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A B S T R A C T

The Map Challenge organized by the Electron Microscopy Data Bank has prompted the development of an Xmipp
high resolution reconstruction protocol (which we will refer to as highres) that is integrated in the software
platform Scipion. In this work we describe the details of the image angular alignment and map reconstruction
steps in our new method. This algorithm is similar to the standard projection matching approach with some
important modifications, especially in the area of detecting significant features in the reconstructed volume. We
show that the new method is able to produce higher resolution maps than the current de facto standard as
measured by the Fourier Shell Correlation, the Monogenic Local Resolution and EMRinger.

1. Introduction

Single Particle Analysis of macromolecular structures by Electron
Microscopy (EM) has become in the last few years one of the most
successful techniques for Structural Biology (Nogales, 2016) due to its
ability to achieve near-atomic resolution and to explore conformational
flexibility, using low amounts of sample material. The automation of
the image acquisition process at the microscope and the introduction of
Direct Electron Detectors have allowed the recording of vast amounts of
data whose analysis results in three-dimensional maps of the macro-
molecule under study from which structural models can be derived.
However, the images acquired at the microscope are extremely noisy
(Signal-to-Noise Ratios between 0.1 and 0.01). Such noisy measure-
ments require robust data analysis methods.

The prerequisites to achieve near-atomic resolution include 1) a
structurally homogeneous population of projection images obtained
using the crucial 3D classification algorithms (Scheres, 2012), 2) a
sufficiently good angular coverage to measure every region in Fourier
space, and 3) a sufficiently good frequency coverage to measure every
frequency and to preserve the microscope structural information at as
high resolution as possible. To accomplish this last requirement, images
are acquired at different defoci, especially at low defocus to preserve
high frequency information. The 3D reconstruction process alternates

between angular assignment and three-dimensional reconstruction to
extract the maximum of structural information present at the micro-
graphs. Overall, the whole problem can be seen as a regression in which
the projection images are the data to be fitted, and the volume and the
alignment parameters constitute the model.

All processing steps must be robust to high levels of noise and need
to avoid overfitting (reconstruction artifacts that satisfy data constraints
but that are either dominated by noise or that are far away from the
best possible solution). Structural knowledge can also be incorporated
in the analysis workflow, and most common ways are either using a
Bayesian prior (as Relion did Scheres, 2012) or by regularization (for a
review of regularization in 3D reconstruction, see Sorzano et al.
(2017)).

Relion (Scheres, 2012), at the moment the most common method to
refine maps in the field of Single Particle Analysis by EM, integrates the
whole regression problem in a single functional that is optimized in a
greedy fashion starting from an initial estimate of the volume to be
reconstructed. This functional includes a Bayesian prior about the sta-
tistical distribution of the objects to be reconstructed (coefficients in
Fourier space are independently distributed, with independent real and
imaginary parts, Gaussianly distributed with zero-mean and a variance
that is estimated from the data itself). Although in general, the prior is
not accurate for macromolecular structures (Sorzano et al., 2015), it has
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the advantage that it is mathematically tractable and results in a low
pass filter of the reconstructed volume similar to a Wiener filter
(Scheres, 2012).

This Bayesian approach has currently dominated the cryoEM 3D
reconstruction field, specially for its generalization to the very im-
portant task of multiple maps reconstruction as part of a 3D classifi-
cation process. However, this approach is not the only valid strategy for
map reconstruction. Actually, before the introduction in cryoEM of the
Maximum Likelihood (Scheres et al., 2005) and Maximum a posteriori
methods (Scheres, 2012), the standard approach to 3D angular align-
ment and reconstruction was the so-called “Projection Matching”
(Penczek et al., 1992; Penczek et al., 1994). Recently, novel im-
plementations of Maximum Likelihood based on GPU processing and
stochastic gradient descent have significantly reduced the processing
time (Punjani et al., 2017).

