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ABSTRACT Single-particle electron microscopy (EM) has been shown to be very powerful for studying structures and asso-
ciated conformational changes of macromolecular complexes. In the context of analyzing conformational changes of complexes,
distinct EM density maps obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 3D for
interpretation of structural differences. However, graphic visualization of these differences based on a quantitative analysis of
elastic transformations (deformations) among density maps has not been done yet due to a lack of appropriate methods.
Here, we present an approach that allows such visualization. This approach is based on statistical analysis of distances among
elastically aligned pairs of EMmaps (one map is deformed to fit the other map), and results in visualizing EMmaps as points in a
lower-dimensional distance space. The distances among points in the new space can be analyzed in terms of clusters or
trajectories of points related to potential conformational changes. The results of the method are shown with synthetic and exper-
imental EM maps at different resolutions.
INTRODUCTION
Single-particle analysis (SPA) of two-dimensional (2D)
transmission electron microscopy (EM) images of isolated
biological macromolecular complexes is routinely used to
compute three-dimensional (3D) density maps of a wide
range of complexes (e.g., proteins, ribosomes, or viruses)
(1). In this way, EM information, integrated with a large
range of other types of data (e.g., from x-ray crystallog-
raphy, NMR, modeling, etc.), often provides very valuable
information on how these macromolecular complexes
perform their functions in the cell.

EM density maps are ideally computed from images of
complexes that have identical conformation and different,
uniformly distributed, random orientations. However, quite
often, complexes present some degree of flexibility. Meth-
odological extensions of SPA have thus been proposed to
analyze flexible complexes (2–11). A classical approach to
analyzing macromolecular flexibility is to classify a set of
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particle images into distinct classes composed of particles
with similar conformations, and then to reconstruct an EM
density map for each class (2–7). To explain differences
between the obtained EM density maps in terms of con-
formational flexibility, the density maps are analyzed inde-
pendently as well as with respect to each other (12–16).
Multivariate statistical analysis (MSA), introduced to EM
in the 1980s for analyzing mixed populations of images
(17,18) and now an integral part of many image-analysis ap-
proaches and software, allows analysis and visualization of
mixed populations of 2D or 3D data by analyzing principal
axes (eigenvectors) of the total data variance. However, to
our knowledge, no method currently allows graph visualiza-
tion of differences among sets of EM density maps based on
conformational modeling by elastic transformations (defor-
mations) among maps and a quantitative analysis of these
elastic transformations. To fill this gap, we here propose
such a method.

The classical class-based approaches rest on the assump-
tion that flexibility is discrete, which is not true for a large
range of biological systems characterized by continuous
flexibility. When flexibility is a continuous process, these
class-based approaches may lead to a resolution loss in
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the density maps coming from the classes, because each
density map may represent the average conformation of
several slightly different conformations that were assigned
to the same class. Some recent approaches (8–10) explicitly
consider continuous flexibility and perform a multidimen-
sional analysis of particular conformational variables (spe-
cific to each approach), which brings all images from the
given set of single-particle images into a common quantita-
tive reference frame. In this common frame, images are
shown as points, and distances among points are related to
conformational differences among the corresponding com-
plexes. Such approaches make it possible to analyze
possible trajectories of conformational changes by
exploring the regions of the common frame that are most
densely populated. The common frame onto which EM
data are mapped will be referred to as the ‘‘distance space’’
or ‘‘map of structures.’’

Experimental raw individual 2D images of complexeswith
continuous flexibility can be seen as spread over some axes
described by linear combinations of normal modes, as shown
in (8). When density maps are reconstructed from such im-
ages sorted according to conformational similarity into a
few discrete groups along an axis, each of these maps repre-
sents the average conformation of slightly different confor-
mations from the same group (8). These density maps can
be thus seen as discrete samples of a continuous trajectory.
However, the question is whether this trajectory could be
extrapolated from its discrete, unordered samples (density
maps) obtained by classical class-based approaches. The
approach described here was developed to help with a rough
‘‘extrapolation’’ of the original continuous trajectory from
such discrete, unordered samples. This approach is based
on continuous normal-mode analysis (NMA) of a relatively
small set of 3D density maps (usually, 3–10), and it could
be used as the first step toward a fine extrapolation of the tra-
jectory bymethods such as hybrid EMnormal-mode analysis
(HEMNMA), which is based on a ‘‘continuous’’ analysis of a
large set of 2D images using normal modes of a reference
density map (8).

In the proposed approach, each experimental density map
is ‘‘modeled’’ by elastic deformation of other density maps
from the given set of initially rigid-body aligned maps, to
compare the maps in terms of their structural and conforma-
tional differences. Such modeling is used to evaluate how
much one map (target) can be explained by the other map
(reference), which is done by computing cross-correlation
(normalized between 0 and 1) between the target map and
its model obtained by deforming the reference map until it
best fits the target map (through flexible fitting using normal
modes). The unexplained part (what is left after fitting) is
termed ‘‘dissimilarity,’’ which is computed by subtracting
the obtained cross-correlation from 1. The dissimilarity
measure characterizes the difference (distance) between
maps that cannot be explained by flexible fitting. The
smaller the dissimilarity, the better is the characterization
1754 Biophysical Journal 110, 1753–1765, April 26, 2016
of the deformation between the two maps in terms of confor-
mational motions described by normal modes. Indeed,
normal modes have been shown to be very successful in
predicting large-scale low-frequency conformational mo-
tions of complexes that were also observed experimentally
(19–23). The reference map deformed by flexible fitting is
locally rigid-body aligned with the target map before
computing the dissimilarity to correct for the potential er-
rors in the initial rigid-body alignment that is done without
taking into account the deformation. The combined flexible
fitting and local rigid-body alignment will be referred to as
elastic alignment.

The obtained dissimilarities among the elastically aligned
EM density maps are then used to construct a matrix of dis-
tances among the density maps. The distance matrix is
analyzed using a statistical multivariate analysis method
that projects the distances among the density maps onto a
lower-dimensional space in which each EM density map
is shown as a point. The dimension of the new space is
usually 1, 2, or 3, which allows its full visualization. The
process of projecting the distance matrix onto a lower-
dimensional space is similar to that used in MSA (17,18),
but the meaning of the distance matrix here is different
from that in MSA. More precisely, the distance matrix in
the proposed approach describes pairwise dissimilarities
not for pairs of original EM maps, but for pairs of elastically
aligned EM maps (basically, after one map was deformed to
fit the other).

