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Chapter 1

Introduction

1.1 Utility theory

An utility function is a twice-di�erentiable function of wealth U(w) (w > 0)
that has the properties of non-satiation (U ′(w) > 0, that is, a little bit of more
wealth is always desirable) and risk aversion (U ′′(w) < 0) (Norstad, 1999b).
These two properties make the function to be monotonically increasing and
concave. U(w) =

√
w is one such a function. These properties stem from the

Von Neumann�Morgenstern expected utility theorem. There are four axioms
that make an investor rational:

• Completeness: For every investment choice A and B, either A � B or
A � B, i.e.. given two choices one is preferred to the other or both are
indi�erent.

• Transitivity: For every A, B and C with A � B and B � C, we must have
A � C, i.e., the investor is consequent with his preferences.

• Independence: Let A, B, and C be three lotteries with A � B, and let
t ∈ (0, 1]; then tA + (1 − t)C � tB + (1 − t)C, i.e., the choices A, B, C
keep their preference order independently of the third (this is the weakest
assumption).

• Continuity: Let A, B and C be lotteries with A � B � C; then there
exists a probability p such that B is equally good as pA + (1 − p)C, i.e.,
B is half-way between A and C.

The Principle of expected utility maximization states that a rational investor
maximizes his expected utility of wealth. In general, the risk-averse investor will
always refuse to play a fair game (for instance, betting on tossing a coin), a game
with expected return of 0% (this is a consequence of the concavity of the utility
function). If the return is greater than 0%, he may choose or not to play the
game. Another way of looking at risk aversion is that investors attach greater
weight to losses than they do to gains of equal magnitude (the slope of the utilty
function is larger at the left than at the right).

Let us consider an investment that brings wealth from a value w0 to a value
w1 = E{U(w)} (note that we take expectations because the outcome of the

3



4 1.1. UTILITY THEORY

investment is a random variable). The certainty equivalent is a wealth value
weqv such that

U(weqv) = U(w1) (1.1)

If w0 < weqv, the investor will consider the investment attractive. Otherwise,
he will see it not so attractive. If w0 <= weqv, the investor will be indi�erent
between undertaking the investment or doing nothing.

If U(w) is an utility function, any positive a�ne transformation

V (w) = aU(w) + b (1.2)

with a > 0, is also an utility function. Actually, if two utility functions are
related by an a�ne transformation, they induce exactly the same behaviour in
the investor, and both functions are said to be the �same�.

The Iso-elastic utility function is a parametric family of utility functions
de�ned by a coe�cient Coe�cient of risk aversion, A, as

UA(w) =

{
w1−A−1

1−A A > 0, A 6= 1

log(w) A = 1
(1.3)

WhenA increases, the investor is more risk-averse. The square-root utility in-
troduced at the beginning belongs to this family (with A = 0.5). A property of
this family of functions is the iso-elasticity property

UA(kw) = f(k)UA(w) + g(k) (1.4)

It implies that if a given percentage asset allocation is optimal for some current
level of wealth, that same percentage asset allocation is also optimal for all other
levels of wealth (Norstad, 1999b). In other words, an investor with iso-elastic
utility function has a constant attitude towards risk expressed as a percentage
of his current wealth.

The Negative exponential utility functions are de�ned as

UB(w) = −e−Bw (1.5)

This family of functions is invariant to translations in wealth:

UB(w + w0) = f(w0)UB(w) + g(w0) (1.6)

In general as these investors' wealth increases, they become more conservative.
They invest the same amount of money no matter their wealth. They have a
constant attitude towards risk expressed in absolute dollar terms. This property
is called constant absolute risk aversion.

For any utility function we may calculate the Arrow-Pratt measure of abso-
lute risk-aversion (ARA)

A(w) = −U
′′(w)

U ′(w)
(1.7)

Two utitlity functions are the �same� i� the ARAs of both functions are identical.
We may also de�ne the measure of relative risk-aversion

R(w) = wA(w) (1.8)

For example
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Figure 1.1: Comparison of several investments in a risk (X-axis) and return
(Y-axis) plane.

Family De�nition A(w) R(w)

Iso-elastic

{
w1−A−1

1−A
A > 0, A 6= 1

log(w) A = 1
A
w

A

Linear relative risk-aversion
w∫
0

x−Ae−Bxdx A
w
+B A+Bw

Negative exponential −e−Bw B Bw

Quadratic w −Bw2 2B
1−2Bw

2Bw
1−2Bw

We see that the linear relative risk-aversion family is a generalization of both
(iso-elastic and negative exponential) families.

Given two investments I1 and I2 whose ending values at time t are w1(t)
and w2(t), it is said that I1 is more e�cient than I2 i� (Norstad, 1999a)

E{U(w1(t))} > E{U(w2(t))} (1.9)

for all utility functions U . In the Fig. 1.1, we are comparing investments in
real-state versus other possible investments. Real-state investment is dominated
by investment X (because X has more return and less standard deviation), but
it dominates Y . Real-state is not comparable to bonds or stocks.

Assume that I1 and I2 have returns R1 and R2 that are normally distributed
with distributions N(µ1, σ

2
1) and N(µ2, σ

2
2), respectively. Then, I1 is more e�-

cient than I2 i� µ1 ≥ µ2 and σ1 ≤ σ2 (Norstad, 1999a). However, bear in mind
that the normal distribution is not usually a good approximation to the return
distribution (a log normal distribution is a better model).

Given a set of feasible investments, I is said to be e�cient if there is no other
investment in the set more e�cient than I. Fig. 1.2 shows the e�cient frontier
of a set of investments. None of the investments in the frontier is dominated
by any other investment, while the ine�cient portfolios are dominated by the
minimum variance portfolio (the leftmost investment).
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Figure 1.2: E�cient frontier of feasible investments in US bonds and stocks.

The Risk premium is the minimum amount of money by which the expected
return on a risky asset must exceed the known return on a risk-free asset in
order to induce an individual to hold the risky asset rather than the risk-free
asset. Formally, the risk premium is π in the equation

U(Rf ) = E{U(Rf + π + x} (1.10)

where Rf is the return of a risk-free asset, and x is a zero-mean random variable.

To �nalize this introduction, let us quote Norstad (Norstad, 1999b): With-
out some kind of evidence there is no reason to believe that any of these par-
ticular utility functions which we have examined describes all investors or even
any individual investor or the average investor. It is entirely reasonable for an
investor's attitudes towards risk to vary with the amount of wealth the investor
has accumulated, and it's reasonable for di�erent investors to have di�erent
patterns of risk aversion as functions of wealth.

William Sharpe says the following about the notions of constant relative risk
aversion and constant absolute risk aversion in reference: �The assumption of
constant relative risk aversion seems much closer to the preferences of most
investors than does that of constant absolute risk aversion. Nonetheless, it is
by no means guaranteed to re�ect every Investor's attitude. Some may wish to
take on more risk ... as their wealth increases. Others may wish to take on less.
Many analysts counsel a decrease in such risk as one ages. Some strategies are
based on acceptance of more or less risk, based on economic conditions. And so
on.
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For these and other reasons it is important to at least consider strategies in
which an Investor's risk tolerance... changes from time to time. However, such
changes, if required at all, will likely be far more gradual than those associated
with a constant risk tolerance expressed in terms of end-of-period value.�

1.2 Stochastic processes

ADiscrete Stochastic Process is a collection of random variables {X0, X1, X2, ...}.
A Markov chain is a discrete stochastic process in which the probability of ob-
serving a certain value at time t only depends on the observed value at time
t− 1 (that is, the rest of the history of the random process does not a�ect the
next sample)

Pr{Xt|Xt−1, Xt−2, ..., X0} = Pr{Xt|Xt−1} (1.11)

This implies that the slope at the current point of a time series does not a�ect
the next sample in the time series, i.e., the slope is a false illusion.

A Martingale is a discrete random process that satis�es

E{|Xt|} < ∞
E{Xt+1|Xt, Xt−1, ..., X0} = Xt

(1.12)

That is the expected value of next observation is the current value of the time
series. This is a way of modelling fair games, and it implies that the expected
win from one sample to the next is 0. In other words, in the long run there is
no hope to win in a martingale.

Given a stochastic process, a Stopping Time or Stopping Rule is another
random variable τ that takes the values 0, 1, 2, ... such that Pr{τ = k} only
depends on {X0, X1, ..., Xk}. For example, in a coin tossing game (head: +1$,
tails: -1$), an example of a stopping time is the �rst time at which the balance
becomes a �xed value (positive or negative). An example of a non-stopping
time is the �rst time that the balance has a peak. This is not a stopping time
because for assessing that τ = k is the peak time, we need to look into the future
(speci�cally, at k + 1). There is a theorem that states that if τ is a bounded,
stopping time for a martingale, then E{Xτ} = X0. That is, there is no win at
the stopping time either.

Given a stochastic process, the random variable de�ned as SN =
N∑
k=0

Xk is a

Random Walk . The random walk is a Markov chain and a martingale. One of
the simplest random walks is the one de�ned on the random variables Xk = 1
(with probability 1/2) or Xk = −1 (with probability 1/2). An interesting
problem for this random walk is the following: Given that SN = k, what is
the probability that the random walk hits the value S = G (G for gain) before
hitting the value S = −L (L for loss), let us call f(k) that probability. Note
that

f(k) = 1
2f(k − 1) + 1

2f(k + 1)
f(G) = 1

f(−L) = 0
(1.13)

This is a recurrence equation whose solution is

f(k) =
L+ k

L+G
(1.14)
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If the Xk variables are independent, then

E{SN} = NE{Xk} = 0
Var{SN} = NVar{Xk} = Nσ2

X
(1.15)

That is, the standard deviation of SN increases with
√
N

σSN =
√
NσX (1.16)

As can be seen, stock prices do not �inde�nitely� grow with time. This is an
indication that they are not a �perfect� random walk. However, random walks
are still a good model for many of their properties.

Random walks are not stationary processes because their variance increases
with time. For a simple random walk with white noise steps we have

Var{SN} = Nσ2
X

Cov{SN , SN−k} = (N − k)σ2
X 0 < k < N

Corr{SN , SN−k} =
√
N−k√
N

=
√

1− k
N

(1.17)

Again, the correlation and covariance depend on time, N , which makes the
random walk to be non-stationary.

1.2.1 Lognormal random walks

In this section we will present the relationship between random walks and
stochastic di�erential equations. For doing so, we will start by reasoning on
return compounding (Norstad, 2005). Consider an initial amount of money X0.
Let us assume that along the year, we are given N times (dividing the year in
N small periods) an interest µ

N . Let us calculate the year compound return:

X1 = X0

(
1 +

µ

N

)N
= X0(1 +R)⇒ R =

(
1 +

µ

N

)N
− 1 (1.18)

When N goes to in�nity

R = lim
N→∞

(
1 +

µ

N

)N
− 1 = eµ − 1 (1.19)

and after a year the new balance is

X1 = X0(1 +R) = X0e
µ (1.20)

After t years, we would have

X(t) = X0e
µt (1.21)

If we di�erentiate this function we get

dX(t) = µX0e
µtdt = µX(t)dt (1.22)

From which we get a di�erential equation that the continuous compounding
must satisfy

dX

X
= µdt (1.23)
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Let us consider now N investment periods, each one with a random return
Rk. At the end of the N periods, we would have:

XN = X0

N∏
k=1

(1 +Rk)⇒ log
Xn

X0
=

N∑
k=1

log(1 +Rk) (1.24)

That is, log Xn
X0

is a random walk, and applying the Central Limit Theorem,
its asymptotic distribution is normal. Even after 1 day, it is reasonably normal
(since in a day we have 25,200 trading seconds). We may now extend the dif-
ferential equation above to include uncertainty around the instantaneous return
rate µ

dX

X
= µ(1 + σR(t))dt (1.25)

where R(t) ∼ N(0, 1). The solution of this equation is

log
X(t)

X(0)
=

t∫
0

µ(1 + σR(τ))dτ = µt+ σ

t∫
0

R(τ)dτ = µt+ σS(t) (1.26)

where S(t) is a continuous random walk, and S(t) ∼ N(0, t). Finally, we have
the general expression for the balance

X(t) = X0e
µt+σS(t) (1.27)

Compare this equation to Eq. 1.21. Gathering the information above, we may
state that

log
X(t)

X(0)
∼ N(µt, tσ2) (1.28)

that is, the variance of our balance increases with time. We may estimate µ and
σ from the annual returns of X as

µ = E{log(1 +R)}
σ =

√
Var{log(1 +R)} (1.29)

For the S&P 500 from 1926 to 1994, the estimates are µ = 6.63% and σ = 19.65%
when t is expressed in years (Norstad, 2002a)[Table 2]. For cash (30 day US
Treasure Bills), µ = 0.54% and σ = 4.22%. Finally, for 20 year US bonds,
µ = 1.64% and σ = 9.60%.

Some �nancial analysts recommends that investments should span several
investment periods (time diversi�cation) as a way to reduce the variance of
the average return. Although this is true (the average return is de�ned as

R̄ = 1
N

N∑
k=1

Rk and Var{R̄} =
σ2
R

N2 ), what we care is about the value of the

investment (XN ), and not the average return (R̄), and as explained above the
variance of XN increases with time. This goes against the popular �wisdom�
that investing in the long term in volatile assets reduces the risk.

Although the similarity between stock markets and random walks is appeal-
ing, there are a number of assumptions of random walks that are violated by
stock markets (Norstad, 2005):
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1. Independence: Random walks assume that the variables being summed (in
our case log(1 + Rk)) are independent. But this is not the case in stock
markets, if the market goes up one day, the probability that it will also
go up the following day is slightly larger than 0.5 (but so little larger that
we cannot exploit this property, because of the trading costs, to invest).
This is a positive correlation between trading days that creates a short-
term momemtum. There is also a negative correlation with respect to
the market: if a stock has outperformed the market for a relatively long
period, its price will tend, eventually (and the problem is that nobody
knows when), to the mean. This is called �reversion to the mean�. Markets
seem to be more volatile in the short-term than random walks and less
volatile than random walks in the long term.

2. Identical distribution: Random walks assume that the variables being
summed are identically distributed. However, there is no good reason
to think that the expected return of a given stock is constant over time. It
depends on the performance of the company, its competitors, the market
state, the global state of a�airs, ... Standard deviations are not constant
either, there are periods of lower volatility and periods of larger volatility.

3. Finite variance: Random walks assume that the variables being summed
have �nite variance. However, some researchers believe that returns have
a fractal nature or stable Paretian distribution, and the variance of some
of these distributions do not have �nite variance. Return distributions are
also fat-tailed compared to the log-normal (very large losses or gains are
more likely than in the log-normal).

In any case, although imperfectly, random walks are a good approximation to
understand some of the properties of stock markets.

There are rather advanced models for log-return random walks. One of
such models is Barndo�-Nielsen and Shephard (BN-S) (Nicolato and Venardos,
2003). The model is based on a random di�erential equation given by

dXt = (µ+ βσ2
t )dt+ σtdWt + ρdZλt

dσ2
t = −λσ2

t dt+ dZλt
(1.30)

where Wt is a Brownian random process and Zλt is a subordinator (that is a
Lévy process with no Gaussian component and positive increments). Alternative
models are exponential Lévy processes and jump di�usion models.

1.2.2 The nature of the random walk

Bouchaud et al. (2004) provides a model for the causes of the random walk in
stocks. Let us see some excerpts of this article

[...] we show that the random walk nature of traded prices results from a very
delicate interplay between two opposite tendencies: long-range correlated market
orders that lead to super-di�usion (or persistence), and mean reverting limit
orders that lead to sub-di�usion (or anti-persistence). We de�ne and study a
model where the price, at any instant, is the result of the impact of all past trades,
mediated by a non constant 'propagator' in time that describes the response of
the market to a single trade.
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[...]
One of the central predictions of EMH is thus that prices should be random

walks in time which (to a good approximation) they indeed are. This was in-
terpreted early on as a success of EMH. However, as pointed out by Schiller,
the observed volatility of markets is far too high to be compatible with the idea
of fully rational pricing. The frantic activity observed in �nancial markets is
another problem: on liquid stocks, there is typically one trade every 5 seconds,
whereas the time lag between of relevant news is certainly much larger. More
fundamentally, the assumption of rational, perfectly informed agents seems intu-
itively much too strong, and has been criticized by many. Even the very concept
of the fair price of a company appears to be somewhat dubious.

There is a model at the other extreme of the spectrum where prices also
follow a pure random walk, but for a totally di�erent reason. Assume that
agents, instead of being fully rational, have zero intelligence and take random
decisions to buy or to sell, but that their action is interpreted by all the others
agents as potentially containing some information.

[...]
Of course, reality should lie somewhere in the middle: clearly, the price

cannot wander arbitrarily far from a reasonable value, and trades cannot all be
random. The interesting question is to know which of the two pictures is closest
to reality.

In this paper, we want to argue, based on a series of detailed empirical results
obtained on trade by trade data, that the random walk nature of prices is in fact
highly non trivial and results from a �ne-tuned competition between two popula-
tions of traders, liquidity providers ('market-makers') on the one hand, and liq-
uidity takers (sometimes called `informed traders'). For reasons that we explain
in more details below, liquidity providers act such as to create anti-persistence
(or mean reversion) in price changes that would lead to a sub-di�usive behaviour
of the price, whereas `liquidity takers' action leads to long range persistence and
super-di�usive behaviour. Both e�ects very precisely compensate and lead to an
overall di�usive behaviour, at least to a �rst approximation, such that (statisti-
cal) arbitrage opportunities are absent, as expected.

They analyzed trading orders accurate to the second. In the following ε is
a variable that takes the value +1 if the price of the following trade is higher
than the last price, or -1 if the price is smaller. Let pn denote the price of the
n-th trade, let us de�ne D(l) as

D(l) =
〈
(pn+l − pn)2

〉
(1.31)

In the absence of linear correlations, D(l) has a strictly di�usive behaviour

D(l) = Dl (1.32)

for some constant D. The absence of linear correlations in price changes is
equivalent to saying that (statistical) arbitrage opportunies are absent, even for
high frequency trading. Real markets almost behave in this way in real life (see
Fig. 1.3). The conclusion is that the random walk (di�usive) behaviour of stock
prices appears even at the trade by trade level, with a di�usion constant D which
is of the order of the typical bid-ask squared. From Fig. 1.3 one indeed sees that
D(1) ≈ 0.01 Euros, which is precisely the tick size, and FT has a typical bid-
ask spread equal to one or two ticks. This coincidence is interesting. It might
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Figure 1.3:
√

D(l)
l for France Telecom over three di�erent time periods.

suggests that price changes are to a large extent induced by the trading activity
itself, independently of real news.

To better understand the impact of trading on the price changes, they study
the response function R(l) at a given volume V

R(l, V ) = 〈(pn+l − pn)εn〉|Vn=V (1.33)

They propose that this response can be factorized as

R(l, V ) = R(l)f(V ) = log(V ) (1.34)

and an average R(l) is shown at Fig. 1.4. The particular amplitude and maxi-
mum location depends on the speci�c stock. However, the shape does not, most
stocks have this behaviour. It has also been stablished that approximately

D(l) ∝ R2(l) (1.35)

Analyzing this data: ... means that one can hardly detect the statistical
presence of informed trades that correctly anticipate the sign of the price change
on a short term basis, such as to at least cover their trading costs. This result
is consistent with the conclusion of other studies, where it is established that
investors `trade too much', and that the uninformed price pressure is large.

Long term correlations

All the above results are compatible with a `zero intelligence' picture of �nancial
markets, where each trade is random in sign and shifts the price permanently,
because all other participants update their evaluation of the stock price as a
function of the last trade. [...]. This model of a totally random stock market is
however qualitatively incorrect for the following reason. Although, as mentioned
above, the statistics of price changes reveals very little temporal correlations, the
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Figure 1.4: R(l,V )
log(V ) = R(l) for di�erent volumes.

correlation function of the sign εn of the trades, on the other hand, reveals very
slowly decaying correlations.

Let C0 be the correlation function de�ned as

C0(l) = 〈εn+lεn〉 − 〈εn〉2 (1.36)

It has been shown that

C0(l) =
C0

lγ
(1.37)

with γ taking typical values like 0.2, 0.5, 0.6, ... Always γ < 1, which implies
that the integral of C0(l) is divergent. This integral can be thought of as the
number of correlated succesive trades. For γ = 0.2, the number of correlated
trades is about 50. We may also consider correlation functions including the
volume, it is shown that (see Fig. 1.5)

C1(l) = 〈εn+lεn log(Vn)〉 ≈ C0(l) 〈log(V )〉
C2(l) = 〈εn+l log(Vn+l)εn log(Vn)〉 ≈ C0(l) 〈log(V )〉2 (1.38)

Micro-model of price �uctuations

They postulate the following trade superposition model

pn =
∑
n′<n

G0(n− n′)εn′ log(Vn′) +
∑
n′<n

ηn′ (1.39)

where pn is the price at time n, G0 is the bare impact function or propagator (a
deterministic function) of a single trade. ηn are random variables independent of
εn and uncorrelated in time. They show that this model explains the behaviour
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Figure 1.5: C0(l), C1(l), C2(l). The straight line corresponds to l−γ with γ = 0.2.

of R(l) and D(l) as observed in real markets. The propagator is parametrized
as (see Fig. 1.6)

G0(l) =
Γ0l

β
0

(l0 + l)β
(1.40)

There is a critical value βc = 1−γ
2 where γ is the coe�cient of the correlation of

the εn (see Eq. 1.37). For β > βc the price is sub-di�usive, which means that the
price changes show anti-persistence; while for β < βc the price is super-di�usive,
i.e., the price is persistent.

Critical balance of opposite forces: Market orders vs. limit orders

Although trading occurs for a large variety of reasons, it is useful to recognize
that traders organize in two broad categories:

• One is that of `liquidity takers', that trigger trades by putting in mar-
ket orders. The motivation for this category of traders might be to take
advantage of some `information', and make a pro�t from correctly antic-
ipating future price changes. Information can in fact be of very di�erent
nature: fundamental (�rm based), macro-economical, political, statistical
(based on regularities of price patterns), etc. Unfortunately, information
is often hard to interpret correctly, and it is probable that many of these
`information' driven trades are misguided . For example, systematic hedge
funds which take decisions based on statistical pattern recognition have a
typical success rate of only 52%. There is no compelling reason to believe
that the intuition of traders in markets room fares much better than that.
Since market orders allows one to be immediately executed, many impa-
tient investors, who want to liquidate their position, or hedge, etc. might be
tempted to place market orders, even at the expense of the bid-ask spread.
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Figure 1.6: G0 example. β = 0.42 and l0 = 20.

• The other category is that of `liquidity providers' (or `market makers', al-
though on electronic markets all participants can act as liquidity providers
by putting in limit orders), who o�er to buy or to sell but avoid taking any
bare position on the market. Their pro�t comes from the bid-ask spread:
the sell price is always slightly larger than the buy price, so that each round
turn operation leads to a pro�t equal to the spread, at least if the midpoint
has not changed in the mean time (see below).

This is where the game becomes interesting. Assume that a liquidity taker
wants to buy, so that an increased number of buy orders arrive on the market.
The liquidity providers is tempted to increase the o�er (or ask) price a because
the buyer might be informed and really know that the current price is too low
and that it will most probably increase in the near future. Should this happen,
the liquidity provider, who has to close his position later, might have to buy back
at a much higher price and experience a loss. In order not to trigger a sudden
increase of a that would make their trade costly, liquidity takers obviously need
to put on not too large orders. This is the rationale for dividing one's order
in small chunks and disperse these as much as possible over time so as not to
appear on the `radar screens'. Doing so liquidity takers necessarily create some
temporal correlations in the sign of the trades. Since these traders probably
have a somewhat broad spectrum of volumes to trade, and therefore of trading
horizons (from a few minutes to several weeks), this can easily explain the slow,
power-law decay of the sign correlation function C0(l) reported above.