Let us refer to the parameters defining the angular alignment of the
whole dataset as Θ and to the reconstructed volume as V . In an ex-
tremely simplified manner, we may think of the Maximum Likelihood
method as an algorithm that minimizes

̃= −∗ ∗ P PΘ V I V, arg min|| || ( 1)W
Θ V

Θ
,

2

where ̃I is the set of pixels from the acquired images (if the underlying
algorithm allows an image to be at multiple angular orientations with
different probabilities, then ̃I will contain multiple copies of the mea-
sured data and Θ will have several components devoted to the same
image), PΘ is a projection operator that calculates the projections of the
volume V along the directions and shifts specified by Θ (depending on
the specific implementation, this projection operator may include or
not the aberrations caused by the electron microscope), and ||·||W is a
weighted norm in which different pixels may be weighted differently
according to some scheme adopted by the algorithm (the statistical
distributions assumed for the noise and the alignment parameters au-
tomatically determine the form of this norm; this generic algorithmic
framework may be adopted in real or Fourier space) (Sorzano et al.,
2017). This problem is simply a data fidelity term (the reconstructed
object has to be compatible with the acquired projections). The Baye-
sian approach adds a priori knowledge about the statistical distribution
of the volumes being reconstructed that, in its turn, is translated into
the minimization problem as an extra term that penalizes unlikely re-
constructions
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The traditional approach in cryoEM, projection matching, decomposes
the minimization in P1 in two subproblems that are minimized sepa-
rately and iteratively (k denotes the iteration number)
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In its most traditional approach, ̃I is restricted to have a single copy of
the experimental measurements I, that is, only one alignment para-
meter set is estimated per projection. The first subproblem P a( 1 ) is
called angular assignment (each experimental image is assigned a set of
parameters that encodes its projection direction and in-plane alignment
with respect to the current guess of the macromolecular structure). P1a
strongly depends on the initial map used as reference. The second
subproblem uses the assigned angles to update the 3D map of the
macromolecule. In practice, the Maximum Likelihood (ML) and Max-
imum A Posteriori (MAP) problems are solved through a numerical
technique called Expectation Maximization that boils down to an
iterative scheme similar to angular assignment and 3D reconstruction
iterations (Scheres et al., 2005; Scheres, 2012) (the prior in MAP affects
the specific form of the iterative step in P b( 1 ); the fact that a Gaussian
distribution is the conjugate prior of the distribution chosen for the

likelihood term helps to keep the mathematical complexity of the EM
iteration tractable). In the approach with subproblems (P a1 and P b1 ), it
is still possible to introduce a priori knowledge about the class of vo-
lumes being reconstructed through the so-called image restoration
methods (Sorzano et al., 2017). An example of map restoration is to
restrict maps to be members of certain subsets defining properties a
good map should have (e.g., non-negative maps, maps with compact
space support, etc.) (Sorzano et al., 2008). Projection onto Convex Sets
(Carazo, 1992), which were early introduced in the EM field, was a
form of incorporating this a priori information. However, statistical
properties of the volumes (like a Bayesian prior Scheres, 2012) or any
other known feature of the volume being reconstructed could also be
used in a restoration scheme.

The ML approach introduced an important concept in the EM
community: an experimental image may occupy more than one pro-
jection direction and in-plane alignment, but with different probability.
This probability gives its weighting factor during the reconstruction
process. The rationale behind this idea is that images are so noisy that
the maximum correlation peak calculated during the alignment is prone
to errors and allowing the image to sit at different angles gives it more
opportunities to find its correct localization (ideally, the likelihood
distribution for a single experimental image should converge to a delta,
although this is not always the case in practice for all images). This idea
of more than one location was further exploited for the blind con-
struction of an initial model (Sorzano et al., 2015). On the other hand,
the fact that all experimental images are, in principle, allowed to oc-
cupy all projection directions (with different probabilities) may cause
that some projection directions with intrinsically more Signal-to-Noise
Ratio are over-represented (Vargas et al., 2016; Vargas et al., 2017),
what we refer to as the attraction problem (Sorzano et al., 2010).

