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Cryo-EM and the elucidation of 
new macromolecular structures: 
Random Conical Tilt revisited
C. O. S. Sorzano1,2, M. Alcorlo3, J. M. de la Rosa-Trevín1, R. Melero3, I. Foche1, A. Zaldívar-
Peraza1, L. del Cano1, J. Vargas1, V. Abrishami1, J. Otón1, R. Marabini4 & J. M. Carazo1

Cryo-Electron Microscopy (cryo-EM) of macromolecular complexes is a fundamental structural 
biology technique which is expanding at a very fast pace. Key to its success in elucidating the three-
dimensional structure of a macromolecular complex, especially of small and non-symmetric ones, is 
the ability to start from a low resolution map, which is subsequently refined with the actual images 
collected at the microscope. There are several methods to produce this first structure. Among 
them, Random Conical Tilt (RCT) plays a prominent role due to its unbiased nature (it can create 
an initial model based on experimental measurements). In this article, we revise the fundamental 
mathematical expressions supporting RCT, providing new expressions handling all key geometrical 
parameters without the need of intermediate operations, leading to improved automation and 
overall reliability, essential for the success of cryo-EM when analyzing new complexes. We show that 
the here proposed RCT workflow based on the new formulation performs very well in practical cases, 
requiring very few image pairs (as low as 13 image pairs in one of our examples) to obtain relevant 
3D maps.

The use of Random Conical Tilt (RCT)1–5 as a way to produce the initial volume for a subsequent projec-
tion matching refinement has been in place for over 30 years. The technique has revealed as a very useful 
approach, especially when little a priori structural information is available. A proof of this statement is 
the more than 1,100 citations of the 4 references above. Normally this technique is applied to stained 
samples, since its application in cryo-EM setups is cumbersome. As it is currently applied, the projection 
images in untilted micrographs are subjected to a 2D classification. Those classes with a high internal 
homogeneity are selected. Finally, RCT is applied to each class individually obtaining, in this way, a set 
of RCT models (one model per 2D class of untilted images). These models can then be combined, at 
least in some cases, in order to reduce the effect of the missing cone in Fourier space, which, otherwise, 
results in an elongation of the resolved structure along the missing direction6,7.

Mathematical developments related to RCT have concentrated on analysing the geometrical relation-
ships between the Euler angles of the untilted and tilted micrographs5. However, a number of simplifica-
tions have traditionally been made, such as the omission of the explicit consideration of the shifts among 
projections introduced by inaccurate particle selection (the user cannot pick exactly at the particle origin 
in all projections) and the possible misalignment introduced by micrograph acquisition. Additionally, 
some particles may have been flipped within the holder and, in the current formulation, they have to 
be excluded from the 3D reconstruction because the current RCT formulation cannot manage them. 
However, we show that with the proper geometrical treatment, they can also be included in the recon-
struction process and indeed provide useful structural information (note that the inclusion of mirrored 
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images must be subjected to the consideration that partial staining may invalidate the assumption that 
mirrored and unmirrored images contain the same structural information, consequently, whether it is 
more beneficial to include them or not depend on each specific case).

In this paper we address the problems mentioned above. In this way, we propose a geometrical frame-
work that explicitly accounts for possible shifts introduced during the picking process, angular misalign-
ment during the micrograph scanning, as well as it allows the inclusion within the same 2D class of 
projections that are related by a mirror operation. Additionally, we propose to align tilted experimental 
projections to the class average of the corresponding untilted projections, again without intermediate 
steps. In this way, the 2D alignment of the tilted images becomes much more robust since the reference 
image to which the tilted images are aligned to has higher signal-to-noise ratio (SNR). All these changes 
together result in a very robust RCT algorithm capable of producing a 3D reconstruction of sufficient 
quality with very few image pairs (as few as 13 image pairs in one of our examples, as shown in the 
Results section).

Method
All mathematical details of the geometrical relationships between the untilted and tilted projections are 
described in Supplementary Material. Let us, at this point, summarize their main steps, going from the 
more general to the more particular aspects:

•   Determination of the tilt axis: RCT requires the acquisition of two electron micrographs of the same 
field of view: one tilted and another one untilted. The location of the tilt axis needs to be determined 
in each of the two micrographs, and this is normally done by manual identification of a set of cor-
responding coordinate pairs in both micrographs. In Supplementary Material we provide a rigor-
ous justification of the equation normally used in the field for this task (Eq. 37 of5), identifying its 
key assumptions. Namely: 1) that the location of the tilt axis relies heavily on the correctness of the 
hypothesis that the grid being visualized is flat; 2) that the untilted micrograph is perpendicular to 
the electron beam; and 3) that the centers of all selected particles are in the z =  0 plane of the grid. 
Note that this latter assumption could be avoided by an explicit refinement of the z location of each 
particle within the grid, which has never been attempted, probably because of the use of RCT for low 
resolution models only.

•   Alignment between the untilted and tilted images: RCT requires the alignment between the tilted 
projection of a particle and its untilted projection (Eq. (12) in the Supplementary Material). Note that 
the parameters describing this alignment are related to the location of the tilt axis in both micrographs 
(tilted and untilted) as well as a shift between the two projections. The location of the tilt axis was 
determined in the previous step and, to the best of our knowledge, it is not the main source of errors 
in RCT reconstructions. Therefore, the shift between the tilted and untilted projections is the only new 
parameter that needs to be estimated at this step. This shift should be zero if, for each projection pair, 
the user (or a program) were able to pick the tilt and untilted projections so that they were mutually 
centered, indeed a rather difficult task considering the low SNR and the need for comparing two im-
ages that may look quite different (micrographs have been tilted by a substantial amount). The way 
commonly used in the field to handle this issue is by performing an intermediate step of aligning the 
untilted image to a centered reference. Of course, it is essential to relate the untilted to the tilted im-
ages, and this is normally done through a stretching operation, which currently requires the additional 
intermediate step of aligning the tilt axis with respect to the Y axis5. One of the novel contributions 
of this work is to provide a generalized mathematical formulation that avoids all these intermediate 
operations, explicitly taking into account the respective centers in the tilted and the untilted images, 
as well as generalizing the “stretching factor” to a “stretching matrix”, able to account for an arbitrary 
orientation of the tilt axis with respect to the image coordinate axis both in the tilted and untilted mi-
crographs (Equation 12 of Supplementary Material). It is important to note that the use of a stretching 
operation relies on the assumption that the particle being reconstructed is infinitely thin (as rigorously 
proved in our Supplemental Material). In the limit, for a globular protein, the stretching of the tilted 
projection to match the untilted one may do more harm than good. In our implementation in Xmipp8,9 
the user is asked whether she desires to perform this stretching or not.

