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a b s t r a c t

Fourier Shell Correlation, Spectral Signal-to-Noise Ratio, Fourier Neighbour Correlation, and Differential
Phase Residual are different measures that have been proposed over time to determine the spatial
resolution achieved by a certain 3D reconstruction. Estimates of B-factors to describe the reduction in
signal-to-noise ratio with increasing resolution is also a useful parameter. All these concepts are inter-
related and different thresholds have been given for each one of them. However, the problem of reso-
lution assessment in 3DEM is still far from settled and preferences are normally adopted in order to
choose the “correct” threshold. In this paper we review the different concepts, their theoretical foun-
dations and the derivation of their statistical distributions (the basis for establishing sensible thresholds).
We provide theoretical justifications for some common practices in the field for which a formal justi-
fication was missing. We also analyze the relationship between SSNR and B-factors, the electron dose
needed for achieving a given contrast and resolution, the number of images required, etc. Finally, we
review the consequences for the number of particles needed to achieve a certain resolution and how to
analyze the Signal-to-Noise Ratio for a sequence of imaging operations.

© 2016 Elsevier Ltd. All rights reserved.
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. On the definition of the Fourier Shell correlation and its signal implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. On the distribution of the SSNR and its meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. On the relationship between the Fourier Shell correlation and the signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5. On the distribution of the FSC and its thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6. On the relationship of the FSC and the SSNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7. On the Fourier Neighbour Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8. On the distribution of the DPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9. On the effects of alignment on resolution measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

10. The total number of rotations explored is Na,b,g ¼ Na,bNg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
11. On the meaning and assumptions of B-factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

11.1. B-factor as a consequence of thermal vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.2. B-factor as a consequence of Gaussian atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11.3. B-factor as a description of the CTF envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11.4. B-factor as a consequence of electron scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11.5. B-factor correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
hnology, CSIC, Campus Univ.
pain.

mailto:coss@cnb.csic.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbiomolbio.2016.09.005&domain=pdf
www.sciencedirect.com/science/journal/00796107
http://www.elsevier.com/locate/pbiomolbio
http://dx.doi.org/10.1016/j.pbiomolbio.2016.09.005
http://dx.doi.org/10.1016/j.pbiomolbio.2016.09.005
http://dx.doi.org/10.1016/j.pbiomolbio.2016.09.005


C.O.S. Sorzano et al. / Progress in Biophysics and Molecular Biology 124 (2017) 1e302
12. On the dose needed for detecting features of a given size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
13. On the number of particles required for a given SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14. On the composition of systems for the calculation of the SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
15. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1. Introduction

Single particle analysis of biological specimens is a useful
experimental technique to acquire structural information of
macromolecular complexes (Frank, 2006). The highest resolution
structures are currently below 2 Å (Merk et al., 2016). However, the
exact resolution of 3D reconstructions is still somehow unclear,
since several views on the precise manner to calculate it still
coexist. Intuitively, the resolution of a structure is the size of the
smallest detail one can trust. How to translate this into a measur-
able function is not straightforward and several criteria have been
provided in Physics. The most representative is Rayleigh criterion,
by which an image of two points is diffraction limited when the
minimum of the intensity of the diffraction of one of the points
coincides with the maximum of the other (Born and Wolf, 1975).
However, even this definition is rather arbitrary and any other
distance could have been defined as resolution (Shahram and
Milanfar, 2006).

Single-particle analysis by 3DEM has also devised its own
definitions of resolution. All of them are based on different
curves like the Fourier Shell Correlation (FSC) (Saxton, 1978;
Saxton and Baumeister, 1982; Harauz and van Heel, 1986), the
Spectral Signal-to-Noise Ratio (SSNR) (Unser et al., 1987;
Penczek, 2002), the Differential Phase Residual (DPR) (Frank
et al., 1981; Penczek et al., 1994) or B-factor (Rosenthal and
Henderson, 2003; Fern�andez et al., 2008). Liao and Frank
(2010) made a review on all these concepts. The problem is
how to simplify this curve into a single number defining the
resolution. A threshold is used for this and there is a strong
debate about which is the “correct” threshold and on which
curve. Moreover, some of these curves, like the SSNR, can be
extended into anisotropic resolution measures (Unser et al.,
2005) making the problem of defining the resolution even
more difficult. Recently, the concept of local resolution has been
introduced (Cardone et al., 2013; Kucukelbir et al., 2014). The
idea is to locally measure the energy content at different fre-
quencies using a frequency-time signal decomposition. In this
way, we may identify areas in the map that have better resolu-
tion than other areas. Instead of using the map alone to estimate
its resolution, we may make use of a fitting with an atomic model
to help to determine the resolution of a map (we can see a-he-
lices, b-sheets, side chains, …). However, the quantification of the
resolution in this way may be involved.

In this article we review concepts like FSC, SSNR, DPR, and B-
factor. We provide a solid background of their statistical distribu-
tions and in doing so we gain deep insight into their properties,
theoretical limits, conditions under which they can be applied, etc.
We also derive consequences in terms of number of particles
needed in order to achieve a certain resolution and the way of
analyzing pipelines of image processing/acquisition steps. The
content of this article generalizes much of the work already per-
formed in the field, and sets the basis for a unified vision of the
Fourier concepts employed in 3DEM.
This paper is primarily concerned about the resolution for the
so-called Single Particle Analysis. Resolution in Electron Tomogra-
phy follows a similar, although significantly different, approach and
the reader interested in this topic is referred to Penczek (2002);
Cardone et al. (2005); Unser (2005); Penzcek and Frank (2007);
Diebolder et al. (2015).
2. On the definition of the Fourier Shell correlation and its
signal implications

The FSC is currently the most widely applied resolutionmeasure
in use in the EM field. However, the analysis of the FSC statistical
distribution remains yet to be completed, especially in the context
of two important applications: (1) The calculation of FSC confi-
dence limits per shell, complementing the usual plot of its expected
value, (2) The use of hypothesis testing threshold values. In the
following we make an in-depth analysis of the FSC that we place in
the perspective of a number of previous works that are reevaluated.
The net result of this work is a simple and intuitive way to view the
FSC, a clear calculation of per shell confidence limits as well as the
derivation of statistical based thresholds.

The Fourier Shell Correlation is normally defined as (Saxton and
Baumeister, 1982; Harauz and van Heel, 1986)

FSCðR;DRÞ ¼

P
R2SðR;DRÞ

F1ðRÞF�2ðRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P
R2SðR;DRÞ

���F1ðRÞ���2
! P

R2SðR;DRÞ

���F2ðRÞ���2
!vuut ;

(1)

being R the three-dimensional frequency vector, R its module, Fi the
Fourier transform of map i, and SðR0;DRÞ the shell of those fre-
quencies such that R0 � kRk<R0 þ DR. However, other definition
has also been issued (Frank, 2006)

FSCðR;DRÞ ¼

P
R2SðR;DRÞ

Re
�
F1ðRÞF�2ðRÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P

R2SðR;DRÞ

���F1ðRÞ���2
! P

R2SðR;DRÞ

���F2ðRÞ���2
!vuut ;

(2)

where Ref$g is the operator extracting the real part of a complex
number. Both definitions are equivalent thanks to the Hermitian
symmetry of the Fourier transform of real-valued volumes as can
be easily verified. However, one may wonder what is the exact
meaning of this measurement whose justification seems to be
based on the Fourier correlation theorem. This theorem states that
the cross-correlation function of lag r0 between two maps may be
computed in real space or Fourier space as
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CCf1;f2ðr0Þ ¼
X

r2

�
�N

2;
N
2

�3

f1ðrþ r0Þf2ðrÞ ¼ F�1�F1ðRÞF�2ðRÞ�; (3)

where the functions f1 and f2 are supposed to be finitely supported

in the cube
�
� N

2;
N
2

�3
, and F�1 is the inverse Fast Fourier Transform

(FFT) operator. Particularizing for r0 ¼ 0, we obtain the well-known
Rayleigh's theorem for real signals (Bracewell, 2006):

CCf1;f2ð0Þ ¼
X

r2

�
�N

2;
N
2

�3

f1ðrÞf2ðrÞ ¼
X

R2

�
�N

2;
N
2

�3

F1ðRÞF�2ðRÞ; (4)

The cross-correlation between two maps is usually normalized
between�1 and 1, so that it is easier to compare correlation values.
This can be done by dividing the original cross-correlation by the
norm of the two input maps (Proakis and Manolakis, 2006)

NCCf1;f2ðr0Þ ¼
CCf1;f2ðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CCf1 ;f1ð0ÞCCf2;f2ð0Þ
q (5)

which, particularizing at r0¼ 0 and using Rayleigh's theorem, can
be simplified to

NCCf1;f2ð0Þ ¼

P
R2

�
�N

2;
N
2

�3

F1ðRÞF�2ðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0@ P
R2

�
�N

2;
N
2

�3

���F1ðRÞ���2
1A0@ P

R2

�
�N

2;
N
2

�3

���F2ðRÞ���2
1A

vuuuuut
(6)

that is formally quite similar to the definition of the FSC except for
the range of the frequencies being summed and the fact that we are
summing in the numerator F1ðRÞF�2ðRÞ instead of RefF1ðRÞF�2ðRÞg.
The difference in the numerators are easily overcome if we take
into account that NCCf1,f2(0) is a real value and, therefore,
NCCf1 ;f2 ð0Þ ¼ RefNCCf1;f2 ð0Þg (in fact, the sum

P
F1ðRÞF�2ðRÞ should

be real-valued, but we may take its real part as a computational
trick to protect against numerical inaccuracies). The different sum
ranges (Eq. (6) is summed over the whole frequency cube, while Eq.
(2) is summed within a shell of Fourier coefficients) indicate that
the FSC has pre-filtered the two maps so that it is measuring the
normalized cross-correlation between the two input maps after
applying a hard band-pass filter whose frequency response is the
indicator function of the shell SðR;DRÞ (i.e., within the shell the
filter response is 1, and outside the shell the filter response is 0). To
the best of our knowledge this intuitive definition of the FSC is
lacking in the field of Electron Microscopy.

Finally wewould like to highlight that, as already pointed out by
Unser et al. (2005), the FSC is invariant to isotropic filtering, i.e.,
filtering the map by an isotropic, non-vanishing filter in Fourier
space (e.g. a Gaussian filter) gives the same FSC curve. This problem
is also shared by the Differential Phase Residual curve (introduced
below). This is clearly a drawback of the two methods. van Heel
(1987) discusses some variants of these two methods, although
they are not so widespread.
3. On the distribution of the SSNR and its meaning

In Unser et al. (1987) the statistical distribution of the SSNR is
discussed. Although the conclusions derived by Unser et al. (1987)
are essentially the same as in the following analysis, the distribu-
tions and variables involved in their analysis and this one are not
exactly the same.

Let us consider K different observations of the same signal cor-
rupted by noise. For each observation k2f1;2;…;Kg, the image
observation model in Fourier space is

FkðRÞ ¼ XðRÞ þ NkðRÞ; (7)

where Fk(R) is the observed Fourier coefficient at frequency R, X(R)
is the underlying, deterministic signal, andNk(R) is a realization of a
random noise.

The underlying signal is estimated by averaging each Fourier
coefficient

bXðRÞ ¼ 1
K

XK
k¼1

FkðRÞ ¼ XðRÞ þ 1
K

XK
k¼1

NkðRÞ (8)

We estimate the signal power within a Fourier Ring,SðR;DRÞ, as

bSðR;DRÞ ¼ 1
jSðR;DRÞj

X
R2SðR;DRÞ

���bXðRÞ���2; (9)

where jAj represents the number of elements of set A.
Similarly, the noise power is estimated by

bNðR;DRÞ ¼ 1
jSðR;DRÞj

X
R2SðR;DRÞ

 
1

K � 1

XK
k¼1

���FkðRÞ � bXðRÞ���2
!
:

(10)

Let us assume that noise is a complex random variable with
Gaussian distribution, independent (from the signal and other
noise variables) and identically distributed for a fixed R (note that
different Fourier shells may have different noise variances). The real
and imaginary parts of a Gaussian complex variable are also
Gaussian. Wewill assume that they are distributed with zero-mean
and variance 1

2s
2
R, with no covariance between them. For simplicity,

we will consider a complex random variable as a bivariate random
variable (the two components being the real and imaginary part). In
this way, a complex random variable describing noise in Fourier
space is a bivariate Gaussian variable with zero-mean and covari-
ance matrix SR ¼ 1

2s
2
RI.

In the absence of signal, our estimate of the signal power
becomes

bSðR;DRÞ ¼ 1
jSðR;DRÞj

X
R2SðR;DRÞ

�����1K XK
k¼1

NkðRÞ
���2 (11)

The average of K random Gaussian complex numbers is another
random Gaussian complex number that we will refer to as NK(R).
The mean of the new complex number is zero (since the averaged
numbers are also zero-mean) and the variance of its real and

imaginary parts is 1
K2 K

s2
R
2 ¼ s2

R
2K. Let us study the distribution of the

variable c21 ¼
������SðR;DRÞ

������bSðR;DRÞs2
R

2K
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c21 ¼
X

R2SðR;DRÞ

���NKðRÞ
���2

s2
R

2K

¼
X

R2SðR;DRÞ

 
Re
�
NKðRÞ�
sRffiffiffiffiffi
2K

p

!2

þ
 
Im
�
NKðRÞ�
sRffiffiffiffiffi
2K

p

!2

(12)

For every point inSðR;DRÞ there are two terms in the sum, each
one being a standardized Gaussian variable, therefore, c21 has a c2

distribution apparently with 2jSðR;DRÞj degrees of freedom
because there are 2jSðR;DRÞj addends. However, we must remind
that, because of the Hermitian symmetry, only half of these Fourier
coefficients are truly independent and consequently the number of
degrees of freedom would be jSðR;DRÞj as stated in Unser et al.
(1987).

Analogously we can study the noise power in the absence of
signal

bNðR;DRÞ¼ 1
jSðR;DRÞj

X
R2SðR;DRÞ

 
1

K�1

XK
k¼1

jNkðRÞ�
1
K

XK
k0 ¼1

Nk0 ðRÞj2
!

¼ 1
jSðR;DRÞj

X
R2SðR;DRÞ

 
1

K�1

XK
k¼1

jK�1
K

NkðRÞ�
1
K

XK
k
0 ¼1

k
0
sk

Nk0 ðRÞj2
!

(13)

Let us consider a new random variable
EfFðR;DRÞg ¼ d2
d2 � 2

¼ KjSðR;DRÞj
KjSðR;DRÞj � 2

VarfFðR;DRÞg ¼ 2d22ðd1 þ d2 � 2Þ
d1ðd2 � 2Þ2ðd2 � 4Þ

¼
2K2

���SðR;DRÞ
���ððK þ 1ÞjSðR;DRÞj � 2Þ

ðKjSðR;DRÞj � 2Þ2ðKjSðR;DRÞj � 4Þ

(18)
NkðRÞ ¼ K � 1
K

NkðRÞ �
1
K

XK
k
0 ¼1

k
0
sk

Nk0 ðRÞ (14)

A linear combination of two independent, multivariate Gauss-
ians, Z ¼ aX þ bY, has a mean mZ ¼ amX þ bmY and a covariance
matrixSZ¼ a2SXþ b2SY. In this way, the covariance ofNk(R) is given
by

SNkðRÞ ¼
�
K � 1
K

	2
SR þ

1
K2 ðK � 1ÞSR ¼ K � 1

K
SR ¼ K � 1

K
s2R
2
I

(15)

Let us now define the variable c22 ¼ jSðR;DRÞj bNðR;DRÞ
s2
R

2K

and study

its distribution (note that this variable was incorrectly standardized

by Unser et al. (1987) as c22 ¼ jSðR;DRÞj bNðR;DRÞ
s2
R

2ðK�1Þ

, though this mistake

does not invalidate their main results)
c22 ¼
X

R2SðR;DRÞ

0@ 1
K � 1

XK
k¼1

���NkðRÞ
���2

s2R
2K

1A ¼
X

R2SðR;DRÞ

XK
k¼1

���NkðRÞ
���2

K � 1
K

s2R
2

¼ P
R2SðR;DRÞ

PK
k¼1

0B@Re
n
NkðRÞ

o
sRffiffiffi
2

p
ffiffiffiffiffiffiffiffi
K�1
K

q
1CA

2

þ

0B@Im
n
NkðRÞ

o
sRffiffiffi
2

p
ffiffiffiffiffiffiffiffi
K�1
K

q
1CA

2

(16)

c22 has a c2 distribution with KjSðR;DRÞj degrees of freedom (in
which we have already taken into account the Hermitian symmetry
to count the actual number of independent random variables).