In the obtained common quantitative reference frame
(map of structures), potential clusters or trajectories of
points can be analyzed by the user in terms of conforma-
tional changes. The proposed approach will be referred to
as ‘‘StructMap,’’ which stands for structure mapping. The
results of StructMap are shown with one set of synthetic
EM data and three sets of experimental EM data. The syn-
thetic EM density maps were generated using the EM den-
sity map of the closed conformation of the rabbit skeletal
muscle type 1 ryanodine receptor (RyR1) complex from
Samso et al. (24). The experimental EM density maps
comprise the eukaryotic primosome DNA polymerase Pol
a-B subunit complex (Pol a-B) from Klinge et al. (14),
the Escherichia coli 70S ribosome complex from Fischer
et al. (15), and the human 80S ribosomal complex from
polysomes from Behrmann et al. (25).
MATERIALS AND METHODS

In this section, we describe the methodology that is being proposed as well

as the synthesis of the test data set that is used in Experiment 1, described in

Results.
StructMap method

StructMap is comprised of four steps (Fig. 1 A): 1) preprocessing, which

consists of 3D-to-3D rigid-body alignment of given EM maps, as well as



FIGURE 1 Flowchart of the proposed StructMap method (A) and the iterative elastic 3D-to-3D alignment step between any two EM density maps (B). The

measure of dissimilarity between two finally aligned EM density maps is taken as the distance between the two maps. The distances among all pairs of EM

maps are used to construct a distance matrix that is then analyzed with a multivariate analysis method, so as to project all EM maps onto a common distance

space (map of structures), in which each EM map is represented as a point. Points may then be analyzed in terms of their positions and mutual distances to

potentially identify clusters or trajectories of points.

StructMap Method to Study Conformations
the computation of pseudoatomic models and the corresponding normal

modes of the maps; 2) iterative elastic 3D-to-3D alignment of each pair

of EM maps from a given set of EM maps; 3) multivariate analysis of dis-

tances among the elastically aligned EMmaps; and 4) analysis of the result-

ing low-dimensional space of distances among EM maps. We here describe

each of these steps.

Step 1. Preprocessing: rigid-body alignment of EM maps and
computing pseudoatomic models and corresponding normal
modes of EM maps

Before starting the elastic alignment of EM maps in step 2, these maps

must be rigid-body aligned as well as possible. More precisely, given

two EM density maps, the elastic alignment (step 2) is done by flexible

and rigid-body alignments of one density map, referred to as the reference

density map, until it matches the other density map, referred to as the

target density map. However, the rigid-body alignment involved in that

step is only local, not global (the initial orientation and position of the

deformed reference map with respect to the target map are refined). In

this way, the initial rigid-body alignment is corrected at each iteration

of the elastic alignment, taking into account the deformation estimated

at that iteration.

Rigid-body alignment of EM maps is a part of many common data

processing workflows. Before using the approach proposed here, the

EM maps will thus, most likely, be already globally rigid-body aligned

in some way, which was also the case with the experimental EM maps

used in this article. Thus, in the preprocessing step of StructMap, in

all experiments in this article, the given maps were only locally rigid-

body aligned, meaning that they were aligned around the orientations

and positions in which the maps were available before our work. This

rigid-body local alignment was performed using the xmipp_volume_

align program in Xmipp 3.1. This method was used to refine the align-

ment of EM maps around the orientation and position in which the

maps were available before this work, as aligned by the authors of the

maps. However, note that the xmipp_volume_align method can option-

ally be used for a global rigid-body alignment of EM maps, meaning

over all rotations and translations, independent of the currently available

ones.
In the elastic alignment procedure (step 2), the flexible alignment is

based on deforming the reference density map. The density map deforma-

tion is realized by displacing a set of 3D Gaussian functions along vectors

that are linear combinations of normal modes of the given density map,

where the 3D Gaussian functions are used to model the map densities using

the method proposed in (27). More precisely, the reference density map is

converted into a collection of 3D Gaussian functions of different amplitudes

and positions over the map so that the sum of these Gaussian functions over

a voxel approximates the reference-map density at that voxel, with a given

mean approximation error over all voxels (27). The 3D Gaussian functions

are referred to as ‘‘pseudoatoms,’’ though their positions do not have to

coincide with true atomic positions. The density map representation by

pseudoatoms (PDB-format structure) will be referred to here as the ‘‘pseu-

doatomic model’’ to distinguish it from a true atomic-resolution structure.

Normal modes of the given EMmap are often computed using the elastic

network model of the potential energy function of the complex around a

minimum energy conformation (8,19–22,27,28), as was the case here. In

the elastic network approach, the network is composed of nodes that are

3D point particles connected by springs, where the springs represent har-

monic restraints on displacements from the equilibrium conformation

(28). Here, the elastic network nodes are 3D Gaussian functions (pseudoa-

toms). The elastic network approach based on nodes determined by 3D

Gaussian functions was shown to result in computation of normal modes

that approximate atomic normal modes with high accuracy (8,27). Addi-

tionally, as displacing pseudoatoms (nodes) along normal modes results

in deformation of the pseudoatomic model, such Gaussian-based nodes

allow easy computation of deformed density maps (by summing 3D

Gaussian functions) and a comparable resolution of these maps to the res-

olution of the original, nondeformed density map. The resolution of the

pseudoatomic models (reference and deformed) and the resolution of the

deformed density maps can be controlled by controlling the error of pseu-

doatomic approximation of the given density map (27). Such deformed den-

sity maps are compared with the target density maps in the elastic alignment

procedure (step 2) to estimate the deformation.

The user-friendly HEMNMA graphical interface (29) was used here for

computing both pseudoatomic models and normal modes. More precisely,

we used a previously developed software (developed by Tama et al. (22))

for converting EM maps into pseudoatoms (27) and for NMA, which
Biophysical Journal 110, 1753–1765, April 26, 2016 1755
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were also used in our previous work based on normal modes of pseudoa-

tomic models (8,27) before being integrated in HEMNMA (29). More de-

tails on the use of HEMNMA for these two tasks are given below (see Use

of HEMNMA for Computing Pseudoatomic Models and Normal Modes).

Step 2. Iterative elastic 3D-to-3D alignment of EM
density maps

The proposed method involves elastic 3D-to-3D alignment in the contin-

uous NMA framework, which was realized by extending and modifying

the elastic 3D-to-2D alignment method of (8), available via HEMNMA

interface (29). The elastic alignment here means a combined flexible and

rigid-body local alignment of one map with the other. The flexible align-

ment of two maps is performed by deforming one map using normal modes

until it fits the other map, and the deformation is realized by displacing

pseudoatoms with a linear combination of normal modes, as in (22,27).

Pseudoatoms (3D Gaussian functions modeling the original, nondeformed

EM map) are displaced, using normal modes, with respect to their location

in the original map, meaning that the flexible alignment is local around the

conformation given by the original map. However, recall that normal modes

describe low-frequency large-scale conformational changes, which means a

relatively large range of global deformation amplitudes (several nanome-

ters). The rigid-body alignment of two maps is performed by rotating and

translating one map until it fits the other. The elastic alignment procedure

assumes that maps were initially rigid-body aligned (before computing

pseudoatoms and normal modes in the preprocessing step), so that it only

performs local rigid-body alignment (refinement of current orientations

and translations). The transformation of the map by elastic alignment can

thus be mainly described as map deformation, because the rigid-body-

alignment part of transformation will be small for initially rigid-body-

aligned maps.