•  Calculation of 3D alignment parameters: If we are to produce a single 3D reconstruction out of mul-
tiple image pairs, we need to not only align the tilted projection to the untilted one, but also all the 
untilted projections among themselves, so that they are compatible with a single 3D structure. Implic-
itly, this requirement is usually handled by relying on the series of intermediate steps described in the 
previous section, considering that a common centered reference is used for all pairs. However, since 
we are aiming at avoiding all intermediate operations, we need to explicitly consider this common 
centering of all pairs. In Supplementary Material (Section 3.2), we show how to account for these inac-
curacies in the selection of the untilted coordinates. The parameters needed for the 3D reconstruction 
normally involve the determination of 3 Euler angles and 2 in-plane shifts. We show how to calculate 
them as a function of an arbitrary tilt axis location, relating selection errors in the tilted and untilted 
projections. Additionally, we also consider the in-plane rotation needed to bring each untilted pro-
jection into the same orientation as the volume to be reconstructed. Finally, our derivation allows the 
determination of the 3D alignment parameters for an arbitrary orientation of the tilt axis, avoiding in 
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this way the interpolation needed by the traditional approach in which the tilt axis is assumed to be 
along the vertical image axis.

•   Improving the estimation of in-plane alignment parameters: One of the problems of aligning tilted and 
untilted projections, as well as untilted projections among themselves, is the low SNR of the images. 
This problem can be alleviated if at least one of the images has a larger SNR. This is actually the case 
if instead of aligning with respect to experimental untilted projections, we align to the class average of 
the untilted projections. The class average has a larger SNR and makes the estimation of the alignment 
parameters more reliable. As a drawback, we need to account for a new geometrical transformation: 
the alignment between the experimental untilted projections and their corresponding class average. 
Section 3.3 in Supplementary Material shows how to incorporate this extra alignment into the 3D 
reconstruction parameters to be used with the tilted projections.

•   Inclusion of mirror images: Depending on the molecule, target resolution and experimental SNR, 
some of the untilted projections may be classified by the 2D classification algorithm into the same 
class by applying a mirroring operation (that is, images assigned to a class may correspond to either 
mirrored or unmirrored projections). In our experience, mirror images may account for between 10% 
and 20% of the images in a class. The standard RCT approach does not consider the mirroring effect, 
so it precludes the possibility of utilizing this extra 10–20% of images. In Supplementary Material 
(Section 5), we show how mirrors can be explicitly modelled, so that mirrored and unmirrored images 
can be jointly used in a single 3D reconstruction.

•  Revisited RCT procedure: All these changes result in a new RCT procedure that is summarized in 
Section 4 of Supplementary Material. It basically follows the same steps as in the standard RCT pro-
cedure, but it provides new formulas for the calculation of the 3D alignment parameters of the tilted 
projections (the main output of the RCT process) without intermediate operations, like setting the tilt 
axis vertically.

In summary, previously published RCT procedures had a number of geometrical simplifications that 
required the use of a number of intermediate steps. The consequence was the introduction of a number 
of degradation steps in the process, besides making the whole approach more error prone and difficult 
to automatize and trace. In fact, it is probably the higher chance to make errors in these intermediate 
steps the main drawback of traditional approaches to RCT. In our approach we have relaxed these sim-
plifications, providing general formulas for an arbitrary orientation of the tilt axis and arbitrary large 
errors in picking positions. We have also included the possibility of considering mirrored images and 
the alignment of the tilted images using a class average (which increases the SNR of one of the images 
being aligned and, consequently, has a higher alignment accuracy). Note that this methodology is com-
patible with the posterior alignment of all reconstructed volumes (from different 2D classes and cor-
responding RCT reconstructions) into a single volume in which the missing cone is complemented by 
information from other volumes7. However, this alignment has to be performed with care because the 
different volumes may correspond to different conformations. In this case, an alignment and classifica-
tion approach may be preferred10. The improvements brought in by our geometrical framework goes well 
beyond interpolation errors or slight resolution improvements. The possible accumulation of geometrical 
errors in the process, from which the traditional RCT theory was more susceptible to suffer, may result 
in 3D reconstructions which can be greatly improved, as shown by our results. Additionally, by omitting 
intermediate steps, we make the whole RCT workflow to be easily traceable, improving the reporting 
and reproducibiity of the results.

Results
To show a practical case of the use of these new geometrical relationships into a reconstruction proce-
dure, we present here the results obtained with C3b as a test sample. This protein is one of the members 
of the complement system, a major component of innate immunity that comprises over thirty soluble and 
membrane-associated proteins having crucial roles in pathogen and apoptotic clearance, immune com-
plexes handling, and modulation of adaptive immune responses. The central event in the complement 
activation cascade is the proteolytic cleavage of C3 to generate the activated fragment C3b. When C3b 
is generated, a reactive thioester group is exposed resulting in covalent attachment of C3b to pathogenic 
or apoptotic surfaces and thereby inducing several biological processes11,12.