The ratio of the two c2 variables divided by their respective
number of degrees of freedom is distributed as an F-Snedecor
distribution with jSðR;DRÞj and KjSðR;DRÞj degrees of freedom:

FðR;DRÞ ¼
c2
1

jSðR;DRÞj
c2
2

KjSðR;DRÞj
¼ K

c21
c22

¼ K

jSðR;DRÞjbSðR;DRÞ
s2
R

2K

jSðR;DRÞj bNðR;DRÞ
s2
R

2K

¼ K
bSðR;DRÞbNðR;DRÞ

:

(17)

In other words, in the absence of signal, the estimate of the SSNR
after averaging is distributed as a F-Snedecor distributionwith d1 ¼
jSðR;DRÞj and d2 ¼ KjSðR;DRÞj degrees of freedomwhose average
and variance are
For large degrees of freedom (usually larger than 30, and in the
EM application the number of degrees of freedom is in the order of
thousands and consequently d2�4zd2�2zd2) can be safely
approximated by a Gaussian with parameters

EfFðR;DRÞg z 1

VarfFðR;DRÞg z 2
K þ 1
K

1
jSðR;DRÞj

(19)

In the presence of signal the distribution of c22 does not change,

but the one of c21 does:

c21¼
X

R2SðR;DRÞ

���XðRÞþNKðRÞ
���2

s2
R

2K

¼
X

R2SðR;DRÞ

 
Re
�
XðRÞþNKðRÞ�

sRffiffiffiffiffi
2K

p

!2

þ
 
Im
�
XðRÞþNKðRÞ�

sRffiffiffiffiffi
2K

p

!2

(20)

Now, each standardized random variable is centered at a
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different mean. Thus, c21 follows a non-central c2 distribution with
the same degrees of freedom as before and non-centrality
parameter

l ¼
X

R2SðR;DRÞ

 
RefXðRÞÞg

sRffiffiffiffiffi
2K

p

!2

þ
 
ImfXðRÞÞg

sRffiffiffiffiffi
2K

p

!2

¼
X

R2SðR;DRÞ

���XðRÞ���2
s2
R

2K

(21)

Considering that Ef
���NkðRÞ

���2g ¼ s2
R
2 (the ½ factor appears because

of the Hermitian symmetry), and defining the average power of the
signal coefficients in the shell as

���XðRÞ���2 ¼ 1
jSðR;DRÞj

X
R2SðR;DRÞ

jXðRÞj2; (22)

then we can reexpress the non-centrality parameter as

l ¼

P
R2SðR;DRÞ

���XðRÞ���2
s2
R

2K

¼

����SðR;DRÞ
�������XðRÞ���2

EfjNkðRÞj2g
K

¼ KjSðR;DRÞj$SSNRðR;DRÞ: (23)

In this equation SSNR(R,DR) should be understood as the average
SNR between individual Fourier coefficients within the shell
SðR;DRÞ.

The ratio between the two c2 variables, F(R,DR), is still defined in
the same way, although its distribution changes to a non-central F
Snedecor distribution with the same degrees of freedom as before
and with non-centrality parameter l (given by the previous equa-
tion). The average and variance of F(R,DR) relevant for EM (large
degrees of freedom, i.e., d2�4zd2�2zd2) are now

EfFðR;DRÞg ¼ d2ðd1 þ lÞ
d1ðd2 � 2Þz1þ K$SSNRðR;DRÞ

VarfFðR;DRÞg ¼ 2
ðd1 þ lÞ2 þ ðd1 þ 2lÞðd2 � 2Þ

ðd2 � 2Þ2ðd2 � 4Þ
d22
d21

z2
K2SSNR2ðR;DRÞ þ 2KðK þ 1ÞSSNRðR;DRÞ þ ðK þ 1Þ

KjSðR;DRÞj

(24)

The expected value of F(R,DR) is a biased estimate of the SSNR
after averaging. Interestingly, the variance of the estimate de-
creases with K (the number of observations) and the size of the
Fourier shell.

This bias suggests the unbiased estimate of the SSNR after
averaging the K coefficients is

dSSNRðR;DRÞ ¼ 
 FðR;DRÞ � 1 FðR;DRÞ � 1
0 FðR;DRÞ<1 (25)

For all practical purposes, the standard deviation of F(R,DR) is
much smaller than its mean. This means that, in the presence of
signal, the clipping induced by Eq. (25) is seldom applied, and the

variance of dSSNRðR;DRÞ is similar to that of F(R,DR) and, due to the
large number of degrees of freedom involved in the EM analysis, the
Gaussian distribution is a safe approximation for the distribution of
dSSNRðR;DRÞ.
Traditionally, the threshold for the SSNR has been set todSSNRðR;DRÞ ¼ 1, i.e., as that frequency at which there is so much

noise as signal and, therefore, the interpretation of the map beyond
this point could be confounded by noise. However, this threshold
may be a little conservative. Alternatively, we could use the dis-

tribution of dSSNRðR;DRÞ in the absence of signal and define the
threshold as that frequency at which the null hypothesis that there
is no signal cannot be rejected with a given confidence level 1�a.

Considering Eq. (19), this occurs when the dSSNRðR;DRÞ drops below
z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Kþ1
KjSðR;DRÞj

q
, where z1�a is the 1�a percentil of a standard

normal variable.
In case of a symmetric macromolecule, part of the terms in the

sums defining c21 and c22 are identical and the noise in symmetri-
cally equivalent positions is not independent due to the symme-
trization process. In this case, the sums should be performed in the
asymmetric unit of the shell and the number of degrees of freedom
would be reduced accordingly.

As already suggested by Unser et al. (2005), the SSNR can be
successfully extended towork in 3D Fourier space. By doing this, we
can explore the anisotropy of resolution, identifying those di-
rections with better resolution than others, instead of reducing this
complex reality to a single resolution number. Note that this
approach leads to the concept of directional resolution, but not to a
local resolution, due to the unlocalized nature of features in Fourier
space.
4. On the relationship between the Fourier Shell correlation
and the signal-to-noise ratio

The Signal-to-Noise Ratio (SNR) is normally defined in image
processing and EM as the ratio between the power of the signal of
interest (our molecule) and the power of the noise (any other signal
in the image that corrupts the signal of interest). Normally the noise
is considered to be a random variable while the signal in EM is
normally considered to be deterministic. The power can be
unambiguously defined for both kinds of signals as the autocorre-
lation of the signal (or noise) with itself in the absence of lag. In the
case of noise, its power corresponds to its variance; in the case of
the signal, it is the average value of the square of the signal values.
In the field of EM, the relationship

SNR ¼ NCC
1� NCC

(26)

has been extensively used (e.g., Frank and Al-Ali (1975)). This
relationship is based on a result of Bershad and Rockmore (1974).
However, let us review that paper to see the conditions under
which this result holds. Let us state the problem in the same
framework as in Bershad and Rockmore (1974), and then we will
see if those conditions hold in EM. Let x(t) and y(t) be two signals
generated as noisy observations of a stationary, white, Gaussian,
zero-mean random process:

xðtÞ ¼ sðtÞ þ nxðtÞ
yðtÞ ¼ sðtÞ þ nyðtÞ (27)

Let us presume that the two noise processes are equally
distributed, independent from each other, and independent of the
underlying signal. Although this is the original problem statement
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in Bershad and Rockmore (1974), such white noise is a difficult
mathematical entity to work with (Unser and Tafti, 2014)[Chap. 4].
Instead, a more tractable object is a bandlimited version of such a
white noise, which is no longer independent as a continuous signal.
However, it has the remarkable property that its uniform samples
are i.i.d., thanks to the orthogonality of the sinc functions. Let us
then take N samples from both continuous signals fulfilling Nyquist
criterion obtaining the values x1,x2,…,xN and y1,y2,…,yN. Let us study
under these circumstances the correlation between xi and xj:

E
�
xixj
�¼E

�ðsiþnxiÞ
�
sjþnxj

��¼E
��

sisjþnxisjþ sinxjþnxinxj
��

¼ �s2s þs2n
�
dij ¼ s2nð1þSNRÞdij;

(28)

where s2s and s2n are the variances of the signal and noise respec-
tively, and dij is Kronecker's delta (dij ¼ 1 if i ¼ j, and dij ¼ 0 other-

wise). We have also defined SNR ¼ s2
s

s2
n
. For this result we need to

make use of the independence between the noise and the signal, as
well as the whiteness and stationarity of both. Analogously, we can
compute the correlation between yi and yj, and xi and yj:

E
n
yiyj

o
¼ s2nð1þ SNRÞdij

E
n
xiyj
o
¼ s2s dij ¼ s2nSNRdij

(29)

We may define two new variables, s2 and rxy such that

E
�
xixj
� ¼ E

n
yiyj

o
¼ s2dij

E
n
xiyj
o
¼ rxys

2dij
(30)

It is easy to check that with these definitions, one must have

rxy ¼ SNR
1þ SNR

: (31)

where rxy is the normalized correlation between the variables x and
y. So, in the notation of this paper, we could have also written

NCCx;y ¼ SNR
1þ SNR

(32)

or

SNR ¼ NCCx;y
1� NCCx;y

; (33)

which is the formula so much used in EM.
The true correlation between x and y is unknown and Bershad

and Rockmore (1974) studied how to estimate it from the samples:

dNCCx;y ¼
PN

i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi PN
i¼1 x

2
i

! PN
i¼1 y

2
i

!vuut (34)

The estimate of SNR using this sample correlation is known to be
biased, and Bershad and Rockmore (1974) proposed to use instead
the unbiased estimate

dSNR ¼ e�
2

N�3

 dNCCx;y

1� dNCCx;y
� 1
2



e

2
N�3 � 1

�!
(35)
For very large N (as is the case of EM, where maps are in the
order of 105 and 106 voxels) this estimate yields

dSNRz dNCCx;y

1� dNCCx;y
(36)

and the variance of this estimate (Bershad and Rockmore, 1974) is

Var
ndSNRo ¼



e

4
N�3 � 1

��
SNRþ 1

2

	2

z
ð1þ 2SNRÞ2

N � 3
(37)

These are the results so much advocated in EM. However, the
conditions under which all these formulas were derived do not
strictly hold in EM:

� The underlying signal is not stationary. Stationarity requires
that none of the signal statistics change over space. But, an EM
map of size N3 has different local mean, local variance and
local autocorrelation depending on whether we consider a
point inside the macromolecule, in its border, or outside it.

� The underlying signal is not white. If we consider points in-
side the macromolecule there exist a significant cross-
correlation between neighbouring points due to the macro-
molecular structure and to the presence of the Contrast
Transfer Function. If the data collection geometry misses some
region in Fourier space, this masking results into a convolu-
tion in real-space which further increases local correlation.

� If the images are normalized so that the background noise is
zero-mean and it has unit variance, then the reconstructed
macromolecule has positive values violating also the zero-
mean condition on s(t). If the images are normalized to be
zero-mean and have unit variance, then we are violating the
condition that the two noises nx(t) and ny(t) are equally
distributed.

Note that the whole derivation of Bershad and Rockmore (1974)
is based on real-space signals and uses parameters (SNR, NCCx,y)
computed over the whole map. Sometimes, it has been argued
without any proof that the same relationship holds for Fourier
coefficients

SNRðRÞ ¼ NCCx;yðRÞ
1� NCCx;yðRÞ : (38)

or Fourier shells

SNRðRÞ ¼ NCCx;yðRÞ
1� NCCx;yðRÞ : (39)

We show in the following section that these relationships (Eqs.
(38) and (39)) are still valid in Fourier space although for different
reasons as those argued by Bershad and Rockmore (1974) as long as
the filter applied is even.

5. On the distribution of the FSC and its thresholds

Several thresholds have been proposed for the definition of the
resolution using the FSC. In this section we review most of them.
We start with the Ks family, then we continue with the constant
thresholds and, finally, the i-bits.

The Ks family, proposed by Saxton and Baumeister (1982),
uses the distribution of the FSC in the absence of signal to
establish a relevant threshold. The study of this distribution
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dates back to Saxton (1978). In fact, Saxton's derivation was not
intended for the FSC, but for the distribution of the cross corre-
lation coefficient between two noisy images. Let us review Sax-
ton's derivation and its applicability to the FSC. Saxton's
reasoning was performed in real-space and for the general case
of the correlation of two independent, noisy images under an
arbitrary shift. We will particularize it here to the case of iden-
tical underlying images with no shift (as we already saw, this is
the most relevant case for the FSC since it can be understood as
the cross-correlation coefficient between two band-pass filtered
versions of noisy observations of the same map). Let
f1(r) ¼ x(r) þ n1(r) and f2(r) ¼ x(r) þ n2(r) be two independent,
noisy observations of the same map (assumed to be of
zero-mean). The cross-correlation coefficient between the two
maps is

NCCf1;f2 ¼

P
r2

�
�N

2;
N
2

�3

f1ðrÞf2ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r2

�
�N

2;
N
2

�3

f 21ðrÞ
vuuuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r2

�
�N

2;
N
2

�3

f 22ðrÞ
vuuuut

¼ cffiffiffi
d

p ; (40)

where c and d are convenient variables that will be used to shorten
the notation.

Three well-known statistical properties of the mean and vari-
ance are (Mood et al., 1974)

EfXYg ¼ EfXgEfYg þ CovfX;Yg
VarfXYg ¼ VarfXgE2fYg þ E2fXgVarfYg þ VarfXgVarfYg

þ 2EfXgEfYgCovfX; Yg � Cov2fX; Yg
þ E
n
ðX � EfXgÞ2ðY � EfYgÞ2

o
þ 2EfYgE

n
ðX � EfXgÞ2ðY � EfYgÞ

o
þ 2EfXgE

n
ðX � EfXgÞðY � EfYgÞ2

o
VarfX þ Yg ¼ VarfXg þ VarfYg þ 2CovfX;Yg

(41)

where Cov{X,Y} is the covariance between two randomvariables. In
the case of two independent variables these simplify to

EfXYg ¼ EfXgEfYg
VarfXYg ¼ VarfXgE2fYg þ E2fXgVarfYg þ VarfXgVarfYg
VarfX þ Yg ¼ VarfXg þ VarfYg (42)
Var
n
f 2i ðrÞ

o
¼ E




ðxðrÞ þ niðrÞÞ2 � E

n
ðxðrÞ þ niðrÞÞ2

o�2� ¼ E





n2i ðrÞ � s2
�
þ 2xðrÞniðrÞ

�2�
¼ E





n2i ðrÞ � s2

��2�þ E
n
ð2xðrÞniðrÞÞ2

o
þ 2E

n
2xðrÞniðrÞ



n2i ðrÞ � s2

�o
¼ 2s4 þ 4x2ðrÞs2; (47)
Assuming that the two noise observations are independent and
that the noise at each voxel is identically distributed with zero
mean and variance s2, then, using the previous two properties, it is
easy to check that
Efcg ¼
X

r2

�
�N

2;
N
2

�3

Eff1ðrÞf2ðrÞg

¼
X

r2

�
�N

2;
N
2

�3



x2ðrÞ þ EfxðrÞn2ðrÞg þ Efn1ðrÞxðrÞg

þ Efn1ðrÞn2ðrÞg
�

¼
X

r2

�
�N

2;
N
2

�3

x2ðrÞ ¼ ðN þ 1Þ3s2s ;

(43)

where s2s is the signal power defined as s2s ¼ 1
ðNþ1Þ3

P
r2

�
�N

2;
N
2

�3

x2ðrÞ.

We may also compute its variance

Varfcg ¼
X

r2

�
�N

2;
N
2

�3

Varff1ðrÞf2ðrÞg

¼
X

r2

�
�N

2;
N
2

�3



Varff1ðrÞgE2ff2ðrÞg þ E2ff1ðrÞgVarff2ðrÞg

þ Varff1ðrÞgVarff2ðrÞg
�

¼
X

r2

�
�N

2;
N
2

�3



s2x2ðrÞ þ x2ðrÞs2 þ s2s2

�

¼ ðN þ 1Þ3s2


2s2s þ s2

�
¼ ðN þ 1Þ3s4ð2SNRþ 1Þ

(44)

In the computation of Var{c} we have made use of the fact that

Cov
n
f1ðrÞf2ðrÞ; f1



r
0�
f2


r
0�o ¼ 0: (45)

This is true for independent noise voxels, but as we discuss
below, this is not the case of the FSC due to the bandpass filters
introduced by the Fourier shells.

Let us study the mean and variance of f 2i ðrÞ before addressing
the mean and variance of the denominator of the cross-correlation
coefficient

E
n
f 2i ðrÞ

o
¼ E

n
ðxðrÞ þ niðrÞÞ2

o
¼ x2ðrÞ þ s2 (46)
where we have assumed Gaussian noise, as is the case in EM
(Sorzano et al., 2004a), and made use of the fact that for Gaussian
noise Varfn2i ðrÞg ¼ 2s4.

