point Significant departs from other algorithms
in the field in that it still uses Fisher’s confidence interval as a first
way to filter out direction candidates, but it subsequently explicitly
considers the distribution of experimental correlation coefficients
for the actual confidence assignment (note that this approach
allows the use of other similarity measures besides cross correla-
tion). This latter concept is what we will refer as ‘‘a direction being
significant to an image’’ (with a confidence level aðkÞ). For doing so,
we estimate the marginal probability density function of the qðkÞi�
variable (see Fig. 1), and we check whether qðkÞij is larger than the
1� aðkÞ percentile:

Pr qðkÞi� 6 qðkÞij

n o
P 1� aðkÞ ð3Þ

Note that in this condition aðkÞ plays a similar role to the Type I error
(a) in Statistical Inference, and from that analogy we have chosen
the name ‘‘Significant’’ for this method. Note that the role of this
condition is to allow the contribution of an image to a number of
‘‘Significant’’ directions at the same time, while working with the
experimental distribution of similarity measures, without being
restricted to normality assumptions or the use of cross correlations.

We may also add the desired condition that the image is signif-
icant to the direction by testing whether

Pr qðkÞ�j 6 qðkÞij

n o
P 1� aðkÞ ð4Þ



Fig.1. Graphical representation of the qij matrix and the marginal variables qi� (the
set of correlations for a given image) and q�j (the set of correlations for a given
direction).
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Fig.2. Scatter plot of cross-correlation and IMED values for the GroEL example. Only
those images with cross-correlation higher than 0.92 are shown.
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(see Fig. 1). This condition may be used if we expect to have many
outliers (empty images, images with no specimen,. . .), although its
effects will naturally imply the selection of only a few images per
projection direction and the rejection of the rest. We refer to this
condition as the ‘‘strict’’ direction condition (the direction becomes
‘‘strict’’ about which images can contribute to it). In practical cases
the ‘‘strict’’ conditions will be seldom used, with the exception of
heavily contaminated data sets, for which ‘‘strict’’ can be very use-
ful, as we will show in subsequent sections.

If the condition on direction significance is met, for which we
will demand both the fulfilment of Fisher’s condition and of the
experimentally-determined significance interval, the weight is cal-
culated as

wðkÞij ¼
qðkÞij

max
i021;...;N

j02Neighh ðjÞ

qðkÞ
i0 j0

Pr qðkÞi� 6 qðkÞij

n o
Pr qðkÞ�j 6 qðkÞij

n o
ð5Þ

where NeighhðjÞ is the set of projection directions that differ from
the jth projection direction in less than h degrees; otherwise, the
weight is zero. Note that the use of NeighhðjÞ represents a new ‘‘cri-
terion’’ of our solution: its correlation should be a good match also
when compared to its surroundings. The rationale is that if an image
is correctly assigned to a given direction, then its correlation should
also be amongst the best in a neighbourhood of that direction. Note
that Projection Matching is obtained in this scheme if a ¼ 1

N and we
drop any reference to the distribution of correlations along a direc-
tion (q�j). In the Supplementary Material we show the effect of the
conditions used in this method to select candidate directions.

Of course, if the condition of ‘‘strict’’ direction is enabled, we
will also reinforce that images with similarity measures signifi-
cantly lower than the maximum value will be assigned a weight
equal to zero.

Cross-correlation among two different images is simply a way to
measure their similarity. There have been other proposals to mea-
sure this similarity like IMED (Wang et al., 2005). IMED is, in fact, a
generalisation of the Euclidean distance between two images X
and Y that takes into account local neighbourhoods of each pixel:

gðX;YÞ ¼
XP

m¼1

XP

n¼1

exp
krm � rnk2

2

 !
XðrmÞ � YðrmÞð Þ XðrnÞ � YðrnÞð Þ

ð6Þ
where P is the number of pixels in images X and Y; rn denotes the
location of the nth pixel, and XðrnÞ the pixel value at that location.
We have observed that IMED has a better discriminatory power
than cross-correlation. For instance, Fig. 2 shows a plot of the
cross-correlation and IMED at the high-end of cross-correlation
(images that are very similar to each other according to cross-corre-
lation). The line plotted is a polynomial of degree 3 fitted to this
data. Note the increase of slope of IMED with respect to cross-cor-
relation at very high correlation values revealing the more discrim-
inatory power of IMED (note also that IMED values decrease as
cross-correlation values increase).