C3b is a small multidomain molecule (180 kDa), which poses a challenge to the accuracy of orien-
tation determination of individual single particles, since this process depends critically on molecular 
mass13. However, we wished to present a representative case of the broad range of relatively small and 
probably labile complexes that can now be studied at high resolution by cryo-EM. C3b images were 
subjected to 2D reference-free classification to group those images coming from similar views of the 
protein, revealing several detailed structural features. C3b appeared on the EM support film in different 
orientations, but the most common view showed the macroglobulin (MG) ring clearly visible with a 
hole at the bottom end of the ring as well as globular densities corresponding to C345C (complement 
protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) 
and TED (thioester containing domain) domains at the top and at the lower part of the ring, respectively 
(see Fig. 1).
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A few μl of freshly purified complexes were adsorbed onto glow-discharged carbon-coated grids and 
negatively stained with 2% (mass/vol) uranyl formate (for a description of the purification process the 
reader is referred to14). Grids were visualized in a JEOL 1230 transmission electron microscope operated 
at 100 kV and a TemCam-F416 detector from Tietz Video and Image Processing Systems (TVIPS) using 
EM-TOOLS (TVIPS). Micrographs were recorded under low-dose conditions at a nominal magnification 
of 39,499x. Untilted (0°) and tilted (45°) micrographs were sequentially taken from a particular area in 
the grid following an RCT data collection scheme. Three thousands pairs of untilted and tilted projec-
tions were manually selected using Xmipp8,9.

An independent data set was obtained to serve as control for the RCT reconstruction. The collection 
of non-tilted micrographs was complemented by additional micrographs recorded at 30° and 45° tilting 
in order to increase the number of views obtained for C3b. A total of 32,595 C3b images were manually 
selected using e2boxer.py15 and subjected to 2D reference-free alignment and classification using Xmipp16. 
An initial volume was obtained using e2initialmodel.py from eman2. To investigate the presence of con-
formational heterogeneity, the data was refined using the 3D maximum-likelihood classification scheme 
implemented in RELION17. After convergence of the 3D classification refinement, the dataset was sorted 
into different homogeneous subsets (details of this analysis are given in14 and18). The output volume of 
the most abundant conformation was further refined using the 3D-autorefine-procedure implemented 
in RELION and the projection matching refinement procedure implemented in Xmipp19. The resolution 
of the structure was estimated as 26Å using Fourier shell correlation of two independent reconstructions 
and a cutoff of 0.5. This 3D map will be referred to in the following as the control map. Note that we 
intentionally used a completely different image processing workflow to serve as control, since the use 
of RCT as starting volume for a 3D reconstruction would invalidate the comparison between the RCT 
reconstruction and the final result. The biological interpretation of the structure of C3b is reported in14 
and18.

We then compared the reconstructions obtained following both the new RCT procedure (as imple-
mented in Xmipp) and the traditional RCT workflow (as described in20 and carefully detailed in http://
spider.wadsworth.org/spider_doc/spider/docs/techs/ranconical/docs/rct.htm, which also performs a cer-
tain 2D classification), to the control map of C3b. In RCT, it is normally recommended to have small, 
very homogeneous 2D classes of untilted images, perform their 3D reconstruction using the RCT meth-
odology, and then combine the different 3D structures to reduce the missing cone. We have followed the 
same strategy and have selected two examples of 2D classes with low and medium number of images 
(less than 20, and about 60–80). As can be appreciated in Fig.  2, the volumes reconstructed using the 
new RCT workflow are more similar to the control map than those obtained using the traditional RCT 
approach. The similarity is even more striking when we analyze the central slices of the aligned volumes 
(Supplementary Figs 1, 2, 3, 4 and 5) (it should be mentioned that this comparison can only address the 
gross morphology of the reconstructions, among other reasons because the sample is heterogeneous and 
the particular classes used in each analysis may not fully correspond to the same structure).

Discussion
The importance of RCT in the analysis of macromolecular complexes by Electron Microscopy is unques-
tionable. It provides a reference-free initial map that can be used for subsequent refinement using an 
independent set of images. To date, it has successfully performed its task, contributing to many impor-
tant biomedical results. However, some simplifications underlying its mathematical derivation required a 
number of intermediate, otherwise unnecessary, operations, which degraded the information, increased 
the probability of errors and difficulted a complete tracing of the processing workflow. Considering the 
new capabilities of cryo-EM thanks to the direct detectors and the large range of new biomedical systems 
it is expected to be applied to, it is of paramount importance to ensure that RCT can be routinely applied 
to its fullest extent. In an effort to streamline the mathematical formulation of RCT, we provide in this 

Figure 1. Selected 2D reference-free average showing a typical view of C3b. The cartoon representation 
highlights the location of the MG ring and C345C and TED domains.

http://spider.wadsworth.org/spider_doc/spider/docs/techs/ranconical/docs/rct.htm
http://spider.wadsworth.org/spider_doc/spider/docs/techs/ranconical/docs/rct.htm
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work a generalized derivation of the relationships between the untilted and tilted projections along with 
the class average of the untilted projections. This generalization includes the user picking errors as part 
of the model and, consequently, it is capable of correcting them, resulting in a better 3D reconstruction. 
It also shows how to directly align the tilted images to the class average of the untilted projections. In 
this way, the direct estimation of the in-plane shifts becomes much more reliable and accurate since 
one of the images being compared (the class average) has a much larger SNR. Additionally, it allows 
the inclusion of mirrored projections, thus increasing the number of images that can be used during 
the reconstruction. Finally, our mathematical derivation no longer requires the tilt axis to be aligned 
with the vertical axis, avoiding in this way interpolation errors. The use of this generalized formulation 
results in a simpler method, with less chances of user errors and potential intermediate degradations. 
As a practical case, we show how the implementation of this new approach in Xmipp can indeed obtain 
very meaningful RCT reconstructions with a very low number of images (13 in our example), requiring 
less steps than traditional approaches. This possibility opens new perspectives in the treatment of RCT 
reconstructions as if they were subtomograms, making use of all new alignment and classification pro-
cedures that are currently being developed in the field.
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1 Determination of the tilt axis

Let us assume that each micrograph in the tilt pair is a projection of a large
density volume containing all particles. Let us refer to this large volume as
Vmicrograph(r̃) : R3 × {1} → R (note that the volume argument has been ex-
pressed in homogeneous coordinates, i.e., r̃ = (x, y, z, 1)T and T represents the
transpose operator). We also express images in homogeneous coordinates. For
instance, Imicrograph,u(s̃) : R2 × {1} → R represents the untilted projection im-
age from the previous volume (s̃ = (x, y, 1)T ). The untilted micrograph can be
modelled as