Now we proceed to the calculation of the mean and variance of
the sums in the denominator of the cross-correlation coefficient
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E

8>>>><>>>>:
P

r2

�
�N

2;
N
2

�3

f 2i ðrÞ

9>>>>=>>>>;¼
X

r2

�
�N

2;
N
2

�3

E
n
f 2i ðrÞ

o
¼

X
r2

�
�N

2;
N
2

�3



x2ðrÞþs2

�

¼ðNþ1Þ3


s2s þs2

�
¼ðNþ1Þ3s2ðSNRþ1Þ;

(48)

where we have defined SNR ¼ s2
s

s2. For the variance we obtain
Var

8>>>>><>>>>>:
P

r2

�
�N

2;
N
2

�3

f 2i ðrÞ

9>>>>>=>>>>>;
¼

X
r2

�
�N

2;
N
2

�3

Var
n
f 2i ðrÞ

o
¼

X
r2

�
�N

2;
N
2

�3



2s4 þ 4x2ðrÞs2

�

¼ ðN þ 1Þ3


2s4 þ 4s2s s

2
�
¼ 2ðN þ 1Þ3s4ð1þ 2SNRÞ;

(49)
where we have assumed that

Cov
n
f 2i ðrÞ; f 2i



r
0�o ¼ 0: (50)

Again, as we discuss later, this assumption is not correct in the
case of the FSC because of the bandpass filter introduced by the
Fourier shells.

We may use the statistical properties of the expectation and vari-
ance of the product to compute the mean and variance of d, we have
Efdg ¼ ðN þ 1Þ6s4ð1þ SNRÞ2

Varfdg ¼ 2E2

8>>>>>><>>>>>>:
X

r2

�
�N

2;
N
2

�3

f 2i ðrÞ

9>>>>>>=>>>>>>;
Var

8>>>>>><>>>>>>:
X

r2

�
�N

2;
N
2

�3

f 2i ðrÞ

9>>>>>>=>>>>>>;
þ Var2

8>>>>>><>>>>>>:
X

r2

�
�

¼ 2ðN þ 1Þ3s4ð1þ 2SNRÞ


2ðN þ 1Þ6s4ð1þ SNRÞ2 þ 2ðN þ 1

z4ðN þ 1Þ9s8ð1þ 2SNRÞð1þ SNRÞ2

E
n
NCCf1;f2

o
z

Efcgffiffiffiffiffiffiffiffiffiffiffi
Efdg

p ¼ ðN þ 1Þ3s2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1Þ6s4ð1þ SNRÞ2

q ¼ SNR
1þ SNR

Var
n
NCCf1;f2

o
z

�
1ffiffiffiffiffiffiffiffiffiffiffi
Efdg

p 	2

VarfDcg þ
 

Efcg
2ðEfdgÞ32

!2

VarfDdg ¼ ðN þ
ðN þ

4ðN þ 1Þ9s8ð1þ 2SNRÞð1þ SNRÞ2

¼ 1þ 2SNR

ðN þ 1Þ3ð1þ SNRÞ2
 
1þ SNR2

ð1þ SNRÞ2
!

Now, we note that c and d are narrowly distributed about their
means and making a Taylor expansion of the function cffiffi

d
p about the

means of c and d (there is a mistake in the Taylor expansion per-
formed by Saxton affecting the variance of NCCf1,f2, although it does
not affect the result without underlying signal):

NCCf1;f2 ¼
cffiffiffi
d

p z
Efcgffiffiffiffiffiffiffiffiffiffiffi
Efdg

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
Efdg

p Dc� Efcg
2ðEfdgÞ32

Dd (52)
Note that this expansion is linear in Dc and Dd. We can
approximate the variance of the correlation coefficient considering
that E{Dc} ¼ E{Dd} ¼ 0, Var{Dc} ¼ Var{c} and Var{Dd} ¼ Var{d}
N
2;

N
2

�3

f 2i ðrÞ

9>>>>>>=>>>>>>;
Þ3s4ð1þ 2SNRÞ

�
(51)

1Þ3s4ð2SNRþ 1Þ
1Þ6s4ð1þ SNRÞ2

þ

0BB@ ðN þ 1Þ3s2s
2


ðN þ 1Þ6s4ð1þ SNRÞ2

�3
2

1CCA
2

(53)
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For high SNR values we have

Var
n
NCCf1;f2

o
z

2

ðN þ 1Þ3SNR
(54)

while for low SNR values or in the case of absence of signal we have

Var
n
NCCf1;f2

o
z

1

ðN þ 1Þ3
(55)

Note that these results were obtained for the normalized
cross-correlation in real-space between two independent,
noisy observations of a zero-mean map. The map is
supposed to be of size (N þ 1)3 voxels, and it is assumed
that neighbouring voxels in the map are uncorrelated
(Covff1ðrÞf2ðrÞ; f1ðr0 Þf2ðr0 Þg ¼ Covff 2i ðrÞ; f 2i ðr

0 Þg ¼ 0). The SNR used
in this case is the SNR of the map in real space.

The symmetry effects discussed by Orlova et al. (1997) are easily
introduced in this analysis. Symmetry relationships remove vari-
ance from the map since symmetrical voxels have exactly the same
value, andwemay get a better estimate by averaging the symmetric
coefficients. For this reason, the number of independent variables

drops from (N þ 1)3 (the total number of voxels) to ðNþ1Þ3
S where S is

the number of repetitions of the asymmetrical unit (e.g. for C5
symmetry S¼ 5, for D5 symmetry S¼ 10). In particular, under these
circumstances the variance of the cross correlation between two
symmetrical, noisy maps in the absence of signal is

Var
�
NCCn1;n2

�
z

S

ðN þ 1Þ3
: (56)

The variance of the correlation between two random maps has
been used as a threshold for the FSC substituting the number of
voxels (N þ 1)3 by the number of coefficients in the Fourier shell
jSðR;DRÞj. Then, the resolution is defined as that frequency at
which the FSC drops below a certain multiple of the standard de-
viation of the correlation without signal. This multiple depends on
the user and common values are 2 (Saxton and Baumeister, 1982;
van Heel and Stoffler-Meilicke, 1985), 3 (Orlova et al., 1997) and 5
(Radermacher, 1988). Choosing such a multiple could have been
avoided by using inferential statistics and the resolution could have
been defined as the frequency at which the hypothesis that the
observed correlation is not null or negative (one-sided hypothesis)
could not be rejected. Thanks to the large number of voxels
involved, Fisher's transformation of the correlation coefficient
(Fisher, 1915) is rather accurate and this hypothesis is rejected for
NCCf1 ;f2 >NCCn1 ;n2 ;a being

NCCn1;n2;a ¼ tanh

0B@ z1�affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1Þ3 � 3

q
1CAz

z1�a

ðN þ 1Þ32
; (57)

where tanh is the hyperbolic tangent, 1�a is a confidence level
(typically 95% or 99%), and z1�a is the 1�a percentil of a stan-
dardized Gaussian distribution. The final result is similar to the
current practice of choosing a multiple of the s curve, and still the
user has to choose a free parameter (the confidence level), but she
is within a most established framework. The 2s criterion proposed
by Saxton and Baumeister (1982) corresponds to a confidence level
of 97.7%, the 3s to 99.9%, and the 5s to 99.99997%.

However, there are more fundamental objections to the use of
Ks family of thresholds for the FSC. First, this result applies to
statistics with real numbers and not complex numbers; therefore,
the variance is using the number of voxels in real space, and not the
number of Fourier coefficients in a Fourier Shell. Second, the
bandpass filter interpretation of the FSC discussed in this paper
introduces a significant correlation between adjacent voxels in
real-space which invalidates all the results.

In the following paragraphs, let us derive a similar result for the
case of the FSC explicitly considering the filter introduced by the
Fourier shell. Let the two maps in real space be written in vector
form as F1 ¼ X þ N1 and F2 ¼ X þ N2. These two maps are the
reconstructed maps before applying the filter imposed by the
Fourier shell. F1 and F2 are assumed to be distributed as a multi-
variate normal whose mean is X and whose covariance matrix is
S ¼ s2I, being I an identity matrix whose rank is the number of
voxels in the map. Let be C the filter matrix bandpass transforming
the input map Fi, the output of the filter is therefore ~Fi ¼ CFi. C is
the convolution matrix of an even filter (due to the Fourier shell
symmetry), therefore, Ct ¼ C (Ohm, 2004). The Frobenius norm of a

matrix is defined as kAk2 ¼ TrfAtAg where Tr{A} is the trace of
matrix A and can be understood as a quantity related to the energy
of filter A. ~Fi is distributed as amultivariate Gaussianwhosemean is
CX and whose covariance matrix is s2CCt ¼ s2C2. In this notation

c ¼ ~F
t
1
~F2 and d ¼ ~F

t
1
~F1~F

t
2
~F2 (these represent similar quantities as

the c and d analyzed in Eq. (40)). Let us rederive the expected values
and variances of c and d making use of the following properties for
independent random vectors A and B (Brown and Rutemiller, 1977)

E
�
AtB

� ¼ mt
AmB

Var
�
AtB

� ¼ mt
ASBmA þ mt

BSAmB þ TrfSASBg
(58)

Applying these properties we have

Efcg ¼ E
n
~F
t
1
~F2
o
¼ XtC2X ¼ jjCXjj2

Varfcg ¼ Var
n
~F
t
1
~F2
o
¼ 2s2XtC2Xþ s4Tr

n
C4
o

¼ 2s2jjCXjj2 þ s4
������C2

������2
(59)

Since the Fourier Shell is a binary mask in Fourier space, we can
apply the same filter several times without changing the result, i.e.,
C2 ¼ C. If we define the SNR after applying the bandpass filter as

SNRC ¼ jjCXjj2
s2jjCjj2

; (60)

then we can rewrite

Varfcg ¼ s4jjCjj2ð2SNRC þ 1Þ: (61)

Note that if no filter is applied C ¼ I, these expressions simplify
to the ones we already derived in the case of independent noise.
Note that at this moment we are not saying that SNRC¼ SSNR(R,DR),
we will study this relationship in the next paragraphs.

For the mean and variance of d we need first the mean and

variance of the terms ~F
t
i
~Fi. Since ~Fi are normally distributed, then

~F
t
i
~Fi follows a non-central, (N þ 1)3-dimensional Wishart distribu-

tion with non-centrality parameter G ¼ XtXðs2CÞ�1, 1 degree of
freedom and covariance matrix s2C (Timm, 2002). Its mean and
variance are (Brown and Rutemiller, 1977)

E
n
~F
t
i
~Fi
o
¼XtCtCXþs2Tr

�
CCt�¼jjCXjj2þs2kCk2

¼s2kCk2ð1þSNRCÞ
Var

n
~F
t
i
~Fi
o
¼4s2XtCtCCtCXþ2s4Tr

�
CCtCCt�

¼4s2jjCXjj2þ2s4jjCjj2¼2s4kCk2ð1þ2SNRCÞ

(62)
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Now, we can compute the mean and variance of d applying the
standard rules of the variance of the product of two random
variables

Efdg ¼ s4jjCjj4ð1þ SNRCÞ2
Varfdg ¼ 4s8kCk6ð1þ SNRCÞ2ð1þ 2SNRCÞ

(63)

Let us analyze the mean of the FSC

EfFSCg¼E
n
NCCf1;f2

o
¼E



cffiffiffi
d

p
�
z

Efcgffiffiffiffiffiffiffiffiffiffiffi
Efdg

p ðEq:ð53ÞÞ

¼ kCXk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4kCk4ð1þSNRCÞ2

q ¼ jjCXjj2
s2kCk2ð1þSNRCÞ

¼ SNRC
1þSNRC

ðEq:ð60ÞÞ

(64)

where we have made use of the results from Eqs. (53) and (60). If
we now solve for SNRC is this latter equation we have

SNRCz
EfFSCg

1� EfFSCg (65)

We may also analyze the variance of the FSC
VarfFSCg ¼ Var
n
NCCf1 ;f2

o
¼ Var



cffiffiffi
d

p
�

z

�
1ffiffiffiffiffiffiffiffiffiffiffi
Efdg

p 	2

VarfDcg þ
 

Efcg
2ðEfdgÞ32

!2

VarfDdg ðEq:ð53ÞÞ

¼ 1

s4jjCjj4ð1þ SNRCÞ2


s4kCk2ð1þ 2SNRCÞ

�
þ



kCXk2

�2
4


s4kCk4ð1þ SNRCÞ2

�3 
4s8kCk6ð1þ SNRCÞ2ð1þ 2SNRCÞ
�

¼ ð1þ 2SNRCÞ
kCk2ð1þ SNRCÞ2

þ kCXk4ð1þ 2SNRCÞ
s4jjCjj6ð1þ SNRCÞ4

¼ ð1þ 2SNRCÞ
jjCjj2ð1þ SNRCÞ2

 
1þ kCXk4

s4kCk4ð1þ SNRCÞ2
!

¼ ð1þ 2SNRCÞ
kCk2ð1þ SNRCÞ2

 
1þ SNR2C

ð1þ SNRCÞ2
!

(66)
If we now substitute SNRC by its value as a function of E{FSC} (Eq.
(65))
VarfFSCgz
1þ 2

EfFSCg
1� EfFSCg

kCk2
�
1þ EfFSCg

1� EfFSCg
	2

0@1þ

�
EfFSCg

1� EfFSCg
	2

�
1þ EfFSCg

1� EfFSCg
	2

1A ¼ 1� E4fFSCg
kCk2

(67)
that is significantly different from the variance given in Penczek
(2002), which was based directly on the variance of the cross-
correlation coefficient between two images derived by Saxton
(1978)[p. 209]; however, as we have already shown along this
article real space relationships cannot be transferred to Fourier
space in a straightforward way. In our derivation we have made
used of a Taylor expansion of order 0, meaning that the so much
advocated relationship between the FSC and the SSNR in EM holds
only after an approximation of order 0 and the assumption of two
independent reconstructions. Under these conditions, as we show,
the variance of the FSC is rather different from the results currently
used in the field.

In the previous paragraphs we have proved that Eqs. (38) and
(39) extend to Fourier space as long as C is an even filter (this is
true for a pointwise filter, Eq. (38), and for the Fourier shell, Eq.
(39)). However, the SNRC, Eq. (60) in the formula must be under-
stood as the SNR of the map after filtering both, signal and noise,
with the filter C. Note that the SNRC is defined as the ratio of energy
of the signal over the energy of noise. Energies are dependent on
the number of voxels of the corresponding signal. This dependence
is pretty obvious in the denominator (s2 k Ck2Þ. In the case that

there is no filtration, then C ¼ I and kCk2 ¼ ðN þ 1Þ3. If there is a

filtration, then jjCjj2 is the energy of the filter. Thanks to the
orthogonality of the Fast Fourier Transform, the energy of the filter
in real-space is the same as in Fourier's space (Bracewell, 1986),
therefore, if the filter is binary in Fourier space (as is the case of the

Fourier shell or a pointwise filter), then kCk2 corresponds to the
number of voxels within the filter.
Note that our assumptions are that the filter is binary in Fourier

space and that the noise added to themap observations is Gaussian,
zero-mean, independent and identically distributed over voxels.
We do not assume stationarity, whiteness or zero-mean of the
underlying map.
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One of themost interesting features of this expression is that the
variance of the cross-correlation of filtered noisy maps depend on
the filter, i.e., on the exact shape of the Fourier shells. In this way,
resolution thresholds based on the expected variance of noise
correlations can be altered arbitrarily simply by choosing different
widths of the Fourier shells. Let us analyze now the thresholdsmost
widely used in the EM field.