Finally, we calculate the weight as

wðkÞij ¼

min
i021;...;N

j02NeighhðjÞ

gðkÞ
i0 j0

gðkÞij

Pr gðkÞi� P gðkÞij

n o
Pr gðkÞ�j P gðkÞij

n o0BBB@
1CCCA

qðkÞij

max
i021;...;N

j02NeighhðjÞ

qðkÞ
i0 j0

Pr qðkÞi� 6 qðkÞij

n o
Pr qðkÞ�j 6 qðkÞij

n o0BBB@
1CCCA ð7Þ

Note that these weights are necessarily between 0 and 1, and that if
an image is the best one for a given direction and that direction is
the best for that image, then wij ¼ 1 as in Projection Matching.

A new volume is reconstructed (Eq. (1)) for iteration kþ 1 using
the just calculated weights, and the process is iterated for a fixed
number of times. At each iteration we normally increase our level
of confidence, 1� aðkÞ, by using a monotonically decreasing
sequence of aðkÞ values. However, any other strategy could be used.
Typically, our confidence levels range between 85% and 99.99%. At
low confidence levels, Fisher’s confidence interval is relatively
small because we do not need to be very confident about it, while
the number of candidate directions amongst the top 1� aðkÞ per-
centile is relatively large. As the confidence level increases, Fisher’s
confidence interval increases, to account for the larger confidence
needed, while the number of candidate directions in the top list
decreases (because the 1� aðkÞ percentile increases).

We may think of the new reconstruction algorithm as being half
way between Projection Matching (only one direction has a weight
different from zero) and Maximum Likelihood/Maximum a posteriori
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(all directions get a weight different from zero), but generalised to
any type of similarity measures and to experimentally-determined
similarity value distributions. In the new scheme, only a few direc-
tions get a non-zero weight (the number of projections range
between 100 and 1, depending on the total number of projections,
M, and the confidence level, 1� a), specifically those that are sig-
nificantly more similar to each image. Interestingly, we have also
introduced the notion of an image being significant for a direction.
Typically, Electron Microscopy algorithms always assign a projec-
tion direction to any input image. However, in our scheme this
may not be the case if the image at hand is not good enough
(meeting our confidence conditions) for any of the projection
directions. This prevents images with very low Signal-to-Noise
Ratios, empty images and images corresponding to sufficiently
different conformations from being used during the reconstruction.

3. Results

3.1. GroEL

GroEL (Ranson et al., 2001) is considered to be a difficult case for
blind initial volume algorithms, because its top views and side
views are approximately of the same size, and the algorithm does
not always find their correct relative orientation. We used the
GroEL dataset publicly available as the tutorial of EMAN2 (http://
blake.bcm.edu/emanwiki/Ws2011/Eman2) (Tang et al., 2007). We
automatically picked 8758 particles from 26 micrographs at a sam-
pling rate of 4.2 Å/pixel using the algorithm described at Abrishami
Fig.3. Sample images an

Fig.4. Examples of correct GroEL reconstructions. From left to right: GroEL structure de
EMDB-1042: 0.841); Simple 1.0 (cc = 0.834); EMAN2 (cc = 0.825); Relion (cc = 0.809); RA

Fig.5. Examples of incorrect GroEL reconstructions. From left to rig
et al. (2013). We automatically evaluated their quality (Vargas
et al., 2013) and kept 8589. Then, we performed a 2D classification
(Sorzano et al., 2010) into 44 classes as a way to construct a ‘‘sum-
mary’’ of the collected data (see Fig. 3). It can be seen that some of
the classes are of much better quality than others, with a quite dif-
ferent number of images assigned to them, as is normally the case
in an experimental setting.

We compared the results of reconstruct_significant (run with
100 iterations and a linearly decreasing from 0.15 to 0.001; with
a non-strict direction condition) to the results of EMAN2 (e2initial-
model.py run with 8 iterations), Simple 1.0 (Elmlund and Elmlund,
2012) (origami with low pass filtered to 15 Å, note that Simple 1.0
was originally introduced for raw images but that we are applying
here to classes), RANSAC (Vargas et al., 2014) (run with 380 RAN-
SAC iterations and an inlier threshold of 0.77), Relion (with auto-
refine) (Scheres, 2012b) and Projection Matching as implemented
in Xmipp (Scheres et al., 2008). All these algorithms were run with
their default parameters normally used in Xmipp. For those algo-
rithms needing a starting volume, we constructed a ‘‘sphere’’ by
assigning random angles to the 2D classes, performing a 3D recon-
struction, and radially averaging the resulting volume. Relion can-
not work with as few as 44 classes and we supplied it with the
8589 selected particles. Each algorithm produced 10 volumes
(either by asking the algorithm to do so, or by repeating it 10
times) and found that the newly proposed algorithm constructed
a correct model (understanding by correct a volume whose
FSC = 0.5 frequency with respect to the EMDB volume is finer than
25 Å) 10 times, RANSAC 3 times, EMAN2 and Simple 1.0 2 times,
d classes of GroEL.