Imicrograph,u(s̃) =

∞∫
−∞

Vmicrograph(R̃−1Z (αu)H̃T s̃)dz, (1)

where

H̃T =


1 0 0
0 1 0
0 0 z
0 0 1

 , (2)

and R̃Z(αu) is the homogeneous rotation matrix about the Z axis by αu degrees:

R̃Z(αu) =


cosαu sinαu 0 0
− sinαu cosαu 0 0

0 0 1 0
0 0 0 1

. The rotation by αu simply states that

the tilt axis in the untilted image forms an angle αu around the vertical axis.
Similarly, we can model the tilted micrograph as

Imicrograph,t(s̃) =

∞∫
−∞

Vmicrograph((T̃ R̃Z(αt)R̃Y (θ))−1H̃T s̃)dz, (3)

1



where θ is the tilt angle, R̃Y (θ) =


cos θ 0 − sin θ 0

0 1 0 0
sin θ 0 cos θ 0

0 0 0 1

 is the rotation

matrix around Y , and T̃ =


1 0 0 tmicrograph,X

0 1 0 tmicrograph,Y

0 0 1 0
0 0 0 1

 represents a possible

shift introduced when tilting the sample holder. In a way, the formulation above
can be seen as an extension of the work in [Guckenberger(1982)].

Eqs. (1) and (3) can be used to relate coordinates in the 3D volume
Vmicrograph to their projection locations. Particularly, consider the 3D homo-
geneous location r̃, that projects into the untilted and tilted micrographs in
locations

s̃u = H̃0R̃Z(αu)r̃

s̃t = H̃0T̃ R̃Z(αt)R̃Y (θ)r̃
(4)

where H̃0 is the H̃ matrix in Eq. (2) with z = 0. If we now restrict ourselves
to 3D locations in the XY plane (i.e., r̃ = (x, y, 0, 1)T ), then we can recover r̃
from its location in the untilted micrograph as r̃ = R̃−1Z (αu)H̃T

0 s̃u. Substituting
in the expression for s̃t, we get

s̃t = H̃0T̃ R̃Z(αt)R̃Y (θ)R̃−1Z (αu)H̃T
0 s̃u (5)

Similar equations without justification are presented by [Voss et al.(2009), Hauer et al.(2013)].
[Shatsky et al.(2014)] presents an evolution of this formulation in which parti-
cles are considered to be in a slightly bent grid.

If we know corresponding pairs of landmark locations in the untilted and
tilted micrographs, this equation allows us to estimate the orientation of the tilt
axis in both micrographs. From the knowledge of corresponding landmarks we
can compute a matrix that meets in a least-squares sense that

s̃t = Ãs̃u =

 a11 a12 a13
a21 a22 a23
0 0 1

 s̃u. (6)

a13 and a23 directly provide an estimate for T̃ . Then, we need to find angles αu,
αt and θ such that the 2 × 2 top-left submatrix of Ẽ = R̃Z(αt)R̃Y (θ)R̃−1Z (αu)
approximates as well as possible the 2 × 2 top-left submatrix of A. In fact,
Eq. (36) in [Radermacher(1988)] provides an excellent estimate of θ, and
[Voss et al.(2009)] introduces a weighted version of this estimate. αu and αt
can be determined by any optimization algorithm that minimizes the error be-
tween the 2 × 2 top-left submatrix of Ã and the 2 × 2 top-left submatrix of
Ẽ.

This derivation is totally equivalent to the one presented by Dr. Rader-
macher [Radermacher(1988)] and already used in the field [Hegerl et al.(1991)].
However, the formulation has been presented in a different way to highlight an
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important limitation. Indeed, the determination of the tilt axis is imperfect due
to the assumption that image landmarks correspond to 3D points in the XY
plane (i.e., r̃ = (x, y, 0, 1)T ). This does not need to be necessarily the case, since
each particle may have a different height within the sample holder. Although it
is feasible to further refine the estimate of the tilt axis location to include the
different height effect, this is not normally done in the field, and it will not be
done in this work. For thin samples (as is normally the case in EM) and due to
error cancellation effects, we do not expect this error to be of a large magnitude.

2 Image formation model without mirrors

Let Vref(r̃) : R3×{1} → R be a density volume (note that the volume argument
has been expressed in homogeneous coordinates, i.e., r = (x, y, z, 1)T , T repre-
sents the transpose operator). This is the volume we would like to recover using
RCT. The micrograph volume in the previous section, Vmicrograph(r̃), is sup-
posed to be composed of multiple copies of this Vref(r̃) in different orientations
and spatial locations.

Picking the particles in the tilt pair amounts to identifying the locations of
the different copies of Vref(r̃) in the untilted and tilted micrographs. We will
refer to the extracted particles from the untilted micrograph as the untilted
images. 2D classification of the untilted images amounts to sorting the images
according to the different orientations of Vref(r̃).

Once a single 2D class is selected, we have chosen a particular orientation
of Vref(r̃) (with no loss of generality we will assume that Vref(r̃) corresponds to
the particular orientation selected by the 2D class) and its 0◦ projection should
be similar to the 2D class average calculated by the 2D classification algorithm
(Iref,0◦(s̃) ≈ I2Dclass

u (s̃)). Note that we do not have experimental access to
Iref,0◦ since it is a projection calculated from a volume we do not actually have.
However, we do have access to I2Dclass

u since it is the result of averaging all
experimental images assigned to the same 2D class by the classifier.