Now, if the market orders in fact do not contain useful information but are
the result of hedging, noise trading, misguided interpretations, errors, etc., then
the price should not move up on the long run, and should eventually mean revert
to its previous value. Liquidity providers are obviously the active force behind
this mean reversion, again because closing their position will be costly if the price
has moved up too far from the initial price.
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To summarize: liquidity takers must dilute their orders and create long range
correlations in the trade signs, whereas liquidity providers must correctly handle
the fact that liquidity takers might either possess useful information (a rare
situation, but that can be very costly since the price can jump as a result of some
signi�cant news), or might not be informed at all and trade randomly. By slowly
mean reverting the price, market makers minimize the probability that they ei-
ther sell too low, or have to buy back too high. The delicate balance between
these con�icting tendencies conspire to put the market at the border between
persistence (if mean reversion is too weak, i.e. β < βc) or anti-persistence (if
mean reversion is too strong, i.e. β > βc ), and therefore eliminate arbitrage
opportunities.

It is actually enlightening to propose a simple model that could explain how
market makers enforce this mean reversion. Assume that upon placing limit
orders, there is a systematic bias toward some moving average of past prices.
If this average is for simplicity taken to be an exponential moving average, the
continuous time description of this will read:

dpt
dt = −Ω(pt − p̄t) + ηt
dp̄t
dt = −κ(pt − p̄t)

(1.41)

where ηt is the random driving force due to trading, Ω the inverse time scale
for the strength of the mean reversion, and 1

κ the `memory' time over which the
average price pt is computed. The �rst equation means that liquidity providers
tend to mean revert the price toward p̄t, while the second describes the update
of the exponential moving average p̄t with time.

Conclusion

The aim of this paper was to study in details the statistics of price changes
at the trade by trade level, and to analyze the interplay between the impact of
each trade on the price and the volatility. Empirical data shows that (a) the
price (midpoint) process is close to being purely di�usive, even at the trade
by trade scale (b) the temporal structure of the impact function �rst increases
and reaches a maximum after 100 - 1000 trades, before decreasing back, with
a rather limited overall variation (typically a factor 2) and (c) the sign of the
trades shows surprisingly long range (power-law) correlations. The paradox is
that if the impact of each trade was permanent, the price process should be
strongly super-di�usive and the average response function should increase by a
large factor as a function of the time-lag.

As a possible resolution of this paradox, we have proposed a micro-model of
prices, Eq. 1.39 where the price at any instant is the causal result of all past
trades, mediated by what we called a bare impact function, or propagator G0 . All
the empirical results can be reconciled if one assumes that this bare propagator
also decays as a power-law in time, with an exponent which is precisely tuned
to a critical value, ensuring simultaneously that prices are di�usive on long
time scales and that the response function is nearly constant. Therefore, the
seemingly trivial random walk behaviour of price changes in fact results from
a �ned-tuned competition between two opposite e�ects, one leading to super-
di�usion (the autocorrelation of trades) and the other leading to sub-di�usion
(the decay of the bare impact function). The cancellation is however not exact:
the non trivial behaviour of the average response function allows one to detect
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small, but systematic deviations from a purely di�usive behaviour, deviations
that are hardly detectable on the price �uctuations themselves.

In �nancial terms, the competition is between liquidity takers, that create
long range correlations by dividing their trading volume in small quantities, and
liquidity providers that tend to mean revert the price such as to optimize their
gains. The resulting absence of correlations in price changes, and therefore of
arbitrage opportunities is often postulated a priori in the economics literature,
but the details of the mechanism that removes these arbitrage opportunities are
rather obscure. The main message of this paper is that the random walk na-
ture of price changes is not due to the unpredictable nature of incoming news,
but appears as a dynamical consequence of the competition between antagonist
market forces. In fact, the role of real (and correctly interpreted) news appears
to be rather thin: we have de�ned a model independent indicator of the frac-
tion of `informed' trades, as the asymmetry of the probability distribution of the
signed price variation, where the sign is that of the trade at the initial time.
Information triggered trades should reveal in a detectable positive skew of this
distribution, in particular in the tails. Consistently with other studies, our em-
pirical results only show very weak asymmetry, barely su�cient to cover trading
costs, which means that only a small fraction of trades can a posteriori described
as truly informed, whereas most trades can be classi�ed as noise. This result
is most probably one of the mechanism needed to explain the excess volatility
puzzle �rst raised by Schiller.

Behavioral �nance explanation

Hommes (2006) surveys many Heterogeneous Agent Models proposed in the
literature. One of the most interesting is the one of Lux (1995). It is based
on Physics master equation. Let us assume there are N trading agents who
respond to fundamental and technical analysis. Fundamental traders buy a
stock when its market price is below their estimated �true� fundamental price of
the asset, pf . They sell when the market price is above the fundamental price.
Chartist traders buy when the price is going up, and they sell when the price
is going down. In this model, traders are allowed to switch from optimistic to
pessimistic, and from chartist to fundamentalist, and viceversa. Let nf be the
number of fundamental traders and nc the number of chartist traders. Within
chartist traders, let n+

c be the number optimistic (bullish) traders and n−c the
number of pessimistic (bearish) traders. The opinion index is de�ned as

x =
n+
c − n−c

2
∈ [−1, 1] (1.42)

Let us de�ne the proportion of chartist traders as

z =
nc
N
∈ [0, 1] (1.43)

A chartist buys (sells) a �xed amount tc of the asset per period when he is
optimistic (pessimistic). The excess demand created by chartist is modelled as

EDc = (n+
c − n−c )tc = xzNtc (1.44)

A fundamentalist buys (sells) when the market price, p, is below (above) the
fundamental price, pf . The excess demand created by fundamentalists is

EDf = nfγ(pf − p) = (1− z)Nγ(pf − p) (1.45)
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where γ measures the reaction speed of fundamentalists to price deviations.
Finally, a market maker adjusts prices according to excess demands

dp

dt
= β(EDc + EDf ) = β(xzNtc + (1− z)Nγ(pf − p)) (1.46)

where β denotes the speed of the adjustment. Lux (1995) proposes that the
index opinion changes as

dx

dt
=

dn+
c

dt −
dn−c
dt

nc
− n+

c + n−c
2n2

c

dnc
dt

(1.47)

Finally, the proportion of chartists is governed by

dz

dt
=

1

N

dnc
dt

(1.48)

With these equations they were capable of producing price behaviors and
correlations like the ones shown in Fig. 1.7.

Economical explanation

Greenwald et al. (2014) explains the quarterly �uctuation of stock markets in
terms of three underlying economical variables. These three variables explain
up to the 85% of the �uctuations.

We begin by identifying three mutually orthogonal observable economic dis-
turbances that are associated with the vast majority (over 85%) of ‡uctuations
in real quarterly stock market wealth since the early 1950s. Econometrically,
these shocks are measured as speci�c orthogonal movements in consumption, la-
bor income, and asset wealth (net worth), identi�ed from a cointegrated vector
autoregression (VAR) and extracted using a recursive orthogonalization proce-
dure.

Speci�cally, the consumption innovation in the empirical VAR would recover
a total factor productivity (TFP) shock, the labor income innovation would re-
cover a factors share shock that reallocates the rewards of production without
a�ecting the size of rewards, and the wealth innovation would recover a shock to
shareholder risk aversion that moves the stochastic discount factor pricing assets
independently of stock market fundamentals or real activity such as consumption
and labor earnings. We show that the dynamic responses to these mutually or-
thogonal VAR innovations produced from model generated data are remarkably
similar to those obtained from historical data.

With this theoretical interpretation of the observable disturbances in hand,
we turn to the question of how these distinct shocks have a�ected stock market
wealth over time. We �nd that the vast majority of short- and medium-term
stock market �uctuations in historical data are driven by risk aversion shocks,
revealed as movements in wealth that are orthogonal to consumption and labor
income both contemporaneously (an identifying assumption), and at all subse-
quent horizons (a result). Although transitory, these shocks are quite persistent
and explain 75% of variation in the log di�erence of stock market wealth on a
quarterly basis. These facts are well explained by the model, in which the orthog-
onal wealth shocks originate from independent shifts in investors' willingness to
bear risk. At longer horizons, the relative importance of the shocks changes.
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Figure 1.7: Time series of prices (top left), fundamental price (top right), returns
(second panel, left), squared returns (second panel, right), opinion index (third
panel, left), fraction of chartists (third panel, right) and autocorrelation patterns
(bottom panel) of returns, squared returns and absolute returns.
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Although the factors share shock explains virtually none of the variation in the
real level of the stock market over cycles of a quarter or two, it explains roughly
40% over cycles two to three decades long. These facts are well explained by the
model economy, which is subject to small but highly persistent innovations that
shift the allocation of rewards between shareholders and workers independently
from the magnitude of those rewards. By contrast, consumption shocks, both
in the model and in the data, play a small role in the stochastic ‡uctuations of
the stock market at all horizons. The crucial aspect of the model that makes it
consistent with this �nding is its heterogeneous agent speci�cation. This �nding
contradicts representative agent asset pricing models in which shocks that drive
aggregate consumption play a central role in stock market �uctuations.

[...]
Our �ndings are also informative about the origins of risk premia ‡uctuations.

Share-holders in the model are close to risk-neutral most of the time but sub-
ject to rare �crises� in their willingness to bear risk, captured in the model by
infrequent, large spikes in risk aversion that generate a ��ight to safety�. Even
though these �ights are rare and extreme, a time-varying expectation that risk
tolerance could crash in the future generates plausible variation in the price-
dividend ratio and empirically reasonable predictability in excess stock market
returns. Time-variation in the risk premium, both in the model and the data, is
revealed by the wealth shocks, which are orthogonal to movements in consump-
tion and labor income. We �nd that these innovations also bear little relation
to other traditional macroeconomic fundamentals such as dividends, earnings,
consumption volatility, or broad-based macroeconomic uncertainty, and none of
these other variables forecast equity premia. These �ndings are hard to reconcile
with models in which time-varying risk premia arise from habits (which vary with
innovations in consumption), stochastic consumption volatility, or consumption
uncertainty.

1.2.3 Non-random walks

Lo and MacKinlay (2011) maintains that the price of an asset is not a random
walk. It has instead some underlying trend either for fundamental reasons (the
performance and quality of a company) or for momentum reasons (many people
buying the same stock makes its price raise, which attract more people). They
propose that the returns are modelled by

logR[n] = µ+ ε[n] (1.49)

where ε[n] is a random innovation (which can be modelled by a GARCH-like
model).

Dhar and Kumar (2001) gives some reasons why prices do not follow a
random-walk. Here follow some paragraphs of this article.

Investors may trade for a variety of reasons such as portfolio rebalancing,
tax-loss selling, liquidity reasons, lifecycle considerations, over-con�dence or for
purely speculative reasons. Trading may also be driven by changes in investor
beliefs about the future stock prices and these beliefs are likely to be in�uenced
by past price trends. Along with the fundamental information about the �rm,
investors may look at price trends to formulate their trading decisions and they
may follow trend-based heuristics (�rules of thumb�) such as momentum and
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contrarian strategies to decide when to buy and when to sell. Furthermore, in-
vestors may di�er systematically in their reaction to past trends and the degree
to which they follow momentum and contrarian strategies. Clearly, di�erences
in investor trading behavior may be present along dimensions other than price
trends and a more complete characterization of investor heterogeneity may help
us better understand the link between regularities in investor trading behavior
and regularities (mean reversion, low auto-correlation in returns, etc.) in the
behavior of asset prices. In this paper we take an initial step in the investigation
of investor heterogeneity and analyze the extent to which short-term price trends
in�uence the trading behavior of individual investors. We identify investor seg-
ments that systematically trade on trends and characterize the di�erences in the
trading patterns of these identi�ed investor segments.

The primary reasons for price trend tracking behavior may be psychological.
Experimental research in cognitive psychology has shown that people often see
patterns in short sequences that may be random (Tversky and Kahneman 1971).
In some settings people expect a reversion of trends (�gambler's fallacy�). For
instance, in coin tossing experiments, after a sequence of heads, people over-
estimate the probability of a tail because they expect an equal number of heads
and tails even in small sequences. People show a tendency to draw inferences
using the law of large numbers in small samples where the law does not apply.
In various other situations, people expect a continuation of the past trend (�hot
hand�). Gilovich, Vallone, and Tversky (1985) �nd that people expect continu-
ation of a hot streak in basketball even though it has been found that basketball
shots follow a random walk. These experimental results suggest that investors
are likely to detect patterns in stock prices even if stock prices follow a random
walk and trend tracking behavior may be widespread in the �nancial markets.

Recent research on investor behavior, both experimental and empirical, sug-
gest that investors tend to look at short-term and long-term price trends in for-
mulating their trading decisions. Experimental evidence of trend-tracking behav-
ior has been documented by Andreassen and Kraus (1990), DeBondt (1991) and
DeBondt (1993). Andreassen and Kraus (1990) �nd that experimental subjects
follow a trend chasing strategy, extrapolating price changes, when price trends
are dominant. DeBondt (1993) �nds that individual investors expect continu-
ation of upward price trends in bullish markets and continuation of downward
trends in bearish markets. In contrast, �experts� behave as contrarians, i.e., they
expect price-reversals in both bullish and bearish markets (DeBondt 1991).

[...]
We �nd that both buying and selling decisions of investors in our sample are

in�uenced by short-term (less than 3 months) price trends. By comparing the
observed distributions of average trend before buys and average trend before sells
with the average trend distributions (obtained using Monte Carlo simulations)
when investors trade randomly, the null of non-trend motivated random trading
is easily rejected (p-value < 0.002). Using Monte Carlo simulations again, we
examine investor heterogeneity in trading based on prior returns and classify
investors into (i) momentum buy (MB), (ii) momentum sell (MS), (iii) con-
trarian buy (CB) or (iv) contrarian sell (CS) category. [...] A comparison of
the portfolio characteristics and demographics of the identi�ed investor segments
reveal no signi�cant di�erences. However, the trading characteristics of the seg-
ments show systematic di�erences, particularly in their response to reference
points such as monthly high and low prices and in their strategies for selling
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losers. Contrarian buy investors are more likely to buy near monthly low prices
while the contrarian sell investors tend to sell near the monthly high prices. The
momentum investors do not exhibit such timing behavior. All four investor seg-
ments are reluctant to sell losers but the e�ect is the strongest for contrarian
sell investors who expect price reversals and hence show a greater tendency to
hold on to the losers. The e�ect is very weak for momentum sell investors who
believe that a downward price trend is likely to continue and hence are more
likely to realize their losses.

[...]
reversals and hence show a greater tendency to hold on to the losers. If the

observed systematic di�erences in trading behavior among investor segments is
widespread among other groups of investors in the market, it may have impor-
tant implications for asset pricing. Asset pricing models incorporating patterns
of systematic investor trading behavior have recently been proposed (Barberis,
Huang, and Santos 2001), (Barberis and Huang 2001) and results from our
paper can provide further input to these theoretical asset pricing models. The
behavioral patterns that we have uncovered can also help us understand the prop-
erties of asset returns. Various agent-based models of �nancial markets (Huang
and Day 1993, Farmer and Joshi 2001) have shown that markets with momen-
tum and contrarian (or value) investors can generate price dynamics that exhibit
characteristics of empirical returns series. These agent-based models that simu-
late market dynamics can be further re�ned and made more realistic by utilizing
the results from our paper.

Our results also suggest that noise trader risk (DeLong, Shleifer, Summers,
and Waldmann 1990) in the market may be limited. Momentum and contrar-
ian investors have diametrically opposite expectations and their presence in the
market introduce both destabilizing and restor- ing forces in the market. In the
presence of these two opposing forces, asset prices may not diverge signi�cantly
from the fundamental value and the amount of noise trader risk in the market
may be limited. At any given time, the magnitude of this risk will depend upon
the relative proportion of momentum and contrarian investors in the market
and so the �popula- tion dynamics� of momentum and contrarian investors may
determine the magnitude of noise trader risk.

Finally, the existence of momentum and contrarian investors may also par-
tially explain why there is often high trading volume and large price movements
in the market without any signi�cant news events (Cutler, Poterba, and Sum-
mers 1989). The �internal dynamics� of momentum and contrarian investors
may be partially responsible for such regularities in the market. Papers such
as (Goetzmann and Massa 2000b) have already started to provide evidence that
internal risk factors (or �market created risk� (Kraus and Smith 1989)), factors
that originate from the trading behavior of market participants, may add to the
explanatory power of asset pricing models.

Even though psychological factors explain well why investors exhibit trend
tracking behav- ior, non-psychological factors such as informational asymmetries
(Hirshleifer, Subrahmanyam, and Titman 1994) and di�erential interpretation
of information (Kandel and Pearson 1993) may also induce trend tracking be-
havior among investors. Non-psychological factors may also be responsible for
the observed disposition e�ect. A recent paper by (Ranguelova 2000) �nds that
the disposition e�ect is present primarily in large cap stocks and surprisingly, in
the lower decile stocks, the propensity to sell losers is higher than the propensity



1.2. STOCHASTIC PROCESSES 23

to sell winners. Cer tainly, more research is needed to determine whether the
psychological or the non-psychological factors are the main determinants of the
observed patterns in investor trading behavior.

Conrad and Kaul (1998) also �nds that momemtum and contrarian strategies
are the only ones that consistently give pro�ts.

In this article we use a single unifying framework to analyze the sources of
pro�ts to a wide spectrum of return-based trading strategies implemented in the
literature. We show that less than 50% of the 120 strategies implemented in
the article yield statistically signi�cant pro�ts and, unconditionally, momentum
and contrarian strategies are equally likely to be successful. However, when we
condition on the return horizon (short, medium, or long) of the strategy, or the
time period during which it is implemented, two patterns emerge. A momentum
strategy is usually pro�table at the medium (3- to 12-months) horizon, while a
contrarian strategy nets statistically signi�cant pro�ts at long horizons, but only
during the 1926�1947 subperiod. More importantly, our results show that the
cross-sectional variation in the mean returns of individual securities included in
these strategies play an important role in their pro�tability. The cross-sectional
variation can potentially account for the pro�tability of momentum strategies
and it is also responsible for attenuating the pro�ts from price reversals to long-
horizon contrarian strategies.

Trading strategies that apparently �beat the market� date back to the inception
of trading in �nancial markets. A number of practitioners and academics in the
pre-market-e�ciency era (i.e. pre-1960s) believed that predictable patterns in
stock returns could lead to �abnormal� pro�ts to trading strategies. [...]

In this interplay between momentum and contrarian strategies, there must
be a little bit of overreaction (a kind of second order system). This overreaction
has been reported by Bondt and Thaler (1985).

Research in experimental psychology suggests that, in violation of Bayes'
rule, most people tend to �overreact� to unexpected and dramatic news events.
This study of market e�ciency investigates whether such behavior a�ects stock
prices. The empirical evidence, based on CRSP monthly return data, is con-
sistent with the overreaction hypothesis. Substantial weak form market ine�-
ciencies are discovered. The results also shed new light on the January returns
earned by prior �winners� and �losers�. Portfolios of losers experience excep-
tionally large January returns as late as �ve years after portfolio formation.

Brock et al. (1992) shows the pro�tability of simple trading rules like those
based on moving averages (when a fast trend MA goes above 1% of a slow
trend MA there is a buy signal, and when it goes below -1%, there is a sell
signal, typically 1-200, 2-100, 2-150 MA curves are considered) or those based
on resistences (maxima of the last 150 days) and supports (minima of the last
150 days). These pro�ts of these simple rules cannot be explained by AR,
GARCH, EGARCH models and random walks.

This paper tests two of the simplest and most popular trading rules�moving
average and trading range break�by utilizing the Dow Jones Index from 1897 to
1986. Standard statistical analysis is extended through the use of bootstrap tech-
niques. Overall, our results provide strong support for the technical strategies.
The returns obtained from these strategies are not consistent with four popular
null models: the random walk, the AR(1), the GARCH-M, and the Exponential
GARCH. Buy signals consistently generate higher returns than sell signals, and
further, the returns following buy signals are less volatile than returns following
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sell signals, and further, the returns following buy signals are less volatile than
returns following sell signals. Moreover, returns following sell signals are neg-
ative, which is not easily explained by any of the currently existing equilibrium
models.

1.3 Stochastic di�erential equations

A stochastic di�erential equation is a di�erential equation in which one of the
participating terms is stochastic. For instance, the Geometric Brownian Motion
di�erential equation is

dS
dt

S
= µ+ σ

dB

dt
(1.50)

or equivalently

dS = µSdt+ σSdB (1.51)

where S is the price of an asset over time an B is some Brownian motion driving
the stock price. The integral version of this equation is

St = S0 +

t∫
0

µS(τ)dτ +

t∫
0

σB(τ)dτ (1.52)

The �rst integral is well de�ned in the standard sense, but the second one
involves a stochastic signal and it is not so standard.

In the particular case of the Geometric Brownian Motion, the solution is

S(t) = S0e

(
µ−σ22

)
t+σB(t)

(1.53)

and it is written S(t) ∼ GBM(µ, σ2).

Another example is given by the assumption that X(t) = logS(t) is an
Ornstein-Uhlenbeck (OU) process, this implies that

dX = −γ(X − α)dt+ σdB (1.54)

Its solution is

S(t) = exp

α+ exp(−γt)(X(0)− α) + σ exp(−γt)
t∫

0

exp(−γτ)dB(τ)


(1.55)

An important result regarding stochastic di�erential equations is Itô's lemma.
Suppose that X(t) is an Itô's process with

dX = a(X, t)dt+ b(X, t)dB (1.56)

Let Y (t) = F (X, t), then

dY =

(
∂F

∂X
a+

∂F

∂t
+

1

2

∂2F

∂X2
b2
)
dt+

∂F

∂X
bdB (1.57)
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For example

dX = µdt+ σdB
Y = X2 ⇒ dY = dBdB + dt

Y = eat+bX ⇒ dY = eat+bX
[(
a+ 1

2b
2
)
dt+ bdB

]
Y = e−

1
2σ

2t+σB ⇒ dY = σdB

(1.58)

An interesting process of this kind is Cox-Ingersoll-Ross model (CIR model)
which is described in the form

dX = α(µ(t)−X)dt+ σ
√
XdB (1.59)

This does not have analytic solution. But we may simulate any di�erential
equation using an explicit Euler scheme

Xn −Xn−1 = a(Xn−1, (n− 1)Ts)Ts + b(Xn−1, (n− 1)Ts)(Wn −Wn−1)
(1.60)

Starting from X0 we may simulate this process many times, Monte Carlo, and
compute the empirical distribution of XN . From this distribution we may cal-
culate average values, con�dence intervals, ...

An important family of stochastic processes are the jump-di�usion models
that are de�ned by the di�erential equation

dS

S−
= µdt+ σdBdJ (1.61)

where S− is the left limit of S(t) and

J(t) =

N(t)∑
i=1

(Yi − 1) (1.62)

where N(t) is the number of jumps up to time t (a random variable) and Yj is
a sequence of IID random variables. The solution is of the form

S(t) = S0e

(
µ−σ22

)
t+σB(t)

N(t)∏
i=1

Yi (1.63)

The following table shows some important di�erential equations and their
solutions (Saito and Mitsui, 1993)

Martingale dX = XdW X(t) = e−
1
2 t+W (t)

Submartingale dX = Xdt+XdW X(t) = e
1
2 t+W (t)

Supermartingale dX = −Xdt+XdW X(t) = e−
3
2 t+W (t)

dX = X(1−X)dt+XdW X(t) = e
1
2
t+W (t)

2+
t∫
0

e
1
2
τ+W (τ)dτ

Itô's integral is de�ned as the inverse of Itô's derivative

F =

∫
fdB +

∫
gdt⇔ dF = fdB + gdt (1.64)

Itô's integral can be thought as the limit of Riemmanian sums if the leftmost
point of the small intervals are considered in the Riemman integration.
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Using Itô's integral we may de�ne Itô's isommetry. It is said that f(t) is
adapted to B(t) i�

E


 t∫

0

f(s)dB

2
 = E


t∫

0

f2(s)dB

 (1.65)

For f(s) = 1 we get the quadratic variation of Brownian motion.

1.3.1 Brownian motion

We may think of a Brownian motion (also called a Wiener process) as the limit of
a random walk when the time steps are in�nitely small. The following theorem
guarantees its existence.

Theorem. There exists a probability distribution over the set of real valued
functions

B : R+ → R (1.66)

such that

• The function B(t) starts at 0. Pr{B(0) = 0} = 1

• The function B(t) is stationary. B(tF )−B(t0) ∼ N(0, tF − t0)

• Increments are independent. If (t1, s1) and (t2, s2) de�ne two non-overlapping
time intervals, then B(s1)−B(t1) is independent from B(s2)−B(t2)

The following are some properties of a Brownian motion:

• It crosses the time axis in�nitely often.