The iterative elastic alignment method consists of refining the amplitude

of displacement in each normal mode (elastic parameters) as well as the

orientation and position (rigid-body parameters) of the reference density

map until it matches the target density maps. This is done by minimizing

dissimilarity between the two maps, and this dissimilarity (the objective

function to be minimized) is here defined as S ¼ 1 � CC, where CC is the

cross-correlation between the elastically aligned reference and target density

maps. The optimization of the objective function is done with Powell’s

UOBYQA method, which uses a quadratic-approximation local model of

the objective function subject to a trust region (30). The UOBYQA method

takes into account the curvature of the objective function by constructing in-

terpolant quadratic models. A typical iteration of the algorithm generates a

new vector of variables (new point) by minimizing the quadratic model.

The objective function is then evaluated at the new point and one of the inter-

polation points is replaced by this new point (30).

The trust-region radius is related to the length of steps used in the objec-

tive-function optimization (30). Its meaning here is the norm of the vector

of normal-mode displacement-amplitude differences between points at

which the objective function is evaluated, where points are vectors of the

displacement (deformation) amplitudes and the vector dimension is the

dimension of the search space given by the number of normal modes.

The trust region is a ball around the best point found currently, with the

radius given by the trust-region radius. Like the deformation amplitudes,

the trust-region radius has no physical units, as the NMA software used

here computes the coordinates of normal-mode vectors in angstroms,

whereas it displaces pseudoatoms using normal-mode displacement ampli-

tudes without units. Trust-region-based approaches are known to be more

robust to noise thanks to the regularization effect of minimizing objec-

tive-function models (usually quadratic) around current iterates over re-

gions of controlled size. The trust-region radius is adapted iteratively to

optimize the trust-region size. Actually, the UOBYQA method uses two

radii; one of these (r) is not allowed to increase, because this would neces-

sitate expensive decrease later, whereas the other (D) satisfies D R r and

allows the length of steps to exceed r, which improves the efficiency of

the algorithm (30). The method requires setting the initial vector of
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displacement amplitudes (initial point), the maximum number of iterations,

the initial and final values of the trust-region radius r, and sets the initial

value of D to be equal to the initial value of r.

The developed 3D-to-3D elastic alignment software uses an implementa-

tion of the UOBYQA method from CONDOR libraries (31). The 3D-to-3D

elastic alignment method is available in Xmipp (32–34) (version 3.1) as a

program under the name xmipp_nma_alignment_vol. This program aligns

a reference pseudoatomic model (obtained from a reference EM density

map) with a set of target EM density maps, and requires that all density

maps have the same size (in voxels) and the same voxel size (in angstroms).

For each target EM density map, the reference pseudoatomic model is

deformed and its orientation and position refined so that the corresponding

density map (after the displaced pseudoatoms are converted into the den-

sity-map format) best matches the target EM density map.

In the proposed approach, the initial displacement amplitudes are equal

to zero, meaning that the nondeformed reference pseudoatomic model is

used to initialize the first iteration. In each UOBYQA iteration (Fig. 1 B),

the pseudoatomic model is displaced with the new guess of the normal-

mode displacement amplitudes (new point) obtained by minimizing the

quadratic model, and the modified pseudoatomic coordinates are con-

verted into a density map. Then, this density map is locally rigid-body

aligned with the target density map. The rigid-body alignment is done

with a fast rotational matching method that maximizes the cross-correla-

tion between two density maps (26), and the objective function S is eval-

uated after this alignment. The local model of the objective function is

then reconstructed around the new point, and a new iteration is started

by finding the minimum of the current local model of the objective func-

tion and moving the current vector of deformation amplitudes (current

point) to this minimum. The iterations are repeated until the final value

of the trust-region radius r or the maximum number of iterations is

reached. All experiments in this article were performed using the initial

and final values of the trust-region radius r and the maximum number

of iterations of 250, 50, and 10,000, respectively. Within a similar objec-

tive-function optimization procedure (in HEMNMA), these values have

been shown to produce good results with several complexes of different

amplitudes of conformational changes (70S ribosome, Pol a-B complex,

and tomato bushy stunt virus) (8). They are set as default values in

xmipp_nma_alignment_vol. The use of trust-region radii improves the

optimization convergence by improving robustness to noise, but

UOBYQA does not guarantee reaching the global optimum. Though

reaching the global optimum cannot be guaranteed, the method provides

rather good solutions, as shown in this article.

The main difference between the objective-function optimizations in the

elastic alignment procedure in HEMNMA and that in StructMap is the

different nature of the target data (2D images in HEMNMA versus 3D

density maps in StructMap). As the reference data are in both cases 3D

density maps, HEMNMA is based on elastic 2D-to-3D data alignment,

whereas StructMap is based on elastic 3D-to-3D data alignment. This

means that the elastic alignment procedure in HEMNMA requires compu-

tation of 2D projections of a 3D density map (to perform its matching with

target images), which is not the case for StructMap. Note here that this

comparison is made with regard only to technical details of the two elastic

alignment procedures, and not to the results that the entire StructMap and

HEMNMA methodologies can produce. Actually, StructMap is not meant

to replace HEMNMA, because the two methodologies are complementary

and can be combined, as shown in the Results (Experiment 2) and treated

further in the Discussion.

Step 3: Multivariate distance analysis

The optimized value of the dissimilarity measure, S, obtained for each

aligned pair of EM density maps is used to construct an N � N symmet-

rical distance matrix, D, where N is the number of given EM maps. As the

alignment of the ith EM map, Vi, with respect to the jth EM map, Vj, is

done through elastic geometric transformations of Vi until it matches Vj,

this alignment will result in dissimilarity Sij that will generally be different
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from Sji, representing the dissimilarity of Vj aligned with respect to Vi.

Thus, we set the ijth and jith elements of the distance matrix, D (Dij

and Dji, respectively) to be the average between Sij and Sji (i.e., Dij ¼
Dji ¼ (Sij þSji)/2). Note that the differences between Sij and Sji are usually

small (a strong asymmetry of the distance matrix would indicate that the

underlying matching of one volume to the other is ill defined, which was

not observed here). We set Dii ¼ 0, since there is no distance from an EM

density map to itself.

To perform multivariate analysis of the distance matrix, we use a

nonmetric multidimensional scaling method (35), which is available in

MATLAB (MATLAB and Statistics Toolbox Release 2011b, The

MathWorks, Natick, MA) under the name mdscale. The method returns N

points in p dimensions, where the number of dimensions, p (p % N), is an

input parameter (in normal practice, p ¼ 1, p ¼ 2, or, at most, p ¼ 3), such

that the Euclidean distances between the obtained points approximate a

monotonic transformation of distances in the distance matrix. The mdscale

method optimizes the so-called Kruskal’s normalized stress (35) function

that measures the degree of correspondence between the input distance ma-

trix and the output points. The points are plotted in a p-dimensional distance

space (map of structures). In this article, results of the mdscale method are

deterministic, as the method was used with no randomness option.