One of the most widely used thresholds for the FSC is 0.5
(Harauz and van Heel, 1986; B€ottcher et al., 1997) which is based on
Eq. (32) and the threshold SNR ¼ 1 (as much noise as signal).
However, as we have discussed in this section this really corre-
sponds to SNRC ¼ 1. Another argument for the 0.5 FSC threshold has
been provided based directly on the FSC formula (Eq. (2))
(Rosenthal and Henderson, 2003). If we assume that
F1(R) ¼ X(R) þ N1(R) and F2(R) ¼ X(R) þ N2(R). Assuming inde-
pendent, zero-mean noise realizations, then it was argued
(Rosenthal and Henderson, 2003) that
EfFSCðR;DRÞg ¼ E

8>>>>>>>>><>>>>>>>>>:

P
R2SðR;DRÞ

ðXðRÞ þ N1ðRÞÞðXðRÞ þ N2ðRÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P
R2SðR;DRÞ

���XðRÞ þ N1ðRÞ
���2
1A0@ X

R2SðR;DRÞ

���XðRÞ þ N2ðRÞ
���2
1A

vuuut

9>>>>>>>>>=>>>>>>>>>;

¼

P
R2SðR;DRÞ

E
n���XðRÞ���2o

P
R2SðR;DRÞ

E
���X2ðRÞ þ N2ðRÞ

���o

(68)
and that when Ef
���XðRÞ���2g ¼ Ef

���NðRÞ���2g, then FSC ¼ 0.5. Although

the mathematical derivation of this conclusion is significantly
simplified, the conclusion is correct. A more precise derivation
follows:

EfFSCðR;DRÞgz Efcg
E
n ffiffiffi

d
p o¼ jjCXjj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s4jjCjj4ð1þSNRCÞ2
q

¼ jjCXjj2
s2kCk2ð1þSNRCÞ

¼ jjCXjj2
jjCXjj2þs2jjCjj2

(69)

Assuming a white spectrum for X and thanks to Placherel's

theorem, we can write kCXk2¼kCk2s2s , and therefore

EfFSCðR;DRÞg ¼ s2s
s2s þ s2

(70)

For s2s ¼ s2, we have E{FSC(R,DR)} ¼ 0.5. The most important
consequence of this digression is that the 0.5 threshold used in the
field is assuming that the power spectrum of the macromolecule is
flat, which is clearly not the case in reality.

Rosenthal and Henderson (2003) also proposed a threshold of
1/3 to account for the fact that the FSC is normally computed
from two maps, each one computed with half of the data,
therefore the SNR is divided by 2 and the expected value of the
FSC would be

EfFSCðR;DRÞgz SNRðhalf ÞC

1þ SNRðhalf ÞC

¼
SNRðfullÞC

2

1þ SNRðfullÞC
2

¼ SNRðfullÞC

2þ SNRðfullÞC

(71)

for SNRðfullÞC ¼ 1we obtain a threshold of 1/3. If wewant to relate the
observed FSC with the FSC that would be observed by using the full
dataset, then we may use the relationship

E
n
FSCðfullÞðR;DRÞ

o
z

SNRðfullÞC

1þ SNRðfullÞC

(72)

yielding
EfFSCðR;DRÞgz
E
n
FSCðfullÞðR;DRÞ

o
2� E

�
FSCðfullÞðR;DRÞ

o : (73)

or equivalently as stated in Rosenthal and Henderson (2003).

E
n
FSCðfullÞðR;DRÞ

o
z

2EfFSCðR;DRÞg
1þ EfFSCðR;DRÞg (74)

An important difference between our derivation and that in
Rosenthal and Henderson (2003) is that in our derivation it is
clear that this relationship is only approximate (it appears as a
consequence of a zeroth-order Taylor expansion), while in
Rosenthal and Henderson (2003) it is presented as an accurate
relationship.

The 0.143 threshold proposed by Rosenthal and Henderson
(2003) is based on the correlation between the perfect (un-
known) map x(r) and the map computed from the full dataset.
Again, their derivation can be made more rigorous. Assuming
f1(r)¼ x(r)þ n1(r) and f2(r)¼ x(r) and repeating our analysis for this
particular case, we have
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Efcg ¼ kCXk2

E
n
~F
t
1
~F1
o
¼ kCXk2 þ s2

2
jjCjj2

E
n
~F
t
2
~F2
o
¼ jjCXjj2

Efdg ¼
�
kCXk2 þ s2

2
jjCjj2

	
kCXk2

E
n
FSCref ðR;DRÞ

o
z

Efcgffiffiffiffiffiffiffiffiffiffiffi
Efdg

p ¼ kCXk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kCXk2 þ s2

2
jjCjj2

	
jjCXjj2

s

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2SNRC

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SNRC

2SNRC þ 1

s

(75)

Substituting SNRC by its relationship to the FSC between two
halves (Eq. (65)), we have

E
n
FSCref ðR;DRÞ

o
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EfFSCg

1þ EfFSCg

s
(76)

as was also stated in Rosenthal and Henderson (2003), although in
our derivation we have highlighted the approximate nature of this
relationship. The FSC value between two halves that makes
EfFSCref ðR;DRÞg ¼ 1

2 is EfFSCg ¼ 1
7z0:143.

Other thresholds have been proposed for the FSC based on in-
formation theory (van Heel and Schatz, 2005). The idea is to define
the resolution as that frequency at which the Fourier coefficients
carry 1 or 0.5 bits of information as defined by Shannon. Shannon's
theorem on channel capacity relates the maximum channel ca-
pacity in bits to the SNR through

C ¼ log2ð1þ SNRÞ (77)

A channel capacity of 1 bit corresponds to SNR¼ 1 and a channel
capacity of 0.5 bits corresponds to SNR ¼ 0.4142. Again the user is
left to the choice of an appropriate threshold. The choice SNR¼ 1 (1
bit) seems to be more natural than SNR ¼ 0.4142, and there is no
theoretical justification to this latter choice. Additionally, it should
be noted that the analysis (van Heel and Schatz, 2005) is performed
using real-valued statistics instead of complex statistics which in-
validates all the mathematical derivations for the FSC in Fourier
space. Finally, one of the keystones of their reasoning is

Efn1ðRÞn2ðRÞgz
s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jSðR;DRÞjp (78)

which is incorrect for independent random, zero-mean signals.
6. On the relationship of the FSC and the SSNR

Let us study now the relationship between the FSC and the
SSNR. From Eq. (23) we see that����SðR;DRÞ����XðRÞ��2

EfjNkðRÞj2g
K

¼ K
��SðR;DRÞ��SSNRðR;DRÞ (79)

From where solving for SSNR(R,DR) we have
SSNRðR;DRÞ¼

���XðRÞ���2
E
n���NkðRÞ

���2o¼
1

jSðR;DRÞj
X

R2SðR;DRÞ

���XðRÞ���2
E
n���NkðRÞ

���2o

¼

P
R2SðR;DRÞ

���XðRÞ���2��SðR;DRÞ��s2 ¼ kCXk2
s2kCk2

¼SNRðfullÞC

(80)

This result states that the SSNR(R,DR) can be calculated as the
SNR within the binary filter C when all the data available has been
used (remind that this binary filter C is the result of summing over
shells as we discussed in Section 2). If two independent re-
constructions are performed using two halves of the data, then the
SSNR(R,DR) is double than the SNR of each one of the two halves

SSNRðR;DRÞ ¼ 2SNRC (81)

Note that this SSNR is the average SSNR along a Fourier shell
before the averaging due to the 3D reconstruction takes place.
When we do this averaging and K coefficients from the images are
combined into a single 3D Fourier coefficient, then, the SSNR after

averaging is given by dSSNRðR;DRÞ (Eq. (25)). The expected value of
the SSNR after 3D reconstruction is (see Eqs. (24) and (25))

E
n dSSNRðR;DRÞo ¼ EfFðR;DRÞ � 1g ¼ K$SSNRðR;DRÞ

¼ 2K$SNRC
(82)

From where

SNRC ¼
E
n dSSNRðR;DRÞo

2K
(83)

We saw in Eq. (64) that

EfFSCðR;DRÞgz SNRC
1þ SNRC

¼
E
n dSSNRðR;DRÞo

2K þ E
n dSSNRðR;DRÞo (84)

In Penczek (2002) it is argued that

EfFSCðR;DRÞg ¼
E
n dSSNRðR;DRÞo

1þ E
n dSSNRðR;DRÞo : (85)

Note that as defined in Penczek (2002) and Unser et al. (2005),
the number of coefficients averaged at each Fourier location is
variable. On average, for an even angular distribution of projections,
all the coefficients within a Fourier shell should get a similar
amount of coefficients to be averaged and we might talk of K(R,DR)
instead of a single K for all coefficients. However, for uneven
angular distributions, this relationship is not so straightforward
since each Fourier location has its own K. The problem with the
equation above (Eq. (9) of Penczek (2002)) is that when the rela-
tionship between FSC and SSNR is carried over to 3D, the number of
2D Fourier coefficients from the projections affecting a single 3D
Fourier coefficient is not the total number of images divided by 2,
but a number that depends on each coefficient, or in a simplifica-
tion, of its shell.

7. On the Fourier Neighbour Correlation

Sousa and Grigorieff (2007) introduced the interesting concept
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of the Fourier Neighbour Correlation (FNC). The idea is to analyze
the local correlation of neighbouring Fourier coefficients. Although
similar in definition to the FSC, the FNC is different in the sense that
it does not need to split the dataset in two, instead the resolution is
estimated through the local correlation of Fourier coefficients. This
correlation is caused by a mask in the real-space domain. Let us
analyze this method here.

Let us consider a map whose Fast Fourier transform is F(R). If we
mask this map in real space, its Fourier components are circularly
convolved (represented by the ⊛ operator) with the Fourier
transform of the mask to give

FMðRÞ ¼ FðRÞ⊛MðRÞ (86)

The FNC is defined as
FNCðR;DRÞ ¼

P
R2SðR;DRÞ

P
R

0
2NðRÞ

FMðRÞF�M
�
R

0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P

R2SðR;DRÞ

P
R

0
2NðRÞ

���FMðRÞ
���2! P

R2SðR;DRÞ

P
R

0
2NðRÞ

���FMðR0 Þ
���2!

vuut ; (87)
where N(R) are the Fourier locations that are neighbour to a given
location R. Assuming that each Fourier location has the same
number of Fourier neighbours (this number is set to 6 in Sousa and
Grigorieff (2007)), we can rewrite the FNC as
FNCðR;DRÞ ¼

P
R2SðR;DRÞ

FMðRÞ
 P

R
0
2NðRÞ

F�M
�
R

0�!
ffiffiffiffiffiffiffiffiffiffiffiffiffijNðRÞjp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P

R2SðR;DRÞ

���FMðRÞ
���2! P

R2SðR;DRÞ

P
R

0
2NðRÞ

���FMðR0 Þ
���2!

vuut : (88)
This is pretty similar to the FSC between the maps F1(R) ¼ FM(R)

and F2ðRÞ ¼
P

R
0
2NðRÞ

FMðR0 Þ. However, the FNC is not an FSC since

the denominator uses
P

R2SðR;DRÞ

P
R

0
2NðRÞ

���FMðR0 Þ
���2 which is not

P
R2SðR;DRÞ

����� P
R

0
2NðRÞ

FMðR0 Þ
�����
2

that is what is needed for the FSC.

Assuming that within a thin shell
���FMðR0Þ

���2z���FMðRÞ
���2, we have that

X
R2SðR;DRÞ

X
R

0
2NðRÞ

���FM
R0����2z���NðRÞ��� X
R2SðR;DRÞ

���FMðRÞ
���2: (89)

Then, we can rewrite again the FNC as
FNCðR;DRÞz

P
R2SðR;DRÞ

FMðRÞ
�

1
jNðRÞj

P
R02NðRÞF�M
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R

0�	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P

R2SðR;DRÞ

���FMðRÞ
���2! P

R2SðR;DRÞ

���FMðRÞ
���2!

vuut
(90)

that is approximately the FSC between FM(R) and amapwhere each
Fourier coefficient has been substituted by a local average of its
neighbours.

We can now perform an analysis similar to the one we per-
formed in the case of the FSC by expressing the maps involved as
vectors. Let F be the vector of voxel values in the original observed
map in real space. Let FM the masked map. Note that we can obtain
FM from F by a simple multiplication by a diagonal matrix M rep-
resenting the mask FM ¼MF (the elements of this matrix are either
0 or 1 depending on whether a given voxel is masked out or not).
The first map involved in the FSC is simply F1¼ FM. We observe that
the second map is a local average in Fourier space, which can be
achieved by the convolution with an averaging kernel. Convolving
in Fourier space is equivalent to multiplying by a mask in real-
space. Therefore, F2 ¼ AFM where A is a diagonal matrix repre-
senting the mask in real-space.

If we now assume that F is normally distributed with mean X
and covariance matrix s2I, then F1 is normally distributed with
mean MX and covariance matrix s2MMt ¼ s2M. Similarly, F2 is
normally distributed with mean AMX and covariance matrix
s2AMMtAt ¼ s2A2M. After filtering through the Fourier shells, we
have that ~F1 ¼ CF1 is normally distributed with mean equal to MX
and covariance matrix s2CMCt ¼ s2CMC, while ~F2 ¼ CF2 is normally
distributed with mean equal to CAMX and covariance matrix
s2CA2MCt ¼ s2CA2MC.

The expected value of the numerator ~F
t
1
~F2 is
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E
n
~F
t
1
~F2
o
¼ E

n
ðCMðXþNÞÞtðCAMðXþNÞÞ

o
¼ XtMtCtCAMXþ E

�
NtMtCtCAMN

�
¼ XtMCAMXþ E

�
NtMCAMN

�
¼ jjXjj2MCAM þ s2TrfMCAMg;

(91)

where kXk2W ¼ XtWX denotes the Euclidean-weighted norm with
weight matrix W.

For the mean of the denominator of the FNC we need the mean

of ~F
t
1
~F1. Since ~F1 is normally distributed, then ~F

t
1
~F1 follows a non-

central, (N þ 1)3-dimensional Wishart distribution with non-

centrality parameter G ¼ XtMXðs2CMCÞ�1, 1 degree of freedom
and covariance matrix s2CMC (Timm, 2002). Its mean is (Brown
and Rutemiller, 1977)

E
n
~F
t
1
~F1
o
¼ XtMtCtCMXþ s2TrfCMCg ¼ jjXjj2MCM þ s2jjCMjj2

(92)

Finally, the expected value of the FNC is

EfFNCðR;DRÞg ¼
E
n
~F
t
1
~F2
o

E
n
~F
t
1
~F1
o ¼ jjXjj2MCAM þ s2TrfMCAMg

kXk2MCM þ s2TrfMCMg
(93)

As we can see, it is difficult to relate this quantity to a SNR since
the measure functions used in the numerator and denominator are
different due to the matrix A (the local averaging operator in
Fourier space).

Sousa and Grigorieff (2007) define FNCF as the FNCwhen there is
no noise and FNCN as the FNC when there is no signal. By simply,
substituting we get the expected values at each frequency

FNCFðR;DRÞ ¼
jjXjj2MCAM

kXk2MCM

FNCNðR;DRÞ ¼
TrfMCAMg
TrfMCMg :

(94)

As expected, they depend on the averaging operator, the mask and
the shape of the Fourier shell. We have been unable to justify the
relationship given in Sousa and Grigorieff (2007).
pDqiðRÞðDqiðRÞÞ ¼
1
2p

e�
jXðRÞj2

s2

 
1þ 2

jXðRÞj
s

ffiffiffi
p

p
cosðDqiðRÞÞe

jXðRÞj2cos2ðDqi ðRÞÞ
s2 Q

 ffiffiffi
2

p ���XðRÞ���cosðDqiðRÞÞ
s

!!
(98)
FNCðR;DRÞzFNCFðR;DRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNRðR;DRÞSNR0 ðR;DRÞ þ FNCNðR;DRÞ
ðSNRðR;DRÞ þ 1ÞðSNR0 ðR;DRÞ þ 1Þ

s
(95)

being SNR
0 ðR;DRÞ the SNR of a Fourier shell as estimated by the

neighbours of the coefficients in that shell.
8. On the distribution of the DPR

The differential phase residual (DPR) has also been introduced in
the field (Frank et al., 1981; Penczek et al., 1994) as a measure of
resolution. The resolution is defined as the frequency at which the
differential phase residual goes above 45+. In this section we will
explore the meaning and distribution of the DPR.

Let us consider two independent, noisy observations of the
same map in Fourier space: F1(R) ¼ X(R) þ N1(R) and
F2(R) ¼ X(R) þ N2(R). The DPR is defined as

DPRðR;DRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
R2SðR;DRÞ

ðjF1ðRÞj þ jF2ðRÞjÞð;fF1ðRÞ; F2ðRÞgÞ2P
R2SðR;DRÞ

ðjF1ðRÞj þ jF2ðRÞjÞ

vuuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
R2SðR;DRÞ

wðRÞð;fF1ðRÞ; F2ðRÞgÞ2
r

;

(96)

where ;fA;Bg is the angle between the complex numbers A and B

andwðRÞ ¼ jF1ðRÞjþjF2ðRÞjP
R2SðR;DRÞ

ðjF1ðRÞjþjF2ðRÞjÞ is aweight defined for each location.

Note that
P

R2SðR;DRÞ
wðRÞ ¼ 1, so the DPR is a squared weighted

average of the angle difference between F1(R) and F2(R) at each
Fourier coefficient within a shell. In the absence of noise, the phase
difference between these two complex numbers is 0+. In the
absence of signal, assuming that N1(R) and N2(R) are Gaussian,
randomly distributed, then the phase difference is uniformly
distributed within �180+ and 180+.