• It does not go too much away from t2, at any time t0, we have B(t0) ∼
N(0, t0).

• It is nowhere di�erentiable. It means that standard Calculus is not correct,
and Itô's Calculus has to be used.

• Let us denote M(t) as the maximum of B(t) up to time t (M(t) =
max
s≤t

B(s)). Then

Pr{M(t) > a} = 2Pr{B(t) > a} ∀t, a > 0 (1.67)

• The probability of being above or below a certain level is symmetric. Let
us denote as ta the time at which B(t) crosses the line B(t) = a from
below (the �rst time it reaches a). Then

Pr{B(t)−B(ta) > 0|ta < t} = Pr{B(t)−B(ta) < 0|ta < t} (1.68)

• It ful�lls a property called Quadratic variation.

lim
n→∞

n∑
t=1

(
B

(
t

n
T

)
−B

(
t− 1

n
T

))2

= T (1.69)

A consequence of this property is

(dB)2 = dt (1.70)
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Let us consider a function of a Brownian motion x = f(B). In standard
Calculus we normally have

df = f ′(B)dB (1.71)

But with stochastic processes this is incorrect. In the case of the Brownian
motion (which ful�lls the Quadratic variation property), we have

df = f ′(B)dB +
f ′′(B)

2
dt (1.72)

This latter formula is similar to a Taylor expansion of order 2.

We may now consider a function x = f(t, B), a simpli�ed version of Itô's
lemma states

df =

(
∂f

∂t
+

1

2

∂2f

∂B2

)
dt+

∂f

∂t
dB (1.73)

Let B(t) ∼ N(0, t) be a brownian motion and X(t) =
∫
f(t)dB, then X(t)

is normally distributed. For example

X(t) =

∫
σdB ∼ N(0, σ2t) (1.74)

The integral of Brownian motions are martingales. Formally,∫
f(t, B)dB (1.75)

is a martingale as long as f is an L2 function. As a consequence, the stochastic
process de�ned by the di�erential equation

dX = µ(t, B)dt+ σ(t, B)dB (1.76)

is a martingale as long as there is no drift (µ(t, B) = 0).

Thanks to Girsanov theorem (which is a consequence of Radon-Nikodym
derivative) we may shift from a drifted brownian motion to a martingale by
a simple multiplication. Let B(t) be a Brownian motion with drift and B̃(t)
a Brownian motion without drift. Let P (ω) be the probability of a path ω
according to the Brownian motion B and P̃ (ω) be the probability of a path ω
according to the Brownian motion B̃. Then, P and P̃ are equivalent, that is,

P (ω) = Z(ω)P̃ (ω) (1.77)

with

Z(ω) =
dP̃

dP
(ω) = e−µω(T )− 1

2µ
2T (1.78)

As a consequence, assume that we have some portfolio whose value R(t) is
modelled according to the probability distribution P , then

EP {R(t)} = EP̃ {Z(ω)R(t)} (1.79)
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1.3.2 Numerical methods

As for the ODEs, there are numerical methods, which are similar to the nu-
merical methods of the ODEs. Consider a scalar autonomous Itô stochastic
di�erential equation:

dX = f(X)dt+ g(X)dW X(0) = x0 (1.80)

In the following ∆Wn = Wn −Wn−1, and ∆Wn must be a zero-mean random
variable, whose variance is h (see Eq. 1.16). It is typical to take ∆Wn = ε

√
h

being ε ∼ N(0, 1) a random number.
Here are some of these numerical methods (Saito and Mitsui, 1993):

• Euler-Maruyama: Local order 1 and global order 1

Xn+1 = Xn + f(Xn)h+ g(Xn)∆Wn (1.81)

• Heun: Local order 2 and global order 2

Xn+1 = Xn +
F1 + F2

2
h+

G1 +G2

2
∆Wn (1.82)

with
F (x) =

(
f − 1

2g
′g
)

(x)
F1 = F (Xn)
G1 = g(Xn)
F2 = F (Xn + F1h+G1∆Wn)
G2 = g(Xn + F1h+G1∆Wn)

(1.83)

• Kloeden: Local order 2 and global order 2, derivative free

Xn+1 = Xn + F1h+G1∆Wn + (G2 −G1)h−
1
2

(∆Wn)2 − h
2

(1.84)

with
F1 = f(Xn)
G1 = g(Xn)

G2 = g(Xn +G1

√
h)

(1.85)

Saito and Mitsui (1993) discusses some more schemes, some of them of order 3.

1.4 Statistical time series models

There are a number of statistical models trying to reproduce the same autocor-
relation (and, consequently, spectral) characteristics as the input signal. These
models may be also used for forecasting. We may distinguish between 3 di�erent
issues: model de�nition, model estimation, and forecasting.

1.4.1 Model de�nition

In the following let us assume that Xd[n] denotes the samples of a time series
of interest, and W [n] is normally some input white noise signal. U [n] is an
external, known signal. See Fig. 1.8 for a graphical summary of many of these
models.
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Figure 1.8: Di�erent kinds of models.

MA(Q) models

Moving average models are de�ned by

X[n] =

Q∑
k=0

bkW [n− k] (1.86)

The transfer function of this system is

H(z) =
X(z)

W (z)
=

Q∑
k=0

bkz
−k = B(z) (1.87)

If the input W [n] is normally distributed N(0, σ2
W ), then

X[n] ∼ N

(
0, σ2

W

Q∑
k=0

b2k

)
(1.88)

The autocorrelation of the output is

ΓX [l] =


ΓX [−l] l < 0

σ2
W

Q−l∑
k=0

bkbk+l 0 ≤ l ≤ Q

0 l > Q

(1.89)

MA models can be extended to non-causal systems

X[n] =

QF∑
k=Q0

bkW [n− k] (1.90)
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with Q0 < 0. They can also be extended to non-linear models as

X[n] =

Q∑
k=0

bkf(W [n− k]) (1.91)

where f is some non-linear function, or we may use Volterra kernels to express
this non-linearity

X[n] =
Q∑
k=0

bkW [n− k]

+
Q∑
k=0

Q′∑
k′=0

bkk′W [n− k]W [n− k′]

+
Q∑
k=0

Q′∑
k′=0

Q′′∑
k′′=0

bkk′k′′W [n− k]W [n− k′]W [n− k′′]

...

(1.92)

AR(P) models

Autoregressive models are de�ned as

X[n] =

P∑
k=1

akX[n− k] +W [n] (1.93)

The autocorrelation of this process is given by Yule-Walker equations

ΓX [l] = σ2
W δ[l] +

P∑
k=1

akΓX [l − k] (1.94)

Its solution is of the form

ΓX [l] =

P∑
k=1

Ak|zk|l (1.95)

where zk are the poles of the transfer function

H(z) =
X(z)

W (z)
=

1

1−
P∑
k=1

akz−k
=

1

A(z)
(1.96)

Again, we can make non-linear extensions like

• Non-linear AR

X[n] = f(X[n− 1], X[n− 2], ..., X[n− P ]) +W [n] (1.97)

• Time-varying AR

X[n] =

P∑
k=1

ak[n]X[n− k] +W [n] (1.98)
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• Smooth transition AR

X[n] =

(
P∑
k=1

ak[n]X[n− k]

)
p[n]+

(
P∑
k=1

a′k[n]X[n− k]

)
(1−p[n])+W [n]

(1.99)

• Random coe�cients AR

X[n] =

P∑
k=1

(ak + ε[n])X[n− k] +W [n] (1.100)

• Bilinear models

X[n] =

P∑
k=1

akX[n− k] +

Q∑
k=1

bkX[n− k]W [n− k −M ] +W [n] (1.101)

• Threshold AR

X[n] =


P∑
k=1

akX[n− k] +W [n] X[n− d] ≤ t
P∑
k=1

a′kX[n− k] +W [n] X[n− d] > t

(1.102)

• Smooth threshold AR (STAR)

X[n] =

(
P∑
k=1

ak[n]X[n− k]

)
+

(
P∑
k=1

a′k[n]X[n− k]

)
S(X[n− d]) +W [n]

(1.103)

ARMA(P,Q) models

ARMA models are de�ned as

X[n] =

P∑
k=1

akX[n− k] +

Q∑
k=0

bkW [n− k] (1.104)

The transfer functions is a combination of both AR and MA models

H(z) =
B(z)

A(z)
(1.105)

The autocorrelation is

ΓX [l] = σ2
W

Q∑
k=0

bkh[k − l] +

P∑
k=1

akΓX [l − k] (1.106)

where h[k − l] are samples of the impulse response.
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ARIMA(P,D,Q) models

We may think of an ARIMA model as an ARMA model followed by an integra-
tor. The ARMA model produces an intermediate signal XD[n]

Xd(z) = B(z)
A(z)W (z)

X(z) = 1
(1−z−1)D

XD(z)
(1.107)

Another way of looking at the model is that the D derivative of X[n] follows
an ARMA model. If D is rational, then the model is called ARFIMA. The
di�erence equation for D = 1 clearly shows this

(X[n]−X[n− 1]) =

P∑
k=1

akX[n− k] +

Q∑
k=0

bkW [n− k] (1.108)

Bhardwaj and Swanson (2006) examines several ARIMA models (normally P =
1, Q = 1 or Q = 2 with D ∈ [0.25, 0.6]) for the signals |R[n]|, R2[n], and
log(R2[n]).

SARIMA(P,D,Q)x(p,d,q)s models

The seasonal ARIMA or Box-Jenkins model is a model in which there are two
levels of derivatives: one with a seasonal component (D = 12) and another
one with a standard derivation. We may think of the model as a white noise
input, downsampled by a factor s (the seasonal component, e.g., s = 30, s = 12,
...), then an ARIMA(P,D,Q) model, upsampling by a factor s, and another
ARIMA(p,d,q) model.

Xs(z) = HARIMA(P,D,Q)(z
s)W (z)

X(z) = HARIMA(p,d,q)(z)Xs(z)
(1.109)

Here goes an example of SARIMA(1, 0, 0)× (0, 1, 1)12 in time domain

(X[n]−X[n−12]) = B0W [n]+B1W [n−12]+a1(X[n−1]−X[n−13]) (1.110)

GARCH models

Heterocedastic models assume that the signal is a random walk, with zero mean
and whose variance changes over time

X[n] = σ[n]W [n] (1.111)

The ARCH model is an MA model on the variance

σ2[n] = σ2
0 +

P∑
k=1

akx
2[n− k] (1.112)

while the GARCH model proposes an ARMA model

σ2[n] = σ2
0 +

P∑
k=1

akx
2[n− k] +

Q∑
k=1

bkσ
2[n− k] (1.113)
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The model is constrained by ak, bk ≥ 0. The model is unique and stationary if

P∑
k=1

ak +

Q∑
k=1

bk < 1 (1.114)

In the long-run the local variance, σ2[n], tends to σ2
0 . The speed at which this

reversion to the mean happens is controlled by the sum above which is named
the persistence.

It produces signals with zero mean, E{X[n]} = 0, and they lack correlation

ΓX [l] =
σ2

0

1−
max{P,Q}∑

k=1

(ak + bk)

δ[l] (1.115)

The exponential GARCH (EGARCH) work with the logarithm of the time
series while the GARCH model proposes an ARMA model

log σ2[n] = σ2
0 +

P∑
k=1

ak log x2[n− k] +

Q∑
k=1

bk log σ2[n− k] (1.116)

and the integrated GARCH (IGARCH) relaxes the condition to

P∑
k=1

ak +

Q∑
k=1

bk = 1 (1.117)

The non-linear asymmetric GARCH (NGARCH or NAGARCH) proposes

σ2[n] = σ2
0 +

P∑
k=1

ak(x[n− k]− θσ[n− k])2 +

Q∑
k=1

bkσ
2[n− k] (1.118)

The GARCH-M (GARCH in Mean) adds heterocedasticity to the mean equation

y[n] = βu[n] + λσ[n] + x[n] (1.119)

where u[n] is an external driving input, and x[n] follows a GARCH model. The
QGARCH (Quadratic GARCH) is also capable of representing assymetry as

σ2[n] = σ2
0 +

P∑
k=1

akx
2[n− k] +

Q∑
k=1

bkσ
2[n− k] +

R∑
k=1

ckx[n− k] (1.120)

Another way to have assymetric GARCH is by the use of thresholds (GJR-
GARCH, TGARCH)

σ2[n] = σ2
0 +

P∑
k=1

(ak + a′kU(x[n]))x2[n− k] +
Q∑
k=1

bkσ
2[n− k]

σ2[n] = σ2
0 +

P∑
k=1

akx
2[n− k] +

Q∑
k=1

(bk + b′kU(x[n]))σ2[n− k]

(1.121)

where U(x) is Heaviside's step function.
GARCH models can be useful to model the driving input in the rest of

models (ARMA, ARIMA, ...) as shown in Baillie et al. (1996).
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Multivariate time series

let x[n] be a multivariate time series whose mean is µx and its covariance n0

lag matrix is de�ned as

Γx[n0] = E{(x[n]− µx)(x[n− n0]− µx)T } (1.122)

The autocorrelation matrix is Γ[0] and it is a symmetric matrix. The correlation
matrix is de�ned as

Rx[n0] = D−1/2
x Γx[n0]D−1/2

x (1.123)

where Dx = diag{Γx[0]}. The covariance matrix ful�lls

Γx[−n0] = (Γx[n0])T (1.124)

If (Γx[n0])ij 6= 0 for some n0, then it is said that xi[n] leads xj [n]. If xi[n] leads
xj [n] and xj [n] leads xi[n], then there is feedback between the two time series.

We may check whether two series have the same variance by the Bartlett,
Levene or Brown-Forsyth tests.

The multivariate Wold decomposition states that any time series can be
expressed as the sum of a deterministic time series, v[n] plus a moving average
of a white noise. Formally,

x[n] = v[n] +

∞∑
k=0

Bkw[n− k] (1.125)

where µw = 0, Γw[0] = Σw is a positive-semide�nite matrix, Γw[n0] = 0 for any
lag n0 6= 0 (the process is uncorrelated to itself), and Γx,w[n0] = 0 (the process
is uncorrelated to the time series). The Bk matrices are such that B0 = I and
∞∑
k=0

BkB
T
k converges.

We may have vector MA as well as AR processes

x[n] =
Q∑
k=0

Bkw[n− k]

x[n] =
P∑
k=1

Akx[n− k] + w[n]

(1.126)

The interesting part of the multivariate models is that we allow the j-th com-
ponent of the time series at time n− k to have an in�uence on the value of the
i-th component at time n. A VAR(P) process is stationary if all the roots of
the polynomial

det{I −A1z
−1 −A2z

−2 − ...−Akz−k} = 0 (1.127)

are within the unit complex circle. Alternatively, some time-series have some
diverging properties. They are said to have unit roots. To detect unit-roots we
may use the Dickey-Fuller test or the Phillips-Perron test.

VAR(P) models are useful to de�ne Granger causality. After �tting the
model, we may test whether all the regression coe�cients of xj on xi are 0

H0 : (A1)ij = (A2)ij = ... = (AP )ij = 0 (1.128)

If we reject the null hypothesis, then we say that xj [n] Granger causes xi[n].
Note that xj may cause xi and viceversa, in this case we have feedback.
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Cointegration

If we look at the time series of the Dow Jones and DAX, both are rather similar,
too much to be independent random walks. Cointegration is a way of analyzing
two time series with underlying common random processes. A multivariate
time series x[n] is Integrated of order d, I(d), i� its d di�erenced process, (1−
L)d{x[n]} is stationary. For instance, a random walk is an I(1) process

x[n] = x[n− 1] + w[n] (1.129)

We need to distinguish between cointegration and spurious regression. For
instance, let us assume we have two independent random walks, x1[n] and x2[n]
and we calculate the regression

x2[n] = α+ βx1[n] + ε[n] (1.130)

Since both signals are independent, we should see with increasing sample sizes
that

• The Durbin-Watson statistics is close to 0.

• R2 is too large.

• ε[n] is I(1).

• The estimates of α and β are inconsistent between di�erent estimations.

• The tβ statistic diverges with
√
T .

But for the regression
∆y[n] = β∆x[n] + ε[n] (1.131)

we �nd that

• β has the usual distribution around 0.

• The tβ values are t-distributed.

• ε[n] is white noise.

For two truly cointegrated variables, the regression in Eq. (1.130)

• β is superconsistent, that is it converges with rate T instead of
√
T .

• The tβ statistic is asymptotically normal only if ε[n] is not serially corre-
lated.

If x[n] has a Vector AR(P) model (VAR(P))

A(L)x[n] = w[n], (1.132)

then A(L) can be factorized as A(L) = (1− L)dA′(L).
Interestingly, all the components of x[n] may be I(1) but x[n] is not I(1). In

the same way, linear combinations of the time series (without any di�erencing)
may be stationary. This brings to the de�nition of cointegration. A time series
x[n] is cointegrated i� all its components are I(1) and there exists a linear
combination of its components, β such that βx[n] is a stationary process (i.e.
I(0)).

Some examples are
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• Term structure of interest rates: expectations hypothesis.

• Purchase power parity in foreign exchange: cointegration among exchange
rate, foreign and domestic prices.

• Money demand: cointegration among money, income, prices and interest
rates.

• Covered interest rate parity: cointegration among forward and spot ex-
change rates.

• Law of one price: cointegration among identical/equivalent assets that
must be valued identically to limit arbitrage (e.g. prices of same asset on
di�erent trading venues).

Vector Error Correction Models

VECM are a way of estimating cointegrations. They are also called Cointegrated
VAR(P) models. Let us analyze the VAR(P) model

x[n] =

P∑
k=1

Akx[n− k] + w[n] (1.133)

Let us assume that x[n] is a I(1) model. We now subtract x[n−1] on both sides

x[n]− x[n− 1] = (A1 − I)x[n− 1] +
P∑
k=2

Akx[n− k] + w[n]

∆x[n] = (A1 − I)x[n− 1] +
P∑
k=2

Akx[n− k] + w[n]

(1.134)

We now subtract and add (A1 − I)x[n− 2] on the right-hand side

∆x[n] = (A1 − I)(x[n− 1]− x[n− 2]) + (A2 +A1 − I)x[n− 2]

+
P∑
k=3

Akx[n− k] + w[n]

= (A1 − I)∆x[n− 1] + (A2 +A1 − I)x[n− 2] +
P∑
k=3

Akx[n− k] + w[n]

(1.135)
We now subtract and add (A2 +A1 − I)x[n− 3] on the right-hand side

∆x[n] = (A1 − I)∆x[n− 1] + (A2 +A1 − I)∆x[n− 2]

(A3 +A2 +A1 − I)∆x[n− 3] +
P∑
k=4

Akx[n− k] + w[n]
(1.136)

If we keep doing this up to P times, we arrive to

∆x[n] = Πx[n− 1] +
P−1∑
k=1

Γk∆x[n− k] + w[n] (1.137)

where
Π = A1 +A2 + ...+AP − I

Γk = −Ak+1 −Ak+2 − ...−AP
(1.138)

This is the Error Correction Model. In this model, the di�erences of the original
signal, which are stationary because the original signal was I(1), are expressed as
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a linear combination of x[n−1] plus a linear combination of previous di�erences.
The left-hand side is stationary, and all terms in the right-hand side are clearly
stationary, so the �rst one, Πx[n−1], must also be stationary (this term is called
the error correction point). This term contains the cointegration of x[n]. x[n]
is I(1), but Πx[n− 1] is I(0) (stationary). Consequently Π must be singular. If
the rank of Π is 0, then Π = 0 and there are no cointegrating terms. If the rank
of Π is k, then x[n] cannot be I(1) but I(0), i.e., stationary. But if the rank of
Π is r, then it can be factorized as

Π = CDT (1.139)

being C and D m × r matrices (m is the number of components of x[n]) of
rank r. The columns of D give the cointegration relationships of x[n] and there
are m − r common stochastic trends. These trends are identi�ed through the
orthogonal complement of the matrix C. In the long run, the time series x[n]
tends to one of its equilibrium points, which are the solutions of

Πx = 0 (1.140)

To test for cointegration we may use the trace test with increasing values of
r (0,1,2,...)

H0 : Rank{Π} = r
HA : Rank{Π} > r

(1.141)

or the Maximum eigenvalue test

H0 : Rank{Π} = r
HA : Rank{Π} = r + 1

(1.142)

Sreedharan (2004) presents an interesting application of VECM to stock
market returns. He uses a 4-valued vector (Open, High, Low, Close). The
model is

∆x[n] = δ0+

P∑
i=1

Γi∆x[n−i]+
1∑
i=0

Biζ[n−i]+
1∑
i=0

C+
i η

+[n−i]+
1∑
i=0

C+
i η
−[n−i]+w[n]

(1.143)
where ζ is a measure of the current and immediate-past �normal� information
and η are the currenct and immediate-past positive and negative expectations.
They show that the log of each component of x(t) is non-stationary, although the
logarithmic returns are stationary. The cross-correlation between some variables
are clearly di�erent from 0. For instance, the log return of open and the log
return of close, low or high; the log return of high and the log return of close, low
or high; the log return of low and the log return of low or close. They analyze the
histogram of the log-returns and they are highly peaked and moderately skewed
(to negative values). They build a VAR(10) model on the log returns. But the
model does not explain much of the variance of the close log-returns. For this
reason, they hypothesize a model misspeci�cation and look for cointegration
equations. They �nd 3 cointegrations:

C[n] = 0.999681O[n]
H[n] = 1.005055O[n]
L[n] = 0.994943O[n]

(1.144)
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and conclude that the error correction process is a no-arbitrage process. Since
there are 3 cointegration equations, there is a single common stochastic trend.
The VECM model is still poor in the R2 of the log returns of close. Then
they construct three cointegrating variables that are used as leading exogeneous
variables. In this case, they identify these cointegration variables with the ζ
and η vectors required in their model. After identifying these variables, they
show that the residuals w are normally distributed (which in other cases they
are not).

They conclude that The model also supports the view that asset price dy-
namics comprise of normal and abnormal shocks [see Merton (1976)]:

1. The normal shocks can be due to �temporary imbalance between supply and
demand�, changes in the price of risk or in the economic outlook, or other
new information that causes marginal changes in the asset value.

2. The abnormal shocks are due to �the arrival of new important information
about the asset that has more than a marginal e�ect on value�.

1.4.2 Model estimation

The determination of the MA model can be done by brute force by solving
the non-linear system implied by the autocorrelation function (Eq. 1.89). For
AR models, we may recursively solve the Yule-Walker equations. Bhardwaj
and Swanson (2006) provides several methods to estimate d in ARIMA models.
They normally work in Fourier space. Baillie et al. (1996) shows how to jointly
estimate an ARIMA-GARCH model. Model selection is performed through
the classical ways: Akaike Information Criterion (with for a model with P
parameters and N training samples)

AIC(P ) = log σ2
ε + P

2

N
, (1.145)

the Bayesian Information Criterion

BIC(P ) = log σ2
ε + P

logN

N
, (1.146)

or the Final Prediction error

FPE(P ) =
N + P

N − P
σ2
ε . (1.147)

After �tting the model we should check that the residuals are 1) zero-mean, 2)
uncorrelated to themselves, 3) normally distributed.

The Chow test checks whether the same model can be �tted to two di�erent
regions of the time series. It does so through the analysis of the residuals with
the best model �tted to each one of the possible regions and comparing it to
the residuals using a single model (see Fig. 1.9).

1.4.3 Forecasting

As shown in Fig. 1.10, forecasting formulas have to be speci�cally taylored to
each model.
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Figure 1.9: Checking for structural heterogeneity

Figure 1.10: Example of ARMA forecasting.
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Two possible ways of checking the predictability ability of two competing
models is through the Diebold and Mariano and the encompassing tests Bhard-
waj and Swanson (2006). These tests check

H0 : E{f(X0[n+ l])− f(X1[n+ l])} = 0
HA : E{f(X0[n+ l])− f(X1[n+ l])} 6= 0

(1.148)

where X0 and X1 are the two competing predictions, l is the prediction horizon,
f is any loss function. The encompassing alternative hypothesis is HA : ... > 0.

1.4.4 Pricing models

Some interesting models combine several ideas from generic time series models.
In the following L is the lag operator (its Z transform is z−1). Some of these
follow:

• ARFIMA-GARCH with external inputs: Baillie et al. (1996)

A(L)(1− L)D(R[n]− µ− b1X1[n]− δσ[n]) = B(L)ε[n]
α(L)σ2[n] = σ2

0 + β(L)ε2[n] + b2X2[n]
(1.149)

where X1 and X2 are two external inputs.