Each image pair corresponds to the projection of a certain copy of Vref(r̃),
that we will refer to as V (r̃). The observed untilted image corresponds to a
0◦ projection of this volume

Iu(s̃) =

∞∫
−∞

V (R̃−1Z (αu)H̃T s̃)dz, (7)

where we have explicitly accounted for the fact that the tilt axis in the untilted
micrograph is not aligned with the vertical axis. The corresponding tilted image
would be

It(s̃) =

∞∫
−∞

V ((R̃Z(αt)R̃Y (θ))−1H̃T s̃)dz. (8)

However, the user seldom picks exactly at corresponding points between the
untilted and tilted images and, therefore, a small shift can be expected. The
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actual tilted image selected by the user would then correspond to

It(s̃) =

∞∫
−∞

V ((R̃Z(αt)R̃Y (θ))−1H̃T T̃−1t s̃)dz, (9)

being T̃t a 2D homogeneous matrix that reflects a shift introduced by the user
picking.

3 Alignment of the tilted image

Traditionally, the alignment has been done by comparing the untilted image and
the corresponding stretched tilted image once they have been both corrected to
align the tilt axis with the vertical axis [Zampighi et al.(2004), Zheng et al.(2007)]
(in fact, Dr. Radermacher[Radermacher(1988)] suggests to do the stretching in
the direction perpendicular to the tilt axis in the tilted image, but it does not
give any specific formula to do it). However, both images have very low Signal-
to-Noise Ratio (SNR) making the alignment quite difficult. Alternatively, it is
possible to substitute the untilted image by the class average that has a much
better SNR. In the following sections, we show how to perform this alignment.
We divide the derivation in three parts: first, we present the formal definition of
streching in the direction perpendicular to the tilt axis and present the assump-
tions that justifies the use of that stretching; second, we relate the orientation
of the individual copies of the reconstructed volume to the standard position
defined by the 2D class average; finally, we extend the traditional in-plane align-
ment method so that we can use the 2D class average.

3.1 Stretching the tilted image and its assumptions

Let us define a new volume in which the angle of the tilt axis in the untilted
image has been corrected:

V ′(r̃) = V (R̃−1Z (αu)r̃)↔ V (r̃) = V ′(R̃Z(αu)r̃). (10)

The experimental projections in terms of the new volume become:

Iu(s̃) =
∞∫
−∞

V ′(H̃T s̃)dz

It(s̃) =
∞∫
−∞

V ′(R̃Z(αu)(R̃Z(αt)R̃Y (θ))−1H̃T T̃−1t s̃)dz =
∞∫
−∞

V ′(Ẽ−1H̃T T̃−1t s̃)dz,

(11)
where Ẽ = R̃Z(αt)R̃Y (θ)R̃Z(−αu). If V is infinitely thin and concentrated in
the XY plane (that is V (r̃) = V (r̃X , r̃Y , 0)δ(r̃Z), being δ(x) the Dirac’s delta
distribution), then so is V ′ (since it is only a Z-rotated version of V ). In this
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way, we have (see Appendix for its proof)

Iu(s̃) = V ′(H̃T
0 s̃)

It(s̃) =
∞∫
−∞

V ′(Ẽ−1H̃T T̃−1t s̃)dz = V ′(H̃T
0 (H̃0ẼH̃

T
0 )−1T̃−1t s̃)

= Iu((H̃0ẼH̃
T
0 )−1T̃−1t s̃)

(12)

In the particular case that αu = αt = 0 (i.e., the tilt is performed around
the Y axis in both images), then the previous equation becomes

Iu(s̃) = V ′(H̃T
0 s̃)

It(s̃) = V ′(H̃T
0 ST̃

−1
t s̃) = Iu(ST̃−1t s̃)

(13)

where

S =

 1
cos(θ) 0 0

0 1 0
0 0 1

 . (14)

That is, the tilted image is a shifted and stretched (by a factor 1
cos(θ) ) version

of the untilted one, as stated by Dr. Radermacher[Radermacher(1988)]. We,
therefore, see that the traditional stretching for aligning RCT tilt pairs is a
paticular case of the more general case given by Eq. (12), and more importantly,
this derivation is only valid for infinitely thin objects. As soon as we depart from
this assumption, the equality becomes only an approximation or may be even
invalid for thick objects.

3.2 3D alignment parameters

The in-plane orientation of volume V ′ is not the same as the orientation of Vref
(in fact, this is the key of the success of Random Conical Tilt). Let us define
M̃u as an affine matrix that encodes an in-plane rotation (R̃Z(α′u)) followed by
a translation (T̃u), that is

M̃u = T̃uR̃Z(α′u), (15)

such that the two volumes are registered to each other, i.e.,

Vref(r̃) = V ′(M̃−1u r̃)↔ V ′(r̃) = Vref(M̃ur̃). (16)

M̃u can be easily estimated from the transformation needed to align Iu(s̃) to
the 2D class average selected (I2Dclass

u (s̃)) because

I2Dclass
u (s̃) ≈ Iu((H̃0M̃uH̃

T
0 )−1s̃). (17)

Note that H̃0M̃uH̃
T
0 is a compact way of selecting the top-left 2 × 2 matrix of

M̃u and making it a 2D homogeneous matrix.

5



Combining all this information, we can relate the experimentally observed
images to the volume we aim to reconstruct by

Iu(s̃) =
∞∫
−∞

Vref(M̃uH̃
T s̃)dz

It(s̃) =
∞∫
−∞

Vref(M̃uR̃Z(αu)(R̃Z(αt)R̃Y (θ))−1H̃T T̃−1t s̃)dz

=
∞∫
−∞

Vref(T̃uR̃Z(α′u)R̃Z(αu)(R̃Z(αt)R̃Y (θ))−1H̃T T̃−1t s̃)dz

=
∞∫
−∞

Vref(T̃u(R̃Z(αt)R̃Y (θ)R̃Z(−(α′u + αu)))−1H̃T T̃−1t s̃)dz

=
∞∫
−∞

Vref(T̃uẼ
−1H̃T T̃−1t s̃)dz,

(18)

where we have defined the matrix Ẽ as Ẽ = R̃Z(αt)R̃Y (θ)R̃Z(−(α′u + αu)).
This is an Euler rotation matrix in the convention ZY Z whose first rotation is
around Z by −(α′u + αu) degrees (rotational angle), the second is arout Y by θ
degrees (tilt angle), and finally arout Z by αt degrees (in-plane rotation).