Let us study the mean and variance of
;fF1ðRÞ; F2ðRÞg ¼ ;fF1ðRÞg �;fF2ðRÞg (for simplifying the no-
tation let us rewrite this phase difference as Dq12(R)¼ q1(R)�q2(R)).
For this we need the distribution of

qiðRÞ ¼ tan�1ImfXðRÞg þ ImfNiðRÞg
RefXðRÞg þ RefNiðRÞg

: (97)

This problem is known in communications as the one of a si-
nusoidal corrupted by narrow-band gaussian noise (Lathi, 1998)
and its solution gives a probability density function for the phase
difference between Fi(R) and X(R), DqiðRÞ ¼ ;fFiðRÞg �;fXðRÞg,
being Dqi(R)2[�p,p] and QðxÞ ¼ 1ffiffiffiffiffi
2p

p
R x
�∞ e�t2

2 dt. The statistical

moments of this distribution do not yield an easy analytical formula
(although can be numerically evaluated), and in this paper we will
study its distribution in two limiting cases: no signal and high SNR.

When there is no signal jXðRÞj ¼ 0, this distribution simplifies to

pDqiðRÞðDqiðRÞÞ ¼
1
2p

(99)

i.e., a continuous uniform distribution whose mean and variance
are
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EfqiðRÞg ¼ EfDqiðRÞg ¼ 0

VarfqiðRÞg ¼ VarfDqiðRÞg ¼ p2

3
:

(100)

When the SNR is high jXðRÞj[s, the distribution simplifies to

pDqiðRÞðDqiðRÞÞ ¼
1ffiffiffi
p

p jXðRÞj
s

cosðDqiðRÞÞe�
jXðRÞj2

s2
ð1�cos2ðDqiðRÞÞÞ:

(101)

Taking into account that Dqi(R) is small (since the signal is much
larger than the noise), then

pDqiðRÞðDqiðRÞÞz
1ffiffiffi
p

p jXðRÞj
s

e�
jXðRÞj2

s2
ðDqiðRÞÞ2

¼ 1ffiffiffiffiffiffi
2p

p sffiffiffi
2

p ���XðRÞ���
e

�1
2

0@ DqiðRÞ
sffiffi

2
p jXðRÞj

1A2

;

(102)

i.e., the phase noise is approximately normally distributed. Its mean
and variance are

EfDqiðRÞg ¼ 0

VarfDqiðRÞg ¼ s2

2
���XðRÞ���2 ¼ 1

2SNRðRÞ :
(103)

and those of qi(R)

EfqiðRÞg ¼ Ef;fXðRÞg þ DqiðRÞg ¼ ;fXðRÞg

VarfqiðRÞg ¼ VarfDqiðRÞg ¼ 1
2SNRðRÞ :

(104)

We can nowproceedwith the distribution of Dq12(R). In the case
of no signal, this difference is again uniformly distributed
between�p and p and its mean and variance are already computed
in Eq. (100). In the case of large SNR and assuming independent
noise observations, it gives a normal distribution with parameters

EfDq12ðRÞg ¼ 0

VarfDq12ðRÞg ¼ 1
SNRðRÞ :

(105)

Finally, the distribution of (Dq12(R))2 in the case of no signal is
the distribution of the squared of a uniform variable. (Dq12(R))2 is
distributed between 0 and p2 and its probability density function is

pðDq12ðRÞÞ2ðxÞ ¼
1
2p

1ffiffiffi
x

p : (106)

Its mean and variance are

E
n
ðDq12ðRÞÞ2

o
¼ p2

3

Var
n
ðDq12ðRÞÞ2

o
¼ 4p4

45
:

(107)

In the case of large SNR, SNR(R)(Dq12(R))2 is distributed as c2

with one degree of freedom (whose mean and variance are 1 and 2,
respectively), therefore
E
n
ðDq12ðRÞÞ2

o
¼ 1

SNRðRÞ

Var
n
ðDq12ðRÞÞ2

o
¼ 2

SNR2ðRÞ :
(108)

We next need the distribution of the terms jFiðRÞj. This distri-
bution is well known in Statistics and is called Rice distribution
(Lathi, 1998). In our case its parameters are jXðRÞj and s2/2. The
mean and variance of jFiðRÞj are

EfjFiðRÞjg ¼ s
ffiffiffi
p

p
2

L1
2
ð�SNRðRÞÞ

VarfjFiðRÞjg ¼ s2


1þ SNRðRÞ � p

4
L21
2
ð�SNRðRÞÞ

�
;

(109)

where L1
2
ðxÞ is the Laguerre polynomial of degree ½. In case of no

signal SNR(R) ¼ 0 and L1
2
ð0Þ ¼ 1, and the Rice distribution is called

Rayleigh distribution.
The distribution of jF1ðRÞj þ jF2ðRÞj has no specific name and its

probability density function is the convolution of two Rice distri-
butions. We may compute its mean and variance using the prop-
erties in Eq. (41) and assuming independence between the two
noisy observations

EfjF1ðRÞj þ jF2ðRÞjg ¼ s
ffiffiffi
p

p
L1
2
ð�SNRðRÞÞ

VarfjF1ðRÞj þ jF2ðRÞjg ¼ 2s2


1þ SNRðRÞ � p

4
L21
2
ð�SNRðRÞÞ

�
:

(110)

Let us now compute the mean of the terms

ðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2. For this we make use of the fact that
jF1ðRÞj þ jF2ðRÞj and (Dq12(R))2 are independent of each other

E
n
ðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2

o
¼ EfjF1ðRÞj þ jF2ðRÞjgE

n
ðDq1ðRÞÞ2

o
(111)

In the case of no signal this gives

E
n
ðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2

o
¼ 2

s
ffiffiffi
p

p
2

p2

3
¼ sp2 ffiffiffi

p
p
3

(112)

While in case of large SNR

E
n
ðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2

o
¼ s

ffiffiffi
p

p
L1
2
ð�SNRðRÞÞ 1

SNRðRÞ
(113)

Let us now compute the variance of the terms

ðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2.

Var
n
ðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2

o
¼ E

n
ðjF1ðRÞj þ jF2ðRÞjÞ2ðDq12ðRÞÞ4

o
� E2

n
ðjF1ðRÞj þ jF2ðRÞj

� ÞðDq12ðRÞÞ2
o

(114)

The module of Fi(R) and its phase are independent, therefore, in
the case there is no signal present we get
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Var
n
ðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2

o
¼ E

n
ðjF1ðRÞj þ jF2ðRÞjÞ2

o
E
n
ðDq12ðRÞÞ4

o
�
�
sp2 ffiffiffi

p
p
3

	2

(115)

On one side we have
g

Var
n
ðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2

o
¼ s2

�
2þ 2SNRðRÞ þ 3p

4
L21
2
ð�SNRðRÞÞ

	
3

SNR2ðRÞ �
�
s
ffiffiffi
p

p
L1
2
ð�SNRðRÞÞ 1

SNRðRÞ
	2

¼ s2

SNR2ðRÞ

�
6þ 6SNRðRÞ � 5p

4
L21
2
ð�SNRðRÞÞ

	 (122)
E
n
ðjF1ðRÞjþjF2ðRÞjÞ2

o
¼E2fjF1ðRÞjþjF2ðRÞjgþVarfjF1ðRÞjþjF2ðRÞj

¼�s ffiffiffi
p

p �2þ2s2


1�p

4

�
¼s2



2þp

2

�
(116)

On the other side, Dq12(R) is uniformly distributed between �p

and p, thus, E{(Dq12(R))4} is the fourth moment of the uniform
distribution

E
n
ðDq12ðRÞÞ4

o
¼ p4

5
(117)

Summarizing

Var
n
ðjF1ðRÞjþ jF2ðRÞjÞðDq12ðRÞÞ2

o
¼s2



2þp

2

�p4

5
�
�
sp2 ffiffiffi

p
p
3

	2

¼ s2p4
�
2
5
� p

90

	
(118)

Repeating the same analysis with large SNR

Var
n
ðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2

o
¼ E

n
ðjF1ðRÞj þ jF2ðRÞjÞ2

o
E
n
ðDq12ðRÞÞ4

o
�
�
s
ffiffiffi
p

p
L1
2
ð�SNRðRÞÞ 1

SNRðRÞ
	

(119)

On one side we have
E
n
ðjF1ðRÞj þ jF2ðRÞjÞ2

o
¼ E2fjF1ðRÞj þ jF2ðRÞjg þ VarfjF1ðRÞj þ jF2ðRÞjg

¼


s
ffiffiffi
p

p
L1
2
ð�SNRðRÞÞ

�2 þ 2s2


1þ SNRðRÞ � p

4
L21
2
ð�SNRðRÞÞ

�
¼ s2

�
2þ 2SNRðRÞ þ 3p

4
L21
2
ð�SNRðRÞÞ

	 (120)
On the other side,

E
n
ðDq12ðRÞÞ4

o
¼ E2

n
ðDq12ðRÞÞ2

o
þ Var

n
ðDq12ðRÞÞ2

o
¼ 1

SNR2ðRÞ þ
2

SNR2ðRÞ ¼
3

SNR2ðRÞ
(121)

Summarizing
We now turn our attention to the numerator of the DPR (for
notation simplification, let us call it c)

cðR;DRÞ ¼ P
R2SðR;DRÞ

ðjF1ðRÞj þ jF2ðRÞjÞð;fF1ðRÞ; F2ðRÞgÞ2:

(123)

It consists of the summation of jSðR;DRÞj random variables
whose mean and variance have been derived above. We will as-
sume a constant SNR within each shell. Then, for a sufficiently large
number of variables the central limit theorem is applicable (in EM
the number of Fourier coefficients in each shell is large enough for
this purpose). This theorem states that c is distributed as a normal
variable whose mean and variance are

EfcðR;DRÞg ¼
���SðR;DRÞ

���EnðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2
o

VarfcðR;DRÞg ¼
���SðR;DRÞ

���VarnðjF1ðRÞj þ jF2ðRÞjÞðDq12ðRÞÞ2
o

(124)

That is

EfcðR;DRÞg ¼
����SðR;DRÞ

����sp2 ffiffiffi
p

p

3

VarfcðR;DRÞg ¼
����SðR;DRÞ

����s2p4
�
2
5
� p

90

	 (125)

for the case without signal and
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EfcðR;DRÞg¼
����SðR;DRÞ

���� s
ffiffiffi
p

p
SNRðRÞL1

2
ð�SNRðRÞÞ

VarfcðR;DRÞg¼
����SðR;DRÞ

���� s2

SNR2ðRÞ

�
6þ6SNRðRÞ�5p

4
L21
2
ð�SNRðRÞÞ

	
(126)

for the case with large SNR.
The denominator of the DPR is

dðR;DRÞ ¼ P
R2SðR;DRÞ

ðjF1ðRÞj þ jF2ðRÞjÞ; (127)

and the central limit theorem can also be applied yielding

EfdðR;DRÞg ¼ ��SðR;DRÞ��s ffiffiffi
p

p

VarfdðR;DRÞg ¼
���SðR;DRÞ

���2s2
1� p

4

� (128)

for the case without signal and
EfDPRðR;DRÞg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfcðR;DRÞg
EfdðR;DRÞg

s

VarfDPRðR;DRÞg ¼ 1
4

1
EfcðR;DRÞgEfdðR;DRÞgVarfcðR;DRÞg þ

1
4

Efcð
E3fd

EfDPRðR;DRÞg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����SðR;DRÞ
����sp2 ffiffiffi

p
p

3��SðR;DRÞ��s ffiffiffi
p

p

vuuuut ¼ pffiffiffi
3

p

VarfDPRðR;DRÞg ¼ 1
4

1����SðR;DRÞ
����sp2 ffiffiffi

p
p

3

����SðR;DRÞ
����s ffiffiffi

p
p

�����SðR;DRÞ
�����s2p

¼ p

20jSðR;DRÞj
�
28
3

� p

	
:

EfdðR;DRÞg ¼
���SðR;DRÞ

���s ffiffiffi
p

p
L1
2
ð�SNRðRÞÞ

VarfdðR;DRÞg ¼
���SðR;DRÞ

���2s2
1þ SNRðRÞ � p

4
L21
2
ð�SNRðRÞÞ

�
(129)

for the case with large SNR.
To determine the mean and variance of the DPR we expand it in

Taylor series of first order around the means of c and d

DPRðR;DRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðR;DRÞ
dðR;DRÞ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfcðR;DRÞg
EfdðR;DRÞg

s

þ 1
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfcðR;DRÞgEfdðR;DRÞg

p DcðR;DRÞ

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfcðR;DRÞg
EfdðR;DRÞg

s
1

EfdðR;DRÞgDdðR;DRÞ: (130)

From this we can easily determine that
R;DRÞg
ðR;DRÞg

VarfdðR;DRÞg:
(131)
In the case of no signal we get
4
�
2
5
� p

90

	
þ 1
4

����SðR;DRÞ
����sp2 ffiffiffi

p
p

3���SðR;DRÞ��s ffiffiffi
p

p �3
�����SðR;DRÞ

�����2s2
1� p

4

�

(132)
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Interestingly the mean expected value in the absence of signal is
103.9+ and not 90+ as argued in Unser et al. (1987). Experimentally
this mean of 103.9+ and the variance decreasing with the shell
radius were observed in de la Fraga et al. (1995).

In case of large SNR
EfDPRðR;DRÞg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����SðR;DRÞ
���� s

ffiffiffi
p

p
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2
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vuuuuut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
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����2s2
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�

���SðR;DRÞ

���s ffiffiffi
p

p
L1
2
ð�SNRðRÞÞ

�3

¼
8þ 8SNRðRÞ � 3p

4
L21
2
ð�SNRðRÞÞ

4p
���SðR;DRÞ

���SNRðRÞL21
2
ð�SNRðRÞÞ

(133)
For setting the DPR threshold one is tempted of setting it for
SNR(R) ¼ 1 as EfDPRðR;DRÞg ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

SNRðRÞ
p ¼ 1ðradÞ ¼ 57:2+. Interest-

ingly, this value is not so far from the generally accepted threshold
at 45+ (Frank, 2006) although this latter threshold was intuitively
defined upon the behaviour of two sine waves. However, the
expectation of the DPR in the presence of signal was derived under
the assumption of large SNR, and SNR(R) ¼ 1 does not meet this
condition. Alternatively, we could set the threshold based on hy-
pothesis testing and the distribution of the DPR in the absence of
signal. The distribution of the DPR in this case is unknown,
although its first two moments (mean and variance) have been
derived. We may use Chebyshev's inequality which is valid for any
distribution

Pr

(�����DPRðR;DRÞ � EfDPRðR;DRÞg
����� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarfDPRðR;DRÞg

a

r )
� a

(134)

Therefore, wewould reject the hypothesis that there is no signal
if

DPRðR;DRÞ � pffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

20jSðR;DRÞja
�
28
3

� p

	s
; (135)

that is the threshold depends on the number of Fourier coefficients
in the shell and the confidence level, and it is expected to be lower
than 103.9+. Interestingly, the DPR equivalent of the 2s threshold
for the FSC (we already saw that this threshold is verymuch related
to hypothesis testing on the FSC) is about 85+ (Radermacher, 1988;
de la Fraga et al., 1995).
9. On the effects of alignment on resolution measures

Grigorieff (2000) pointed out an interesting effect on the reso-
lution measures when maps (or images) are aligned before
measuring the resolution. Let us assume that we observe two noisy
maps without any signal inside. We already saw (Eq. (55)) that the
correlation coefficient is distributed as a zero-mean Gaussian with
variance

Var
n
NCCf1;f2

o
z

1

ðN þ 1Þ3
(136)

The alignment explores a list of S possible shifts looking for the
best correlation coefficient. For simplicity let us consider the case of
cyclic shifts (whatever comes out on one side due to the shift comes
in from the other side; this is normally done for avoiding border
effects and does not modify the statistics of the correlation coeffi-
cient since the number of voxels being compared remains the
same). The problem is that, even if the cross correlation coefficient
is centered around 0, drawing S samples of this distribution and
taking its maximum may yield a relatively large value giving the
false impression of high-correlation. This is known in Statistics as
the distribution of the extreme values.