• Duan's NGARCH model: Hsieh and Ritchken (2005)

logR[n] = Rf + (δ + ε[n])σ[n]− 1
2σ

2[n]
σ2[n] = σ2

0 + α1σ
2[n− 1] + α2(ε[n]− γ)2 (1.150)

• Heston and Nandi model: Hsieh and Ritchken (2005)

logR[n] = Rf + ε[n]σ[n] + aσ2[n]
σ2[n] = σ2

0 + α1σ
2[n− 1] + α2(ε[n]− γσ[n])2 (1.151)

1.5 State-space �ltering

1.5.1 Linear state-space �lters

Let us assume that we have a dynamic system whose state is s[n] whose tran-
sition equation is

s[n+ 1] = T [n]s[n] +R[n]w[n] (1.152)

where T [n] is a matrix, w[n] is N(0,Σw) and Σw is an arbitrary positive de�nite
matrix. The observation equation is

x[n] = H[n]s[n] + u[n] (1.153)

where H[n] is a matrix, u[n] is N(0,Σu) and Σu is an arbitrary positive de�nite
matrix. The joint equation is(

s[n+ 1]
x[n]

)
=

(
T [n]
H[n]

)
s[n] +

(
R[n]w[n]

u[n]

)
=

(
T [n]
H[n]

)
s[n] + ε[n] (1.154)

Note that

Σε =

(
R[n]ΣwR

T [n] 0
0 Σu

)
(1.155)

Many models seen so far respond to this scheme. For example:
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• CAPM: Consider

R[n] = α[n] + β[n]Rm[n] + ε[n] (1.156)

Let the state be formed by

s[n+ 1] =

(
α[n+ 1]
β[n+ 1]

)
=

(
α[n]
β[n]

)
+ w[n] (1.157)

That is, α and β are two random walks. The observation equation is given
by

R[n] =
(
1 Rm[n]

)
s[n] + ε[n] (1.158)

• Time-varying regression: Consider the time-varying regression

R[n] = β[n]x[n] + ε[n] (1.159)

Let the state equation be

s[n+ 1] = x[n] + w[n] (1.160)

and the observation equation

R[n] = β[n]x[n] + ε[n] (1.161)

If Σw = 0, then we have the normal linear regression model.

• AR(P) model: Consider the AR model(
1−

P∑
k=1

akL
k

)
y[n] = ε[n] (1.162)

In this case, the state vector is s[n] = (y[n], y[n−1], ..., y[n−P + 1])T and
the transition equation

s[n+ 1] =


a1 a2 ... aP
1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

 s[n] +


1 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0

w[n] (1.163)

and the measurement equation

y[n] =
(
1 0 ... 0

)
s[n] +

(
0 0 ... 0

)
u[n] (1.164)

• MA(Q) model: Consider the MA model

y[n] =

(
P∑
k=0

bkL
k

)
ε[n] (1.165)
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In this case, the state vector is s[n] = (ε[n− 1], ε[n− 2], ..., ε[n−Q])T and
the transition equation

s[n+ 1] =


0 0 ... 0
1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

 s[n] +


1 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0

w[n] (1.166)

and the measurement equation

y[n] =
(
b0 b1 ... bQ

)
s[n] +

(
0 0 ... 0

)
u[n] (1.167)

Kalman �lter

The Kalman �lter allows the computations of the parameters and states of the
linear state-space model given the previous observations. There are two basic
steps:

1. Predict state: Predict (a priori) the current state and its covariance.

ŝ0[n] = T [n]ŝ[n− 1]

Σ̂s,0[n] = T [n]Σ̂s[n− 1]TT [n] + Σw
(1.168)

2. Predict observation:

x̂[n] = H[n]ŝ0[n]
û[n] = x[n]− x̂[n]

Σ̂x[n] = H[n]Σ̂s,0[n]HT [n] + Σu

(1.169)

3. Update state: Compute the Kalman gain matrix

G[n] = Σ̂s,0[n]HT [n]Σ̂−1
x [n] (1.170)

and update the state using the residual information

ŝ[n] = ŝ0[n] +G[n]û[n]

Σ̂s[n] = (I −G[n]H[n])Σ̂x[n]
(1.171)

The model parameter estimation (T,H,Σw,Σu) are estimated through Max-
imum Likelihood of the observations.

Extended Kalman �lter

The Extended Kalman �lter (EKF) can be applied to non-linear transition and
measurement models

s[n+ 1] = t(s[n]) +R[n]w[n]
x[n] = h(s[n]) + u[n]

(1.172)

The trick is to linearize these equations by using the Kalman �lter with the
Jacobian matrices of the transformations t and h evaluated at the current state

T [n] = dt
ds (s[n])

H[n] = dh
ds (s[n])

(1.173)

However, we may still use t and h at those places where it is easy
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1. Predict state: Predict (a priori) the current state and its covariance.

ŝ0[n] = t(ŝ[n− 1])⇐=

Σ̂s,0[n] = T [n]Σ̂s[n− 1]TT [n] + Σw
(1.174)

2. Predict observation:

x̂[n] = h(ŝ0[n])⇐=
û[n] = x[n]− x̂[n]

Σ̂x[n] = H[n]Σ̂s,0[n]HT [n] + Σu

(1.175)

3. Update state: Compute the Kalman gain matrix

G[n] = Σ̂s,0[n]HT [n]Σ̂−1
x [n] (1.176)

and update the state using the residual information

ŝ[n] = ŝ0[n] +G[n]û[n]

Σ̂s[n] = (I −G[n]H[n])Σ̂x[n]
(1.177)

Unscented Kalman �lter

For non-linear dynamics, instead of linearizing as we have done in the EKF
(previous section), we may adopt a di�erent strategy: let us assume that we
want to �nd the best Gaussian approximation to the state distribution. The
state distribution is given by the output of a non-linear function t. For doing so,
we may get points (they are called sigma points) from a Gaussian distribution,
su�ciently separated so as to represent well the Gaussian with very few points,
transform them through t (this is called the unscented transform), and �t a
Gaussian distribution to the output points. We need to �nd 2d+ 1 weights wi
and sigma points si, being d the number of components of s, such that if t is the
identity transformation, we recover the covariance matrix at the input space∑

i

wi = 1∑
i

wi(si − s)(si − s)T = Σs
(1.178)

There is no unique solution to this problem. One possible way is to choose

s0 = µs

si = µs + Coli

{√
(d+ λ)Σs

}
i = 1, ..., d

si = µs − Coli

{√
(d+ λ)Σs

}
i = d+ 1, ..., 2d

(1.179)

where λ is a scaling parameter and Coli {·} is an operator that extracts the i-th
column of a matrix. We will use two di�erent sets of weights: one for computing
the mean at the output space, and another one for calculating the covariance.
Basically, both are of the form

w0 = λ
λ+d

wi = 1
2(λ+d) i = 1, ..., 2d

(1.180)
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For computing the covariance, the weights are as shown above except

w0 =
λ

λ+ d
+ (1− α2 + β) (1.181)

where α and β are two parameters. β = 2 is optimal for Gaussians. α must be
in the interval (0, 1]. Finally, it is suggested to use λ = α2(κ + d) − d, where
κ ≥ 0 controls how far the sigma points are from the mean.

We now change the Extended Kalman Filter. The �rst thing is to change
the state prediction by the values proposed by the unscented transform

1. Predict state: Predict (a priori) the current state and its covariance. The
sigma points have to be generated according to the current estimate of
ŝ[n− 1] and Σs[n− 1]

ŝ0[n] =
2n∑
i=0

wit(si[n− 1])⇐=

Σ̂s,0[n] =
2n∑
i=0

wi(t(si)− ŝ0[n])(t(si)− ŝ0[n])T + Σw ⇐=

(1.182)

2. Predict observation: We now generate new sigma points using ŝ0[n] and
Σ̂s,0[n] and estimate the value in the space of observations

x̂[n] =
2n∑
i=0

wih(si[n− 1])⇐=

û[n] = x[n]− x̂[n]

Σ̂x[n] =
2n∑
i=0

wi(h(si)− x̂[n])(h(si)− x̂[n])T + Σu ⇐=

(1.183)

3. Update state: Finally, with the sigma points of the step above, we compute
the Kalman gain matrix

G[n] =

(
2n∑
i=0

wi(si − ŝ0[n])(h(si)− x̂[n])T
)

Σ̂−1
x [n]⇐= (1.184)

and update the state using the residual information

ŝ[n] = ŝ0[n] +G[n]û[n]

Σ̂s[n] = (I −G[n]H[n])Σ̂x[n]
(1.185)

Fig. 1.11 shows the di�erence between the Unscented Kalman Filter and the
Extended Kalman Filter.

Extended Information Filter

An alternative representation of the multivariate Gaussian N(µ,Σ) is given by
the canonical representation of the distribution characterized by the information
matrix

Ω = Σ−1 (1.186)

and the information vector
ξ = Σ−1µ (1.187)
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Figure 1.11: Comparison of UKF and EKF.

The probability density function can be expressed:

f(x) = det(2πΣ)−1/2 exp
(
− 1

2 (x− µ)TΣ−1(x− µ)
)

=
exp(− 1

2ξ
TΩ−1ξ)

det(2πΩ)1/2
exp

(
− 1

2x
TΩx + xT ξ

) (1.188)

The advantage of this new representation is that conditioning is easier (see
Fig. 1.12) in the canonical expression while marginalization is easier in the
momemtum expression.

The Kalman �lter in the information form is called the Information Filter.
Now the steps are

1. Predict state:

Ω̂s,0[n] = (T [n]Ω̂−1
s [n− 1]TT [n] + Σw)−1

ξ̂0[n] = Ω̂s,0[n]T [n]Ω̂−1
s [n− 1]ξ[n− 1]

(1.189)

2. Update state:

ξ̂[n] = ξ̂0[n] +HT [n]Σ−1
u x[n]

Ω̂s[n] = Ω̂s,0[n] +HT [n]Σ−1
u H[n]

(1.190)

There is no explicit calculation of the Kalman gain matrix or the observation
prediction. The KF makes an e�cient prediction and a slow correction, while
the IF is just the opposite.

We may also extend the Information Filter to non-linear functions
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Figure 1.12: Conditioning and marginalization of a multivariate Gaussian.

1. Predict state:

Ω̂s,0[n] = (T [n]Ω̂−1
s [n− 1]TT [n] + Σw)−1

x̂0[n] = Ω̂−1
s [n− 1]ξ[n− 1]

ξ̂0[n] = Ω̂s,0[n]t(x̂0[n])

(1.191)

2. Update state:

ξ̂[n] = ξ̂0[n] +HT [n]Σ−1
u (x[n]− (h(x̂0[n])−H[n]x̂0[n]))

Ω̂s[n] = Ω̂s,0[n] +HT [n]Σ−1
u H[n]

(1.192)

The EIF has been reported to be more numerically stable than the EKF in some
situations, although their expressivity is the same (they can address the same
problems). However, IF allows for Sparse IF which may be very powerful.

Particle Filters

The idea is to be capable of dealing with any arbitrary distribution of states.
This is done by sampling the current estimate of the state distribution with
Np particles. We have a set of samples and weights. There are many �avours
of particle �lters (Chen, 2003). The Sequential Importance Sampling has the
following steps:

1. Sample from the proposal:

sj,0[n] ∼ p(s[n]|s1,2,...,Np [n− 1]) (1.193)

That is we use the previous estimates of the states. If we have a transition
function t(s), we may take randomly a state j of iteration n−1, sj [n−1],
take a random sample around a small kernel around it, s̃j [n − 1], and
predict how the state is updated over time

sj,0[n] = f(s̃j [n− 1]) (1.194)



1.6. SELF-SIMILAR SIGNALS 47

Figure 1.13: Example of Hurst exponents.

2. Compute the importance weights:

wj [n] ∼ p(x[n]|sj,0[n]) (1.195)

That is, the weight of a particle is proportional to the probability of ob-
serving the current measured values if sj [n] were the current state of the
system. If we have a non-linear function that relates states to measure-
ments we may estimate the likelihood of these observations

wj [n] = fu(x[n]− g(sj [n])) (1.196)

The weigts so-computed must be normalized by the sum of weights so that
their sum is 1.

3. Resampling: Draw with replacement Np particles from the set sj,0[n] ac-
cording to the importance weights wj [n]. This is a new set of particles
that is reused for step n+ 1.

1.6 Self-similar signals

Let D be the fractal dimension of a signal. Then, its power spectral density
falls o� as

SX(ω) ∝ ω−α (1.197)

where α = 5−2D. The Hurst exponent is de�ned as H = 2−D (see Fig. 1.13).
Recurrence plots are used to distinguish between stochastic and chaotic sig-

nals (see Fig. 1.14).
The correlation dimension is a simple way of checking the chaotic nature of

a signal (see Fig. 1.15) and another way is through the Lyapunov exponent (see
Fig. 1.16).

1.7 Empirical properties of asset returns

The following paragraphs are excerpts of Cont (2001).
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Figure 1.14: Example of recurrence plots.

Figure 1.15: De�nition of the correlation dimension.
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Figure 1.16: De�nition of the Lyapunov exponent.

1.7.1 Stylized properties

Let us start by stating a set of stylized statistical facts which are common to a
wide set of �nancial assets.

• Absence of autocorrelations: (linear) autocorrelations of asset returns are
often insigni�cant, except for very small intraday time scales (20 minutes)
for which microstructure e�ects come into play.

• Heavy tails: the (unconditional) distribution of returns seems to display
a power-law or Pareto-like tail, with a tail index which is �nite, higher
than two and less than �ve for most data sets studied. In particular this
excludes stable laws with in�nite variance and the normal distribution.
However the precise form of the tails is di�cult to determine.

• Gain/loss asymmetry: one observes large drawdowns in stock prices and
stock index values but not equally large upward movements.

• Aggregational Gaussianity: as one increases the time scale t over which
returns are calculated, their distribution looks more and more like a normal
distribution. In particular, the shape of the distribution is not the same
at di�erent time scales.

• Intermittency: returns display, at any time scale, a high degree of vari-
ability. This is quanti�ed by the presence of irregular bursts in time series
of a wide variety of volatility estimators.

• Volatility clustering: di�erent measures of volatility display a positive
autocorrelation over several days, which quanti�es the fact that high-
volatility events tend to cluster in time.
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• Conditional heavy tails: even after correcting returns for volatility clus-
tering (e.g. via GARCH-type models), the residual time series still exhibit
heavy tails. However, the tails are less heavy than in the unconditional
distribution of returns.

• Slow decay of autocorrelation in absolute returns: the autocorrelation func-
tion of absolute returns decays slowly as a function of the time lag, roughly
as a power law with an exponent β ∈ [0.2, 0.4]. This is sometimes inter-
preted as a sign of long-range dependence.

• Leverage e�ect: most measures of volatility of an asset are negatively
correlated with the returns of that asset.

• Volume/volatility correlation: trading volume is correlated with all mea-
sures of volatility.

• Asymmetry in time scales: coarse-grained measures of volatility predict
�ne-scale volatility better than the other way round.

1.7.2 Distributional properties

Distribution family

From the empirical features described above, one can conclude that, in order
for a parametric model to successfully reproduce all the above properties of the
marginal distributions it must have at least four parameters: a location pa-
rameter, a scale (volatility) parameter, a parameter describing the decay of the
tails and eventually an asymmetry parameter allowing the left and right tails
to have di�erent behaviours. For example, normal inverse Gaussian distribu-
tions, generalized hyperbolic distributions and exponentially truncated stable
distributions meet these requirements (see Fig. 1.17). The choice among these
classes is then a matter of analytical and numerical tractability.

Weighing the tail and extreme values

The tail index k of a distribution may be de�ned as the order of the highest
absolute moment which is �nite. The higher the tail index, the thinner the
tail; for a Gaussian or exponential tail, k = ∞ (all moments are �nite), while
for a power-law distribution with exponent α, the tail index is equal to α. [...]
Measuring the tail index of a distribution gives a measure of how heavy the tail
is.

A simple method, suggested by Mandelbrot, is to represent the sample mo-
ments (or cumulants) as a function of the sample size n. If the theoretical
moment is �nite then the sample moment will eventually settle down to a re-
gion de�ned around its theoretical limit and �uctuate around that value. In
the case where the true value is in�nite the sample moment will either diverge
as a function of sample size or exhibit erratic behaviour and large �uctuations.
Applying this method to time series of cotton prices, Mandelbrot conjectured
that the theoretical variance may be in�nite since the sample variance did not
converge to a particular value as the sample size increased and continued to
�uctuate incessantly.
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Figure 1.17: Distributions with 4 parameters, capable of representing stock
returns.

Measuring the tails is important in order to estimate the Value at risk , that is
de�ne as a high quantile of the loss distribution of a portfolio over a certain time
horizon. The Fisher-Tippet theorem relates the distribution of the log-returns
to some limit distributions of extreme values.

Fisher-Tippet theorem: Extreme value theorem for IID sequence. Assume
the log returns Rt form an IID sequence with distribution F . Let us denote
as MN the maximum return over a period of N samples, If there exist normal-
izing constants (λN , σN ) and a non-degenerate limit distribution H for the
normalized maximum return:

Pr

{
MN − λN

σN
≤ x

}
−→
x→∞

H(x) (1.198)

then the limit distributionH is either a Gumbel, Weibull or Fréchet distribution.

The three distributions can be uni�ed in the Cramer-von Mises distribution

Hξ(x) = exp
(
−(1 + ξx)−

1
ξ

)
(1.199)

For ξ > 0 we get a Fréchet distribution, ξ = 0 Gumbel, ξ < 0 Weibull. When
applied to daily return stocks, market indices and exchange rates we observe
0.2 < ξ < 0.4 which means a tail index 2 < α < 5. These studies seem to
validate the power-law nature of log returns with an exponent around 3.
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Dependence properties

The following properties are observed in stock markets:

1. Absence of linear autocorrelation. This property implies that traditional
tools of signal processing which are based on second-order properties, in
the time domain�autocovariance analysis, ARMA modelling�or in the
spectral domain� Fourier analysis, linear �ltering�cannot distinguish
between asset returns and white noise. This points out the need for non-
linear measures of dependence in order to characterize the dependence
properties of asset returns.

2. Volatility clustering and nonlinear dependence. Returns are not indepen-
dent (if they were, any non-linear function of the returns would not have
any autocorrelation). However, this is not true and simple non-linear
functions like absolute value or squared returns exhibit signi�cant positive
autocorrelation. This is a quantitative signature of Volatility clustering :
large price variations are more likely to be followed by large price varia-
tions. GARCH models (see Section 2.4) try to capture this dependence.
It has been shown that the α-correlation de�ned as

Cα[k] = Corr{|R[n]|α, |R[n+ k]|α} (1.200)

decreases as
Cα[k] ≈ Ak−β (1.201)

with β ∈ [0.2, 0.4] for absolute (α = 1) or squared (α = 2) returns. The
slow decay is sometimes interpreted as a signe of long-range dependence
(see Fig. 1.18). Recent work on multifractal stochastic volatility models
have shown that

C0[k] = Corr{log |R[n]|, log |R[n+ k]|} ≈ A log
B

∆t+ k
(1.202)

where ∆t is the sampling rate (time di�erence between two consecutive
return samples). Another measure of nonlinear dependence is the Leverage
e�ect , i.e., a positive correlation

L[k] = Corr{R[n], |R[n+ k]|2} (1.203)

However, this e�ect is assymetric L[k] 6= L[−k] and normally, L[k] ≈ 0 if
k < 0. This correlation motivates the decomposition of the returns as

R[n] = σ[n]ε[n] (1.204)

where ε[n] is a white noise signal (see Sections 1.2 and 2.4). A word of
caution should be added to all these observed correlations. The fact that
returns are heavy tailed implies that estimating the correlation values is
more di�cult and wider con�dence intervals are expected. In other words,
the estimates of the correlations are not so reliable.

3. Dependence among assets. The most interesting features of the matrix
ΣR are its eigenvalues λi and its eigenvectors ei, which have been usually
interpreted in economic terms as factors of randomness underlying market
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Figure 1.18: Autocorrelation of non-linear function of returns.

movements. In a recent empirical study of the covariance matrix of 406
NYSE assets, Laloux et al showed that among the 406 available eigenvalues
and principal components, apart from the highest eigenvalue (whose eigen-
vector roughly corresponds to the market index) and the next few (ten)
highest eigenvalues, the other eigenvectors and eigenvalues do not seem
to contain any information: in fact, their marginal distribution closely
resembles the spectral distribution of a positive symmetric matrix with
random entries whose distribution is the �most random possible��i.e., en-
tropy maximizing. These results strongly question the validity of the use
of the sample covariance matrix as an input for portfolio optimization, as
suggested by classical methods such as mean-variance optimization, and
support the rationale behind factor models such as the CAPM and APT,
where the correlations between a large number of assets are represented
through a small number of factors.

4. Dependence among extreme values. A relevant quantity is the conditional
probability of a large (negative) return in one stock given a large negative
movement in another stock. It is important to remark that two assets may
have extremal correlations while their covariance is zero: covariance does
not measure the correlation of extremes. Some recent theoretical work has
been done in this direction using copulas and multivariate extreme value
theory, but a lot remains to be done on empirical grounds.
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1.7.3 Pathwise properties

Hölder regularity

In mathematical terms, the regularity of a function may be characterized
by its local Hölder exponents. A function f is h-Hölder continuous at
point t0 i� there exists a polynomial of degree < h such that

|f(t)− P (t− t0)| ≤ Kt0 |t− t0|h (1.205)

in a neighborhood of t0, where Kt0 is a constant. Let C
h(t0) be the space

of (real-valued) functions which verify the above property at t0. A function
f is said to have local H ölder exponent α if for h < α, f ∈ Ch(t0) and
for h > α, f /∈ Ch(t0). Let hf (t) denote the local Hölder exponent of f
at point t. If hf (t0) ≥ 1, then f is di�erentiable at point t0, whereas a
discontinuity of f at t0 implies hf (t0) = 0. More generally, the higher the
value of hf (t0), the greater the local regularity of f at t0.

In the case of a sample path Xt(ω) of a stochastic process Xt, hX(ω)(t) =
hω(t) depends on the particular sample path considered, i.e., on ω. There
are however some famous exceptions: for example for fractional Brownian
motion with self-similarity parameter H, hB(t) = 1

H almost everywhere
with probability one, i.e., for almost all sample paths. Note however that
no such results hold for sample paths of Lévy processes or even stable
Lévy motion.

Singularity spectrum

Given that the local Hölder exponent may vary from sample path to sam-
ple path in the case of a stochastic process, it is not a robust statistical tool
for characterizing signal roughness: the notion of a singularity spectrum
of a signal was introduced to give a less detailed but more stable charac-
terization of the local smoothness structure of a function in a �statistical�
sense.

Let f be a real-valued function and for each α > 0 de�ne the set of points
at which f has local Hölder exponent h:

Ω(α) = {t, hf (t) = α} (1.206)

The singularity spectrum of f is the function D : R+ → R which associates
to each α > 0 the Hausdor��Besicovich dimension of Ω(α) (a measure of
the fractal dimension):

D(α) = dimHB(α) (1.207)

Using the above de�nition, one may associate to each sample path Xt(ω)
of a stochastic process Xt its singularity spectrum dω(α). If dω is �strongly
dependent� on ω then the empirical estimation of the singularity spectrum
is not likely to give much information about the properties of the process
Xt. Fortunately, this turns out not to be the case: it has been shown
that, for large classes of stochastic processes, the singularity spectrum is
the same for almost all sample paths.
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Figure 1.19: Dependence between market shock (regression residual) and the
change in variance.

The USD/DEM high-frequency exchange rate data using the structure
function method. The spectra have a support ranging from 0.3 to 0.9
(with some variations depending on the data set chosen) with a maximum
centred around 0.55�0.6. Note that 0.55�0.6 is the range of values of the
�Hurst exponent� reported in many studies of �nancial time series using
the R/S or similar techniques.