Step 4: Analysis of the map of structures

The pattern that the points make in the new, p-dimensional space, together

with their relative distances, can be used to identify clusters of points that

correspond to similar EM maps. In some cases, the disposition of points in

the p-dimensional space can also be used to explore potential sequences of

conformational changes that we will then refer to as ‘‘trajectories of

points.’’
FIGURE 2 Synthetic RyR1 data experiment using synthetic density

maps representing symmetrical (B and C) and asymmetrical (D and E)

structural changes of the complex (A). (A) Synthetic density map 1. (B)

Map 1 (gray) overlapped with maps 2 (yellow) and 3 (cyan). (C) Map 1

(gray) overlapped with maps 4 (violet) and 5 (magenta). (D) Map 1

(gray) overlapped with maps 6 (pink) and 7 (green). (E) Map 1 (gray) over-

lapped with maps 8 (brown) and 9 (blue). (F) Projection of density maps

onto a 3D distance space. In (A)–(E), all density maps are viewed from

the same direction. In each image, arrows show the main directions of

deformation of map 1 (gray) when fitting the other two maps (overlapped),

and the arrow scale shows the largest distance among these three maps after

the deformation according to Table S1. In (F), the density maps are marked

with their indexes and circles, and the length of each dotted line segment is

the distance between two conformations that is shown above the segment in

arbitrary units. See also Fig. 3. To see this figure in color, go online.
Data generation for the experiment with synthetic
EM maps

For one of the experiments performed using the proposed method, we dis-

cretized two distinct synthetic trajectories of continuous conformational

changes of the same complex. The two synthesized trajectories are

completely fictional and may not exist or coexist in the experimental

case. They were synthesized by displacing the EM map of the closed

conformation of RyR1 (from Samso et al. (24)) using two different normal

modes from the same set of normal modes. The two normal modes used for

the displacement were selected to produce opening-closing movements of

RyR1. The displacement in one of the two modes (mode 8) produces sym-

metrical conformational changes that correspond to those usually reported

in the literature. By symmetrical changes, we mean that the object remains

symmetrical after the displacement using normal modes. The displacement

in the other mode (mode 9), in turn, produces asymmetrical conformational

changes. By asymmetrical changes, we mean that the object becomes asym-

metrical after the displacement using normal modes. To the best of our

knowledge, those asymmetrical changes have not been previously reported.

The synthesis of this test data set is fully described in this section. The re-

sults of the experiment with this data set are given in the Results section

(Experiment 1).

We used the EM density map of the closed conformation of RyR1 depos-

ited at the Electron Microscopy Data Bank (EMDB) with code EMD-1606

(24) (resolution, 10.2 Å; size, 180 � 180� 180 voxels; voxel size, 2.8 Å �
2.8 Å � 2.8 Å). The pseudoatomic model of the EM density map and its

normal modes 8 and 9 were used to compute 8 additional pseudoatomic

models. The density maps obtained from the nine pseudoatomic models

were projected to obtain 500 randomly oriented projections for each density

map. The projections had a uniform angular distribution, a size of 128 �
128 pixels, and a pixel size of 3.94 Å� 3.94 Å. Note here that the projection

resolution is lower than the resolution that could be obtained by projecting

the obtained density maps onto the image planes whose size is given by the

original density map size (i.e., image size of 180� 180 pixels and pixel size
of 2.8 Å � 2.8 Å), which was chosen to simulate a real experiment as, in

practice, the object’s 2D projection images are collected at a limited reso-

lution due to image formation and detection limitations. Each projection

was modified by adding simulated experimental noise and contrast transfer

function (CTF). The CTF and noise were simulated for a 200 kV micro-

scope with a spherical aberration of 2 mm, defocus of 1 mm and signal/noise

ratio of 0.2, using the method of Velazquez-Muriel et al. (36). Finally, each

of the nine sets of simulated images was used to compute the corresponding

3D reconstruction (Fig. 2, A–E). Note here that resolution of the recon-

structed density maps is low (~20 Å), as a relatively small number (500)

of noisy and CTF-affected images was used for the reconstruction.

The reconstructed density map referred to as 1 corresponds to the nondis-

placed initial pseudoatomic model (i.e., zero displacement amplitudes in all

modes) (Fig. 2 A). Four of the other reconstructed density maps, referred to
Biophysical Journal 110, 1753–1765, April 26, 2016 1757
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as 2, 3, 4, and 5 (Fig. 2, B and C), correspond to the displacement of the

initial pseudoatomic model in mode 8 using displacement amplitudes of

300, 500, �300, and �500 (no units), respectively, and zero displacement

amplitudes in other modes. Four additional reconstructed density maps,

referred to as 6, 7, 8, and 9 (Fig. 2,D and E), correspond to the displacement

of the initial pseudoatomic model in mode 9 using displacement amplitudes

of 300, 500, �300, and �500 (no units), respectively, and zero displace-

ment amplitudes in other modes.

Fig. 2, B and C, shows that the sequences of discrete states 3-2-1-4-5 and

5-4-1-2-3 describe symmetrical opening and closing of the complex,

respectively, whereas Fig. 2, D and E, shows that sequence 7-6-1-8-9 (or

9-8-1-6-7) describes asymmetrical opening or closing of the complex

(one side of the complex opens while the other side closes).
Use of HEMNMA for computing pseudoatomic
models and normal modes

As mentioned earlier in this section, the pseudoatomic models and their

normal modes were computed using the HEMNMA graphical interface

(29). In this subsection, we give more details on the HEMNMA parameter

settings used for this purpose.

The HEMNMA graphical interface (29) allows use of a 3D binary mask

and adjustment of the desired EM-map approximation error and the

standard deviation of Gaussian functions (for computing pseudoatomic

models), an interaction cutoff distance between pseudoatoms (for

computing normal modes), and adjustment of the collectivity threshold

and the number of lowest-frequency normal modes that will be analyzed

in terms of their collectivity (for selecting the modes that will be used in

the further analysis that is here the elastic alignment of EM density

maps). The 3D binary mask can be used to assure that some parts of the

EM density map are not represented by Gaussian functions (e.g., a noisy

background of the complex). Here, the 3D binary mask was obtained by

a combination of EM-map thresholding and several morphological opera-

tions. The desired error of the EM-map representation by Gaussian func-

tions determines the end of the iterative process by which Gaussian

functions are added to the pseudoatomic representation, and here, it was

set to a value of 5%, which usually results in good representations (29).