In Grigorieff (2000) it is argued that the asymptotic mean of the
maximum cross-correlation is

E


max
s2S

n
NCCf1ðrÞ;f2ðrþsÞ

o�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

n
NCCf1;f2

or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðjSjÞ

q
;

(137)

where r2ℝ3 is the spatial location within the map, s2ℝ3 is the
spatial shift, S is the set of possible shifts, and jSj is the number of
shifts in that set. The correct asymptotic mean is (Johnson et al.,
1994)



E


max
s2S

n
NCCf1ðrÞ;f2ðrþsÞ

o�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

n
NCCf1;f2

or
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2logðjSjÞ
p

� logðlogðjSjÞÞ þ logð4pÞ � 1:1544
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðjSjÞ

p !
;

(138)
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and its variance

Var


max
s2S

n
NCCf1ðrÞ;f2ðrþsÞ

o�
z Var

n
NCCf1;f2

o 1:64493
2logðjSjÞ :

(139)

The asymptotic mean can be bias corrected to account for the
fact that the number of shifts explored is finite (Petzold, 2000)

E


max
s2S

n
NCCf1ðrÞ;f2ðrþsÞ

o�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

n
NCCf1 ;f2

or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðjSjÞ

q
� logðlogðjSjÞÞ þ logð4pÞ � 1:1544

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðjSjÞ

p � 0:1727

�����S����0:2759
;

(140)

In fact, this result is extensible to shifts and rotations by simply
setting jSj to the total number of rigid transformations explored. Let
us give an example to get an idea of the order of magnitude of this
expected correlation coefficient. Let us consider a map of size 1013

voxels. In the worse case we could explore 1013 shifts. Let us as-
sume that we also explore for the best 3D rotation every Dq ¼ 0.5+.
An approximate number of rotation samples can be estimated as
follows (for a deeper analysis see Yershova and LaValle (2004)):
E


max
s2S

n
NCCf1ðrÞ;f2ðrþsÞ

o�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N þ 1

3
s  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2logðjSjÞ
q

� logðlogðjSjÞÞ þ logð4pÞ � 1:1544
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðjSjÞ

p � 0:1727

�����S����0:2759
!

¼ 0:0076 (142)
1. Let us consider 3D rotations as three Euler angles (a,b,g) in a
ZYZ-rotation convention (Frank, 2006)

2. Let us uniformly distribute the inclination angle, b, between
0+ and 90+. We get Nb ¼ 90/Dq samples in the hemisphere. This
is the number of circles parallel to the equator that we will
explore. The i-th circle is at an inclination bi ¼ iDq.

3. Within the i-th circle we take samples every Dai ¼ Dq/sin(bi).
This adaptive sampling produces more samples at the equator
and less samples at the poles. The total number of samples per
circle is Nai ¼ 360/Dai¼ 360/Dqsin(bi). At the pole bi¼ 0 and this
formula would give zero samples, and therefore we must add
two extra samples for considering the two poles.
4. The total count of samples in the sphere is twice that of the
number of samples in the hemisphere plus the two extra sam-
ples corresponding to the two poles

Na;b ¼ 2þ 2
XNb

i¼0

Nai ¼ 2þ 2
360
Dq

XNb

i¼0

sinðiDqÞ

¼ 2þ 720
Dq

sin
�
Nbþ1
2 Dq

	
sin
�
Nb

2 Dq
	

sin
�
1
2Dq

	 (141)
5. Finally, there are Ng ¼ 360/Dq samples for each combination of a
and b
10. The total number of rotations explored is Na,b,g ¼ Na,bNg

In our example with Dq ¼ 0.5+, we have Na,b,gz1.2,106 combi-
nations. The total number of shifts and rotations explored go up to���S��� ¼ Na;b;gðN þ 1Þ3 ¼ 1:2$1014. The expected maximum correla-

tion observed in this sheer amount of correlations is
This result seems to point out that map alignment does not pose
a major problem in the determination of the resolution. We were
not able to reproduce the results in Grigorieff (2000) which showed
much higher expected values.

A different but related problem is the following: let f1(r) and
f2(r) be two images that are aligned against a common reference
f0(r) producing the aligned images f �1 ðrÞ and f �2 ðrÞ. What is the ex-
pected correlation coefficient between f �1 ðrÞ and f �2 ðrÞ? Let us
discuss this problem here for the case without signal which will
help us to derive appropriate thresholds.

We first check that the result in Eq. (55) is valid even assuming
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different noise variances. Let f1(r) ¼ n1(r) and f2(r) ¼ n2(r). Let the
noise variables be normally distributed with zero mean, and vari-
ances s21 and s22, respectively. Let us analyze the mean and variance
of c and d, the numerator and denominator of the NCCf1,f2, as we did
in the analysis that started at (40):

Efcg ¼ 0

Varfcg ¼ ðN þ 1Þ3s21s22
Efdg ¼ ðN þ 1Þ6s21s22
Varfdgz4ðN þ 1Þ9s41s42
E
n
NCCf1;f2

o
¼ Efcgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varfdg
p ¼ 0

Var
n
NCCf1;f2

o
¼ Varfcg

Efdg ¼ 1

ðN þ 1Þ3

(143)

For addressing the problem of the correlation of f �1 ðrÞ and f �2 ðrÞ,
note that NCCf �1 ;f �2 can also be computed as NCCf �1 ;f �2 ¼ hF�

1 ;F
�
2i

kF�
1kkF�

2k (being
hF�1; F�2i the inner product between two vectors corresponding to
the lexicographical ordering of the voxels in real space), and let us
study the mean of the variable

e ¼
�������� F�1��F�1��� F�2��F�2��

��������2 ¼
�������� F�1��F�1��

��������2 þ ���� F�2��F�2��
����2 � 2

�
F�1����F�1����; F�2��F�2��

�
¼ 2� 2NCCf �1 ;f �2 ;

(144)

We can reformulate the previous variable as
e ¼
��������� F�1����F�1����� F0

jjF0jj
	
�
�

F�2��F�2��� F0
kF0k

	��������2

¼
�������� F�1��F�1��� F0

jjF0jj
��������2 þ ���� F�2��F�2��� F0

jjF0jj
����2 � 2

�
F�1����F�1����� F0

kF0k
;
F�2��F�2��� F0

kF0k
�

¼ 4� 2NCCf �1 ;f0 � 2NCCf �2 ;f0 � 2
��

F�1��F�1��; F�2��F�2��
�
�
�

F�1����F�1����; F0
kF0k

�
�
�

F0
jjF0jj

;
F�2��F�2��
�
þ 1
	

(145)
Taking expectations on both sides and exploiting that F0, F1 and
F2 are independent, we have

2� 2E
n
NCCf �1 ;f �2

o
¼ 2� 4E

n
NCCf �i ;f0

o
(146)

or what is the same

E
n
NCCf �1 ;f �2

o
¼ 2E

n
NCCf �i ;f0

o
: (147)

NCCf �i ;f0 is the maximum cross-correlation between the best shifted

and rotated version of fi(r) and f0(r) whose expected value is given
in (140). Finally,
E
n
NCCf �1 ;f �2

o
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN þ 1Þ3
q  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2logðjSjÞ
q

� logðlogðjSjÞÞ þ logð4pÞ � 1:1544
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðjSjÞ

p
� 0:1727

�����S����0:2759
!

(148)

Note that this result only depends on the size of the maps and
the number of rigid transformations explored for the alignment,
but it does not depend on the noise variance of f1(r) or f2(r). From
this point of view it does not matter whether the images being
compared are single projections or projection averages.
11. On the meaning and assumptions of B-factors

The B-factor is a coefficient that has been typically associated to
the damping of the microscope Contrast Transfer Function (Saad
et al., 2001; Huang et al., 2003; Frank, 2006). However, we can
also find it describing the decay of the Fourier coefficients of the
reconstructed maps (Rosenthal and Henderson, 2003; Fern�andez
et al., 2008; Liao and Frank, 2010) and defining a compensatory
highpass filter to improve resolution (Fern�andez et al., 2008). In this
paper we show that all these interpretations are deeply inter-
twined and are difficult to separate experimentally. In the theory so
far we have used R mainly as a frequency index in Fourier space
(measured between �N/2 and N/2). In the following, we will abuse
a little bit of the notation and we will use R as a continuous fre-
quency measured in Å�1.
11.1. B-factor as a consequence of thermal vibrations

The concept of B-factor is strongly related to the statistical dis-
tribution of Fourier coefficients. Let us revise the foundations of this
distribution, which is known in the field as Wilson statistics (Ladd
and Palmer, 2003).

Let us consider the atomic structure of a macromolecule as sum
of Dirac's deltas located at different positions in real space, rj, and
different weights, wj

f ðrÞ ¼
XNatoms

j¼1

wjd
�
r� rj

�
: (149)

The Fourier transform of this structure is
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FðRÞ ¼
XNatoms

wje
�i2phR;rji
j¼1

¼
XNatoms

j¼1

wjcos
�
2p
�
R; rj

��� i
XNatoms

j¼1

wjsin
�
2p
�
R; rj

��
(150)

Wilson statistics presume that the weight of each atom is
known but its exact location in space follows a uniform distribution
within some predefined box. Under these conditions, let us study
the average and variance of the real part and imaginary parts of
F(R). Without loss of generality we can assume that each compo-
nent of rj is uniformly distributed between �rmax and rmax, then the
inner product�
R; rj

� ¼ Rxrjx þ Ryrjy þ Rzrjz (151)

is the sum of three random variables, each one with a uniform
distribution between �Rxrmax and Rxrmax, �Ryrmax and Ryrmax,
and �Rzrmax and Rzrmax, respectively. The probability density func-
tion of the sum of three variables is equal to the convolution of the
three individual probability density functions. In this case, the
convolution of three box functions is a polynomial spline of degree
two (de Boor, 2001), and the cosine of such a random variable does
not follow any standard statistical distribution.

However, Wilson assumed that cosð2phR; rjiÞ and sinð2phR; rjiÞ,
both followed a uniform distribution between �1 and 1 for any
frequencyR (Shmueli, 2007). At the sight of the previous digression,
it is clearly seen that this cannot be the case. Even if the distribution
of the spatial locations rj is not uniform, there is no spatial distri-
bution such that all the sines and cosines are uniformly distributed
for any frequency. Nevertheless, the uniform distribution is still a
reasonable approximation for frequencies and atom locations such
that the inner product hR; rji is large. If this inner product is not large
enough (which is generally the case for low frequencies), then the
approximation by a uniform distribution is not valid.

Let us keep with Wilson's reasoning (Shmueli, 2007). Since the
real and imaginary parts of F(R) is the sum of many independent,
random variables, then the Central Limit Theorem applies so that
the real and imaginary parts are normally distributed and their
mean and variance are given by
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þ
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XNatoms
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similarly for the imaginary part. For convenience we will define a
new variable satoms such that s2atoms ¼
PNatoms

j¼1 w2
j . Assuming that the

real and imaginary parts of F(R) are independent, the probability
density function of F(R) is simply the joint distribution of the real
and imaginary parts, and thanks to their independence, equal to the
product of two normal probability density functions:

pFðRÞðFðRÞÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1
2
s2atoms

r e
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2
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2
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1
2
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2
Im2fFðRÞg
1
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2
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¼ 1
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e
�jFðRÞj

2

s2
atoms

(153)

jFðRÞj2
1
2s

2
atoms

is distributed as a c2 with 2 degrees of freedom and, there-

fore, the mean of
���FðRÞ���2 is

E
n���FðRÞ���2o ¼ 2

1
2
s2atoms ¼

XNatoms

j¼1

w2
j (154)

and its variance is

Var
n���FðRÞ���2o ¼ 2$2

�
s2atoms

2

	2

¼ s4atoms: (155)

The classical approach to the analysis of the effect of thermal
vibrations on the atoms takes a different perspective (Ladd and
Palmer, 2003). Let us assume that the position of the atoms is
randomly distributed around their central position rj by adding a
randomvariable Drj with a tridimensional normal distributionwith
zeromean and covariancematrix Sj ¼ s2Dx

I. Then, themodule of the

Fourier coefficients is given by

FthermalðRÞ ¼
XNatoms

j¼1

wje
�i2phR;rjþDrji

¼
XNatoms

j¼1

wje
�i2phR;rjie�i2phR;Drji (156)

For small vibrations we can approximate the exponential by a
Taylor series of degree 2

FthermalðRÞz
XNatoms

j¼1

wje
�i2phR;rji

 
1�i2p

*
R;Drj

+
þ
��i2p

�
R;Drj

��2
2

!

¼
XNatoms

j¼1

wje
�i2phR;rji
1�i2p

D
R;Drj

E
�2p2�R;Drj�2�

(157)

If we now take the expectation with respect to the distribution
of the displacements Drj and considering that the vibrations have
zero mean, we obtain

EDrjfFthermalðRÞg ¼
XNatoms

j¼1

wje
�i2phR;rji
1� 2p2EDrj

n�
R;Drj

�2o�
(158)

The expected value needed in the previous formula is
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EDrj
n�

R;Drj
�2o ¼ EDrj

n�
RxDrjx þ RyDrjy þ RzDrjz

�2o
¼ R2xEDrj

n
Dr2jx

o
þ R2yEDrj

n
Dr2jy

o
þ R2zEDrj

n
Dr2jz

o
¼ s2Dx

���R���2;
(159)

where we have made use of the mutual independence of the
different components of the vibration displacement vector.

Finally we get

EDrjfFthermalðRÞg ¼
XNatoms

j¼1

wje
�i2phR;rji
1� 2p2s2Dx

���R���2�
z

PNatoms

j¼1
wje

�i2phR;rjie�2p2s2
Dx

��Rj2
¼ FðRÞe�2p2s2

Dx

��Rj2 ¼ FðRÞe�BjRj2 :

(160)

In the last equationwe see that B ¼ 2p2s2Dx
has units of Å2 and is

proportional to the displacements due to thermal vibration.
11.2. B-factor as a consequence of Gaussian atoms

In the derivation of the B-factor equation (Eq. (160)), we have
assumed that the original structure is composed of infinitely nar-
row atoms (their description is given by Dirac's deltas) and we had
to make a couple of Taylor expansions for two exponential func-
tions, which limit the validity of the statistical derivation of the B-
factor to relatively small frequencies.

However, we could have also derived the same equation (Eq.
(160)) without any approximation if we follow a deterministic
reasoning instead of a statistical one. If we now assume that our
atoms are not represented by Dirac's deltas but by Gaussian func-
tions (jðrÞ), then we obtain

fGaussianðrÞ ¼ f ðrÞ+jðrÞ; (161)

where + represents the convolution operator. The Fourier trans-
form of the new atomic representation is then

FGaussianðRÞ ¼ FðRÞJðRÞ: (162)

Knowing that the Fourier transform of the real-space Gaussian

e�pjrj2 is e�pjRj2 and making use of the scale property of the Fourier

transform (the Fourier transform of f(ar) is
���a����1

Fða�1R), it is easy

to show that the atomic representation yielding the same equation
as in Eq. (160) is

jðrÞ ¼
ffiffiffi
p

B

r
e
�p

� ffiffi
p
B

p ����r����	2

¼
ffiffiffi
p
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r
e

�1
2

0B@ jrjffiffiffiffiffi
B

2p2

p
1CA

2

(163)

In this way we have shown that the approximations giving raise
to the B-factor formulation of the thermal vibration is equivalent to
representing atoms by Gaussians whose standard deviation is B/
2p2. However, note that atoms in the electronmicroscope are better
modeled with a sum of Gaussians representing the Electron Atomic
Scattering Factors as has been shown in Sorzano et al. (2015). This
representationmakes the atoms to bemore concentrated in Fourier
space than the standard Gaussian for the frequencies of interest in
Electron Microscopy (whose target resolution is normally between
4-2 Å).
11.3. B-factor as a description of the CTF envelope

B-factors are also found in the formulations of the envelope of
the CTF (Saad et al., 2001; Huang et al., 2003; Frank, 2006). Other
authors prefer a complete description of the physical factors
determining the damping envelope (Zhou et al., 1996; Vel�azquez-
Muriel et al., 2003; Frank, 2006; Sorzano et al., 2007). Such enve-
lope described by physical factors is given by the multiplication of
three separate envelopes:

EðRÞ ¼ EspreadðRÞEcoherenceðRÞEdriftðRÞ: (164)

The beam energy spread envelope is computed as

EspreadðRÞ ¼ exp

0B@�

�

p
4Cal

��
DV
V þ 2 DI

I

		2

logð2Þ
��R��4

1CA: (165)

where Ca is the chromatic aberration coefficient, l is the electron

wavelength which is computed as l ¼ 1:23$10�9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vþ10�6V2

p , V is the accelera-

tion voltage of the microscope, DV/V is the energy spread of the
emitted electrons represented as a fraction of the nominal accel-
eration voltage, and DI/I is the lens current instability expressed as a
fraction of the nominal current.

The beam coherence envelope is given by (Frank, 2006)

EcoherenceðRÞ ¼ exp
�
� p2a2



Csl

2
���R���3 þ ���Df ðRÞ������R����2	; (166)

where a is the semi-angle of aperture, Cs represents the spherical
aberration coefficient, and jDf ðRÞj is the defocus in the direction of
R.