1.7.4 Assymetric volatility

We may predict the evolution of an asset return as a CAPM-like regression, in
which the market return, a risk-free return and some residual are involved. The
residual is called the �market shock�. It is known that residuals have an impact
on the asset volatility (Bekaert and Wu, 2000) (see Fig. 1.19). An important
contribution of this article is that it distinguishes between the market shock on
the reference index (all the market is behaving better or worse) and the market
shock on a speci�c stock (the e�ect of each one is di�erent). It also couples
CAPM and GARCH models (the residual in a CAPM-like regression can be
modelled as a GARCH process).

Let us see the explanatory dynamics proposed by the article: We begin by
considering news (shocks) at the market level. Bad news at the market level
has two e�ects. First, whereas news is evidence of higher current volatility in
the market, investors also likely revise the conditional variance since volatility
is persistent. According to the CAPM, this increased conditional volatility at
the market level has to be compensated by a higher expected return, leading to
an immediate decline in the current value of the market. The price decline will
not cease until the expected return is su�ciently high. Hence a negative re-
turn shock may generate a signi�cant increase in conditional volatility. Second,
the marketwide price decline leads to higher leverage at the market level and
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Figure 1.20: Di�erence between bid and ask prices.

hence higher stock volatility. That is, the leverage e�ect reinforces the volatility
feedback e�ect.

When good news arrives in the market, there are again two e�ects. First,
news brings about higher current period market volatility and an upward revision
of the conditional volatility. When volatility increases, prices decline to induce
higher expected returns, o�setting the initial price movement. The volatility
feedback e�ect dampens the original volatility response. Second, the resulting
market rally (positive return shock) reduces leverage and decreases conditional
volatility at the market level. Hence the net impact on stock return volatility is
not clear.

For the initial impact of news at the �rm level, the reasoning remains largely
the same: bad and good news generate opposing leverage e�ects which reinforce
(o�set) the volatility embedded in the bad (good) news event. What is di�erent
is the volatility feedback. A necessary condition for volatility feedback to be ob-
served at the �rm level is that the covariance of the �rm's return increases in
response to market shocks. If the shock is completely idiosyncratic, the covari-
ance between the market return and individual �rm return should not change,
and no change in the required risk premium occurs. Hence idiosyncratic shocks
generate volatility asymmetry purely through a leverage e�ect. Volatility feed-
back at the �rm level occurs when marketwide shocks increase the covariance of
the �rm's return with the market. Such covariance behavior would be implied
by a CAPM model with constant (positive) �rm betas and seems generally plau-
sible. The impact on the conditional covariance is likely to be di�erent across
�rms. For �rms with high systematic risk, marketwide shocks may signi�cantly
increase their conditional covariance with the market. The resulting higher re-
quired return then leads to a volatility feedback e�ect on the conditional volatility,
which would be absent or weaker for �rms less sensitive to market level shocks.

1.8 Modern portfolio theory

In a stock market you buy at ask price and sell at bid price. The di�erence is
the return R (see Fig. 1.20).

When we want to buy or sell an asset, we may face a liquidity risk (this
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Figure 1.21: Liquidity risk.

is an inability to easily enter or exit a position; see Fig. 1.21). (From the
Investopedia) There are at least three perspectives on market liquidity. The
most popular and crudest measure is the bid-ask spread; this is also called width.
A low or narrow bid-ask spread is said to be �tight� and tends to re�ect a more
liquid market. Depth refers to the ability of the market to absorb the sale (exit)
of a position. An individual investor who sells shares of Google, for example, is
not likely to impact the share price; on the other hand, an institutional investor
selling a large block of shares in a small capitalization company will probably
cause the price to fall. Finally, resiliency refers to the market's ability to bounce
back from temporarily incorrect prices. To summarize:

• The bid-ask spread measures liquidity in the price dimension and it is a
feature of the market not the seller (or the seller's position). Financial
models that incorporate bid-ask spread adjust for exogenous liquidity and
are exogenous liquidity models.

• Position size, relative to the market, is a feature of the seller. Models
that use this are measuring liquidity in the quantity dimension and are
generally known as endogenous liquidity models.

• Resiliency measures liquidity in the time dimensions and such models are
currently rare.

At one extreme, high market liquidity would be characterized by an owner of a
small position relative to a deep market who is exiting into a tight bid-ask spread
and a highly resilient market.

The way of including the bid-ask spread is normally by subtracting half its
size from the return, or adding it to the Value-at-Risk. The idea is to consider
the worse scenario.

Let Ri (i = 1, 2, ..., N) be random variables representing the return of N
assets. A portfolio is de�ned by the weight of each one of these assets, p, so
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that the return of the portfolio is de�ned by another random variable

Rp =

N∑
i=1

piRi = pTR (1.208)

where R is a vector with all the Ri variables. The expected return of the
portfolio can be calculated as

E{Rp} , µp = E{pTR} = pTE{R} = pTµR (1.209)

and its variance
Var{Rp} , σ2

p = E{(Rp − µp)2}
= pTΣRp

(1.210)

where ΣR is the covariance matrix of the return vector. We may use the cor-
relation matrix ΓR by exploiting the relationship between the covariance and
correlation matrices

ΓR = Λ−
1
2 ΣRΛ−

1
2 ⇔ ΣR = Λ

1
2 ΓRΛ

1
2 (1.211)

where Λ
1
2 is a diagonal matrix formed by all the standard deviations of the Ri

variables, that is, Λ = diag{Σ}. Using the correlation matrix, the variance of
the portfolio return becomes

σ2
p = pTΛ

1
2 ΓRΛ

1
2p (1.212)

It is this variance of the portfolio what is normally called the risk of the portfolio.
Note that this formulation is completely general and that it allows including

a cash position (e.g., if it is variable 1, then µ1 = 0, σ1 = 0, ρ1j = ρj1 = 0 for
j 6= 1) as well as a �xed income asset (e.g., if it is variable 1, then µ1 = r0,
σ1 = 0, ρ1j = ρj1 = 0 for j 6= 1).

The portfolio management problem amounts to maximizing the expected
portfolio return while keeping the risk within limits

p∗ = argmax pTµR

s.t. pTΛ
1
2 ΓRΛ

1
2p ≤ σ2

max

(1.213)

where σ2
max is the maximum accepted risk. If we cannot borrow money to do

the investment we have to add the constraints

pT1 = 1
−1 ≤ p ≤ 1

(1.214)

that is, all the proportions must add up to 1. If we can only go long, that is,
short positions cannot be taken, then we also need to add the constraint

p ≥ 0 (1.215)

We need now some optimization procedures to solve the problems above.
Fig. 1.22 shows the trajectories in the µp,σp plane of di�erent portfolios in

which the proportion of Assets 1 and 2 vary. Note the important dependence of
the trajectory on the correlation, c in the �gure, between the two assets. Fig.
1.23 shows how as the portfolio is diversi�ed, the portfolio risk approaches the
market risk.



1.8. MODERN PORTFOLIO THEORY 59

Figure 1.22: Trajectories as a function of the linear combination of two assets,
depending on the correlation between both assets.

An interesting feature of diversi�cation is that it provides reasonable returns
in a volatile environment. Assume there are two assets A and B. In the �rst
period, A earns 100% and B loses 50%. In the second period, A loses 50% and
B earns 100%. On their own, each asset over the two periods stays at the same
place (you earn 0%). However, a rebalanced portfolio (50-50%) would earn 25%
on the �rst period (1.25=0.5*2+0.5*0.5), then the portfolio is rebalanced, and
on the second period it earns another 25% (1.25=0.5*0.5+0.5*2).

Using leverage takes us away from the e�cient frontier as shown in Fig. 1.24.
The Risk Parity strategy looks at maximizing the Sharpe Ratio, which for a two
asset portfolio it is the slope of the tangent to the e�cient frontier when one of
the assets is cash or any other known investment. The use of leverage allows us
to move along this tangent.

Passive portfolio management uses some simple rule to de�ne p like replicat-
ing the S&P 500 proportions. Empirically it has been shown that these simple
rules may outerform 50% of active portfolios (Elton et al., 2003)[Chap. 26](Mar-
ket e�ciency is one of the majer paradigms of �nancial economics. Modern
theories of e�ciency argue that informed investors in an e�cient market will
earn just enough to compensate for the cost of obtaining the information. Mu-
tual fund managers are commonly viewed as the prototype of informed investors.
[...] (However), mutual fund managers underperfom passive portfolios. Further-
more, funds with higher fees and turnover underperform those with lower fees
and turnover. Elton et al. (1993)). Although simple, some decisions may be
taken like skipping some of the small capitalization stocks in order to save trans-
action costs, or choosing a small subset of assets that mimick the behaviour of
the reference index.

This article does much to explain short-term persistence in equity mutual
fund returns with common factors in stock returns and investment costs. Buy-
ing last year's top-decile mutual funds and selling last year's bottom-decile funds
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Figure 1.23: Balance between residual risk and market risk as the portfolio is
diversi�ed (Barra, 2007)[Fig.2.1].

Figure 1.24: Risk parity and levered portfolios.
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yields a return of 8 percent per year. Of this spread, di�erences in the market
value and momentum of stocks held explain 4.6 percent, di�erences in expense
ratios explain. 0.7 percent, and di�erences in transaction costs explain 1 per-
cent. Sorting mutual funds on longer horizons of past returns yields smaller
spreads in mean returns, all but about 1 percent of which are attrib- utable to
common factors, expense ratios, and transaction costs. Further, the spread in
mean return unexplained by common factors and investment costs is concen-
trated in strong underperformance by the bottom decile relative to the remaining
sample. Of the spread in annual return remaining after the 4-factor model, ex-
pense ratios, and transaction costs, approximately two-thirds is attributable to
the spread between the ninth- and tenth-decile portfolios.

I also �nd that expense ratios, portfolio turnover, and load fees are signif-
icantly and negatively related to performance. Expense ratios appear to reduce
performance a little more than one-for-one, Turnover reduces performance about
95 basis points for every buy-and-sell transaction. Di�erences in costs per trans-
action account for some of the spread in the best- and worst-performing mutual
funds. Surprisingly, load funds substantially underperform no-load funds. Af-
ter controlling for the correlation between expenses and loads, and removing the
worst-performing quintile of funds, the average load fund underperforms the av-
erage no-load fund by approximately 80 basis points per year. (Carhart, 1997)

This raises another question. Why do we see any money remain in funds that
are predicted to do poorly and in fact do perform poorly? I propose a possible
explanation for this phenomenon: The existence of two clienteles, a sophisticated
clientele and a second clientele that I will refer to as a disadvantaged clientele.

The sophisticated clientele directs its money to funds based on performance.
The disadvantaged clientele consists of three groups:

1. Unsophisticated investors�a group that directs its money to funds based
at least in part on other in�uences such as advertising and advice from
brokers

2. Institutionally disadvantaged investors�a group primarily represented by
pension accounts that are restricted by the plan they are part of to a set of
funds that underperforms the best active funds.

3. Tax disadvantaged investors�a group that has held one or more funds
for enough time so that capital gains taxes make it ine�cient to remove
money from these funds. This group can still act as sophisticated investors
in placing new money

All of the evidence in this article is consistent with this hypothesis.

1. The stock of money underperforms appropriate benchmarks. The stock of
money is likely to contain a large percentage of the funds invested by the
disadvantaged clientele.

2. The �ow of money performs better than appropriate benchmarks. Sophis-
ticated investors are likely to constitute a larger percentage of new cash
�ows into and out of mutual funds. The investor who moves cash into
and out of funds earns a positive risk adjusted return and gets the services
provided by mutual funds at no net cost.
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3. The �ow of new money into the best performing funds is much larger
than the �ow of money out of the poorer performing funds. Tax disadvan-
taged investors and to some extent institutionally disadvantaged investors
will not or cannot move money out of bad funds, but tax disadvantaged
investors and to some extent institutionally disadvantaged investors can
place new money in good performing funds.

4. The �ow of new money into and out of mutual funds underperforms naive
rules for selecting mutual funds as examined in Table II. Again I explain
this as due to the presence of both a disadvantaged clientele and a sophis-
ticated clientele. The sophisticated investor earns more than the average
positive return on marginal cash �ows; the disadvantaged investor earns
less.

5. Because sophisticated investors can't short sell funds, they cannot elimi-
nate ine�cient funds. However, by disinvesting (or not investing) in these
funds they eliminate the worst performing funds in the sample over time.
This is the reason that 28 percent of the poorer performing funds in my
sample merged or changed to noncommon stock funds over the ten year
sample period.

(Gruber, 1996)
Some authors defend the persistent good and bad performance of funds and

relate it to its managers (Brown and Goetzmann, 1995), that is, there are funds
that are consistently at the top of funds, and funds consistently at the bottom
(and eventually disappearing). Hedge funds seem to go ahead of mutual funds,
although they do not outperform market indices (Ackermann et al., 1999).

1.8.1 Normal returns

Some authors like Markowitz and Sharpe consider yearly returns to be nor-
mally distributed. Although yearly returns are better modelled by a log-normal
distribution, using a Gaussian distribution makes some derivations easier.

For a given time horizon, suppose that the return on an investment I is
normally distributed with mean RI and standard deviation σI . Let U be the
negative exponential utility function with risk aversion coe�cient A (A > 0),
UA(w) = −e−Aw. Let w0 be the investor's wealth at the beginning of the period
and w(t) the wealth at the end of the period t. Then, (Norstad, 1999a)

E{UA(w(t))} = −e−Aw0(1+RI− 1
2Aw0σ

2
I ) (1.216)

Consequently, when this investor tries to choose amongst di�erent investment
choices, he will select the one maximizing

RI −
1

2
Aw0σ

2
I (1.217)

As w0 increases, risk-aversion increases. Some people apply the utility function
to the return only (not the wealth), in that case

E{UA(rI)} = −e−A(RI− 1
2Aσ

2
I ) (1.218)
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and the investment chosen is the one maximizing

RI −
1

2
Aσ2

I (1.219)

The choice is now independent of the current wealth. This is similar, although
not identical, to the iso-elastic utility function.

Fig. 1.25 shows the feasible set of investments and its e�cient frontier. It
also shows the isoutility curves for two di�erent risk aversion coe�cients (A = 3,
less aversion; and A = 10, more aversion). The feasible set and the e�cient
frontier is the same for all investors. What changes from investor to investor is
the utility curve. The optimal investment is the point at which the rightmost
isocurve is tangential to the e�cient frontier.

1.8.2 Log-normal returns

Let the investment I be log-normally distributed under the random walk model
with mean continuously yearly return µI and standard devation σ2

I . Let U be
the isoelastic utility function

UA(w) =
w1−A − 1

1−A
(1.220)

Then, the expected utility at the end of a period of t years is (Norstad, 1999a)

E{UA(w(t))} =
1

1−A

(
w1−A

0 e−(A−1)t(µ− 1
2 (A−1)σ2

I ) − 1
)

(1.221)

When A = 1, the corresponding expected value is

E{U1(w(t))} = log(w0) + µt (1.222)

The investor will choose the investment that maximizes

µ− 1

2
(A− 1)σ2

I =

(
µ+

1

2
σ2
I

)
− 1

2
Aσ2

I (1.223)

The term µ+ 1
2σ

2
I is the arithmetic mean of the yearly returns, and is normally

denoted by αi. The investment I1 is more e�cient that I2 i� α1 ≥ α2 and
σ1 ≤ σ2 (Norstad, 1999a).

We may carry over the di�erential equation formulation of the value of a
speci�c asset (see Eq. 1.26)

log
X(t)

X(0)
= µt+ σS(t) (1.224)

to a portfolio by simply considering the portfolio weights

log
W (t)

W (0)
= µpt+ σpS(t) (1.225)

where
µp = pTµR

σp = pTΣRp
(1.226)

In this model we are assuming that we are continuously rebalancing the portfolio
(selling and buying assets) so that the proportion of investment in each one of
the assets is kept constant after the end of each dt period. As a consequence,
the portfolio value, W (t), is also a log-normal random walk.
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Figure 1.25: Feasible investments in US bonds, stocks (top) and cash (bottom),
and its e�cient frontier (the leftmost border).
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1.8.3 Construction of portfolios

Minimum variance portfolios

Minimum variance portfolios , are those that minimize the portfolio return vari-
ance Elton et al. (2003):

p∗ = argmin pTΣRp
s.t. pT1 = 1

(1.227)

The Lagrangean multipliers method requires �nding solutions of the equation
system

2ΣRp∗ + λ1 = 0
(p∗)T1 = 1

(1.228)

Its solution can be easily calculated through the matrix equation system(
2ΣR 1
1T 0

)(
p∗

λ

)
=

(
0
1

)
(1.229)

Maximum utility portfolios

Under the iso-elastic utility function, the Maximum utility portfolios, are those
that maximize (Eq. 1.223, Norstad (2002a)):

p∗ = argmax pTµR − 1
2 (A− 1)pTΣRp (1.230)

Calculating the derivative and equating to 0, the solution of this problem is
given by the linear equation

µR − (A− 1)ΣRp∗ = 0⇒ p∗ =
1

A− 1
Σ−1

R µR (1.231)

Note that this portfolio is not constrained so that short are allowed (pi < 0)
and leverage is allowed (pT1 6= 1). The solution above is for A 6= 1. For A = 1
(risk indi�erent investor), the investor maximizes (see Eq. 1.222)

p∗ = argmax pTµR = ej (1.232)

where j = argmaxµR, that is, the investor puts all his money of the asset with
maximum average return. Actually, the solution ej assumes that the investor
is not borrowing money.

We may obviously add budget constraints to the problem

p∗ = argmax pTµR − 1
2 (A− 1)pTΣRp

s.t. pT1 = 1
(1.233)

The Lagrangean of this problem yields the equation system(
(A− 1)ΣR 1

1T 0

)(
p∗

λ

)
=

(
µR

1

)
(1.234)

For every risk-aversion coe�cient A, we may calculate the optimal portfolio
allocation, p∗, and from this we calculate µp∗ and σp∗ producing a point in the
return-risk plane. The e�cient frontier is the curve resulting of gathering all
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these points for all possible A ∈ [0,∞). Let us do it for the simple case of the
unconstrained problem (see Eq. 1.231).

µp∗ = 1
A−1µ

T
RΣ−1

R µR

σ2
p∗ =

(
1

A−1

)2

µTRΣ−1
R µR

}
⇒ µp∗ = (A− 1)σ2

p∗ (1.235)

Although this dependence is only valid in the case of unconstrained portfolios
for the iso-elastic utility function, it highlights several important properties of
the e�cient frontier for any other case:

• The return is an increasing function of the risk. Once the portfolio has
been optimally diversi�ed for a given A, the only way of getting more
return is by taking more risk.

• The in�nite aversion to risk A→∞ goes to the minimum variance port-
folio, and the slope at it is in�nite (the tangent is vertical).

• The e�cient frontier is a concave function.

In the next section we develop a more involved example

E�cient portfolios

E�cient portfolios are those that maximize the portfolio return while keeping
the risk at a �xed value Markowitz (1959),:

p∗ = argmax pTµR

s.t. pTΣRp = σ2
0

pT1 = 1
(1.236)

The Langrangean multipliers method for this problem implies �nding solutions
for the equation system:

µR + 2λ1ΣRp∗ + λ21 = 0
(p∗)TΣRp∗ = σ2

0

(p∗)T1 = 1
(1.237)

where the unknows are p∗, λ1 and λ2. Although feasible, this equation system
is non-linear, and a related but slightly di�erent problem is normally preferred

p∗ = argmin pTΣRp
s.t. pTµR = r0

pT1 = 1
(1.238)

The Lagrangean multipliers method requires �nding solutions of the equation
system

2ΣRp∗ + λ1µR + λ21 = 0
(p∗)TµR = r0

(p∗)T1 = 1
(1.239)

Now, the equation system is linear again and its solution can be easily calculated
through the matrix equation system2ΣR µR 1

µTR 0 0
1T 0 0

p∗

λ1

λ2

 =

0
r0

1

 (1.240)
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Figure 1.26: E�cient frontier is an hyperbola

The solution of this problem is

p∗ = 1
∆

(
(µTRΣ−1

R µR)Σ−1
R 1− (1TΣ−1

R µR)Σ−1
R µR

)
+ r0

∆

(
(1TΣ−1

R 1)Σ−1
R µR − (µTRΣ−1

R 1)Σ−1
R 1

) (1.241)

with
∆ = (µTRΣ−1

R µR)(1TΣ−1
R 1)− (µTRΣ−1

R 1)2 > 0 (1.242)

Now, we will look for the e�cient frontier of this problem. Let us de�ne some
auxiliary variables to simplify notation

a = 1TΣ−1
R 1

b = 1TΣ−1
R µR

c = µTRΣ−1
R µR

(1.243)

If we substitute the optimal portfolio, p∗ into the portfolio variance, σ2
p∗ , we

would have

σ2
p∗ =

1

a
+
a

∆

(
r0 −

b

a

)2

=
1

∆

(
1 r0

)( c −b
−b a

)(
1
r0

)
(1.244)

Remind that µp∗ = r0. This is the equation of a hyperbola in the risk-return
plane (see Fig. 1.26). As in our previous example, the e�cient frontier is
concave, the risk increases with increasing return, and the tangent is vertical at
the minimum variance portfolio.

We can also pose an utility version of this problem

p∗ = argmax pTµR − 1
2Ap

TΣRp
s.t. pT1 = 1

(1.245)

The solution of this problem can be e�ciently performed through the critical
line algorithm (Norstad, 2002b).
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Mutual fund separation problem

Note that the optimal portfolio above can be written in the form

p∗ = p∗A + r0p
∗
B (1.246)

Consider two mutual funds, each one with target returns r1 and r2. The optimal
portfolios of each one of these mutual funds will be

p∗1 = p∗A + r1p
∗
B

p∗2 = p∗A + r2p
∗
B

(1.247)

The mutual fund separation problem states that we may achieve the target
portfolio return r0 by a linear combination of investments in the two funds 1
and 2 (which may save a substantial amount of trading costs)

p∗ =
r0 − r2

r1 − r2
p∗1 +

r1 − r0

r1 − r2
p∗2 (1.248)

Risk free assets

The formulation above is not valid for risk-free or cash assets, because it involves
inverting a covariance matrix with a zero column and row. The problem is then
formulated slightly di�erently to account for the lack of variance of one of the
assets. Let us denote as rf the return of the risk-free asset. The rest of variables
(p,µR,ΣR) refer to the risky assets.

p∗ = argmin pTΣRp
s.t. (1− pT1)rf + pTµR = r0

(1.249)

The solution is

p∗ =
r0 − rf

(µR − rf1)TΣ−1
R (µR − rf1)

Σ−1
R (µR − rf1) (1.250)

If r0 < rf , then p∗ = 0.

No leverage

If we cannot borrow money for our operations, then the problem above must be
rewritten as

p∗ = argmin pTΣRp
s.t. pTµR = r0

pT1 = 1
−1 ≤ p ≤ 1

(1.251)

or equivalently

p∗ = argmin pTΣRp
s.t. pTµR = r0

pT1 = 1
1− p ≥ 0
1 + p ≥ 0

(1.252)
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The Karush-Kuhn-Tucker conditions for this problem are

2ΣRp∗ + λ1µR + λ21− µ11 + µ21 = 0
(p∗)TµR = r0

(p∗)T1 = 1
µ1i(1− p∗i ) = 0 ∀i
µ2i(1 + p∗i ) = 0 ∀i

µ1i ≥ 0 ∀i
µ2i ≥ 0 ∀i

(1.253)

This equation system is non-linear (due to the multiplications µ1ipi and µ2ipi).

Empirical validation

DeMiguel et al. (2009) compares 14 portfolio construction models with 7 di�er-
ent datasets. In their words the conclusions are: From the above discussion, we
conclude that of the strategies from the op- timizing models, there is no single
strategy that always dominates the 1/N strategy in terms of Sharpe ratio. In
general, the 1/N strategy has Sharpe ratios that are higher (or statistically in-
distinguishable) relative to the constrained policies, which, in turn, have Sharpe
rat ios that are higher than those for the unconstrained policies. In terms of
CEQ, no strategy from the optimal models is consistently better than the bench-
mark 1/N strategy. And in terms of turnover, only the �vw� strategy, in which
the investor holds the market portfolio and does not trade at all, is better than
the 1/N strategy.