In this work, instead of using the image likelihood as weight, we
used its significance (which is the probability that a random image
taken from the set has a cross-correlation smaller than the correlation of
this experimental image), and we promote, as in projection matching,
an angular assignment in which each image receives a single angular
orientation. Despite the appeal of letting an image to occupy several
angular orientations (due to the uncertainty introduced by noise), in
reality an image is known to come from a single (although unknown)
orientation. Angular assignment algorithms will very likely commit
assignment errors. For the sake of argument, let us consider that the
error rate of the angular assignment is 30% (that is, 30% of the particles
are assigned an incorrect orientation). If we now allow for a second
angular assignment, with different weights, we know that for the 70%
of particles that were correctly assigned, this second assignment will be
incorrect. And for the remaining 30%, only about 70% will be correctly
assigned. From the whole set of assignments (that now is twice the size
of the dataset because of the double angular assignment), only 45.5%
(= +0.7·0.5 0.3·0.7·0.5) of it has a correct angular assignment. That is,
by increasing the number of positions in which a particle might sit (as a
measure to fight noise), we have decreased the accuracy of our angular
assignment, possibly resulting in a low pass filtering of the re-
constructed volume due to the incoherent averaging in the Fourier
space. In principle, this situation should be alleviated by the fact that
the different projection directions have different weights, and that this
weight distribution would ideally be very spiky around the true angular
assignment. However, this ideal situation is not always the case. In
Fig. 1 we show the weight profile for an experimental projection of a
ribosome when it is compared to the whole gallery of projections of the
final reconstructed volume sampled every 5 degrees and with a max-
imum shift of 24Å. More than 35 million combinations of orientation
and positions were explored. Relion and highres both agreed on the
angular assignment and shift of this particle, with a precision of less
than 1° in the angles and 1 pixel in the shifts. Relion is based on the l2
norm of the difference between the volume reprojection and the ex-
perimental projection with a frequency weight given by the noise var-
iance, while highres is based on the correlation of the volume
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reprojection and the experimental projection and the IMED (Sorzano
et al., 2015). For comparison purposes we have also included the cor-
rentropy (Sorzano et al., 2010), which should be dissimilar from the l2
norm only for noise distributions deviated from the Gaussian. We only
plot the similarity measures of the 99.9999% top coefficients. For re-
presentation purposes we have scaled the similarity/distance measures
between 0 and 1, so that the best matching reprojection gets similarity
1. As can be seen from this figure, the weight distribution is far from
being very spiky, the weights gradually drop from 1 and some of the
measures drop faster than others. As the noise distribution is Gaussian,
the l2-norm and the correntropy have similar decays, as expected. IMED
has a slightly better decay, especially at the beginning of the curve (for
the first 1–5 reprojections), and the linear correlation is the most dis-
criminant function (its slope at the origin is larger than any other
function). For both, Relion and highres, the top 99.9999% coefficients
span an angular coverage of ± ±∘ ∘8 , 9.5 and ± ∘5 in the 1st, 2nd and 3rd
Euler angles, respectively, around the best matching angle. The shifts
had an uncertainty of ± 6 Å. As suggested in the rest of the text, it is
recommended to use higres with a single angular and shift assignment,
so that the final result is not affected by these uncertainties, although
this strategy does not preclude alignment errors. The fact that the
correlation and IMED have larger slopes at the best matching position
help them to better identify the position of each experimental projec-
tion in the presence of noise.

Multiple angular assignments may still be useful when trying to find
the correct structure from an incorrect initial volume. Slow con-
vergence from very low resolution (typically, initial volumes are fil-
tered at about 60Å) to high resolution, as is done in Relion, is a useful
strategy to get away from local minima. However, we propose that this
strategy of multiple angular assignments is dropped as high resolution
is achieved.

In this paper we introduce a new algorithm for solving the problem
of reconstructing the 3D density map of a macromolecule from an
homogeneous population of images. It is based on the following sub-
problem decomposition: 1) Angular assignment in which an experi-
mental image can occupy one or multiple orientations, although this
latter option is strongly discouraged; 2) 3D Reconstruction with
weights; 3) Volume restoration. The algorithm is normally used in the
so-called “gold-standard” paradigm (Scheres and Chen, 2012), that is,
the original dataset is split in two halves that never see each other.
However, this is not a requirement of the algorithm. We now describe
the specific choices of our algorithm. The algorithm is available through
Scipion (de la Rosa-Trevín et al., 2016) from Release 1.1 under the
name highres.

Regarding the results of the challenge we should note that the

algorithm was not fully implemented by the time of the first deadline to
submit the results. We submitted some results that were evaluated by
the challenge assessors, and that are the ones reported in the other
companion papers of this special issue. Then, the challenge organizers
opened a second round of submissions in which we submitted our final
results that, to the best of our knowledge, have not been reevaluated by
all assessors. In this paper, we present the algorithm along with com-
parisons of its results with results from Relion run by us for the same
dataset similarly preprocessed.