Finally, assuming themechanical displacement perpendicular to
the focal planeDF and the displacement in the focal plane (drift)DR,
the envelope due to sample shift is modeled as

EdriftðRÞ ¼ J0


pDFl

���R���2�sincðjRjDRÞ; (167)

being J0 the Bessel function of first kind and order 0.
The envelope model can be well approximated by a Gaussian if

DF ¼ DR ¼ DV/V ¼ DI/I ¼ 0 and Csl
2
���R���3≪Df ðRÞ

���R���. In this case, the

envelope is given by

EðRÞze�p2a2jDf ðRÞj2jRj2 : (168)

It is interesting to see that in this situation the B-factor becomes
direction dependent and, consequently, it is not well defined (it is
not a single constant) for astigmatic images.

If we now think of the Fourier coefficients reconstructed from
micrographs affected by this CTF envelope, what we reconstruct is

FreconstructedðRÞ ¼ FGaussianðRÞEðRÞ ¼ FðRÞe�ðBþp2a2jDf ðRÞj2ÞjRj2 :
(169)

We now see that the thermal effects on the position of the atoms
and the microscope aberrations become inseparable in the recon-
structed map and all we can see is the combined effect of both (B-
factors have been reported to be 110 Å2 (Miyazawa et al., 2003),
400 Å2 (Conway and Steven, 1999), 500 Å2 (B€ottcher et al., 1997),
1200 Å2 (Gabashvili et al., 2000), and even 2100 Å2 (Thuman-
Commike et al., 1999)). For this reason, it makes sense the com-
mon procedure in the field of correcting for the CTF envelope
during the reconstruction process using the estimates of the CTF
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parameters obtained from the micrographs (Frank and Penczek,
1995; Sorzano et al., 2004b), and once it is finished correcting for
an additional B-factor estimated from the shape of the expected
spectrum (Fern�andez et al., 2008).

11.4. B-factor as a consequence of electron scattering

B-factor correction has become a standard practice in Electron
Microscopy. Specially as one of the last image processing steps in
order to boost high frequencies. The strategy normally performed is
to fit a straight line in the Guinier plot as a way to estimate the B
factor, and then apply a highpass filter with the B factor estimated
as a way to compensate for the damping allegedly introduced by
the image acquisition and processing. Let us review here the
rationale behind this strategy.

Guinier plots are 1D plots inwhich the logarithm of themodulus
of the Fourier coefficients (averaged along the radial direction,

logð
���FðRÞ���2Þ) are plotted against the squared resolution R2. It has

been stated that in a certain frequency region, this plot has to be
approximately flat. Let us see the assumptions behind this
statement.

Assuming that the Born approximation holds, that is, the scat-
tered wave from a single scatterer is not affected by the presence of
other scatterers (this is true if the scattering of the electrons in the
microscope is weak), then the 2D intensity scattered by a molecule
whose shape is f(r) can be described in frequency by (Brumberger,
2013)[Chap. 1]

IðRÞ ¼
���FðRÞ���2 (170)

where F(R) is the Fourier transform of the molecule. For a contin-
uous function, f(r), the intensity can be calculated as (Brumberger,
2013)[Chap. 1]���FðRÞ���2 ¼ ∬ f ðr1Þf ðr2ÞcosðhR; r1 � r2iÞdr1dr2 (171)

If we think of a macromolecule as a set of Natoms atoms, then the
expression above is simplified to

���FðRÞ���2 ¼
XNatoms

i¼1

XNatoms

j¼1

FiðRÞFjðRÞcos
��
R; ri � rj

��
(172)

where ri and rj are the locations of the i-th and j-th atoms, and Fi(R)
and Fj(R) are the Fourier transforms of each one of the atoms
evaluated at a given frequency R.

If we now make a radial average of this intensity, this is called
Debye scattering equation, then we obtain a 1D profile given by

���FðRÞ���2 ¼ ∬ f ðr1Þf ðr2Þ
sinðRjjr1 � r2jjÞ

Rkr1 � r2k
dr1dr2 (173)

Similarly, for a set of Natoms atoms and assuming that each atom
has a spherically symmetric spectrum, we would have

���FðRÞ���2 ¼
XNatoms

i¼1

XNatoms

j¼1

FiðRÞFjðRÞ
sin
�
R
����ri � rj

�����
R
����ri � rj

���� (174)

Note that performing a radial average assumes that we have no
missing regions in Fourier space, since otherwise there would be a
region of zeroes that would be taken into account in the radial
average.

Given a molecule of diameter D, Debye equation can be
rewritten as
���FðRÞ���2 ¼
ZD
0

r2Ff ðrÞ
sinðRrÞ

Rr
dr (175)

where Ff(r) is called the correlation or characteristic function
calculated as

Ff ðrÞ ¼
Z2p
0

Zp
0

Z
f ðr1Þf ðr1 þ rÞsinðaÞdr1dadb (176)

where a and b are the angles of the spherical coordinates of the
vector r (whose norm is r), and which is nothing more than the
radial average of the autocorrelation function of f(r).

Guinier approximation comes from the Taylor expansion

sinðRrÞ
Rr

¼ 1� R2r2

6
þ R4r4

100
�… (177)

for which we need RmaxD≪1, where Rmax is the maximum fre-
quency we pretend to reconstruct and D is the molecule diameter.
Considering only the first two terms and substituting in Eq. (175),
we get

���FðRÞ���2zZD
0

r2Ff ðrÞdr � R2
ZD
0

r4

6
Ff ðrÞdr

¼
ZD
0

r2Ff ðrÞdr

0BBBBBBB@1� R2

Z D

0

r4

6
Ff ðrÞdrZ D

0
r2Ff ðrÞdr

1CCCCCCCA
¼ F20

 
1� R2g

3
R2
!

(178)

In the last equation we have defined F20 ¼
Z D

0
r2Ff ðrÞdr and

R2g ¼ 1
2

R D

0
r4Ff ðrÞdrR D

0
r2Ff ðrÞdr

, which is called the radius of gyration. In the case

of a set of infinitely small atoms F20 becomes

F20 ¼
���Fð0Þ���2 ¼

XNatoms

i¼1

XNatoms

j¼1

wiwjd
���ri � rj

��� ¼ XNatoms

j¼1

w2
j (179)

where wi and wj are the molecular weights of the i-th and j-th
atoms. Note that this value is the same as the one obtained in
Wilson statistics and equal to Natoms as stated in Rosenthal and
Henderson (2003) if all the atoms are presumed to have unit
weight.

Finally, we note that Eq. (178) looks like the first two terms of
the Taylor expansion of an exponential, consequently, we may
write

���FðRÞ���2zF20e
�R2g

3 R
2

(180)

The radius of gyration of a point is 0, of a solid sphere of
diameter D is 3D2/20, of a cylinder of diameter D and height H is H2/
12 þ D2/8 (Johnson and Gabriel, 1981)[Chap. II]. Finally, taking the
logarithm of the radial average, we get
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log
���FðRÞ���2 ¼ log



F20
�
� R2g

3
R2 (181)

11.5. B-factor correction

B-factor correction is a technique commonly used in which a

line is fitted to the log
���FðRÞ���2 plot in a squared-frequency region

normally between 1/102 and 1/52 (10 and 5 Å, respectively)
(Fern�andez et al., 2008)

log
���FðRÞ���2zA� B2R2 (182)

and the whole map is corrected with the transformation

FcorrectedðRÞ ¼ FðRÞeBR (183)

followed by a low pass filter with radial shape

Cref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FSC

1þ FSC

r
(184)

This correction tends to make the Guinier plot of the corrected
map to be flat in the fitted squared-frequency region. The belief in
EM that the Guinier plot needs to be flat comes from the fact that Rg
is 0 for a single, infinitely small atom, but it does not need to be so
for a set of atoms. Consequently, this correction should be applied
with care since linear Guinier plots are based on two numerical
approximations, and flat Guinier plots are only expected for a single
scattering atom (not a macromolecular structure). Additionally, the
lowpass filter applied with Cref is based on a derivation that it is not
actually measuringwhat it meant (see Eq. (73)). Still, this correction
has proved to be useful for the interpretation of EM maps since it
boosts high frequencies better highlighting secondary structure
features.

12. On the dose needed for detecting features of a given size

To calculate the number of electrons needed to detect features of
a given size we will start from the interaction of electrons in the
electron microscope with matter. At a given acceleration voltage V0
(in Volts), the elastic cross section of an atom in the microscope is
given by (Langmore and Smith, 1992)[Eq. (1)]

sZ ¼ 1:4$10�4Z3=2

b2

�
1� 0:26Z

137b

	�
�A2
�

atom
�

(185)

where Z is the atomic number of the atom and

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
mec2

qeV0 þmec2

	2
vuut (186)

beingme the electron mass in kilograms (me ¼ 9.1$10�31[kg], qe the
electron charge in Coulombs (qe ¼ 1.6$10�19[C]) and c the speed of
light in vacuum (c ¼ 3$108[m/s]). For instance, a carbon atom at
200 kV has an elastic cross section of 41.9[pm2]. Langmore and
Smith (1992) proposed that the fraction of electrons scattered
within the electron microscope objective aperture reaching a res-
olution of Rmax (Å�1) was h ¼ Rmax (e.g., as stated in Henderson
(1995), the fraction of electrons scattered to a resolution of 3 Å is
1/3rd of the total number of elastically scattered electrons). Note
that Langmore and Smith (1992) states that this approximation for
the fraction is valid if Rmax2[0.2,0.5]Å�1, and that h is an adimen-
sional number.

Let us now calculate the average number of carbon equivalents
in a protein as a way to estimate the energy observed in an imaged
particle. Let us assume a cubic protein of side D [Å]. Assuming an
average density for proteins, rprot ([Da/Å3]; normally it is taken
rprot ¼ 0.8[Da/Å3], Henderson (1995)), the molecular weight of the
protein is given by

MWprot ¼ D3rprot ½Da� (187)

The number of carbon equivalents in this map is given by

NC ¼ MWprot½Da�
MWC½Da=Catom� (188)

If we consider now a square enclosing the projection of our
protein, this square has an area D2 [Å2], and the total cross section
per unit area observed in this square image is

~sprot ¼
�
MWprot

�
MWC½C atoms���hsZ¼6

�
�A2
�

C atom
�	

D2
�
�A2
�

¼ Drprot
1

MWC
RmaxsZ¼6

(189)

Note that this number is adimensional and it represents the
fraction of the incident intensity, I0, that elastically interacts with
the sample resulting in an observed intensity, Iobs. The time average
of this observed intensity fulfills

~sprot ¼ hIobsi
I0

: (190)

Interestingly, if we consider small cubes of proteins of size
D ¼ 1/Rmax, then ~sprot is independent of the resolution at which we

are interested (~sprot ¼ rprot
1

MWC
sZ¼6).

If instead of a cube of protein we had a parallepiped of size
D � D � H made of ice, instead of protein, then we would have
obtained

~sice ¼ Hrice
1

MWO
RmaxsZ¼8 (191)

At 200 kV, the elastic cross section of oxygen is 64.2[pm2], and
an accepted density of amorphous ice is 1.17 g/cm3 ¼ 0.7[Da/Å3]
(Mishima et al., 1984).

Our protein is actually embedded in a layer of amorphous ice, let
us say of height H [Å], the total observed cross section would be
given by

~sembedded:prot ¼ Drprot
1

MWC
RmaxsZ¼6

þ ðH � DÞrice
1

MWO
RmaxsZ¼8 (192)

If we now compute the relative contrast between two adjacent
areas of embedded protein and ice, we have

C ¼
~sice � ~sembedded:prot

~sice
¼ D

H

�
1� rprot

rice

MWO

MWC

sZ¼6

sZ¼8

	
(193)

At 200 kV this contrast becomes C ¼ 0.0047D/H.
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We nowwonder howmany electrons we need to illuminate this
parallepiped with the embedded protein to be able to distinguish
between protein details of size D from their surroundings. We will
see that the results given in this paper justify and give a general-
ization of the work of Glaeser (1999) (on its turn based on that of
Rose (1973)). When we illuminate this part of the protein with Ne

electrons per Å2, the number of scattered electrons in the protein
area follows a Poisson with parameter

lembedded:prot ¼ Ne~sembedded:protD
2
h
e�
i

(194)

Similarly, for an ice region of the same size, we would have a
Poisson with parameter

lice ¼ Ne~siceD
2
h
e�
i

(195)

Remind that the mean and standard deviations of a Poisson
distribution are l and l, and that for sufficiently high l’s, the
Poisson is well approximated by a Gaussian. Given a number of
electron counts in the allegedly protein area and a surrounding ice
area, we would reject the hypothesis that the protein area is ice
with a confidence level 1�a and a statistical power 1�b if

lembedded:prot þ z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lembedded:prot

q
< lice � z1�b

ffiffiffiffiffiffiffiffi
lice

q
(196)

where z1�a and z1�b are the 1�a and 1�b percentiles of a stan-
dardized Gaussian. This expression is the most basic version of
sample size calculation (Mathews, 2010). Simplifying
z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lembedded:prot

q
þ z1�b

ffiffiffiffiffiffiffiffi
lice

q
< lice � lembedded:prot

z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne~sembedded:protD

2
q

þ z1�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne~siceD

2
q

<Ne~siceD
2 � Ne~sembedded:protD

2ffiffiffiffiffiffi
Ne

p
D


~sice � ~sembedded:prot

�
> z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~sembedded:prot

q
þ z1�b

ffiffiffiffiffiffiffiffi
~sice

p (197)
Finally

Ne >

0@z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~sembedded:prot

q
þ z1�b

ffiffiffiffiffiffiffiffi
~sice

p
D


~sice � ~sembedded:prot

�
1A2

¼

 
z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~sembedded:prot

~sice

r
þ z1�b

!2

~sice

1
D2C2 (198)

This expression is the same as Eq. (2) in Glaeser (1999) in which

our term

 
z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~sembedded:prot

~sice

r
þz1�b

!2

~sice
has been substituted in that article

by 25 (a value that without any ice and protein considerations
would correspond to an approximate confidence level and statis-
tical power of 99.4%). This value appears from a sample size design
inwhich the separation between signal and noise is required to be 5
standard deviations. The equivalent design corresponds to the
formula
Ne >
z21�a

D2C2 (199)

with a confidence level of 99.9999%.
Note that this expression is valid for the detection of particle

projections with respect to their background (in which D would be
the diameter of the particle) and the detection of a small protein
feature of size D (a small number that can be as low as 2-3 Å)
outstanding from the main body of the protein. This is the total
number of events (electrons) needed to detect the feature of size D.
However, this number of events does not need to be given in a
single shot; it can be fractionated, as is now the case with multiple
frames in DDDmovies or the analysis of 2D class averages. Actually,
Glaeser (1999) argues that when D is a target resolution (say,
D ¼ 2 Å), this is the number of electrons needed to be acquired in
thewhole collection of images, and that it can be fractionated in the
number of images that constitute our dataset. We could not
establish the connection between the 2D reasoning presented in
this section and the 3D arguments implied by Glaeser (1999), since
in the connection between 2D and 3D we have the influence of an
arbitrary angular distribution and the effect of the 3D reconstruc-
tion algorithm.
13. On the number of particles required for a given SNR

As EM is currently used, the main source of noise in the pro-
jection images comes from the ice in which the particles are
embedded (this statement is true when we analyze micrographs
and less so when we go down to the level of frames due to the low
electron counting). In this section we will estimate the number of
measurements we need of a given Fourier coefficient to have a
Signal-to-Noise Ratio larger than a given threshold SNR0. In this
analysis we will disregard the effect of the CTF, since the 3D
reconstruction algorithm is in charge of compensating its damping.

The cross-section of a scattering object, f(r), is related to the
Fourier transform of that object, F(R), through the relationship
(Born and Wolf, 1999)[Section 13.3]

~s ¼
Z ����FðRÞ���2dR (200)

Actually, this expression is consistent with the scattered in-
tensity in Fourier space (Eq. (170)) and it is a consequence of energy
conservation and Plancherel's theorem. Note that the integration
must be performed in the Fourier plane onto which the 2D pro-
jection of the map is being taken. The exact shape of the Fourier
transform of the object is unknown at the moment of estimating
the number of projections. We may assume radial symmetry, make
a change of variables to integrate in polar coordinates and simplify
to
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~s ¼
ZRmax

0

Z2p
0

���FðRÞ���2RdRdQ ¼ 2p
ZRmax

0

���FðRÞ���2RdR (201)

In Henderson (1995) it was assumed a constant amplitude,���FðRÞ���2 ¼ F20 (Eqs. A5 and A6 of Henderson (1995) disregard the
Nmeas > SNR0

���Fsurr:iceðRmaxÞ
���2���FprotðRmaxÞ
���2

¼ SNR0

�
H � D
D

	�
rprotMWCsZ¼8

riceMWOsZ¼6

	 3� R2g;iceR
2
max

3� R2g;protR
2
max

! 
9� R2g;protR

3
max

9� R2g;iceR
3
max

! (208)
decay of the amplitude of the Fourier coefficients of a macromol-
ecule). We propose that a more accurate estimate is given by the
dependency on the radius of gyration since it suggests how the
protein Fourier coefficients decay along frequency. Substituting Eq.
(178) into the integral above we get

~s ¼ 2pF20Rmax

 
1� R2g

9
R3max

!
(202)

from where

F20 ¼ ~s

2pRmax

 
1� R2

g

9 R
3
max

! : (203)

At the highest resolution we get the value

���FðRmaxÞ
���2 ¼ F20

 
1� R2g

3
R2max

!
¼

~s

 
1� R2

g

3 R
2
max

!