The models are listed in Fig. 1.27. Most of them respond to the optimization

argmax µR −
1

2
ApTΣRp (1.254)

whose solution is

p∗ =
Σ−1

R µR

1TΣRµR

(1.255)

although they di�er in the way they estimate µR and ΣR. The classical ap-
proach is the one presented in these notes in which the mean and covariance
matrices are estimated from historical data. Bayesian estimation presumes an
a priori distribution of the covariance matrix and re�nes the historical estimate
with this prior. The moment restricted portfolios are those constrained to add
up to 1. The metrics used to measure the performance are: the Sharpe-ratio

SR =
µp

σp
, (1.256)

the certainty-equivalent

CEQ = µp −
1

2
Aσp, (1.257)

and the turnover (how many trading transactions).

1.8.4 Log optimal portfolios

The following notes have been taken from (Györ� et al., 2012) with some adap-
tations in the notation. Let X0, X1, ..., Xn denote the price of an asset at times
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Figure 1.27: List of models employed in the portfolio comparison
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0, 1, 2, ..., n. The price is given by a random variable and in order to normal-
ize let X0 = 1. We may represent the normalized prices as a function of an
exponential growth rate Wn as

Xn = enWn (1.258)

from where we can estimate an average exponential growth rate up to time n

Wn =
1

n
logXn (1.259)

The asymptotic average exponential growth rate is

W = lim
n→∞

1

n
logXn (1.260)

Static portfolio selection

If we have a portfolio with proportions p (�xed over trading periods, that is
why it is called static), and an initial capital S0, then after 1 trading period,
the new capital is

S1 = S0(pT (1 + r1)) (1.261)

where r1 is the speci�c return observed at time 1. After two trading periods

S2 = S0(pT (1 + r1))(pT (1 + r2)) (1.262)

The asymptotic growth rate is

W = lim
n→∞

1
n log

(
S0

n∏
i=1

pT (1 + ri)

)
= lim

n→∞

(
1
n logS0 + 1

n

n∑
i=1

log(pT (1 + ri))

)
= lim

n→∞

(
1
n

n∑
i=1

log(pT (1 + ri))

)
= lim

n→∞

(
1
n

n∑
i=1

log(1 + pT ri)

)
(1.263)

If the market is memory-less (that is, each return is an independent and
identically distributed variable, IID), then the principle of log-optimality that
states that (Györ� et al., 2012)

Sn(p) ≈ enE{log(1+pT r1)}

E{Sn(p)} = en log(1+pTE{r1})
(1.264)

The log-optimal portfolio is given by

p∗ = argmax E{log(1 + pT r1)} (1.265)

If the distribution of returns is unknown, we may calculate the log-optimal
portfolio (Eq. 1.265) from the historical data

p∗ = argmax
1

n

n∑
i=1

log(1 + pT ri) (1.266)
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Note that
Sn(p)� E{Sn(p)} (1.267)

If we try to maximize E{Sn(p)}, this translates in the maximization of

p∗ = argmaxpTE{r1} = argmaxpTµR (1.268)

The maximization problem above gives p∗ej where j is the index of the maxi-
mum value of µR. Markowitz was the �rst in constraining the problem so that
the solution diversifes the investment

p∗ = argmax pTµR

s.t. pTΣRp ≤ σ2
0

(1.269)

The semi-log optimal portfolio approximates the logarithm by its second-
order Taylor expansion (log(1 + x) ≈ x− 1

2x
2)

p∗ = argmax E
{

log(1 + pT ri)
}

≈ argmax E
{
pT ri − 1

2

(
pT ri

)2}
≈ argmaxpTµR − 1

2p
TΣRp

(1.270)

This equation is formally identical to the one of maximum-utility portfolios (Eq.
1.231) with A = 2 and the generic formula summarizing several investment
models (Eq. 1.254).

We may add short-selling, no-ruin and leverage constraints to this optimiza-
tion problem (Horváth and Urbán, 2012). Short-selling positions are represented
by negative values in the portfolio vector. We will assume that short-selling is
for free. The portfolio return after 1 period of investment is still

S1 = S0(1 + pT r1) (1.271)

Note that the asset returns may be positive or negative, as well as the portfolio
proportion, pi. Let us assume that the maximum return in absolute value is
bounded by a value B (typically 0.3 < B < 0.4). The maximum loss that may
occur is bounded by

|p|T |r1| ≤ B|p|T1 (1.272)

That is, we guarantee no-ruin if

B|p|T1 < 1 (1.273)

This is one of the constraints to add to the optimization problem. This constrain
makes the feasible set of solutions to be non-convex so that the problem has to
be transformed (by unfolding the portfolio vector into a positive and negative
component) in order to become a convex problem (Horváth and Urbán, 2012).

If we add leverage a leverage level, LB > 1, then the portfolio is constrained
to be

|p|T1 = LB (1.274)

Again, the set of feasible portfolios is non-convex, although it can be helped
with the vector unfolding technique. No-ruin is guaranteed if

LB <
1

B
(1.275)
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In case that one of the assets is cash, which may be used to lend money at an
interest r, then LB is modi�ed to

LB,r =
1 + r

B + r
(1.276)

Horváth and Urbán (2012) shows the performance of this portfolio construc-
tion in a dynamic portfolio selection (see next section) in which a nearest neigh-
bour regression is employed. They report annual growths of 83%.

Dynamic portfolio selection

In practice, the capital invested depends on a portfolio, pi, that changes dy-
namically over time (note that to construct pi we only use information up to
i− 1), so that

S1 = S0(pT1 (1 + r1)) (1.277)

and
S2 = S0(pT1 (1 + r1))(pT2 (1 + r2)) (1.278)

The asymptotic growth rate is

W = lim
n→∞

1
n log

(
S0

n∏
i=1

pTi (1 + ri)

)
= lim

n→∞

(
1
n

n∑
i=1

log(1 + pTi ri)

) (1.279)

If the returns are stationary, then the log-optimal portfolio problem can still be
solved by (Györ� et al., 2012)

p∗i = argmax E{log(1 + pT ri)|ri−1} (1.280)

and all is reduced to a maximization problem in which we need to estimate
a regression function of the form E{Y |X}. Because of the stationarity of the
returns, the data is a sequence of IID copies of (X, Y ), up to the time i− 1 we
have a data collection

Di−1 = {(X1, Y1), (X2, Y2), ..., (Xi−1, Yi−1)} (1.281)

Due to the complex nature of the observed data non-linear and local regressors
are preferred. Amongst these, prominent examples are:

• Partition regression: if we divide the predictor space, X ∈ Rd (that is,
there are d assets in the market), into small cells, then we look for the cell
of X and compute the average of the Y values associated to that cell.

• Kernel regression: we may compute a weighted average between all sam-
ples giving more weight to the most similar samples

Y =

i−1∑
k=1

K
(
‖X−Xk‖

h

)
Yk

i−1∑
k=1

K
(
‖X−Xk‖

h

) (1.282)
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• kNN regression: alternatively we may compute the k nearest neighbours
to sample X and compute the average of those neighbours.

We may integrate this strategy of selection of portfolios into a more com-
plex scheme. Note that the previous strategy amounts to the construction of a
regression function of log(1 + pT ri) dependent on the previously observed re-
turns ri−1. We may construct many di�erent regressors (for example, changing
the information available to each regressor or the regression algorithm). Let us
assume we construct M regressors. Each regressor is called an expert and it

proposes a portfolio p
(m)
i . The combined portfolio is a weighted average of all

the proposals

p =

M∑
m=1

wmp
(m)
i

M∑
m=1

wm

(1.283)

The weights can be determined by an a priori distribution of the experts (qm

such that
M∑
m=1

qm = 1) and the past performance of each expert

wm = qme
η logS

(m)
i−1 = qm

(
S

(m)
i−1

)η
(1.284)

being η a positive scalar parameter and S
(m)
i−1 is the capital obtained using only

the m-th expert. The so-called histogram, kernel and nearest neighbour based
strategies in Györ� et al. (2012) respond to this scheme.

1.8.5 Information theory results

Information theory results assume that the asset prices at all times, X[n], are
extracted from the same known distribution, f(X). This is clearly no the case
in reality because the , but it provides some intuition on the properties of log-
optimal portfolios. The following are some results from information theory that
apply to log-optimal portfolios (Cover and Thomas, 2012)[Chap. 16]:

• The set of log-optimal portfolios with respect to a given distribution of
prices (and, consequently, returns) is convex.

• The wealth following a log-optimal portfolio exceeds the wealth of any
other for almost any sequence of returns.

• The increase of wealth due to side information Y is bounded by I(X;Y ),
that is, any side information Y increases the wealth only if it brings any
useful information on the prices X.

In practice, the distribution of prices is not known, but it can be estimated
from previous price samples. In this case, the optimal portfolio is called the
universal portfolio and it turns out to be the combination of many constantly
rebalanced portfolios. The idea is mathematically well grounded and works well
if the underlying assets are �random walks�. But in practice, funds going with
CRPs have desappeared (Mountain View Analytics founded by T. Cover).
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1.8.6 Alternative portfolio theories

Geometric mean return

Assume that an asset i has expected returns Ri1 with probability pi1, Ri2 with
probability pi2, ... The expected geometric mean of the asset is (Elton et al.,
2003)[Chap. 11]

RGi = (1 +Ri1)pi1(1 +Ri2)pi2 ...(1 +RiNi)
piNi − 1 (1.285)

We may construct a vector with all these expected values for a set of assets, µ.
If we have a portfolio with proportions pi in each asset, the expected geometric
mean return would be

µp = (1 +RG1)p1(1 +RG2)p2 ...(1 +RGN )pN − 1 (1.286)

We may maximize µp or log(µp + 1)

p∗ = argmax

N∑
i=1

pi log(1 +RGi) (1.287)

This is similar to the mean-variance e�cient portfolio if the geometric returns
are log-normally distributed. The geometric mean return portfolio tends to
diversify more than the modern portfolio alternatives.

Safety �rst

Safety �rst was proposed by Roy and we want to minimize the probability of
having a loss larger than a given threshold Rl (Elton et al., 2003):

p∗ = argminPr{µp < Rl} (1.288)

If the returns are normal, then this amounts to measure the Safety-First Ratio

SFR =
µR −Rl
σR

(1.289)

where µR and σR are the mean and standard deviation of the asset under study.
If returns are log-normally distributed, the ratio would be de�ned similarly
although using the logarithm.

Another safety �rst criterion is Kataoka's criterion

p∗ = argmax pTµR
s.t. Pr{R < pTµR} ≤ ε

(1.290)

Here we are maximizing the minimum return that guarantees that is achieved
with probability 1− ε.

Telser's criterion is

p∗ = argmax pTµR
s.t. Pr{pTµR < Rmin} ≤ ε

(1.291)

That is, maximize the return such that the probability of achieving a portfolio
return less than a given threshold is kept under control.
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Stochastic dominance

Stochastic dominance is a way of establishing a partial order (an order is partial
if given two choices A and B, none of them is preferred to the other). We may
establish di�erent kinds of stochastic dominance:

1. First order dominance: A dominates B i� FA(x) ≤ FB(x) for all x, with
strict inequality at some x. Another de�nition is A dominates B i�
Pr{RA > x} ≥ Pr{RB > x} for all x, with strict inequality at some
x.

2. Second order dominance: A dominates B i�
x∫
−∞

(FB(t)− FA(t))dt ≥ 0 for

all x, with strict inequality at some x. Another de�nition is A dominates
B i� E{u(A)} ≥ E{u(A)} for any utility function u. First order domi-
nance implies second order dominance. For second order dominance it is
necessary that EA{x} ≥ EB{x} and min

A
{x} ≤ min

B
{x} (i.e., the left tail

of B is thicker than the left tail of A).

3. Second order dominance: A dominates B i� FA(x) ≤ FB(x) for all x,
with strict inequality at some x. Another de�nition is A dominates B i�
E{u(A)} ≥ E{u(A)} for any utility function u.

There are higher order dominances. The higher the order, the less relevant is the
dominance. According to this approach, investments are ordered by stochastic
dominance and the best investments are chosen for the portolio. First order
dominance is related to the fact that investors prefer more to less, while second
order dominance is related to the fact that investors are risk averse (Elton et al.,
2003)[Chap. 11]. If returns are normal, then the second-order dominance leads
to a portfolio that is e�cient from a return-risk point of view.

Value at risk

Given a con�dence level α, the VaR at con�dence 1−α is the α quantile of the
return distribution:

V aRα(R) = sup{r|FR(r) ≤ α} (1.292)

If the returns are normal, it is

V aRα(R) = µR + zασR (1.293)

If the returns are not normal, then we may look directly at the corresponding
quantile or, for portfolios, use a Monte Carlo simulation.

Market neutrality

A strategy is market neutral with respect to a source of risk, if the portfolio
return has zero-correlation with that source of risk. An example of such a
strategy is pairs trading. Two very much correlated companies, like Coca-Cola
and Pepsi, both having similar highs and lows, may be invested in opposite ways
(long on Company 1, and short on Company 2). On average, this strategy has
zero return (since the gain of one of the investments only compensate the losses
of the other; not even so if transaction costs are considered). However, we may
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try to track the disagreement between both prices, so that we give a little bit
more weight to the one lagging behind, hoping that the two prices will close the
return gap.

1.8.7 International diversi�cation

When an investment is performed in another currency, we must have into ac-
count the variance of the currency conversion. So that an investment of capital
S0 after a period of trading is valued

S1 = S0(1 +Ra)(1 +Rc) (1.294)

where Ra is the return of the asset and Rc the return of the currency over the
same period. The overall return is

R = (1 +Ra)(1 +Rc)− 1
= Ra +Rc +RaRc

(1.295)

The mean and variance of the overall return is

µR = µa + µc + (µaµc + σa,c)
σ2
R = σa2,c2 + (σ2

a + µ2
a)(σ2

c + µ2
c)− (σa,c + µaµc)

2 (1.296)

where σa,c is the covariance between the asset and the currency, and σa2,c2 is
the covariance between R2

A and R2
C . The covariance between two investments

performed in a foreign market is even more complicated. Overall, the investment
problem is much more complex, because we have to add models for the variation
of the currency conversion.

1.8.8 Portfolio evaluation

Rf is the return of a risk-free asset. Ri the return of the asset under evaluation.
µi and σi their mean and standard deviation respectively. βi is the β coe�cient
of the CAPM model (that is, a value related to the correlation between the asset
and the market index; see Section 1.9.1). Let Rmin be the minimum acceptable
return. Let us de�ne the Lower Partial Moment of order n as

LPMni =
1

N

N−1∑
n=0

(max{Rmin −Ri[n], 0})n (1.297)

This is measuring the mean (n = 1) or �variance� (n = 2) of the losses (Ri[n] <
Rmin). Similarly, we may measure the moments of gains

HPMni =
1

N

N−1∑
n=0

(max{Ri[n]−Rmin, 0})n (1.298)

Let us denote as MDin the size of the n-th maximum drawdown (MDi1 is the
worst drawdown, MDi2 the second worst, ...; they are negative return quanti-
ties)

There are several ways of evaluating the goodness of an investment (Aldridge,
2009)[Chap. 5]:
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• Sharpe ratio: This is good if returns are normally distributed.

SRi =
µi −Rf
σi

(1.299)

If the returns were normally distributed, the SR from T samples is esti-
mated with an error whose mean is 0 and its variance is

σ̂2
SRi =

1 + 0.5SR2
i

T
(1.300)

• Treynor ratio: This is good if returns are normally distributed and the
investor wishes to split his holdings between the asset and the market
portfolio.

TRi =
µi −Rf
βi

(1.301)

• Jensen's α: Measures the trading return in excess to the return predicted
by the CAPM model. This is good if returns are normally distributed and
the investor wishes to split his holdings between the asset and the market
portfolio. It can be manipulated by leverage.

αi = µi − (Rf + βi(Rm −Rf )) (1.302)

• Shadwick's Ω: Measures the trading return in excess to the minimum
acceptable and compares it to the average of the losses

Ωi =
µi −Rmin
LPM1i

+ 1 (1.303)

• Sortino ratio: This is equivalent to the Sharpe ratio but only considering
the variance of losses

SoRi =
µi −Rmin√
LPM2i

(1.304)

• Upside potential ratio: This measure computes the mean gain to the vari-
ance of losses

UPRi =
HPM1i√
LPM2i

(1.305)

• Calmar ratio: This measure computes the mean return to the maximum
drawdown in the whole history

CRi =
µi −Rf
−MDi1

(1.306)

• Sterling ratio: Since the maximum drawdown can be rather extreme, we
average the annual (or any other period) maximum drawdowns as a way
of having a better estimate of how drawdowns look like

CRi =
µi −Rf
−MDi1

(1.307)

• Excess return to Value at Risk: We may use the Value at Risk as a mea-
sure of the drawdown

CRi =
µi −Rf
−V aRi

(1.308)
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1.8.9 The limitations of portfolio optimization

Optimization theory is good to understand how the market works, but it is
not useful to perform any practical trading. Here are some reasons (Norstad,
2002b):

�Estimating expected returns is notoriously di�cult and controversial. Given
the large amount of noise in the prices of risky assets like stocks, it is statisti-
cally impossible to accurately estimate expected returns from even long historical
time series data with more accuracy than a percent or two. Trying to estimate
expected returns based on fundamental considerations is even more di�cult, and
it is impossible to trust any such estimate with an accuracy of more than a per-
cent or two. The optimization algorithm is simply too sensitive to this kind of
inaccuracy to be useful.

[...]
The high level of talent in the �nancial analysis world combined with the ex-

traordinary high level of competition in that world must cause us to be suspicious
of the possibility of earning any consistent abnormal pro�ts by using optimizers.
Indeed, the long and detailed historical record does not reveal any serious in-
stances of such success.

[...]
The proper way to think of these theories is that the models they build are a

good way to at least start to think about how markets work, but they do not give
us any kind of edge in trying to beat those markets.

Put yet another way, portfolio optimizer programs by themselves do not help
one become smarter than other investors. It is impossible for such a program
by itself to give an investor an advantage, because everyone has access to these
programs.

Eugene Fama has been reported to have said that if one feels like wasting
some time, it's OK to play around with optimization programs, but it is indeed
a waste of time. We largely concur with this sentiment, except that playing
around with such programs can often help students visualize the mathematics and
underlying economic ideas when they are �rst becoming exposed to the theories.
For practical applications, however, they are useless. �

Another reason why trading and portfolio optimization cannot be done fully
automatically is beacause if everybody would use the same trading rules, they
would create a kind of �synchronized� movement in the market, which would
turn the market very unstable. Actually, its stability seems to be relatively week
and to result from the exertion of multiple opposing forces (see Sec. 1.2.2).

1.9 Asset pricing

This task is also called Valuation process, it is the way we predict which will be
the expected return for each one of the assets.

1.9.1 Capital Asset Pricing Model

This model tries to determine which is the expected value of a given asset
through the formula

E{Ri} = Rf + βi(E{Rm} −Rf ) (1.309)
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Figure 1.28: Dow jones index and its 30 stocks: the CAPM and the security
market line (purple). the grey line is the linear model. mean yield is assumed
to be 2.9%.

where Ri is the asset we are interested in, Rf is the return of a risk-free asset,
Rm is the return of the market, and βi is the sensitivity of the asset to the
market excess returns. It is calculated as

βi =
Cov{Ri, Rm}

Var{Rm}
(1.310)

The Security Market Line is the straight line of E{Ri} as a function of βi.
Given an asset β we can immediately calculate which is the expected return
of an asset with that β. Fig. 1.28 shows the CAPM model and the regression
line for the DJI components over the 3 years. Note the dispersion about the
CAPM and regression lines. In the words of Ivo Welch: �Unfortunately, in real
life, despite its wide use, the evidence in favor of practical use and application
of the CAPM is either weak or non-existent. If you use the CAPM, you do so
based primarily on a belief that it should work, not based on empirical evidence.
Say again: the evidence suggests that, even if the CAPM held, input estimates
for corporate cash �ows that will occur far in the future are usually so imprecise
that they render the CAPM practically useless� (Welch, 2014)[Chapter 9].

The Consumption CAPM proposes a similar model to the one of CAPM,
but substituting Rm by an aggregate measure of consumption per capita.

One of the problems of the estimation of βi is that the Ordinary Least
Squares estimate is not too stable. Eisenbeiÿ et al. (2007) proposes a regularized
estimation in which

E{Ri} = Rf + (βi + β̃i(t))(E{Rm} −Rf ) (1.311)
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Figure 1.29: Smooth βi curves for a couple of sector indices.

with the constraint that
∫
β̃i(t))dt = 0, that is, the βi coe�cient dependence on

time is explicitly considered through a B-spline model, which is regularized to
have small second derivative. The regression is weighted by the local variance,

1
σ2
i (t)

as to accommodate heterocedasticity. The βi �tting is now much smoother

over time as shown in Fig. 1.29. In Kauermann et al. (2011), they show that this
spline smoothing compares favourably with respect to Hodrick-Prescott �lter (a
spline smoothing with white noise, instead of correlated noise, and regularized
on the spline second derivative), bandpass and highpass �lters. A alternative to
this smooth �tting is the Kalman Filter.

1.9.2 Arbitrage Pricing Theory

We may presume that the returns observed in the market can be explained as
linear combinations of a few underlying factors (Barra, 2007). In this way,

R = R0 +XF + ε (1.312)

The assumptions are
E{ε} = 0
E{F} = 0

Cov{F} = I
Cov{ε} = Σε

Cov{ε,F} = 0

(1.313)

The covariance matrix of R can be computed from the covariance matrices
of F and ε (the residuals are supposed to be independent of the factors and
independent amongst themselves)

ΣR = XΣFX
T + Σε (1.314)

We may distinguish between the unconditional moments

E{R} = µR = R0 +XµF

Cov{R} = ΣR = XΣFX
T + Σε

(1.315)
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and the conditional ones

E{R|F[n]} = R0 +XF[n]
Cov{R|F[n]} = Σε

(1.316)

R0 and X must be determined by linear regression.
If the factors are speci�ed by the user (like the overall market return, the

return of an industry index, the return of the U.S. Treasure Bond, ...), then
the only unknown of this problem is the regression parameters (X and R0).
This would be a regression problem. If both, the parameters and the factors are
unknown, then this is a Factor Analysis problem.

The relationship between F and R may be non-linear:

R = h(F) + ε (1.317)

However, if the deviations of F from µF are small so that the Taylor expansion
is valid

h(F) ≈ h(µF) +DFh(µF)(F− µF)
= (h(µF)−DFh(µF)µF) + (DFh(µF))F

(1.318)

See the Mathematical Tools Appendix for the de�nition of the derivative of a
multivariate function. Then, we would be back to the linear case above, in
which

R0 = h(µF)− (DFh(µF))µF

X = DFh(µF)
(1.319)

Under the linear factor model, the mean and variance of the portfolio can
be easily calculated in terms of the factors

E{Rp} = pT (R0 +XµF)
Var{Rp} = pT (XΣFX

T + Σε)p
(1.320)

Under the non-linear factor model, we have

E{Rp} = pTµh(F)

Var{Rp} = pT (Σh(F) + Σε)p
(1.321)

where

µh(F) = EF{h(F)}
Σh(F) = EF{(h(F)− µh(F))(h(F)− µh(F))

T } (1.322)

The �nancial elasticity , β, of an equity with respect to a factor (normally,
the market return) is the regression coe�cient of the return when that single
factor is used as predictor

Ri = R0i + βijFj + εi (1.323)

Then

βij =
Cov{Ri, Fj}

Var{Fj}
=
σij
σ2
j

= ρij
σi
σj

(1.324)

where σ2
i is the variance of Ri, σ

2
j is the variance of Fj , σij is the covariance be-

tween the equity return and the factor, and ρij is the correlation index between
these two variables.
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An heuristic way of constructing portfolios (Elton et al., 2003)[Chap. 9] is
by choosing equities by descending order of excess return to β

E{Ri} −Rfree

β1m
(1.325)

where E{Ri} is the expected return for the i-th equity, Rfree is the return of
a risk-free asset, and βim is the β of the stock when regressed to the market
index. (Elton et al., 2003)[Chap. 9] provides formulas for the calculation of p
under this heuristic and some simpli�cations (like a model with a single index).