In Xmipp [Sorzano et al.(2004)], the orientation and translation of a projec-
tion with respect to a volume are defined through the following relationship

It(s̃) =

∞∫
−∞

Vref(Ẽ
−1H̃T T̃ ′−1t s̃)dz. (19)

So we need to transform Eq. (18) into the form of Eq. (19). For doing so we
find a new matrix T̃ ′u such that

It(s̃) =
∞∫
−∞

Vref(T̃uẼ
−1H̃T T̃−1t s̃)dz =

∞∫
−∞

Vref(Ẽ
−1T̃ ′uH̃

T T̃−1t s̃)dz (20)

The new T̃ ′u must, therefore, satisfy T̃uẼ
−1 = Ẽ−1T̃ ′u. It can be easily shown

that
T̃ ′u = ẼT̃uẼ

−1 (21)

is the translation matrix sought. By a change of variable, it can be easily proved
that

It(s̃) =
∞∫
−∞

Vref(Ẽ
−1T̃ ′uH̃

T T̃−1t s̃)dz =
∞∫
−∞

Vref(Ẽ
−1H̃T T̃ ′u,2DT̃

−1
t s̃)dz,

(22)
where T̃ ′u,2D = H̃0T̃

′
uH̃

T
0 (this is a compact way of turning a 3D homogeneous

translation matrix into a 2D homogeneous matrix by simply dropping the trans-
lation along Z).

Finally, we find that the translation needed by Eq. (19) is

T̃ ′t = T̃t

(
T̃ ′u,2D

)−1
(23)
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3.3 Aligning the tilted images to the 2D class average

The derivation in the previous section allows us to align the untilted and tilted
images in a tilt pair. However, these two images have very low SNR since both
of them are experimental. We may substitute the untilted image by the class
average produced by the classification algorithm. This class average has a larger
SNR, and it is supposed to be identical to the untilted image except for some
misalignment provided by Eq. (17). Let us now derive the relationship between
It(s̃) and I2Dclass

u (s̃) in the case of an infinitely thin sample (so that we can reuse
the stretching theory above).

We reproduce here the main results of Eqs. (17) and (12)

It(s̃) = Iu((Ẽ2D)−1T̃−1t s̃)

I2Dclass
u (s̃) ≈ Iu((M̃2D

u )−1s̃)
(24)

In which we have defined Ẽ2D = H̃0ẼH̃
T
0 and M̃2D

u = H̃0M̃uH̃
T
0 . From the

first equation we can conclude that

Iu(s̃) = It(T̃tẼ
2D s̃). (25)

Therefore,
I2Dclass
u (s̃) ≈ It(T̃tẼ2D(M̃2D

u )−1s̃). (26)

From a computational point of view and for reasons that will become apparent
now, it is more convenient to define two new auxiliary matrices:

Ã2Dclass = M̃2D
u (Ẽ2D)−1

T̃ 2Dclass
t = Ã2DclassT̃−1t (Ã2Dclass)−1

(27)

such that
I2Dclass
u (s̃) ≈ It((Ã2Dclass)−1(T̃ 2Dclass

t )−1s̃). (28)

At this point, let us define the image

I2Dclass
t (s̃) = It((Ã

2Dclass)−1s̃), (29)

that is nothing more than the tilted image transformed so that it becomes in
the same orientation as the 2D class average of the untilted images. Now we
have

I2Dclass
u (s̃) ≈ I2Dclass

t ((T̃ 2Dclass
t )−1s̃). (30)

The translation encoded by T̃ 2Dclass
t can be found at this point by simple cross

correlation in Fourier space, and then we recover the sought translation by

T̃t = (Ã2Dclass)−1(T̃ 2Dclass
t )−1Ã2Dclass. (31)
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4 Revisited RCT algorithm

According to the theory explained in this document, a RCT reconstruction can
be performed as follows:

For each pair of micrographs (untilted and tilted):

• Step 1: Mark a set of corresponding particle centers (set of s̃u and s̃t
coordinates).

• Step 2: Estimate by Least Squares or any other method a matrix that
transforms untilted coordinates into tilted coordinates (see Eq. (6)).

• Step 3: Use Eq. (36) in [Radermacher(1988)] to estimate the tilt angle, θ.

• Step 4: Use any optimization algorithm to find the angles αu and αt that

minimize the error between the 2×2 top-left submatrix of Ã and the 2×2
top-left submatrix of Ẽ (see Eq. (6) and text around).

• Step 5: Extract the particle image pairs Iu(s̃) and It(s̃).

For all untilted particle projections (Iu(s̃)):

• Step 6: Perform a 2D classification into different classes.

• Step 7: Choose a certain class for which the 3D model is desired, I2Dclass
u (s̃)

For all particle pairs (Iu(s̃), It(s̃)):

• Step 8: Compute M̃u such that the 2D class and the untilted image be-
come aligned (see Eq. (17))

• Step 9: If the particle to reconstruct is thin enough so that stretching the
tilted image is not a strong violation, stretch the tilted image to look like
the untilted 2D class average according to Eq. (29).

• Step 10: Find the best shift, T̃ 2Dclass
t , so that the image in Step 9 is

registered with the 2D class (see Eq. (30)).

• Step 11: Estimate the particle picking misalignment according to Eq.
(31).

• Step 12: Compute the shift needed by the reconstruction algorithm, in
the case of Xmipp use Eq. (23).

• Step 13: The ZY Z Euler angles of the tilted image are (−(α′u+αu), θ, αt)
(first, second, and third rotation, respectively).

Once all particle geometry parameters have been determined:

• Step 14: Use any 3D reconstruction algorithm using the tilted images
(without stretching) and the shifts and Euler angles calculated in Steps
12 and 13.

• Step 15: Angles and shifts can be further refined using any projection
matching algorithm.
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5 Geometrical framework with mirrors

Let us now consider the case in which there are untilted images in the 2D
class related by mirroring over the Y axis (X is flipped). This is the case
of some classification algorithms as CL2D [Sorzano et al.(2010)] and ML2D
[Scheres et al.(2005)]. The traditional approach to handling mirrors in RCT
has been to discard those images that are mirrors or to classify them into a
separate class. But doing so discards useful information that can be exploited
to construct a more reliable RCT model.