2. Methods

In this section we give the details of the algorithm: 1) We introduce
the multiresolution approach as a way to prevent overfitting and re-
moving the effect of unnecessary amounts of noise; 2) Then, we explain
the details of the global and local angular assignments (including local
refinement of the defocus, magnification and gray normalization); 3) It
follows the explanation of the 3D reconstruction step which includes a
particular weighing scheme and the correction of the CTF envelope
before reconstructing; 4) We then present the dampening of all features
that are not significantly different from noise; 5) Finally, we combine
the two halves from the gold-standard into the reconstruction valid for
this iteration using a superresolution method.

As usual, the whole algorithm is iterative and once a new reference
is constructed, it can be used to refine the geometrical alignment of the
particles in the next iteration.

2.1. Multiresolution

We have chosen to solve the 3D alignment and reconstruction
problem in a multiresolution framework: the pixel size of the images is
progressively decreased so that early iterations are performed aiming at
low resolution reconstructions and, as iterations proceed, higher re-
solutions are sought. The advantages of this approach are not only its
higher computational speed, but it also helps to smooth the landscape
of solutions of the minimization problem increasing the probability of
not getting trapped in local minima (Sorzano et al., 2005). Additionally,
the fact that the sampling rate changes from one iteration to the next
helps to avoid creating a fixed pattern in the projection gallery used for
global angular assignment (fixed projection patterns may induce
alignment artifacts and, ultimately, overfitting).

Too many degrees of freedom at the early iterations may produce
overfitting. To avoid this overfitting we limit the target resolution at a
given iteration. At each iteration the user may specify the target re-
solution in Å (Rtarget k, ). Assume the resolution achieved by the algorithm
(as measured by the cross of the Fourier Shell Correlation, FSC, with the
0.143 threshold) at the previous iteration was −Rk 1. This user supplied
target resolution is limited to

′ = ⎛
⎝

⎞
⎠
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,target k
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if the alignment at this iteration is local. These target resolutions have
been heuristically chosen, and their only aim is to slow the pace at
which the multiresolution progresses so that the algorithm does not
early fall into a local minimum.

Then, the sampling rate (Å/pixel) at this iteration is calculated as

⎜ ⎟= ⎛
⎝

′ ⎞
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T T
R

min ,
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target k,

being Ts the original sampling rate. This sampling rate guarantees that,
if the original sampling rate is high enough, the target resolution at this
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Fig. 1. Decay of the weight of an experimental particle under different image
similarity measures. For comparison purposes all similarities observed in the
projection gallery have been normalized to be between 0 and 1, being 1 the best
matching projection. The algorithm presented in this work is using Correlation
and IMED.
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iteration occupies 2/3 of the Fourier space.
Given the size of the images at the current sampling rate, Xdim, the

angular step for global angular assignment is calculated as

⎜ ⎟= ⎛
⎝

⎞
⎠

∘ −θ
R
X T

Δ max 3 , tan target k

dim k

1 ,

This limit on the angular sampling rate aims at gaining speed and,
again, avoiding too many degrees of freedom at early iterations.

2.2. Angular assignment

A short summary of our approach would be: align globally until the
alignment stabilizes, then refine locally. The map used as reference is a
non-negative, low-pass filtered and masked map constructed from the
reconstruction of the previous iteration. The process of the construction
of the next reference is highly configurable in the algorithm im-
plementation in Scipion, but the goal is to remove all small details
that could serve as anchors for noise overfitting, in Fourier as well as in

Fig. 2. Left column: Results for Relion. Right column: Results for highres. a) and b): Angular distribution of the dataset (each dot represents an input image on the
projection sphere). c) and d) A sample slice of the 3D reconstructed volume. e) and f) Local resolution estimate at four different slices.
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real space.

• Construction of the next reference. By default, the current re-
construction is filtered by the Fourier Shell Correlation at the cur-
rent iteration as a way to avoid overfitting (Sindelar and Grigorieff,
2012). Additionally, the user may choose to apply a low-pass filter
with a frequency defined by the current resolution, computed
adding or subtracting a user-defined offset. The user may also
choose among applying a spherical mask, a non-negative mask, with
all negative voxels set to 0, or a user-defined mask. This mask should
be wide enough to hold the structure features but avoiding back-
ground overfitting. Finally, the user may give a shell command or
batch that filters/masks the reference volume in any desired way.