We may also calculate the �nancial elasticity between a portfolio and a factor

Cov{Rp, Fj} = E{(pTR− pTµR)(eTj F− eTj µF)}
= pTE{(R− µR)(F− µF)T }ej
= pTE{(R0 +XF + ε−R0 −XµF)(F− µF)T }ej
= pTXΣFej

(1.326)
Note that the factors in F do not need to be orthogonal to each other. By

applying a Principal Component Analysis we may �nd a set of orthogonal factors
f such that

F = µF +Bf + u (1.327)

Under this decomposition we would have

ΣF = BΣfB
T + Σu (1.328)

being Σf and Σu diagonal matrices.
Some models (Barra, 2007)[Chap. 3] try to model also the variance ε at Eq.

1.312. At each time point n, the forecasted standard deviation for a particular
asset i is of the form

σ̂i[n] = κi[n](1 + R̂i[n])R̂G[n] (1.329)

where R̂i[n] is a prediction of the return of asset i at time n, R̂G[n] is a prediction
of the global return of the market at time n and κi[n] is a scaling factor. On
their turn, the global market return is predicted through an AR model

R̂G[n] = R0G +

P∑
k=1

akRG[n− k] (1.330)

and a factor model
R̂[n] = Y [n]g[n] (1.331)

where Y [n] is a time-varying matrix and g[n] the factors used to predict the
returns of each asset.

We may use this linear model in a di�erent way. Let us assume now that
we want to discover factors. Then, we �x the matrix X (for instance by using
indicator variables, e.g., which industry this asset belongs to, ...)

R = XF + ε (1.332)

The constraint is that XTX is an invertible matrix (normally it is chosen to be
diagonal). Then, we can look for the factors solving for F in a LS sense

F = (XTX)−1XTR (1.333)
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In this way, industry factor models are built.
A more general approach is provided by Factor Analysis (FA) and Principal

Component Analysis (PCA). In factor analysis, it is assumed that there are a
set of latent, normally distributed, independent factor F ∼ N(0, I) such that
they generate the observed returns

R = R0 +XF + ε (1.334)

The goal of FA is to determine X. This is done through a Maximum Likelihood
approach, in which all the processes involved are assumed to be Gaussian. Sim-
ilarly, PCA uses the same model, but it constructs X with the �rst eigenvectors
of the matrix ΣR (the eigenvectors associated to the largest eigenvalues).

1.9.3 Discounted cash �ow

This model states that the value of a share of a stock is equal to the present
value of the cash �ow that the stockholder expects to receive from it. Let Xt

be the price at time t and Dt the dividend received at time t. Let k be the
appropriate discount rate (like in�ation). Then the current value of a dividend
received at time t + 1 and the price at the same time is given by (Elton et al.,
2003)[Chap. 18]

Xt =
Dt+1

1 + k
+
Xt+1

1 + k
(1.335)

This is a recursive equation whose solution is

Xt =
Dt+1

1 + k
+

Dt+2

(1 + k)2
+

Dt+3

(1 + k)3
+ ... (1.336)

If the dividends grow at a constant rate, Dt+n = Dt+n−1(1 + g), then we have
a geometric series, whose sum is

Xt =
Dt+1

k − g
(1.337)

g may be estimated from the expected return of the �rm on its investments,
r, and the fraction of earnings retained by the �rm as g = rb. The constant
growth model assumes that the �rm will maintain a stable dividen policy (keep
its retention rate constant), and earn a stable return on new investments over
time.

1.9.4 Cross-sectional regression

The di�erence between cross-sectional regression and time-series regression is
that cross-sectional regression performs a regression between xt and y, i.e., a
number of predictor variables like (earnings growth rate, dividend payout rate,
standard deviation in growth rate, in�ation, ...) measured at time t; while time-
series regression performs the regression between ...,xt−2,xt−1,xt and y, i.e.,
all the historical knowledge is employed.

Cross-sectional regression has been employed to predict the Price/Earnings
Ratio (PER) as a function of variables like earnings growth rate, dividend payout
rate, standard deviation in growth rate, oil price, in�ation, etc. (Elton et al.,
2003)[Chap. 18]. It is important to note that the regression coe�cients may vary
depending on the market trend, so that di�erent regressions may be performed.
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1.10 Machine learning

1.10.1 Distance learning

Do et al. (2015) proposes an interesting approach to learning distances that
maximize a classi�cation of time series. Let us summarize here their approach.
There are two types of time series distances: 1) those that care about the speci�c
values dV (x,y) (like the Euclidean, Minkowski and Mahalanobis distances) and
2) those that care about the shape dS(x,y) (like the correlation or the temporal
correlation). The temporal correlation is de�ned as

Cortr(x,y) =

∑
|n−n′|≤r

(x[n]− x[n′])(y[n]− y[n′])√ ∑
|n−n′|≤r

(x[n]− x[n′])2
√ ∑
|n−n′|≤r

(y[n]− y[n′])2
(1.338)

Pearson correlation is a particular case of this measure when r = N−1 (being N
the number of samples in the time series). We may turn the temporal correlation
into a distance by

dS(x,y) =
1− Cortr(x,y)

2
(1.339)

We may also combine values and shape into a single distance based on a param-
eter α with any of the formulas below

dα(x,y) = 2dV (x,y)
1+exp(1−2dS(x,y))

dα(x,y) = αdV (x,y) + (1− α)dS(x,y)
dα(x,y) = dαV (x,y)d1−α

S (x,y)

(1.340)

We may also combine several metrics

dw(x,y) =
∑
i

widi(x,y) (1.341)

Let us de�ne a training set {xi, yi} that is going to be classi�ed with a kNN
classi�er. The goal is to learn the metrics dw that minimizes the classi�cation
eror. This can be done by pulling similar samples towards the central sample and
by pushing disimilar samples outside of the neighbourhoods. LetNk(xi) be the k
neighbours of the time series xi. Let Sk(xi) be the subset of the neighbourhood
with the same label as the sample i, and S̄k(xi) the set of samples with disimilar
label. Then the goal is to minimize

min
w

∑
j∈Sk(xi)

dw(xi,xj) + C
∑

j∈S̄k(xi)

dw(xi,xj) (1.342)

(Their optimization problem is slightly di�erent, but this one shows better the
philosophy). They use 1NN classi�ers for their experiments and decrease the
classi�cation error between 1 and 3%. Surprisingly, for many datasets, the dV
or dS alone provide the best classi�ers.

1.10.2 Strangeness measures

Given a vector x with label y, we may try to characterize how strange it is
with respect to a training set. For doing so we have di�erent measures (Ho and
Wechsler, 2010):
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• Using kNN: We may compute the distance of x to the k closest samples
with label y, and to the k closest samples with a label di�erent from y
and compare both distances. The smaller the ratio, the less strange the
new sample is.

s =

k∑
j=1

dyj

k∑
j=1

d¬yj

(1.343)

• Using SVM: Let us assume we have trained a SVM with N samples,
and we want to determine the strangeness of a new sample. Assume
y ∈ {−1, 1}. We may look for its Lagrange multiplier by minimizing the
dual problem

Q(λ) = −1

2

N+1∑
i=1

N+1∑
j=1

λiλjyiyjK(xi,xj) +

N+1∑
i=1

λi (1.344)

subject to
N+1∑
i=1

λiyi = 0 and 0 ≤ λi ≤ C. The idea is that well classi�ed

samples will have 0 lagrange multiplier, and samples within the margin will
have a Lagrange multiplier di�erent from 0. A Gaussian kernel has been
found to perform well (Ho and Wechsler, 2010) and it is recommended
some kind of online SVM.

s = λN+1 (1.345)

• Using clustering: We may cluster the training set, including the new sam-
ple and compute the distance of the new sample to its centroid.

s = d(x, c) (1.346)

• Using regression: We may calculate a regression, y = f(x) and estimate
an error function g (like g(xi) = log |yi − f(xi)|). Then, the strangeness
is de�ned as

s =
|y − f(x)|
exp(g(x))

(1.347)

1.11 High-frequency trading

High-frequency trading exploits the intraday variability in order to increase
pro�ts. The following table shows the potential maximum gain in the EUR/USD
exchange ratio (Aldridge, 2009)[Chap. 7]

Statistic 10 s 1 min 10 min 1 h 1 day
Max. Gain (%) 319 90 18.5 6.5 0.6

Avg. Range per period (%) 0.04 0.06 0.13 0.27 0.6
Number of intraday periods 8640 1440 144 24 1

The Sharpe ratio has to be adjusted by a factor that accounts for the number
of periods

SRi =
µi −Rf
σi

√
PD (1.348)
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Figure 1.30: Similarities and dissimilarities between Algorithmic Trading and
High-Frequency Trading.

where P is the number of intraday periods, and D is the number of trading days
in the year.

High-frequency trading has been shown to increase the e�ciency of the mar-
ket and to improve its quality. However, regulatory issues must be undertaken
to avoid situations like the ��ash crash� (May 6th, 2010) which seemed to be
caused by a combination of factors (Chlistalla et al., 2011). The following para-
graphs are extracted from Gomber et al. (2011) and gives an overview of the
families of High-Frequency Trading algorithms. The paper distinguishes be-
tween Algorithmic Trading (AT) and High-Frequency Trading (HFT) (see Fig.
1.30).

1.11.1 Algorithmic trading

The Scope of Algorithmic Trading Strategies

HFT is mostly de�ned as a subset of AT strategies. However, not all algorithmic
strategies are necessarily high frequent. Most non-HFT algorithmic strategies
aim at minimizing the market impact of (large) orders. They slice the order
into several smaller child orders and spread these child orders out across time
(and/or venues) according to a pre-set benchmark. The following subsections
describe some of the more common non-HFT algorithmic strategies.

The classi�cation into four generations is based on Almgren (2009) and in-
cludes information from Johnson (2010). First generation algorithms focus
solely on benchmarks that are based on market generated data (e.g. VWAP)
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and are independent from the actual order and the order book situation at order
arrival, while the second generation tries to de�ne the benchmark based on the
individual order and to handle the trade-o� between market impact and timing
risk. Third generation algorithms are furthermore able to adapt to their own
performance during executions. A fourth generation � that is not included in
the Almgren (2009) classi�cation � consists of so called newsreader algorithms.

First Generation Execution Algorithms

Participation Rate Algorithms
Participation rate algorithms are relatively simple. They are geared to par-

ticipate in the market up to a prede�ned volume. Such an algorithm could for
example try to participate by trading 5% of the volume in the target instru-
ment(s) until it has built or liquidated a target position. Since these algorithms
target traded volume, they re�ect the current market volume in their orders.
Variants of these algorithms add execution periods during which orders are sub-
mitted to the market or maximum volumes or prices. Furthermore, randomized
participation rates are used to make the algorithm harder to detect for other
market participants.

Time Weighted Average Price (TWAP) Algorithms
TWAP algorithms divide a large order into slices that are sent to the market

in equally distributed time intervals. Before the execution begins, the size of the
slices as well as the execution period is de�ned. For example, the algorithm could
be set to buy 12,000 shares within one hour in blocks of 2,000 shares, resulting in
6 orders for 2,000 shares which are sent to the market every 10 minutes. TWAP
algorithms can vary their order sizes and time intervals to prevent detection by
other market participants.

Volume Weighted Average Price (VWAP) Algorithms
VWAP algorithms try to match or beat the volume weighted average price

(their benchmark) over a speci�ed period of time. VWAP can be calculated
applying the following formula for n trades, each with an execution price pn and
size vn (Johnson 2010):

VWAP =

∑
n
VnPn∑
n
Vn

(1.349)

Since trades are being weighted according to their size, large trades have a greater
impact on the VWAP than small ones. VWAP algorithms are based on historical
volume pro�les of the respective equity in the relevant market to estimate the
intraday/target period volume patterns.

Second Generation Execution Algorithms

The most prominent second generation algorithms try to minimize implemen-
tation shortfall. The current price/midpoint at the time of arrival of an order
serves as a benchmark, which shall be met or outperformed (order based bench-
mark). Implementation shortfall algorithms try to minimize the market impact
of a large order taking into account potential negative price movements during
the execution process (timing risk). To hedge against an adverse price trend,
these algorithms predetermine an execution plan based on historical data, and
split an order into as many as necessary but as few as possible sub orders. In
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Figure 1.31: Market impact vs. timing risk.

contrast to TWAP or VWAP, these orders will be scattered over a period which
is just long enough to dampen the market impact of the overall order (Johnson
2010). Figure 1.31 shows the trade-o� between minimizing market impact and
timing risk.

Third Generation Execution Algorithms

Adaptive algorithms form the third generation in Almgren`s classi�cation (Alm-
gren 2009). These algorithms follow a more sophisticated approach than imple-
mentation shortfall algorithms. Instead of determining a pre-set schedule, these
algorithms re-evaluate and adapt their execution schedule during the execution
period, making them adaptive to changing market conditions and re�ecting gain-
s/losses in the execution period by a more/less aggressive execution schedule.

Newsreader algorithms

Investors have been relying on news to make their investment decisions ever
since the �rst stock market opened its gates. Since then, traders who possess
valuable information have been using it to generate pro�ts. However, there is a
limit to the quantity of data a human trader can analyze, and maybe even more
important, the human nature of an investor/trader limits the speed with which
he/she can read incoming news. This has led to the development of newsreader
algorithms.

These automated newsreaders employ statistical methods as well as text-
mining techniques to discern the likely impact of news announcements on the
market. Newsreader algorithms rely on high-speed market data. Exchanges and
news agencies have developed low latency news feeds, which provide algorithmic
traders with electronically processable news.

1.11.2 High-Frequency Trading

While consolidated information on the major players in HFT is still scarce, the
community of market participants leveraging HFT technologies to implement
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Figure 1.32: Common HFT techniques.

their trading strategies is highly diverse. Its members range from broker-dealer
operated proprietary trading �rms and broker-dealer market making operations
to specialized HFT boutiques to quantitative hedge funds leveraging HFT technol-
ogy in order to increase the pro�ts from their investment and trading strategies
(see Easthope and Lee 2009). There is (i) a multitude of di�erent institutions
with di�erent business models that use HFT and (ii) there are many hybrid
forms, e.g. broker-dealers which run their proprietary trading books applying
HFT techniques. Therefore, in the assessment of HFT it is very important to
take a functional rather than an institutional perspective. In order to achieve a
level playing �eld, all institutions that apply HFT based trading strategies have
to be taken into consideration independent of whether HFT is their core or an
add-on technology to implement trading strategies.

The scope of HFT strategies

While the universe of HFT strategies is to diverse and opaque to name them all,
some of these strategies are well known and not necessarily new to the markets.
The notion of HFT often relates to traditional trading strategies that use the
possibilities provided by state-of- the-art IT. HFT is a means to employ speci�c
trading strategies rather than a trading strategy in itself. Therefore, instead
of trying to assess HFT as such, it is necessary to have a close look at the
individual strategies that use HFT technologies (see Figure 1.32). The following
subsections shed light on some of the best known and probably most prominent
HFT based strategies.

Electronic Liquidity Provision

One of the most common HFT strategies is to act as a liquidity provider. While
many HFTs provide the market with liquidity like registered market makers, they
frequently do not face formal obligations to quote in the markets in which they
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Figure 1.33: Revenue sources for HFT based on liquidity provision.

are active. HFT liquidity providers have two basic sources of revenues: (i) They
provide markets with liquidity and earn the spread between bid and ask limits
and (ii) trading venues incentivize these liquidity provides by granting rebates or
reduced transaction fees in order to increase market quality and attractiveness.
Figure 1.33 depicts these di�erent revenue sources for HFT electronic liquidity
provision strategies.

Spread Capturing

A HFT strategy, which closely resembles its traditional counterpart, i.e. mar-
ket making, is spread capturing. These liquidity providers pro�t from the spread
between bid and ask prices by continuously buying and selling securities (ASIC
2010a). With each trade, these liquidity providers reap the spread between the
(higher) price at which market participants can buy securities and the (lower)
one at which they can sell securities.

Rebate Driven Strategies

Other liquidity provision strategies are built around particular incentive schemes
of some markets. In order to attract liquidity providers and react to increasing
competition among markets, some trading venues have adopted asymmetric pric-
ing: members removing liquidity from the market (taker; aggressive trading) are
charged a higher fee while traders who submit liquidity to the market (maker;
passive trading) are charged a lower fee or are even provided a rebate. An asym-
metric fee structure is supposed to incentivize liquidity provision. A market
operator`s rationale for applying maker-taker pricing is given by the following:
traders supplying liquidity on both sides (buy and sell) of the order book earn
their pro�ts from the market spread. Fee reductions or even rebates for mak-
ers shall stimulate a market`s liquidity by �rstly attracting more traders to post
passive order �ow in form of limit orders. Secondly, those traders submitting
limit orders shall be incentivized and enabled to quote more aggressively, thus
narrowing the spread. The respective loss of pro�ts from doing so is supposed to
be compensated by a rebate. If this holds true, those markets appear favorable
over their rivals and market orders are attracted enhancing the probability for
the makers to have their orders executed (Lutat 2010).
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(Statistical) Arbitrage

Opportunities to conduct arbitrage strategies frequently exist only for very brief
periods (fractions of a second). Since computers are able to scan the markets
for such short-lived possibilities, arbitrage has become a major strategy applied
by HFTs. These HFTs conduct arbitrage in the same way as their traditional
counterparts; they leverage state of the art technology to pro�t from small and
short-lived discrepancies between securities. The following types of arbitrage are
not limited to HFT, but are conducted by non-automated market participants as
well. Since arbitrageurs react on existing ine�ciencies, they are mainly takers
of liquidity.

Market Neutral Arbitrage

This form of statistical arbitrage aims to be �market neutral�. Arbitrageurs
try to hold instruments while simultaneously shorting other instruments. Since
the instruments are closely correlated, gains and losses due to movements of the
general market will (mostly) o�set each other. However, in order to gain from
this strategy, arbitrageurs sell an instrument which they deem to have a relatively
lower intrinsic value, while simultaneously buying an instrument, which reacts
very similar (ideally identical) to changes in the market environment and which
they deem to have a relatively higher intrinsic value. If the respective valuation
of these instruments �normalizes� into the expected direction, the arbitrageur
liquidates its market neutral position. Gains from this strategy result from the
di�erence between the individual valuation of the assets at the time the position is
opened and their �normalized� prices at the time the position is liquidated. Since
this strategy o�ers protection against market movements, it is highly attractive
for HFTs and traditional arbitrageurs alike. (Aldridge 2010)

Cross Asset, Cross Market & Exchange Traded Fund (ETF) Ar-
bitrage

An established arbitrage strategy is to trade instruments across markets or
to trade related instruments and to pro�t from pricing ine�ciencies across mar-
kets: if an asset shows di�ering prices across marketplaces, arbitrageurs gen-
erate pro�ts by selling the asset on the market where it is valued higher and
simultaneously buying it on another market where it is valued lower. Cross mar-
ket arbitrage strategies have pro�ted from the increased market fragmentation in
Europe as described in section two. A higher number of markets increases the
probability that an instrument has di�erent prices across these markets. Simi-
larly, arbitrageurs can pro�t from ine�ciencies across assets: if, e.g. an option
is priced too high relative to its underlying; arbitrageurs can earn pro�ts by
selling the option and simultaneously buying the underlying. In a similar way,
ETF arbitrageurs trade ETFs against their underlying and pro�t from respec-
tive pricing ine�ciencies. Since such ine�ciencies exist only shortly on modern
securities markets, HFTs leverage their speed advantage to trade against them
(see Aldridge 2010 for more information).

Liquidity Detection

Another category of HFT strategies is liquidity detection. These HFTs try to
discern the patterns other market participants leave in the markets and adjust
their actions accordingly. Liquidity detectors focus their attention on large or-
ders and employ various strategies to detect sliced orders, hidden orders, orders
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being submitted by execution algorithms or to gain further information about
electronic limit order books (ASIC 2010a). Liquidity detectors gathering in-
formation about algorithmic traders are frequently referred to as �sni�ng out�
other algorithms. Other detectors �ping� or �snipe� in order books or dark pools
to retrieve information from them (see e.g. ASIC 2010a).

Another possible way to use HFT technology would be a high speed version
of the �quote matching� strategy described by Harris (2003). Using this strategy,
a trader who has detected a large order within the order book places his own
order ahead of the large order. If he has detected for example a large buy order,
he places his own buy order at a slightly higher limit. Should prices now move
upwards, he pro�ts from the rise. However, should prices fall, the large order
resting in the book serves as an option/hedge against which the trader can sell
his own shares, thereby limiting his possible losses as long as the large limit
order rests within the book.

Other High-Frequency Trading Strategies

Latency Arbitrage
Some market participants accuse HFTs of conducting a form of arbitrage

which is purely based on their faster access to market data. This modern form
of arbitrage, where HFTs are said to be able to see (and interpret) new mar-
ket information before many market participants even receive it, is frequently
referred to as latency arbitrage. These latency arbitrageurs leverage direct data
feeds and co-located infrastructure to minimize their reaction times. Especially
in the U.S., where many market participants rely on the �national best bid and
o�er� (NBBO), latency arbitrageurs are said to be able to pro�t from their speed
advantage in comparison to the NBBO (see e.g. Ga�en 2009). Since actions
of these market participants are said to impair the prices at which other traders
(e.g. buy side execution algorithms) are able to trade, they are often called
�predatory�. While it is not possible for the authors to assess the actual e�ect of
latency arbitrage on securities markets or the magnitude at which this strategy
is conducted, it seems that the discussion described above is currently limited to
the U.S. and its NBBO. Therefore, at least those forms which are built around
this distinctive feature of the U.S. market system are not applicable in European
markets, where no (statutory) NBBO exists.

Short-Term Momentum Strategies
Market participants leveraging HFT technologies to conduct short-term mo-

mentum strategies are a modern equivalent to classical day traders. In contrast
to many other HFT based strategies they are neither focused on providing the
market with liquidity, nor are they targeting market ine�ciencies. They usu-
ally trade aggressively (taking liquidity) and aim at earning pro�ts from market
movements/trends. Their trading decisions can be based on events in�uencing
securities markets and/or the movements of the markets themselves. Momentum
based trading strategies are not new and have been implemented by traditional
traders for a long time.

1.11.3 Conclusions

HFT is a technical means to implement established trading strategies.
HFT is not a trading strategy as such but it applies latest technological advances
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in market access, market data access and order routing to maximize the returns
of established and well known trading strategies. Therefore, the assessment and
the regulatory discussion about HFT should focus on underlying strategies rather
than on HFT as such.

HFT is a natural evolution of the securities markets instead of a
completely new phenomenon. Since the advent of electronic markets, mar-
ket participants tried to minimize trading costs and to maximize their pro�ts
from electronic executions. While �HFT� is a relatively new term, the underly-
ing concept is not new at all. From the �rst quote machines to direct market
access tools to smart order routing systems, there is a clear evolutionary process
in market participants` adoption of new technologies in changing market en-
vironments, triggered by competition, innovation and regulation. Like all other
technologies, HFT enables sophisticated market participants to achieve legitimate
rewards on their investments � especially in technology � and compensation for
their market, counterparty and operational risk exposures.

A lot of problems related to HFT are rooted in the U.S. market
structure. Both the �ash crash on May 6, 2010 and the discussions about �ash
orders relate to the U.S. equity market structure and the NMS. Some market
observers argued that HFT is the key problem of the �ash crash and around �ash
orders. However, the U.S. trade-through rule and a circuit breaker regime that
neither targeted at individual equities nor su�ciently aligned among U.S. trading
venues are relevant causes for both problems. In Europe, where a more �exible
best execution regime without re-routing obligations has been implemented by
MiFID and a share-by-share volatility safeguard regime has been in existence for
two decades, no market quality problems related to HFT have been documented
so far. Therefore, a European approach to the subject matter is required and
Europe should be cautious in addressing and �xing a problem that exists in a
di�erent market structure, hence potentially creating risks for European market
e�ciency and market quality.

The majority of HFT strategies contributes to market liquidity
(market-making strategies) or to price discovery and market e�-
ciency (arbitrage strategies). Preventing these strategies by inadequate reg-
ulation or by impairing underlying business models through excessive burdens
may trigger counterproductive and unforeseen e�ects to market e�ciency and
quality. Any arguments that try to associate or equate HFT based strategies with
market abuse miss the point; there is no ground for treating entities that are ap-
plying HFT di�erently from other market participants in this respect. However,
any approach that uses the new possibilities of sophisticated IT to run abusive
strategies against market integrity or in order to deliberately exercise disruptive
or confusing e�ects on other market participants must be e�ectively combated by
supervisory authorities.