The Gaussian-function standard deviation was adjusted to a value between

1 and 2 voxels, as typically done to better optimize the EM-map approxi-

mation error (29). The elastic network model for the computation of normal

modes has the interaction cut-off distance parameter that determines the

distance between the pseudoatoms above which they do not interact, and

its value is usually adjusted between 10 Å and 30 Å, according to the

size of the complex (in voxels) (8,22). Here, the interaction cutoff distance

parameter was set to 10 Å for Pol a-B, 25 Å for 70S and 80S, and 30 Å for

RyR1. It has been shown that highly collective low-frequency modes are

relevant to functional conformational changes (19,20) and that such

changes can usually be described by a few modes among the first

(lowest-frequency) 20–50 pseudoatomic normal modes (8,22). The collec-

tivity degree (37) measures the collectivity of motions in a normal mode by

counting the number of pseudoatoms affected by the mode. The collectivity

degree approaches 1 for maximally collective motions and 0 for localized

motions (37). Here, the collectivity degree was computed and analyzed

for the first 20 normal modes in the case of lower-resolution density

maps (synthetic maps of RyR1 and experimental maps of Pol a-B), whereas

the first 30 normal modes were analyzed in terms of collectivity in the case

of higher-resolution density maps (experimental maps of 70S and 80S). The

modes collectivity threshold determines a subset of the total set of normal

modes that will be used for further analysis. The collectivity threshold of

0.15 was used here, which means that only modes with a collectivity

degree >0.15 were used for the elastic alignment of EM density maps.

The collectivity threshold of 0.15 has been shown to successfully reject

poorly collective modes that are very likely unrelated to functional confor-

mational changes (8,29). The six lowest-frequency modes were not used

either, as they are related to rigid-body movements (8,22,29).
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RESULTS

In this section, we show the performance of the StructMap
method with synthetic and experimental EM density
maps. The most important information gained by using
StructMap is the graphical and numerical distance-space re-
sults i.e., the overall graphical view of differences (dis-
tances) among a set of elastically aligned density maps
(represented by points in the distance space), as well as all
pairwise distances among these maps. In the distance space,
some pairs of points are connected by lines to facilitate dis-
cussion of distances among points and a potential disposi-
tion (configuration) of points in clusters or trajectories in
the distance space. In the experiments with experimental
EM maps (Experiments 2–4), lines are drawn to connect
points representing subsequent states according to the previ-
ously published work in which these maps were obtained,
which was done to visualize the patterns that these previ-
ously published results (sequences) make in the distance
spaces obtained in this work. In the experiment with syn-
thetic EM maps (Experiment 1), lines are drawn to connect
points following their ground-truth order (i.e., the synthe-
sized sequence of states 5-4-1-2-3 and 9-8-1-6-7), which
was done to visualize the pattern that this ground-truth order
makes in the obtained distance space. The summary of all
pairwise point distances obtained by analyzing the sets
with more than three EM maps is given in Tables S1–S3
in the Supporting Material.

Figures in this section also show rigid-body-aligned den-
sity maps (from the preprocessing step) that are comple-
mented with arrows indicating the movements that mainly
contribute to the elastic transformation (deformation) be-
tween maps, and the arrow scale shows the distance between
maps in the distance space. This is additional information
gained by using StructMap.
Experiment 1: Analysis of synthetic EM
density maps

Here, we present the results of StructMap using the syn-
thetic data set described in Materials and Methods. The
goal of the experiment was to analyze the pattern created
by the synthetic EM density maps in the resulting map of
structures, to see how the synthesized conformational trajec-
tories look in this map (e.g., as two distinct trajectories or
not). Recall that the synthesized conformational trajectories
are completely imaginary, which means that the results
presented here should not be interpreted in terms of ex-
perimental RyR1conformational changes. A pseudoatomic
model and its 20 normal modes were computed for each
given synthetic density map. Then, each density map (via
its pseudoatomic model) was elastically aligned with all
other density maps and the obtained 9 � 9 distance matrix
was projected onto a space of three, two, and one dimen-
sions (Figs. 2 F and 3, A and B, respectively).



FIGURE 3 Projection of synthetic RyR1 density maps onto a distance

space of a lower dimension than 3. (A) The 2D distance space. (B) The

1D distance space. The density maps are marked with their indexes and cir-

cles. See also Fig. 2.

StructMap Method to Study Conformations
In the 3D distance space, one can note a two-trajectory
configuration of points 1–9 that correspond to synthetic den-
sity maps 1–9, respectively (Fig. 2 F). This two-trajectory
configuration is visually emphasized by connecting points
according to their ground-truth order (i.e., 5-4-1-2-3 and
9-8-1-6-7). The different distances among neighboring
points on the two trajectories mean that the same deforma-
tion amplitude has a different impact on the two types of
deformation, from the point of view of the mapped dissim-
ilarity measure. More precisely, the larger distances on tra-
jectory 9-8-1-6-7 compared to trajectory 5-4-1-2-3 suggest
that the same deformation amplitude has a larger impact
on the asymmetrical deformation than on the symmetrical
deformation. All pairwise point distances obtained in this
experiment are summarized in Table S1.

As 2D and 1D maps of structures could also be useful in
practice, especially when analyzing a small number of EM
maps, we projected the same set of synthetic density maps
onto these two spaces as well. The results of projecting den-
sity maps onto a 2D distance space are consistent with those
obtained by projecting the same density maps onto a 3D dis-
tance space (Fig. 3 A). Regarding the projection of the same
density maps onto a 1D distance space, there is a nonsurpris-
ing loss of information about the two-trajectory configura-
tion (Fig. 3 B); however, the 1D distance mapping still
allows sorting out of similar and dissimilar density maps.
For instance, Fig. 3 B clearly shows that density maps 1,
2, and 4 are the most similar, whereas maps 7 and 9 are
the most dissimilar. Thus, 1D distance mapping may still
be useful when analyzing a small number of EM density
maps (e.g., three to four density maps), as in the case shown
in Experiment 2.
Experiment 2: EM density maps of Pol a-B

In this experiment, we used three EM density maps of Pol
a-B from Klinge et al. (14). They correspond to different
states of bending of the flexible linker between two lobes
of the complex. The EM density maps have a size of 64 �
64 � 64 voxels, with voxel size 3.8 Å � 3.8 Å � 3.8 Å,
and a resolution between 23 Å and 25 Å. They are referenced
by indexes 1, 2, and 3, as obtained from the authors (14).
A pseudoatomic model and its 20 normal modes were first
computed for each EM density map. Then, each density
map (via its pseudoatomic model) was elastically aligned
with all other density maps, and the obtained 3 � 3 distance
matrix was projected onto a 1D distance space (Fig. 4 A).