Eqs. (7) and (9) are still valid, only that they now refer to a volume Vmirror,
that is

Iu(s̃) =
∞∫
−∞

Vmirror(R̃
−1
Z (αu)H̃T s̃)dz

It(s̃) =
∞∫
−∞

Vmirror((R̃Z(αt)R̃Y (θ))−1H̃T T̃−1t s̃)dz,
(32)

with
Vmirror(r̃) = V (R̃−1Y (π)r̃). (33)

Note that now Eqs. (15) and (16) become

M̃u = R̃−1Y (π)T̃uR̃Z(α′u)

Vref(r̃) = V ′mirror(M̃
−1
u r̃)↔ V ′mirror(r̃) = Vref(M̃ur̃),

(34)

and Eq. (17) is still valid.
The relationship between the tilted image and Vref (Eq. (18)) now is

It(s̃) =
∞∫
−∞

Vref(M̃uR̃Z(αu)(R̃Z(αt)R̃Y (θ))−1H̃T T̃−1t s̃)dz

=
∞∫
−∞

Vref(R̃
−1
Y (π)T̃uR̃Z(α′u)R̃Z(αu)R̃−1Y (θ)R̃−1Z (αt)H̃

T T̃−1t s̃)dz

=
∞∫
−∞

Vref(R̃
−1
Y (π)T̃uR̃Z(α′u + αu)R̃Y (θ)−1R̃−1Z (αt)H̃

T T̃−1t s̃)dz

(35)
Now, we define T̃u,mirror = R̃Y (θ + π)−1T̃uR̃Y (θ + π) (this simply amounts to
change the sign of the shift in X). In this way, we can rewrite the previous
expression as

It(s̃) =
∞∫
−∞

Vref(T̃u,mirrorR̃
−1
Y (π)R̃Z(α′u + αu)R̃Y (θ)−1R̃−1Z (αt)H̃

T T̃−1t s̃)dz

(36)
At this point we make use of the fact R̃−1Y (π)R̃Z(α′u + αu) = R̃Z(−(α′u +

αu))R̃−1Y (π), then

It(s̃) =
∞∫
−∞

Vref(T̃u,mirrorR̃Z(−(α′u + αu))R̃Y (θ + π)−1R̃−1Z (αt)H̃
T T̃−1t s̃)dz

=
∞∫
−∞

Vref(T̃u,mirrorẼ
−1
mirrorH̃

T T̃−1t s̃)dz

(37)
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where Ẽmirror = R̃Z(αt)R̃Y (θ + π)R̃Z(α′u + αu).
Regarding the tilt image alignment, we can rewrite Eq. (11) in terms of the

mirrored volume

Iu(s̃) =
∞∫
−∞

V ′mirror(H̃
T s̃)dz

It(s̃) =
∞∫
−∞

V ′mirror(R̃Z(αu)(R̃Z(αt)R̃Y (θ))−1H̃T T̃−1t s̃)dz,
(38)

with V ′mirror(r̃) = V ′(R̃−1Y (π)r̃). Substituting V ′mirror in the previous expression,
we get

Iu(s̃) =
∞∫
−∞

V ′(R̃−1Y (π)H̃T s̃)dz

It(s̃) =
∞∫
−∞

V ′(R̃−1Y (π)R̃Z(αu)R̃−1Y (θ)R̃−1Z (αt)H̃
T T̃−1t s̃)dz

=
∞∫
−∞

V ′(R̃Z(−αu)R̃−1Y (θ + π)R̃−1Z (αt)H̃
T T̃−1t s̃)dz,

=
∞∫
−∞

V ′(Ẽ−1mirrorH̃
T T̃−1t s̃)dz,

(39)

where Ẽmirror = R̃Z(αt)R̃Y (θ + π)R̃Z(αu). Again, as we did for Eq. (12), we
can show (see Appendix) that

It(s̃) = Iu(M̃(H̃0ẼmirrorH̃
T
0 )−1T̃−1t s̃), (40)

where M̃ = H̃0R̃
−1
Y (π)H̃T

0 . Combining this equation with Eq. (17) we have

I2Dclass
u (s̃) ≈ It(T̃tẼ2D

mirrorM̃(M̃2D
u )−1s̃), (41)

that is the mirror version equivalent of Eq. (26). From this point on, we can
follow the same derivation as in Section 3.3 except that we need to define

Ã2Dclass = M̃2D
u M̃(Ẽ2D)−1

(42)

Therefore, the only modifications to the previous RCT algorithm are:

• Step 8: Compute M̃u such that the 2D class and the untilted image be-
come aligned (see Eq. (34))

• Step 9: If the particle to reconstruct is thin enough so that stretching the
tilted image is not a strong violation, stretch the tilted image to look like
the untilted 2D class average according to Eq. (29) (but using Ã2Dclass as
defined in Eq. (42)).

• Step 11: Estimate the particle picking misalignment according to Eq. (31)

(but using Ã2Dclass as defined in Eq. (42))

• Step 13: The ZY Z Euler angles of the tilted image are (α′u+αu, θ+π, αt)
(first, second, and third rotation, respectively).
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Appendix

Proof of Eq. (12)

Let us prove Eq. (12), which we reproduce here:

It(s̃) =

∞∫
−∞

V ′(Ẽ−1H̃T T̃−1t s̃)dz = V ′(H̃T
0 (H̃0ẼH̃

T
0 )−1T̃−1t s̃) (43)

with Ẽ = R̃Z(αt)R̃Y (θ)R̃Z(−αu). Note that H̃T T̃−1t s̃ = (sX − tt,X , sY −
tt,Y , z, 1)T . For notation simplicity, we define two new variables such that

H̃T T̃−1t s̃ = (x, y, z, 1)T . With this notation the argument of V ′ within the
integral simplifies to

Ẽ−1H̃T T̃−1t s̃ =

(
x(sin(αu) sin(αt) + cos(αu) cos(αt) cos(θ)) + y(sin(αu) cos(αt) − cos(αu) sin(αt) cos(θ)) + z cos(αu) sin(θ)
x(cos(αu) sin(αt) − sin(αu) cos(αt) cos(θ)) + y(cos(αu) cos(αt) + sin(αu) sin(αt) cos(θ)) − z sin(αu) sin(θ)

−x cos(αt) sin(θ) + y sin(αt) sin(θ) + z cos(θ)
1

)
.