Academic literature mostly shows positive e�ects of AT-/HFT based
strategies on market quality. Six out of eight recently published or publicly
accessible papers, focusing on HFT, do not �nd evidence for negative e�ects of
HFT on market quality. On the contrary, the majority argues that HFT gen-
erally contributes to market quality and price formation. In this regard, most
studies �nd positive e�ects on liquidity and short term volatility. Only one pa-
per, in its theoretical part, critically points out that under certain circumstances
HFT might increase an adverse selection problem. The issue of HFT behavior
under market stress has not been in the focus of many analyses so far, but in
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case of the �ash crash one study documents that HFT exacerbated volatility. It
should be noted that empirical research is restricted by a lack of easily accessible
and reliable data on HFT activities and market sizing. As of today, it is nearly
impossible for researchers (and regulators) to identify exactly on an order-by-
order basis whether the respective action can be allocated to HFT operations.
Here, further research � ideally in cooperation with HFT entities � is highly
desirable.

In contrast to internalization or dark pool trading, HFT market
making strategies face relevant adverse selection costs as they pro-
vide liquidity on lit markets without knowing their counterparties.
HFT market makers face the traditional problems of market makers concern-
ing adverse selection costs and have to manage, minimize and compensate their
losses of trading against informed order �ow. In contrast to internalization sys-
tems or dark venues in the OTC space, where banks and brokers in their role
as market access intermediaries know the identity of their counterparty and are
able to �cream skim� uninformed order �ow, HFTs are not informed on the toxi-
city of their counterparts. Therefore, HFT market makers provide an important
function for market quality in supervised and regulated trading venues. Highly
automated trading strategies carried out in the OTC space create potential issues
for fairness and price discovery.

Any assessment of HFT based strategies has to take a functional
rather than an institutional approach. HFT is applied by di�erent groups
of sophisticated market players from top-tier investment banks to specialized
proprietary trading boutiques. Any regulatory approach focusing on specialized
players alone risks(i) to undermine a level playing �eld and (ii) exclude a rele-
vant part of HFT based strategies. In order to manage systemic risk adequately,
supervisory authorities have to consider all market participants using automated
trading techniques. In this context, it has to be taken into account that the sep-
aration of investment banks` proprietary trading operations increases the share
of entities that would not be subject to registration as an investment �rm, due
to the current MiFID Article 2.1 (d) exemptions.

The high penetration of HFT based strategies underscores the de-
pendency of players in today's �nancial markets on reliable and thor-
oughly supervised technology. Therefore: (i) entities running HFT based
strategies need to establish sophisticated risk management tools and operational
safeguards and have to be able to demonstrate that they are in full control of
their algorithms at any time, e.g. by logging and recording algorithms input and
output parameters for supervisory investigations and back testing. (ii) Market
operators as well as clearing & settlement organizations have to be able to handle
peak volumes and have to be capable of protecting themselves against technical
failures in members` algorithms, e.g. by requiring that a human trader respon-
sible for the algorithm is always available during trading hours. (iii) Regulators
need a full picture of potential systemic risks triggered by HFT, require people
with speci�c skills and regulatory tools to assess trading algorithms and their
functionality, e.g. to be enabled for near-time reactions and rapid investigations
in case of market stress.

Any regulatory interventions in Europe should try to preserve the
bene�ts of HFT while mitigating the risks as far as possible. The frag-
mentation of liquidity triggered by MiFID has led to a structural break and pre-
pared the ground for HFT strategies that were not pro�table in the pre-MiFID



96 1.11. HIGH-FREQUENCY TRADING

environment. However, these changes have reduced both explicit and implicit
trading costs and improved market quality in European lit equity markets. Regu-
latory interventions should attempt to improve overall market quality, resilience
as well as robustness in the given, technology-driven environment by assuring
that ...

1. ... a diversity of trading strategies prevails and that arti�cial
systemic risks are prevented. Based on a clear functional approach in
the assessment of HFT, any undue regulatory burdens for smaller players
should be avoided. Furthermore, it is key to prevent any systemic risks
by an �equalization� of algorithms that is triggered by a need for HFTs to
create largely similar algorithms in order to be compliant with regulatory
requirements. It is vital for our �nancial markets that multiple players
of di�erent size, with diverse business models and with di�erent strategies
are able to compete.

2. ... economic rationale rather than obligations drive the willing-
ness of traders to act as liquidity providers. HFT quoting obliga-
tions are in sharp contrast to the business model of HFTs that relies on
minimizing risk, keeping positions for shortest periods and staying mostly
�at. Therefore, a quoting obligation and the resulting shut-down of HFT
strategies would likely reduce market liquidity instead of improving it. The
history of �nancial markets shows that in times of extreme market stress
even designated liquidity providers prioritize sanctions for not ful�lling
their obligations over bankruptcy. The key challenge both for regulators
and market operators is the design of the right economic incentives rather
than imposing obligations/�nes that drive liquidity providers temporarily
or completely out of markets. The incentives should be based on the re-
spective contribution to market liquidity of market makers independent of
whether they are designated or voluntary liquidity providers.

3. ... co-location and proximity services are implemented on a level
playing �eld. In contrast to �oor trading (where physical presence and
physical strength in�uences access to deals) or to remote access (where
the distance to the location of an electronic trading venue`s backend in-
�uences the round trip latencies in order execution), HFT, set up in a
fair and non-discriminatory co- location environment (especially concern-
ing pricing), assures equality in the access to market data feeds and to the
main matching engine. This fairness also has to relate to the provision of
co-location or proximity services as such: all market participants have to
demonstrate that their providers are able to warrant the physical and oper-
ational integrity of their engines independent of the nature of the hosting
entity, i.e. Regulated Market, MTF or Network Services Provider.

4. ... volatility safeguards are aligned among European trading
venues, re�ect the HFT reality and ensure that all investors
are able to react in times of market stress. Although the �ash
crash is a U.S. phenomenon, market operators in Europe have to rethink
their safeguards in a fragmented high-speed environment. Extreme mar-
ket movements should trigger aligned pan-European circuit breakers that
enable even retail investors to react and to consider how to position them-
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selves with new orders during a general market halt. This study provides
some ideas how this can be put into operation.

The market relevance of HFT requires supervision but also trans-
parency and open communication to assure con�dence and trust in
securities markets. With a market share of HFT undoubtedly above one third
of trading volume in major markets, it is necessary to enable regulators to assess
the robustness and reliability of HFT systems and risk management operations.
Given the public sensitivity to innovations in the �nancial sector after the crisis,
it is furthermore the responsibility of entities applying HFT to proactively com-
municate on their internal safeguards and risk management mechanisms. One
has to accept that HFTs cannot publicly release their intellectual property rights
and the core of their business models, i.e. the mechanisms of their algorithms
and operations. But the observable unwillingness by lot of entities to interact
with the public, the media or with other market participants as well as an ap-
pearance and behavior shrouded in mystery is not a means to generate trust �
especially in the aftermath of the �ash crash on May 6, 2010. HFT entities act
in their own interest by contributing to an environment where objectivity rather
than perception dominates the center of the debate: they have to actively draw
attention to the fact that they are an evolution of modern securities markets,
supply substantial liquidity and contribute to price discovery for the bene�t of
all market participants.

1.11.4 Testing for local randomness

The following ideas are taken from Aldridge (2009)[Chap. 7]

• Non-parametric runs test: Let N+ denote the number of periods with a
positive gain, and N− the number of periods with negative gain. Let
N denote the number of runs (e.g., +++��++- has 4 runs). The
Wald�Wolfowitz runs test states that if the sample is really random we
should expect a number of runs whose mean and variance are

µ0 = 2N+N−
N++N−

+ 1

σ2
0 = (µ0−1)(µ0−2)

N++N−−1

(1.350)

We may calculate the Z-score corresponding to our observation

Z =
|N − µ0| − 0.5

σ0
(1.351)

and use the Gaussian tables to determine the p-value that the actual
number of runs is really random.

• Random-walk test: The idea of this test by Lo and MacKinlay is to check
whether the returns follow

logR[n] = µ+ w[n] (1.352)

The idea is that if prices measured with a sampling Ts are random, then
measured with 2Ts should also be random. Let us consider 2N samples.
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The test estimates

µ̂ = 1
2N

2N−1∑
n=0

logR[n]

σ̂2
a = 1

2N

2N−1∑
n=0

(logR[n]− µ̂)2

σ̂2
b = 1

2N

N−1∑
k=0

(logR[2k + 1]− logR[2k]− 2µ̂)2

(1.353)

The statistic of the test is

Jr =
σ̂2
b

σ̂2
a

− 1 (1.354)

Under the null hypothesis
√
NJr ∼ N(0, 1) (1.355)

• Autoregression tests: If the market is e�cient, then there cannot be any
dependence of the current return on previous returns. Two models are
proposed: the unrestricted one

Ri[n] = R0 +

P∑
k=1

akRi[n− k] + w[n] (1.356)

and the restricted
Ri[n] = R0 + w[n] (1.357)

The Market ine�ciency is de�ned as a function of the R2 of both �ts

η = 1− R2
restricted

R2
unrestricted

(1.358)

• Martingale tests: If the market is e�cient and information is automati-
cally incorporated into the price, then prices should behave as a martin-
gale. Martingale tests are rather involved (Escanciano and Lobato, 2009).
There are three families: 1) tests based on the �nite past of the time series
(e.g. Box-Pierce Portmanteau Qp test for linear and nonlinear relation-
ships of the time series with itself; the Variance Ratio, although this test
is sensitive to sign compensation in the autocorrelation function); 2) tests
based on the in�nite past of the time series (these tests are performed in
Fourier space and they use calculations on the Periodogram as statistics,
e.g., Kolmogorov-Smirnov, Cramer von Mises or Lobato and Velasco); 3)
tests based on nonlinear measures of dependence. The evidence found
by Escanciano and Lobato (2009) for currency exchange data favours the
hypothesis that exchange rates behave as a martingale at the daily and
weekly level.

1.11.5 Testing for local changes

Let us assume that a data stream is generated according to some model 0,
and that at some point, it switches to be generated from a di�erent model
1. The change detection algorithms aim at detecting such changes. Ho and
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Figure 1.34: Kolmogorov-Smirnov test on the uniform distribution of p̂[i].

Wechsler (2010) proposes one of such algorithms based on a martingale and the
assumption that within the data generated by a single model, data points are
interchangeable. Given any sequence of incoming vectors, xi, we may construct
a martingale based on them. For doing so, we calculate the strangeness of each
vector, si, according to some criterion (see Sec. 1.10.2). The randomized power
martingale, of parameter ε ∈ [0, 1], with n samples is constructed as

Mε[n] =

n∏
i=1

(εp̂ε−1[i]) (1.359)

where p̂[i] is the percentile of the strangeness of the sample i with respect to
all its previous samples. The exchangeability property states that within the
samples generated by the same model, the order of observation can be arbi-
trarily permuted, and consequently, p̂[i] behaves as sequence of independent,
and identically distributed (IID) observations uniformly distributed in the [0, 1]
interval. We may analyze the p-value of a Kolmogorov-Smirnov test checking
the uniform distribution of p̂[i] (see Fig. 1.34). This test takes between 100-200
samples to detect the change.

Alternatively, we may use a test based on the maximum value of the mar-
tingale. If there is no change in the model, it should be Mε[n] < λ. λ is chosen
through Doob's maximal inequality:

Pr

{
max
k≤n

Mε[k] ≥ λ
}
≤ 1

λ
(1.360)

This gives an upper bound of the Type I error. If one wants α = 1
λ = 0.05, then

we would reject the hypothesis that the data is generated from the same model
all the time ifMε[n] ≥ 20. Normally,Mε[n] has very small values. However, they
grow when the model changes as shown in Fig. 1.35. They choose λ between 6
and 20 for the detection with strangeness based on Gaussian SVMs.
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Figure 1.35: Example values of the martingale Mε[n].

1.11.6 Trading on market microstructure

Inventory models: Liquidity provision

One way of exploiting the microstructure is through the bid-ask spread. This
is what liquidity providers do. The size of the spread can be understood
through the Gambler's Ruin Problem. The probability of ruin in the long run
is (Aldridge, 2009)[Chap. 10]

Pr{Ruin} =

(
Pr{Loss}Loss
Pr{Gain}Gain

)InitialWealth

(1.361)

The liquidity provider buys or sells 1 share, so Gain = Priceask and Loss =
Pricebid. The probability of lossing or gaining a share is the probability of
a buyer or a seller arriving to the market, λbuyer and λseller (assumed to be
Poisson processes). The initial wealth is the initial number of shares. The
probability that the market maker runs out of cash is

Pr{Ruin} =

(
λsellerPricebid
λbuyerPriceask

)InitialWealth

(1.362)

To remain in business, he needs that

λsellerPricebid < λbuyerPriceask (1.363)

The bid-ask spread is larger in illiquid assets, it is also larger if the rate of buyers
and sellers are balanced.

Information models

This strategy exploits the information assymetry between well-informed and
uninformed traders. This assymetry can be measured from the bid-ask spread
(Aldridge, 2009)[Chap. 11], the agressiveness of orders, the order �ow. An
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interesting approach to the problem is the following. Assume that α is the
probabilty of occurrance of an event having an impact on the price of an equity.
Well-informed traders know that the impact will be positive on the price with
pobability δ and negative on the price with probability 1 − δ. So they place
buy (δ > 0.5) or sell (δ < 0.5) trades according to their knowledge at a rate µ.
Uninformed traders continue to place trade orders on both sides (buy and sell)
at a rate ω. The probability that informed trading is taking place is

Pr{InformedTrading} =
αµ

αµ+ 2ω
(1.364)

Event arbitrage

This strategy places orders according to the expected market reaction to an
event (global or national economy, industry speci�c, company speci�c, ...) (Aldridge,
2009)[Chap. 12]. For this strategy we need to analyze historical data with sim-
ilar events. Once the previous events are identi�ed we may perform:

• Directional analysis: in the periods after the event, does the price consis-
tently move up (or down)? This can be analyzed through a test on the
proportion of periods with a positive value, and check if it is signi�cantly
di�erent from 0.5.

• Point analysis: what is the price of equilibrium after the event? This is
done through a regression similar to the CAPM model.

Statistical arbitrage

We may identify pairs of assets whose historical di�erence Si[n]−Sj [n] is rather
stable and trade in the compesatory direction when their di�erence is signi�-
cantly away from the nominal value. A similar idea can be performed with highly
correlated assets. Here go some generic strategies (Aldridge, 2009)[Chap. 13]:

• Equity classes of the same issuer: Since it is the same company behind,
both equities will be rather correlated.

• Market neutral arbitrage: We may �nd two equities whose β of the CAPM
model are rather similar. Then, we can be long on one (the one with larger
α) and short on the other, on average the losses of one will be compensated
by the gains of the other. The di�erence in α between the two equities
must be signi�cant so that it covers the trading costs and results in some
pro�t.

• Liquidity arbitrage: Small liquidity implies higher returns. We may iden-
tify equities that are more sensitive to this e�ect. We may do so by �tting

Rei [n+ 1] = θ + βRi[n] + γsign(Rei [n])Vi[n] + ε[n+ 1] (1.365)

Rei [n] is the excess return (Rei [n] = Ri[n]−RM [n]). The assets with larger
γ are more sensitive to volume variations.

• Large-to-small information spillovers: The market of small companies (<1B$)
is less e�cient than that of medium (<10B$) or large companies (>10B$).
The reason is that they are not attractive to large investors because they
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would signi�cantly a�ect the price with their trades. Small investors, with
low-technology, are the ones investing in this market. News propagate
much more slowly in this market.

1.11.7 Trading pairs

Elliott et al. (2005) and Chen et al. (2012) present two di�erent strategies for
trading on pairs of assets. The �rst one is based on regression while the second
is based on Kalman �lters (see Sec. 1.5.1). In their backtesting of the strategies
they have an annualized return of 9%, volatility of 7.6%, Sharpe ratio of 1.14,
and maximum drawdown of 5.6%.

The spread between the returns of the two assets is assumed to be a mean
reverting Ornstein-Uhlenbeck process characterized by

dX = θ(µ−X)dt+ σdW (1.366)

µ is the �equilibrium� spread, and θ determines the speed at which the process
tends to equilibrium. The mean and variance of this process are

E{X} = µ

Var{X} = σ2

2θ

(1.367)

Calibration of the spread parameters

We need to determine the parameters of the Ornstein-Uhlenbeck process. This
may be rather complicated (Dietz and Kutoyants, 2003; Fasen, 2013), although
some easy starting point is the following. A discretization of the di�erential
equation above gives

X[n+ 1] = X[n]e−θTs + µ(1− e−θTs) + σ

√
1− e−2θTs

2θ
w[n] (1.368)

This equation is of the form

X[n+ 1] = aX[n] + b+ w[n] (1.369)

If we �t (robust �tting is recommended) this line on the observed data, then we
may recover the spread parameters as

θ = − log a
Ts

µ = b
1−a

σ = σ̂w

√
−2 log a
Ts(1−a2)

(1.370)

Linear regression strategy

Let the daily returns of two �nancial products satisfy the stochastic di�erential
equation:

dS1

dt

S1
− β

dS2

dt

S2
= dX (1.371)

where X is the random spread. The weights of the portfolio are:

w1 = 1
1+β

w2 = β
1+β

(1.372)
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We will go long on one of the assets and short on the other. Due to the rebal-
ancing costs, it is better not to change β too frequently (at least, keep it �xed
for 5-10 periods) so that the trasaction costs do not grow too much.

Let us de�ne the returns as

Ri[n] =
Si[n]− Si[n− 1]

Si[n− 1]
(1.373)

Then, β is estimated from the regression

R1[n] = βR2[n] + ε[n] (1.374)

Once β is �tted (in a moving window or all the data available), then we estimate
the spread time series as

X[n] =

n∑
k=1

ε[k] (1.375)

Then, we can use the model estimation of the Ornstein-Uhlenbeck process in
the previous section. Finally, we compute the Z-score of the spread time series

z[n] =
X[n]− µX

σX
(1.376)

The trading rules are

• Open long if z[n] < −z1

• Open short if z[n] > z2

• Close long if z[n] > −z3

• Close short if z[n] < z4

Kalman �lter strategy

In this second approach, the spread is assumed to be the state of a Kalman �lter
(Eq. 1.369) and then it is observed

s[n+ 1] = as[n] + b+ w[n]
x[n] = s[n] + u[n]

(1.377)

The system parameters are a, b, σ2
w, σ

2
u which are determined by Expectation

Maximization (see Chen et al. (2012) for details).
The trading rules are the following

• Open long and short x[n] > s[n] + δ1, we expect that the current spread
will shrink.

• Open long and short x[n] < s[n] − δ1, we expect that the current spread
will expand.

• Close position if |x[n]− s[n]| ≤ δ2, for some predetermined value δ2.

δ1 is a value that includes transaction costs and our pro�t.
Javaheri et al. (2003) gives several examples of Kalman �lters and particle

�lters applied to the prediction of commodity prices and volatility. They show
that particle �lters perform better than the Kalman Filter and the Extended
Kalman �lter. Platania and Rogers (2004) shows how to use particle �lters to
model the bid-ask intraday prices.
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Chapter 2

Mathematical tools

2.1 Lagrangean multipliers method

The Lagrangean method can be applied to constrained optimization problems
in which the constraints imply equalities:

p∗ = argmax f(p)
s.t. g(p) = 0

(2.1)

The Lagrangean function related to the problem is

L(p) = f(p) + λTg(p) = f(p) +

k∑
i=1

λigi(p) (2.2)

The Lagrange theorem states that any solution of the problem above must
satisfy the equation system

DpL = Dpf(p) + λT (Dpg(p)) = 0
DλL = g(p) = 0

(2.3)

The converse is not true, any solution of the equation system above does not
need to be a solution of the optimization problem. Consequently, we must
verify that the solutions of the equation system are actually solutions of the
optimization problem. The equation system only has a solution if

rank{Dpg(p)} = k (2.4)

where g(p) is a vector function with k components (g(p) : Rn → Rk). Remind
that the vector derivative of a vector-valued function is

Dpg(p) =


∂g1
∂p1

∂g1
∂p2

... ∂g1
∂pn

∂g2
∂p1

∂g2
∂p2

... ∂g2
∂pn

... ... ... ...
∂gk
∂p1

∂gk
∂p2

... ∂gk
∂pn

 (p) (2.5)

To verify if it is a maximum, let us de�ne the set Z(p∗) as

Z(p∗) = {z ∈ Rn|(Dpg(p∗))z = 0} (2.6)
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If f has a maximum at p∗, then zT (D2
pL(p∗))z ≤ 0 for all z ∈ Z(p∗). The

Hessian of the Lagrangean function is given by

D2
pL(p) = D2

pf(p) +

k∑
i=1

λiD
2
pgi(p) (2.7)

Remind that the Hessian of a scalar function is given by

D2
pf(p) =


∂2f
∂2p1

∂2f
∂p1∂p2

... ∂2f
∂p1∂pn

∂2f
∂p2∂p1

∂2f
∂2p2

... ∂2f
∂p2∂pn

... ... ... ...
∂2f

∂pn∂p1

∂2f
∂pn∂p2

... ∂2f
∂2pn

 (p) (2.8)

2.2 Karush-Kuhn-Tucker conditions

Karush-Kuhn-Tucker conditions are the extension of Lagrange multipliers method
to constraints with inequalities

p∗ = argmax f(p)
s.t. h(p) ≥ 0

(2.9)

A condition is said to be e�ective at a point p if at that point the equality holds
(hi(p) = 0). Presume p∗ is a local maximum of the function f satisfying the h
conditions (f and h are assumed to be continuous functions). Let us denote by
E the number of e�ective conditions at p∗ and by hE the corresponding vector
valued function. Assume that

rank{DphE(p∗)} = E (2.10)

Then, the Karush-Kuhn-Tucker theorem states that there exists a vector µ such
that

∀i µi ≥ 0 and µihi(p
∗) = 0

Dpf(p∗) + µT (Dph(p∗)) = 0
(2.11)

2.3 Estimation of covariance matrices

The covariance matrix between two random vectors X and Y is de�ned as

Cov{X,Y } = E{(X− µX)(Y − µY)T } (2.12)

With historical data we may estimate the ij-th entry of this matrix as

σ̂ij =
1

N − 1

N∑
n=1

(Xi[n]−Xi)(Yj [n]− Yj) (2.13)

This estimation gives the same weight to all samples, disregarding how old they
are. Instead, we may give more weight to newer samples (Barra, 2007)[Chap.
3]

σ̂ij =
1

N∑
n=1

w[n]

N∑
n=1

w[n](Xi[n]−Xi)(Yj [n]− Yj) (2.14)
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with

w[n] = λ
N−n
N1/2 (2.15)

where N1/2 is called the half-life period.

2.4 Covariance matrix scaling

We may estimate the covariance matrix to learn the structure of the assets.
But on a daily operation we may adapt the covariance matrix to the current
market conditions. This can be done by locally estimating the variance of each
asset and scaling the covariance matrix accordingly. One possibility is the time
weighted estimate above

σ̂2
i =

1
N∑
n=1

w[n]

N∑
n=1

w[n](Xi[n]−Xi)
2 (2.16)

The DEWIV model (Daily Exponentially Weighted Index Volatility) belongs to
this family of models. Another possibility is to use a GARCH model (General-
ized Autoregressive conditional heteroskedasticity). The GARCH(Q,P) model
states that the residuals ε[n] are generated as

ε[n] = σ[n]z[n] (2.17)

where z[n] is a white noise signal and

σ2[n] = σ2
0 +

Q∑
k=1

akε
2[n− k] +

P∑
k=1

bkσ
2[n− k] (2.18)

Pure GARCH models fail to capture relatively higher volatility following pe-
riods of below-normal returns (Barra, 2007)[Chap. 3]. This can be solved by
extending the GARCH model with terms depending on ε[n]

σ2[n] = σ2
0 +

Q∑
k=1

akε
2[n− k] +

P∑
k=1

bkσ
2[n− k] +

R∑
k=1

akε[n− k] (2.19)

To scale the covariance matrix, we can multiply a diagonal matrix whose entries
are the ratio between the new and old standard deviations of each variable

S =


σnew1

σold1
0 ... 0

0
σnew2

σold2
... 0

... ... ... ...

0 0 ...
σnewM

σoldM

 (2.20)

being M the number of variables, and

ΣnewR = SΣoldR S (2.21)
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