2pRmax

 
1� R2

g

9R
3
max

! (204)

If we now substitute the value of the cross section of the protein
(Eq. (189)), then

���FprotðRmaxÞ
���2 ¼

DrprotsZ¼6

 
1� R2

g;prot

3 R2max

!

2pMWC

 
1� R2

g;prot

9 R3max

! (205)

Similarly, for the surrounding ice, we would get

���Fsurr:iceðRmaxÞ
���2 ¼

ðH � DÞricesZ¼8

 
1� R2

g;ice

3 R2max

!

2pMWO

 
1� R2

g;ice

9 R3max

! (206)

When multiple measurements, Nmeas, of the same Fourier co-
efficient are taken, the signal is reinforced while the noise is
decreased by a factor Nmeas. The Signal-to-Noise Ratio becomes
SNR ¼

���FprotðRmaxÞ
���2

1
Nmeas

����Fsurr:iceðRmaxÞ
���2 (207)

Consequently the number of measurements must be
In this expression, we see that the number of measurements
increases with the target SNR and for small molecules (small D).
The dependence with frequency, Rmax is not obvious, but it depends
on how the Fourier coefficients of the protein and ice fall along
frequency. As an approximation we can presume that the radius of
gyration of the ice will be much smaller than the radius of gyration
of the macromolecule, then

 
3� R2g;iceR

2
max

3� R2g;protR
2
max

! 
9� R2g;protR

3
max

9� R2g;iceR
3
max

!
z

9� R2g;protR
3
max

3� R2g;protR
2
max

z3

þ R2g;protR
2
max

(209)

Interestingly, the number of measurements needed for a given
coefficient increases with the square of the radius of gyration and
the square of the desired resolution, meaning that achieving high
resolution for big particles requires more measurements than the
same resolution for a small particle, and that the dependence is
quadratic.

Bracewell showed that an object of diameter D can be recovered
from samples of its Fourier transform if the sampling rate in Fourier
space is smaller than 1/D (Bracewell, 1958). Then, he showed
(Bracewell and Riddle, 1967) that in a single tilt-axis collection
geometry, the 3D object could be recovered if the distance between
Fourier coefficients two adjacent projections, at a given circum-
ference of radius Rmax was smaller that 1/D, that is

p

Nimgs
Rmax <

1
D
0Nimgs >pDRmax (210)

This is a result very much used in EM to suggest the number of
images required to perform 3D reconstruction. However, note that
this number was deduced using a very particular collection ge-
ometry (single tilt axis), and that it does not consider noise. This
formula was used in Henderson (1995) (Eq. (A11)) to estimate the
number of images required to achieve a given resolution. However,
this formula is only valid for a single tile axis data collection. In the
following, we generalize the formula to consider an even distri-
bution of projections with randomly distributed orientations. Our
reasoning is not valid for strongly biased projection distributions
(Sorzano et al., 2001) or a data collection geometry with very few
projections.

Based on Bracewell's reasoning of samples separated less than
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1/D, we may deduce the number of images evenly distributed so
that, on average, each Fourier coefficient receives the required
number of measurements. Let us analyze a Fourier sphere of radius
R. Disregarding discrete effects, within each circle of radius R, each
experimental image is providing Nsamples,R samples separated on
both directions 1/D where

Nsamples;R ¼ pR2�
1
D

	2 ¼ pR2D2 (211)

If we have Nimgs such images, we will have a total of

Ntotal samples;R ¼ pR2D2Nimgs (212)

such samples. These samples occupy a volume of

Vtotal samples;R ¼ 4
3
pR3 (213)

Let us analyze now the density of samples between a sphere of
radius R�D and R. The density of samples is

rtotal samples;R�D;R ¼ Ntotal samples;R � Ntotal samples;R�D

Vtotal samples;R � Vtotal samples;R�D

¼
pD2Nimgs



R2 � ðR� DÞ2

�
4
3
p


R3 � ðR� DÞ3

�
¼ 3

4
D2Nimgs

2R� D

3R2 � 3DRþ D2

(214)

When D goes to 0, the density of samples goes to

rtotal samples;R ¼ D2Nimgs

2R
(215)

This density is the superficial density of samples at a frequency
R, when the samples are separated fromnearby samples by 1/D. The
number of samples on the surface of the sphere of radius R is

Ntotal samples;surface;R ¼
 
D2Nimgs

2R

!

4pR2

�
¼ 2pRD2Nimgs

(216)

However, there are only

NFourier coefficients; R ¼ 4pR2�
1
D

	2 (217)

different coefficients in this surface (note that this is only an
approximation, which is better fulfilled as R grows), consequently
the number of measurements per different coefficient is

Ntotal samples;surface; R

NFourier coefficients; R
¼ 2pRD2Nimgs

4pR2�
1
D

	2

¼ Nimgs

2R
(218)

This number has to be larger than the number of measurements
estimated at Eq. (208). For the sake of clarity let us summarize in a
single (approximated) equation the number of images needed for a
given resolution, assuming that these images are evenly distributed
in the projection sphere
Nimgs >2SNR0

�
H � D
D

	�
rprotMWCsZ¼8

riceMWOsZ¼6

	
Rmax



3þ R2g;protR

2
max

�
(219)

That is, the number of images, depend on the cube of the desired
resolution (there is a quadratic dependence due to electron scat-
tering and a linear dependence due to the data collection
geometry).

It has been shown that the effect of illuminating the samplewith
the electron beam decreases the signal to noise ratio originally in
the sample (Unwin and Henderson, 1975; Hayward and Glaeser,
1979; Stark et al., 1996; Baker et al., 2010; Grant and Grigorieff,
2015). The SNR is supposed to decay with the dose Ne as

SNRðNe;RÞ ¼ SNRð0;RÞe�
Ne

Ncrit ðRÞ (220)

where SNR(0,R) is the SNRwith no beam damage (0 electrons/Å2) at
a given frequency, and Ncrit(R) (electrons/Å2) is a parameter that
depends on frequency, the operating voltage and the object being
imaged. For instance, Grant and Grigorieff (2015) measured

NcritðRÞ ¼ 0:245R�1:665 þ 2:81 (221)

at 300 kV for rotavirus VP6. Knowing this decay of SNR, the number
of images above has to be multiplied by a compensatory term

e
Ne

Ncrit ðRmax Þ to account for the SNR decay experienced by radiation
damage.

Stagg et al. (2008, 2014); Heymann (2015) experimentally
studied how the resolution, measured as the frequency at which
the FSC drops below 0.5, depended on the number of images and a
number of other variables. They showed that the resolution im-
proves with an increasing number of particles, increased magnifi-
cation and acceleration voltage. Their works seem to point to a
dependency of the form

Rmax ¼ R0 þ aM þ bV þ clog10
�
Nimgs

�
¼ R0ðM;VÞ þ clog10

�
Nimgs

�
(222)

where Rmax is the resolution achieved (in Å�1),M is the microscope
magnification, V is the voltage and R0, a, b and c are positive con-
stants. If we solve for the number of images, we have

Nimgs ¼ 10
Rmax�R0ðM;VÞ

c (223)

This result is compatible with the analysis performed in this
section. Choosing a fixed threshold for the FSC (FSC ¼ 0.5) is
equivalent to choosing a target SNR0. Then, it states that 1) the
resolution depends on the magnification and voltage, as also do the
cross-sections in Eq. (219) (higher magnification or voltage result in
a smaller number of images); 2) the number of particles required to
achieve a given resolution rapidly increases with Rmax, as also does
in Eq. (219). The exact form of the dependence on the target res-
olution differs, but in both cases the number of images rapidly grow
with the target resolution, and this growth is faster than linear, as
originally proposed by Henderson (1995) (which was calculated
with two important simplifications as discussed along this section).
In any case, it must be noted that our cubic dependence with Rmax

was achieved only after a number of simplifications trying to bring
insight into the more accurate dependence calculated in Eq. (208),
and the exact dependence is much more complicated. Stagg et al.
(2008, 2014); Heymann (2015) take a practical approach of
empirically observing how the resolution progresses with the
number of particles and they confirm the more-than-linear
dependence.
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If the particle has some internal symmetry, obviously the
number of particles above must be reduced by a factor equal to the
number of Fourier replicates implied by the symmetry (for
instance, in a C3 symmetric particle each experimental coefficient
contributes to 3 Fourier coefficients in the map; in a D3 symmetric
particle, it contributes to 6; in an icosahedral particle, it contributes
to 60).
14. On the composition of systems for the calculation of the
SNR

The SNR is degraded by the addition of different noise compo-
nents. Baxter et al. (2009) studied the contribution of the different
structural, shot and digitization noise to the final SNR. Their aim
was to decompose the SNR into different SNRs corresponding to
each one of the effects. It was assumed that structural noise is the
first one to be added, then shot noise is added during the micro-
graph acquisition, and finally digitization noise is added. The
following equation was used by Baxter et al. (2009) for the com-
pound SNR for three concatenated systems

1þ 1
SNRcomp

¼
�
1þ 1

SNR1

	�
1þ 1

SNR2

	�
1þ 1

SNR3

	
(224)

A similar formula appeared in Frank and Al-Ali (1975).
This formula is well-known in signal processing and commu-

nication engineering but less so in the EM community. Let us
develop some insight of its meaning and on our way we will
discover a more complete version of it. Taking into account that
SNR ¼ S/N, the expression 1 þ 1/SNR represents really S þ N/S. The
rationale behind this expression is to compute the ratio between
the output power (Sþ N) and the input power (S) to a given system.
In this way, calling Ii the input power to the system i and Oi the
output power to the system i, and considering that the output of the
system i is the input of the system i þ 1, we could have derived the
previous expression by considering two systems that take an input
signal and add independent noises. The input to the first system I1
is a given signal s(r) whose power is S (in the EM context s(r) is the
original 2D projection of the underlying structure without any
noise). Then, the system adds a noise whose power is N1. The total
power at the output is O1¼ SþN1 and the ratio between the output
and input power is

O1

I1
¼ Sþ N1

S
¼ 1þ 1

SNR1
(225)

The second system receives an input power that is the output
power of the previous system I2 ¼ O1, and also adds a noise of
power N2. The final output power is O2 ¼ I2 þ N2. The ratio between
the input and output at the second system is

O2

I2
¼ I2 þ N2

I2
¼ 1þ 1

SNR2
(226)

Another expression for this ratio could have been

O2

I2
¼ Sþ N1 þ N2

Sþ N1
(227)

If we now consider the ratio between the input power to the
whole system and its output power, we find

O2

I1
¼ Sþ N1 þ N2

S
¼ 1þ N1 þ N2

S
¼ 1þ 1

SNRcomp
(228)

On the other hand
1þ 1
SNRcomp

¼ O2

I1
¼ O1

I1

O2

I2
¼
�
1þ 1

SNR1

	�
1þ 1

SNR2

	
(229)

The addition of a third system is straightforward.
In the previous derivation we have not considered the power

gain or attenuation introduced by the different systems. If the two
systems have gains G1 and G2 respectively (note that gains larger
than 1 imply a power gain, while gains smaller than 1 imply a signal
attenuation), then the output power of the system 1 is
O1 ¼ G1S þ N1. The equivalent of Eq. (225) with gain is

O1

I1
¼ G1Sþ N1

S
¼ G1 þ

1
SNR1

(230)

And the same holds for system 2. The output power of the
system 2 is O2 ¼ G2I2 þ N2 ¼ G2G1Sþ G2N1 þ N2. Thus, the overall
ratio of output power to input power is

O2

I1
¼ G2G1Sþ G2N1 þ N2

S
¼ G2G1 þ

G2N1 þ N2

S

¼ G2G1 þ
1

SNRcomp
(231)

Therefore, if different gains are considered for each system, then
Eq. (224) becomes

G1G2G3 þ
1

SNRcomp
¼
�
G1 þ

1
SNR1

	�
G2 þ

1
SNR2

	�
G3 þ

1
SNR3

	
(232)

The first system of Baxter et al. (2009) is the system adding
structural noise. The structural noise comes from the carbon layer
and ice around the particle of interest. If S is the power of the
particle of interest, it is likely that this power is reduced since part
of the energy coming out from the particle is absorbed by the ice
and carbon coming later in the electron path. Therefore G1<1.

The second system is adding shot noise due to the quantum
nature of electrons. It does not seem that there is any gain or ab-
sorption of the energy coming out of the structure being imaged,
and G2 can be assumed to be 1.

The third system is adding digitization noise. This noise is added
by the CCD camera or the combination film/scanner. The gain of the
acquisition system will be in general a certain factor G3 different
from 1.

An important consequence of this reasoning is that the system
gains have to be estimated along with the individual SNRs, other-
wise the SNRs cannot be successfully estimated as pretended in
Baxter et al. (2009).

This reasoning easily extends to Fourier space, Eq. (232) still
holds but taking into account that the system gains and noises may
be different for each frequency

G1ðRÞG2ðRÞG3ðRÞþ
1

acompðRÞ¼
�
G1ðRÞþ

1
a1ðRÞ

	�
G2ðRÞþ

1
a2ðRÞ

	
�
G3ðRÞþ

1
a3ðRÞ

	
(233)

or in other words

SoðRÞ
NoðRÞ ¼

G1ðRÞG2ðRÞG3ðRÞSðRÞ
G2ðRÞG3ðRÞN1ðRÞ þ G3ðRÞN2ðRÞ þ N3ðRÞ

(234)

This equation shows that the calculation of the Spectral SNR
(SSNR) curves for each effect also needs the explicit consideration
of the gain factors at each frequency which in real micrographs are
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likely not to be unity over all frequencies.
The previous equation gives us the ratio between the output

signal and the output noise, but not the SSNR. The SSNR at a single
frequency would be���SoðRÞ���2���NoðRÞ

���2 ; (235)

and the overall SNR is

SNRcomp ¼

Z
ℝ2

����SoðRÞ���2dRZ
ℝ2

����NoðRÞ
���2dR (236)

15. Conclusions

In this paper we have reviewed and revised the theoretical
foundations of the most popular resolution measures in 3DEM as
well as some of their related problems. We have enhanced the
original derivations of their statistical properties and have
completed those results with new relationships and statistical
distributions. We have seen that the FSC and the SSNR are the most
tractable resolution measures and sensible thresholds have been
given for them based on statistical inference. SSNR has the extra
advantage of being extended to a 3D measure of resolution so that
we can explore the direction-dependent resolution in Fourier
space. A drawback of all methods is that the resolution curve sta-
tistics strongly depend on the actual implementation of the Fourier
shells. Theoretically, thin shells should be preferred to thicker shells
since they provide higher frequency resolution. How thin is thin?
We have checked the implementation of the FSC in Xmipp and
Relion and both calculate the distance in voxels of each Fourier
coefficient to the Fourier origin and round it producing an index.
The Fourier coefficient in question only contributes to the FSC at the
so calculated index, implying that the corresponding shells are
between 1 and 2 voxels wide depending on the specific 3D Fourier
location, and probably this is the thinner implementation that does
not leave any Fourier coefficient out. What is important is that to
compare two FSCs calculated with two different packages, we
should make sure that the shells used for the FSC calculations are
the same. We have also reviewed and revised the connection be-
tween the SSNR and the electron dose and number of particles
needed to achieve given contrast and resolution targets.

Despite all these theoretical advances, there is still lacking in the
field a unique and measurable definition of what is resolution. The
implicit definition used in this article is that the resolution is the
frequency beyondwhichwe cannot detect any signal within a given
confidence level. However, the choice of the confidence level is still
arbitrary and more work must be done by the community to unify
criteria. More importantly, the whole article points into the direc-
tion that resolution curves may not be the more appropriate way of
measuring resolution. The idea of defining the resolution as the
capability of the structure to show high-resolution structures like
a-helices, b-sheets and side chains is appealing. However, a quan-
titative method to define resolution in this way should be devised.
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