The 1D distance mapping results (Fig. 4 A) show that EM
density map 1 is almost equally distant from the other two
EM density maps (the distance of map 1 to the other two
maps is ~0.1). Thus, this sequence could be interpreted as
a movement around conformation 1, in the order 3-1-2 or
2-1-3 (Fig. 4 B). EM maps in the order 3-1-2 correspond
to the unbending of the complex from conformation 3 to
conformation 2 (Fig. 4, B and C). These results are coherent
with previously published results (Fig. 6 of Klinge et al.
(14)) but, contrary to the previous study, they are here based
on a quantitative distance analysis.

These results could be used in combination with
HEMNMA to explore conformational changes of Pol a-B at
a finer level of detail, by a continuous analysis of 2D images
using normal modes of a reference density map, as was done
in (8). In this context, the results of StructMapcould be used to
select the reference density map for analyzing images by
HEMNMA. Actually, in (8), 12,000 Pol a-B single-particle
images (used for computing maps 1–3) were analyzed using
HEMNMA, and map 3 was used as the reference map. The
reference map was chosen to be map 3 because this map
was obtained from the most populated class of images
(maps 3, 1, and 2 come from classes with 42%, 30%, and
28% of the total number of images, respectively (14)).
Although map 3 was reconstructed from the largest number
of images, or exactly because of that, it is tempting to think
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FIGURE 4 Projection of three EM density maps of DNA polymerase Pol

a-B complex onto a 1D distance space. (A) The 1D distance space (EM

maps are marked with circles and the length of each dotted line segment

is the distance between two EM maps that is shown above the segment in

arbitrary units). (B) Rigid-body-aligned EM density maps (3-1-2) ordered

according to their disposition in the distance space shown in (A), with

dashed arrows showing different degrees of bending of the complex, i.e.,

rotation of the upper lobe toward the lower lobe (the elastic transformation

among these maps is mainly described by the bending movement). (C) Up-

per-lobe axis of overlapped maps 1–3, shown with the same color as the

color of the upper-lobe axis in (B) (red, map 3; green, map 1; blue,

map 2), with solid arrows showing the deformation direction (the rotation

of the upper lobe of map 2 toward map 1 and the rotation of the upper

lobe of map 1 toward map 3). In (C), the arrows do not show the amount

of deformation, but they show (by the arrow scale) the distance between

maps in the map pairs (1,2) and (1,3) after the deformation according to

(A). Note that the vertical lines shown in (B) and (C) are not the same

but they are parallel to each other. To see this figure in color, go online.
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that some heterogeneity could have been incorporated in that
map.The fact that it is one of the two endpoints in the distance
map (Fig. 4 A) could support this hypothesis, meaning that
some other conformations could exist even farther to the
left of map 3 in the distance map, but they could not be iden-
tified (they were somehow hidden) because images were
sorted into only three classes. Thus, the results of StructMap
(distance map, Fig. 4 A) show that it would be interesting to
use map 3 for the image analysis with HEMNMA to identify
conformations that could not be identified by splitting images
into only three classes (e.g., those to the left of map 3 in the
distance map), which was actually done by Jin et al. (8).
The second end point in the distance map, map 2, would be
1760 Biophysical Journal 110, 1753–1765, April 26, 2016
less interesting to use for the continuous analysis of images
(as the reference map for HEMNMA), because it lacks
some mass at the level of the linker between the lobes, which
was explained by a strong heterogeneity of conformations in
the corresponding class of images (14).
Experiment 3: EM density maps of E. coli
70S-fMetVal-tRNAVal-tRNAfMet complex

The EM density maps of different pre- and posttransloca-
tional states of E. coli 70S complex published by Fischer
et al. (15) were downloaded from the EMDB database.
Among them, we have analyzed those that had the same
size (128 � 128 � 128 voxels) and voxel size (2.8 Å �
2.8 Å � 2.8 Å) and contained the entire 70S complex. The
analyzed data set contained seven EM density maps of reso-
lution between 12 Å and 20 Å (15). These EM maps corre-
spond to pretranslocational states pre2 to pre5 (EMD-1717
to EMD-1720, respectively) and posttranslocational states
post1 to post3 (EMD-1721 to EMD-1723, respectively).
A pseudoatomic model and its 30 normal modes were
computed for each EM density map, each density map (via
its pseudoatomic model) was elastically aligned with all
other density maps, and the resulting 7 � 7 distance matrix
was projected onto a 3D distance space (Fig. 5 A).

The 3D map of structures and pairwise map distances
(Fig. 5 A and Table S2) show that most distances among
maps 1717–1720 (four distances of 0.11, one distance of
0.2, and one distance of 0.21 (arbitrary units)) are smaller
than the distances from maps 1717–1720 to maps 1721–
1723 (three distances of 0.2 and nine distancesR0.25 (arbi-
trary units)). This means that maps 1717–1720 correspond to
similar conformational states and that these states are gener-
ally less different with respect to each other than with respect
to states 1721–1723, which is also visible when the maps are
overlapped. For instance, the orientation of the 30S subunit is
generally more similar among maps 1717–1720 (Fig. 5,
B–D) than is the 30S orientation between these maps and
maps 1721–1723 (Fig. 5, G and H). This is consistent with
the findings of Fischer et al. (15), indicating that maps
1717–1720 correspond to similar pretranslocational states,
whereas maps 1721–1723 correspond to similar posttranslo-
cational states. Our results complement the results of Fischer
et al. (15) by providing a quantitative analysis of the confor-
mational differences. For instance, the results (Fig. 5 A and
Table S2) additionally show that maps 1721 and 1722 are
more similar (distance of 0.13) than maps 1722 and 1723
(distance of 0.25) or maps 1721 and 1723 (distance of
0.25), which is also visible in Fig. 5, E and F.
Experiment 4: EM density maps of native human
80S ribosomal complex from polysomes

In this experiment, we used 11 EMdensitymaps of native hu-
man 80S ribosomal complexes from polysomes, deposited in



FIGURE 5 Projection of seven EM density

maps of 70S ribosome (EMD-1717 to EMD-

1723) onto a 3D distance space. (A) The 3D dis-

tance space. (B–H) Overlap of rigid-body-aligned

EM density maps, with the same view for all over-

lapped maps for 1718 vs. 1717 (gray) (B), 1719 vs.

1717 (gray) (C), 1720 vs. 1717 (gray) (D), 1722 vs.

1721 (magenta) (E), 1723 vs. 1721 (magenta) (F),

1717 vs. 1721 (magenta) (G), and 1720 vs. 1721

(magenta) (H). In (A), the EM maps are marked

with circles and the corresponding EMDB entry

codes. Straight lines are used to connect subse-

quent states according to the proposal by Fischer

et al (15), and the length of each line segment is

the distance between two maps that is shown above

the segment in arbitrary units. In (B)–(H), arrows

show the movements that mainly contribute to

the elastic transformation (deformation) between

two overlapped maps, and the arrow scale shows

the distance between these maps in the distance

space. Bidirectional arrows were used to recall

that StructMap computes the elastic transformation

between two maps in both directions. Note that the

arrow scale shows the dissimilarity between maps

after the deformation, but the amount of deforma-

tion (movement) is not represented by arrows.