posited at EMDB (1042) at 10.3 Å; reconstruct_significant (cross-correlation, cc, to
NSAC (cc = 0.786).

ht: EMAN2; RANSAC; Simple 1.0; Projection Matching; Relion.

http://blake.bcm.edu/emanwiki/Ws2011/Eman2
http://blake.bcm.edu/emanwiki/Ws2011/Eman2


Fig.6. Sample images and classes of the eukaryotic ribosome.

Fig.7. Examples of correct ribosome reconstructions. From left to right: Relion;
reconstruct_significant (cross-correlation compared to Relion, cc ¼ 0:646.).

C.O.S. Sorzano et al. / Journal of Structural Biology 189 (2015) 213–219 217
Relion 1 time, Projection Matching 0 times. The execution time per
volume using a single CPU was EMAN2 (2.7 min), RANSAC
(2.8 min), Simple 1.0 (19 min), Projection Matching (25 min),
reconstruct_significant (6 h), and Relion (33.6 days). Note that
most of these algorithms are parallelized (including the newly pro-
posed one) and the actual execution time must be divided by the
number of processors available. Also, our algorithm produced a
correct structure from iteration 4 (a ¼ 0:856) after only 24 min
(in a single processor). Fig. 4 shows the correct GroEL structure
as deposited at the Electron Microscopy Data Bank (entry 1042)
and the best volumes reconstructed by each of the algorithms
sorted by descending correlation coefficient while Fig. 5 shows
some of the poorly reconstructed initial models.

In another experiment, we artificially added to the 44 class
averages 396 images (=44 � 9) of pure noise with the same mean
and standard deviation as the noise in the original images. Signif-
icant was capable of producing the correct structure if the ‘‘strict’’
direction condition was used (it was not without this condition).
None of the other algorithms was able of producing a correct
structure.

3.2. Eukaryotic ribosome

In our second experiment we have performed the blind ab initio
reconstruction of 5000 cryo-EM projections of an eukaryotic ribo-
some, obtained from the EMDB test image data (http://www.ebi.ac.
Fig.8. Evolution of the ribosome reconstruction along iterations (iter
uk/pdbe/emdb/test_data.html) and originally used in the work of
Scheres et al. (2007). The images had an original size of
130 � 130 pixels and we scaled them to a size of 64� 64 pixels
for speeding up the calculations. In our previous algorithm, RAN-
SAC (Vargas et al., 2014), we needed to filter the 2D classes so that
the algorithm was able to produce correct structures, the reason
being probably that with high resolution information there were
too many local minima in which the algorithm was getting
trapped. In this experiment, we tested whether the new algorithm
was able to produce good structures without any filtration and
compared its results to the results of the rest of algorithms. Fig. 6
shows some of the images of the dataset and some of the classes
calculated from them.

We estimated 32 2D classes using CL2D (Sorzano et al., 2010).
We run the same set of programs as in the previous case, with
the same parameters. This time, only Relion (only one run with
the 5000 images) and Significant (in 100% of the 10 executions)
were able to produce a correct structure (see Fig. 7). Fig. 8 shows
the evolution along the iterations of the ribosome reconstructed
by reconstruct_significant. The rest of the algorithms got trapped
into local minima (see Fig. 9). The execution time per recon-
structed model in a single CPU was: EMAN2 (3.4 min), Simple 1.0
(22 min), Projection Matching (36 min), RANSAC (10.5 h), Signifi-
cant (16 h), Relion (37.3 days). Again, most of these algorithms
are parallelized, so the actual wall clock time is much smaller.

To test whether the number of images played a role in this
result, we provided EMAN2 and Simple 1.0 with the full set of
raw images. None of the algorithms was capable of producing a
good result after several days of execution.
4. Discussion

The determination of an initial volume that can be further
refined in the context of iterative algorithms is a crucial step in
the protocol of macromolecular structure determination from sets
of Electron Micrographs. Practitioners in the field currently have a
range of options, going from low-pass filtering a similar structure
to ab initio 3D reconstruction passing by using random noise, geo-
metrical models (Bilbao-Castro et al., 2004) and Random Conical
ation 0, 15, 30, 45, 60, 75, and 90) using reconstruct_significant.