(44)
Since V ′ is a delta distribution concentrated in the XY -plane, its integral along
Z coincides with the value of V ′ when the third coordinate is 0, that is

−x cos(αt) sin(θ) + y sin(αt) sin(θ) + z cos(θ) = 0,

or, what is the same, when

z = x cos(αt) tan(θ)− y sin(αt) tan(θ).

Substituting this value into Eqs. (44) and (43), we have

It(s̃) =

∞∫
−∞

V ′(Ẽ−1H̃T T̃−1t s̃)dz = V ′(H̃T
0 Ẽ
′T̃−1t s̃) (45)

where

Ẽ′ =

 sin(αu) sin(αt) + cos(αu) cos(αt)
cos(θ) sin(αu) cos(αt)− cos(αu) sin(αt)

cos(θ) 0

cos(αu) sin(αt)− sin(αu) cos(αt)
cos(θ) cos(αu) cos(αt) + sin(αu) sin(αt)

cos(θ) 0

0 0 1

 .

(46)
It turns out that Ẽ′ is the homogeneous inverse matrix of the 2 × 2 top-left
submatrix of Ẽ, i.e.

Ẽ′ = (H̃0ẼH̃
T
0 )−1. (47)

Substituting Ẽ′ by its value in Eq. (45), we obtain Eq. (43), which finishes the
proof.
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Proof of Eq. (40)

Let us start with Eq. (39), which we reproduce here for convenience:

Iu(s̃) =
∞∫
−∞

V ′(R̃−1Y (π)H̃T s̃)dz

It(s̃) =
∞∫
−∞

V ′(Ẽ−1mirrorH̃
T T̃−1t s̃)dz,

(48)

with Ẽmirror = R̃Z(αt)R̃Y (θ + π)R̃Z(αu). Since V ′ corresponds to an infinitely
thin volume, we know

Iu(s̃) = V ′(R̃−1Y (π)H̃T
0 s̃) = V ′(H̃T

0 M̃ s̃). (49)

On the other hand, making the same change of variable as in the previous
proof (H̃T T̃−1t s̃ = (x, y, z, 1)T )

Ẽ−1mirrorH̃
T T̃−1t s̃ =

(
−x(sin(αu) sin(αt) + cos(αu) cos(αt) cos(θ)) − y(sin(αu) cos(αt) − cos(αu) sin(αt) cos(θ)) − z cos(αu) sin(θ)
x(cos(αu) sin(αt) − sin(αu) cos(αt) cos(θ)) + y(cos(αt) cos(αu) + sin(αu) sin(αt) cos(θ)) − z sin(αu) sin(θ)

x cos(αt) sin(θ) − z cos(θ) − y sin(αt) sin(θ)
1

)
.

(50)
Since V ′ is a delta distribution concentrated in the XY -plane, its integral along
Z coincides with the value of V ′ when the third coordinate is 0, that is

x cos(αt) sin(θ)− z cos(θ)− y sin(αt) sin(θ) = 0,

or, what is the same, when

z = x cos(αt) tan(θ)− y sin(αt) tan(θ),

which is exactly the same condition as in the previous proof. Substituting this
value into Eqs. (50) and (48), it can be checked that

It(s̃) =

∞∫
−∞

V ′(Ẽ−1mirrorH̃
T T̃−1t s̃)dz = V ′(H̃T

0 (H̃0ẼmirrorH̃
T
0 )−1T̃−1t s̃). (51)

According to Eq. (49) we have

Iu(M̃(H̃0ẼmirrorH̃
T
0 )−1T̃−1t s̃) = V ′(H̃T

0 M̃M̃(H̃0ẼmirrorH̃
T
0 )−1T̃−1t s̃)

= V ′(H̃T
0 (H̃0ẼmirrorH̃

T
0 )−1T̃−1t s̃)

= It(s̃),
(52)

which concludes the proof.
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6 Supplementary figures

Figure 1: Control map: Central slices of the control map of C3b computed from
32,595 images and a 3D classification procedure (see main text for details).

Figure 2: Standard RCT workflow for small-sized 2D classes (20 image pairs):
Central slices of the structure of C3b using standard RCT, as implemented in
Spider. Compare them to Suppl. Fig. 1.
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Figure 3: Modified RCT workflow for small-sized 2D classes (13 image pairs):
Central slices of the structure of C3b using modified RCT, as implemented in
Xmipp. Compare them to Suppl. Fig. 1.

Figure 4: Standard RCT workflow for mid-sized 2D classes (79 image pairs):
Central slices of the structure of C3b using standard RCT, as implemented in
Spider. Compare them to Suppl. Fig. 1.

Figure 5: Modified RCT workflow for mid-sized 2D classes (61 image pairs):
Central slices of the structure of C3b using modified RCT, as implemented in
Xmipp. Compare them to Suppl. Fig. 1.
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Figure 6: Left: Class average of 20 untilted projections calculated with Spider.
Right: Central slice of the corresponding RCT reconstruction calculated with
standard RCT, as implemented in Spider.

Figure 7: Left: Class average of 79 untilted projections calculated with Spider.
Right: Central slice of the corresponding RCT reconstruction calculated with
standard RCT, as implemented in Spider.

Figure 8: Left: Class average of 13 untilted projections calculated with Xmipp.
Right: Central slice of the corresponding RCT reconstruction calculated with
modified RCT, as implemented in Xmipp.
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Figure 9: Left: Class average of 61 untilted projections calculated with Xmipp.
Right: Central slice of the corresponding RCT reconstruction calculated with
modified RCT, as implemented in Xmipp.
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