However, note that the type of movement is repre-

sented by arrows (i.e., rotation of 30S with respect

to 50S and L1 stalk motion in (B)–(D) and (G) and

(H), rolling/unrolling of the complex in (E), and

rolling/unrolling of the complex and L1 stalk mo-

tion in (F)). To see this figure in color, go online.
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the EMDBbyBehrmann et al. (25). They correspond to states
along the elongation cycle of 80S (25). In the clockwise di-
rection along the elongation cycle shown in Fig. 1 of Behr-
mann et al. (25), the EM density maps correspond to the
classical iPRE (EMD-2907), classical-1 PRE (EMD-2909),
PRE* (EMD-2906), rotated-1 PRE (EMD-2904), rotated-2
PRE (EMD-2905), POST-i3 (EMD-2903), POST-i2 (EMD-
2902), POST (EMD-2875), prerecycling (EMD-2910), post-
decoding/posthydrolysis (EMD-2908), and postdecoding/
postdissociation (EMD-2911) states. Note that the density
maps of translocation and decoding-sampling/-recognition
complexes were not used in our experiment, as these com-
plexes were not observed experimentally in the original
work (25). The density map EMD-2875 has a size of 400 �
400 � 400 voxels, with voxel size 0.945 Å � 0.945 Å �
0.945 Å and a resolution of 3.5 Å according to the FSC0.143

resolution criterion (25). All other EM density maps have a
size of 200 � 200 � 200 voxels, a voxel size of 1.89 Å �
1.89 Å� 1.89 Å and resolution between 5 Å and 10 Å accord-
ing to the FSC0.5 resolution criterion (25). We thus resized
map EMD-2875 so that it has the same number of voxels
and the same voxel size as the other EM density maps, which
is required by StructMap (see Materials and Methods).
A pseudoatomic model and its 30 normal modes were
computed for each density map, each density map (via its
pseudoatomic model) was elastically aligned with all other
density maps, and the obtained 11 � 11 distance matrix
was projected onto a 3D distance space (Fig. 6 A).

The 3D map of structures shows that conformations 2902,
2903, 2907, 2909, and 2910 are similar to each other and
different from other conformations (Fig. 6 A). Also, in a
very simplified form, it seems that the other conformations
are projected so that they belong to two different groups that
are similarly distant from the central group (2902, 2903,
2907, 2909, and 2910). One group comprises conformations
2904–2906, whereas the other group is made of conforma-
tions 2875, 2908, and 2911 (Fig. 6 A). The overlapped den-
sity maps (Fig. 7 and Figs. S1 and S2) show that the three
different coarse groups can be explained by the existence
of at least two different types of changes in conformation
and composition of the complex. One of these is a rotation
of the small subunit (40S) with respect to the large subunit
(60S), which could explain the groups 2904–2906 (40S is
rotated in these maps, with different amounts of rotation,
as shown in Fig. 7, L–O, and Fig. S1). The other is rolling
of the complex, which could explain the central group of
Biophysical Journal 110, 1753–1765, April 26, 2016 1761



FIGURE 6 Projection of 11 EM density maps of 80S ribosome (EMD-

2875 and from EMD-2902 to EMD-2911) onto the 3D distance space (A)

and the 2D distance space (B). The density maps are marked with circles

and the corresponding EMDB entry codes. The length of each dotted line

segment is the distance between two density maps that is, in (A), shown

above the segment in arbitrary units. The dotted lines are used to connect

subsequent states according to the proposal by Behrmann et al. (25). In

(A), different colors are used for map numbers to represent complexes

with different compositions, according to Behrmann et al. (25). The same

colors are attributed to the maps with the same or similar composition,

which resulted in the use of six different colors for the following types of

composition: 1) 2904 and 2905 (two tRNAs but slightly different, P/E,

A/P in 2905 and P/E, A/A in 2904); 2) 2906–2909 (three tRNAs: E/E,

P/P, and A/A); 3) 2902, 2903, and 2875 (two tRNAs: E/E, P/P); 4) 2911

(three tRNAs: E/E, P/P, and A/T); 5) 2908 (eEF1A and three tRNAs:

E/E, P/P, and A/T); and 6) 2910 (eRF1, ABCE1, and two tRNAs: E/E,

P/P). The classical iPRE state (EMD-2907) is marked with a red point in

(A) and (B). See also Fig. 7. To see this figure in color, go online.
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maps. Indeed, different degrees of rolling of the complex
can be noticed in maps 2902, 2903, 2907, 2909, and 2910
(Fig. 7, A–H, and Fig. S1). The remaining group is
comprised of maps of complexes with slightly different de-
grees of unrolling and different compositions (2875, 2908,
and 2911) (Fig. 7, I and J, and Fig. S1). More precisely, in
map 2875, the A and F sites are empty; in map 2908, they
are occupied by A/T tRNA (A site) and eEF1A (F site);
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finally, in map 2911, the F site is empty and the A site is
occupied by A/T tRNA (Fig. 7, I–K). Note here that we
used a mask that suits the shape of map 2875 to compute
pseudoatomic models, implying that computations were
done using density maps with partly removed additional
mass from the A and F sites (Fig. S2, A–E). The contribution
of masking in this case thus was not only in removing the
background noise, but also in focusing the analysis onto
the conformational changes (by minimizing compositional
differences while preserving the associated conformational
differences).

Although a combined conformational and compositional
heterogeneity is a very difficult case, the proposed method
showed very interesting results, such as the observed
grouping of density maps into three coarse but interpretable
groups in the same space of distances, as well as a closed
trajectory formed by connecting points in the distance space
according to the original proposal (Fig. 6). Interestingly
enough, the trajectory form could be described as 8-like,
particularly in the 2D distance space (Fig. 6 B).
DISCUSSION

In this article, we presented StructMap, which is, to our
knowledge, the first methodology that allows visualization
of conformational differences among sets of EM density
maps in a common and quantitative space and involves
elastic alignment of these EM maps for conformational
modeling. The elastic alignment of two EM maps is done
by flexible deformation, using normal modes, of one map
until it fits the other map. The elastic alignment allows the
building of a matrix of distances among density maps,
which is then analyzed to represent all density maps in the
common distance space that is also referred to as the map
of structures.