http://www.ebi.ac.uk/pdbe/emdb/test_data.html
http://www.ebi.ac.uk/pdbe/emdb/test_data.html


Fig.9. Examples of incorrect ribosome reconstructions. From left to right: EMAN2 (cc ¼ 0:297); RANSAC (cc ¼ 0:217); Simple 1.0 (cc ¼ 0:204); Projection Matching
(cc ¼ 0:196).
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Tilt reconstructions (Radermacher, 1988). Ab initio algorithms have
extensively been explored by the EM community, as already shown
in the introduction, with over 10 different methods. However, this
large amount of possibilities may give the false impression that the
problem is solved and that there is no need for yet another algo-
rithm. However, reality is far from this. Indeed, there are many
structures for which we can find an appropriate algorithm produc-
ing the correct result, however, there are also some other struc-
tures for which the existing algorithms still fall short. Even, as
shown in our Results Section, there are structures for which a given
algorithm may or may not produce a correct reconstruction. The
algorithm proposed in this paper addresses these difficult situa-
tions. If the structure can be solved with fast methods like the
one of EMAN2 or RANSAC, there is no need for an extra check with
an algorithm such as the one proposed. However, if there are
doubts about the plausibility of the initial model, running Signifi-
cant may show worthy. Of course, we do not mean that the new
algorithm is the definitive one, and there will always be room for
improvement. However, in the Results Section we have shown that
the algorithm is robust enough in situations with many (eukaryotic
ribosome) or deep local minima (GroEL). The design of the algo-
rithm borrows several ideas from many of the existing algorithms
and combine them in a unique way with the aim of smoothing the
landscape of solutions and finding the global minimum of the
reconstruction problem. Specifically,

� It shares with Projection Matching and Maximum Likelihood
(and partially with its Bayesian evolution in Relion) a Weighted
Least Squares scheme. However, our weights are computed
based on the cumulative distribution function of the correlation
and IMED (a more robust distance measure between images) as
well as the local structure of these two quantities around a
given projection direction.
� It shares with Maximum Likelihood, Relion and Simple 1.0, the

possibility that an image may contribute to multiple projection
directions (with different weights). Again, there are differences
with respect to the other algorithms in the way we choose those
directions to which each image contributes to. We feel that our
choice of comparing always each image to all possible projec-
tion directions (within the specified angular discretization lim-
its) helps to not get trapped within local minima by taking
decisions about the final projection direction too soon.
� It shares with Simple 1.0 and Simulated annealing the slow

‘‘cooling’’ scheme, in our case, the slow decrease of the Type I
error (a). For each a we may think of the landscape of solutions
of the modified Weighted Least Squares problem as one of a
surrogate optimisation problem (we substitute the original
landscape with many local minima by a smoother landscape
with much fewer). As we get closer to the solution, we may
go for fewer Type I errors (and consequently, more local min-
ima). Obviously, reducing the number of iterations (in our
examples, 100) for linearly going from a0 to aF would reduce
the computing time, but it would also increase the risk of
getting trapped into local minima. However, it is also true that
the a sequence does not need to be linear and that faster
sequences could be explored in the future as soon as we detect
that we are in a sufficiently good minimum (which may occur
rather early in the iterations, as was the case of GroEL).
� It introduces a new concept in EM that is the fact that the dis-

tribution of correlation and distance measures for a given pro-
jection direction also influences on the weight of the
experimental image, and may even prevent it from participating
in the 3D reconstruction (‘‘strict’’ direction condition).

5. Conclusion

In this paper we have presented a new algorithm for the estima-
tion of initial models that can be further refined by any of the
already existing algorithms in EM. The algorithm is based on a
Weighted Least Squares approach in which the weights are calcu-
lated using the cross correlation and IMED distance of the individ-
ual image to a specific projection direction as well as its
relationship to neighbour directions and the comparison of these
two quantities with respect to the rest of images available in the
dataset (through the cumulative density functions defined in the
Methods Section). All our design goes into the statistical direction
of ‘‘being significant’’ (the projection direction must be significant
for the image and vice versa, considering also the neighbourhood
of that projection direction). We have experimentally shown that
our algorithm succeeds in producing a correct initial guess in
rather difficult cases. The conceptual bases of this new method
can be expanded to other topics, such as 3D refinement at high res-
olution and 3D classification, although these extensions fall outside
the scope of the present work.The algorithm is available through
the open-source package Xmipp (http://xmipp.cnb.csic.es)
(Sorzano et al., 2004; De la Rosa-Trevín et al., 2013) since version
3.2 (note that the official stable release is currently 3.1) under
the name xmipp_reconstruct_significant.
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