StructMap does not impose any requirements regarding
the mass of the complex or the size of its dynamic part.
The only requirement is that all EM maps have the same
size (number of voxels) and the same voxel size. Also, the
work of StructMap will be facilitated if the complex is
masked in the density maps to suppress the background
noise. Masking of density maps is a part of common data-
processing workflows, and we expect that it will be done
before starting StructMap. Otherwise, masking can be per-
formed with the HEMNMA graphical interface. Masking
can also be used to minimize the impact of compositional
differences of complexes (e.g., due to ligand binding) on
the analysis of conformational differences among these
complexes. The method works with EM maps that are usu-
ally available at different resolutions due to the use of
different numbers of particles for their reconstruction and
other experimental imaging-related issues. In this article,
we showed that StructMap yields reliable results (in agree-
ment with previously published results) for EM maps of
different resolution, more precisely, different resolution



FIGURE 7 Overlap of rigid-body-aligned EM density maps of 80S ribosome (EMD-2875 and from EMD-2902 to EMD-2911), with the same view for all

overlapped density maps. (A) 2902 (yellow) vs. 2903. (B) 2907 (green) vs. 2909. (C) 2902 (yellow) vs. 2907. (D) 2903 (cyan) vs. 2909. (E) 2875 (gray) vs.

2902. (F) 2875 (gray) vs. 2903. (G) 2875 (gray) vs. 2910. (H) 2902 (yellow) vs. 2910. (I) 2875 (gray) vs. 2908. (J) 2908 (brown) vs. 2911. (K) 2911

(orange) vs. 2907. (L) 2906 (pink) vs. 2909. (M) 2906 (pink) vs. 2904. (N) 2904 (blue) vs. 2905. (O) 2905 (magenta) vs. 2903. In each panel, arrows

show the movements that mainly contribute to the elastic transformation (deformation) between two overlapped maps, and the arrow scale shows the distance

between these maps in the distance space. Bidirectional arrows were used to recall that StructMap computes the elastic transformation between two maps

in both directions. Note that the arrow scale shows the dissimilarity between maps after the deformation, but the amount of deformation (movement) is not

represented by arrows. However, note that the type of movement is represented by arrows (i.e., rolling/unrolling of the complex in (A)–(K), rotation of 40S

with respect to 60S in (M) and (N), and combination of rolling/unrolling and 40S rotation in (L) and (O). See also Fig. 6 and Figs. S1 and S2. To see this figure

in color, go online.

StructMap Method to Study Conformations
ranges (5–10 Å, 12–20 Å, and 23–25 Å) of EM maps recon-
structed from negative stain images (Pol a-B) or cryo im-
ages (70S and 80S). A higher-resolution homogeneity of a
set of EM maps is expected to yield a better resolution of
conformational differences for the average level of detail
in that set of maps. Also, a higher resolution of all EM
maps in the set is expected to yield a more precise analysis
of smaller conformational changes.
Beyond discrete states

Results obtained with synthetic and experimental data show
the great potential of the proposed method. Results obtained
with experimental data of Pol a-B, 70S, and 80S complexes
are fully consistent with previously published results. More-
over, the results presented here complement the previous
results with a quantitative analysis of given density maps,
which produces an original graphical representation of dis-
similarities among the density maps.

The experiment with EM density maps of human 80S ri-
bosomal complexes from polysomes shows a particularly
challenging case of heterogeneity, which clearly demon-
strates the usefulness of the proposed method. Indeed, the
EM density maps used in that experiment represent 11 states
of the ribosome during the elongation cycle, and the EM
maps differ among each other in both conformation and
composition of the complex. With this data set, we observed
a grouping of EM density maps in three coarse but interpret-
able groups, and we obtained a closed trajectory by connect-
ing the EMmaps in the obtained distance space according to
the sequence proposed by the authors of the maps (25).
Possible trajectories of points in the map of
structures

In some cases, trajectories of points can be inferred by con-
necting points in the map of structures, which suggests the
possibility of exploring potential sequences of conforma-
tional changes. The points can be connected in many
different ways, and here, we would like to discuss possible
ad hoc alternatives, or ‘‘rules,’’ to analyze the cloud of
points, especially in the absence of a priori information
about conformational changes of the studied complex.
One such rule could be to identify the shortest trajectory
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between the two most extreme or distant points, taking into
account the assumption that the shortest trajectory corre-
sponds to the lowest ‘‘energy’’ or ‘‘effort’’ required to go
from one extreme state to the other (e.g., states 3 and 5 on
the 3-2-1-4-5 trajectory in Experiment 1 are the two most
distant states and they correspond to maximally closed
and maximally open synthetic symmetric conformations
of the complex). Another possible rule is to identify the tra-
jectory of points corresponding to those EM density maps
that result from the largest numbers of single-particle im-
ages, taking into account the assumption that a larger num-
ber of images used to reconstruct an EM map means a
higher probability that the complex adopts this state. One
could also think of combining such rules or even analyzing
longer trajectories, taking into account possible random
thermal motions of the complex in solution (9).

Network and graph analysis of conformational transitions
also has been proposed in the context of analyzing protein
conformational ensembles obtained by sampling the confor-
mational space during molecular dynamics simulation of an
atomic-resolution (x-ray or NMR) structure, the sampled
conformations and transitions being considered as nodes
and links of the network, respectively (38–40). The analysis
of potential sequences of conformational changes is partic-
ularly difficult in the case of experimental EMmaps and can
additionally be hindered by a combined conformational and
compositional heterogeneity of complexes, as observed in
the experiment with the 80S ribosomal complex. Thus,
although ad hoc rules could help to start the analysis, addi-
tional information about the complex should be employed to
ascertain the structural processes that actually take place.
That is why we did not use such rules in this article. We
instead decided to complement the original work by
analyzing similarities and dissimilarities among density
maps based on their distances in the obtained distance
space, as well as by showing the pattern obtained after con-
necting the density maps in this distance space according to
the sequence proposed in the original publication.
Combination with continuous analysis of images

StructMap could be combined with techniques for contin-
uous analysis of images, such as HEMNMA (8,29), to
explore continuous conformational changes more exten-
sively. In this context, EM maps obtained by discretizing
flexibility analysis would be analyzed by StructMap to bet-
ter understand differences among maps and to select a few
of them to use as reference conformations for the continuous
image analysis. HEMNMA, which provides an overall view
of the conformational distribution based on a 3D-to-2D
elastic alignment of images with a given reference EM den-
sity map, would be used to perform a fine analysis of the dy-
namics around the reference conformations identified with
the help of StructMap. This approach would be less compu-
tationally expensive than performing a fine analysis around
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every map from the given set of EM density maps. As
StructMap performs an automatic analysis and projection
of EM density maps onto a common distance space, it would
be especially useful if the given set of density maps is
large (e.g., containing more than five maps). Though the
number of density maps obtained in the same experiment
is typically<10, some studies result in much larger numbers
of EM density maps (e.g., 50 maps were obtained in (15)).
In the same context, StructMap could be combined with
other approaches for exhaustive analysis of continuous
conformational changes. For instance, StructMap could be
used to select reference density maps to rigid-body align
images before their analysis by the method proposed by
Dashti et al. (9).

The work presented in this article opens doors for further
development of such combined discrete-continuous ap-
proaches. To allow easy and broad use of StructMap, this
methodology is currently implemented in Scipion (http://
scipion.cnb.csic.es).
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