• Global alignment. For the global alignment we use an algorithm that
takes into account the significance of a volume reprojection to the
experimental image and viceversa (xmipp_reconstruct_signi-
ficant (Sorzano et al., 2015)). The similarity between two images is
measured by correlation and IMED. Based on these significances the
alignment algorithm computes a weight that is later used for re-
construction (Sorzano et al., 2015 Eq. (7)). Note that this weight
may be 0, implying that the image is not considered for 3D re-
construction at this iteration. The significance in this application is
set very high such that each experimental image participates in very
few (we recommend 1, or at most 2) projection directions, being this
number specified by the user. The angular sampling at each iteration
is different (see the previous section). This change of angular sam-
pling also helps to avoid overfitting between iterations. Due to the
dependence between correlation and microscope defocus, this
global angular assignment is performed by defocus groups. From
one iteration to the next, the implementation of the algorithm al-
lows inspecting the set of images and filtering out images with low
significance weight, low correlation, large shifts, etc. This step is
optional and its need depends on the quality of the input dataset.

• Local alignment. The stabilization of the global angular assignment
can be measured by the stabilization of the Fourier Shell Correlation
curve (as it is normally done in the field), or, better still, by evalu-
ating the angular changes for all experimental images from one
iteration to the next. Typically, 3 global iterations are enough if we
start from a low resolution model, and 1 global iteration if we start
from a high resolution model. The user may decide at this moment
to go for a local refinement. While global assignments are based on a
discrete angular sampling of the projection sphere, local

assignments are performed in a continuous angular space
(Grigorieff, 2007; Jonić et al., 2005). We also allow for anisotropic
scale (Grigorieff, 2007), particle-wise defocus, and gray value op-
timization (the experimental images are linearly transformed so that
the distance between them and the assigned projections is mini-
mized; this optimization aims at correcting gray normalization er-
rors performed at the beginning of the processing). These latter
options increase the number of parameters to optimize and we re-
commend to progressively increase the number of optimization
parameters (e.g., first, angular assignment; second, angular assign-
ment, scale and defocus; finally, all parameters). The idea is to
perform the optimization in a hierarchical way, starting from the
most important parameters to avoid the local minima created by the
presence of many variables. The alignment parameters are opti-
mized using Powell’s method (Powell, 1964). The objective function
is the cross-correlation between the reprojected volume taking into
account the Contrast Transfer Function (CTF) and the experimental
image within a circular mask (except when the gray value trans-
formation must be estimated, in which the objective function is the l1
norm of the difference between the experimental image and the gray
transformed projection).

2.3. 3D Reconstruction with weights and Wiener amplitude correction

For the 3D reconstruction we use a weighted, direct Fourier inver-
sion algorithm (Abrishami et al., 2015). This algorithm proved to pro-
duce very accurate results up to very high resolution and it is tightly
related to a robust interpolation problem in Fourier space. Weights are
given directly from the previous step through the significance weights
calculated by the global or local alignment and scaled between wmin
(typically, =w 0.1min , although this value can be selected by the user)
and 1. This scaling is performed by defocus groups to avoid the de-
pendence of the correlation with the defocus. The images used for the
3D reconstruction are previously Wiener corrected in order to com-
pensate for the Fourier envelope and oscillations caused by the mi-
croscope aberrations (CTF). However, it is important to perform a CTF
correction per particle, since the envelope of the CTF depends on the
specific aberrations of each micrograph as well as the defocus of each
particle (Sorzano et al., 2007). Otherwise, the Fourier interpolation
problem is fed with systematically inconsistent data (systematic as
opposed to the random nature of the inconsistency introduced by
noise). Symmetry is handled by replicating the input images at different

Fig. 3. Left: Histogram of the correlation within a circular mask as calculated during the continuous angular assignment. The two modes reveal the existence of two
populations. Right: Difference in FSC with the full dataset (Iteration 2) and with the dataset after removing those projections whose cross correlation was below 0.14
(Iteration 3).
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angular positions according to the specific symmetry, and using these
symmetrized projections during the 3D reconstruction process.

2.4. Signal detection and voxel significance

Single Particle Analysis is normally performed in a context in which
there is a region of the volume for which it is known that there should
not be any structural detail. This area is called the background and it is
normally defined by a mask. We analyze the statistical behavior of noise
in this area by estimating its cumulative probability distribution, F n( )N .
Then, every voxel in the volume with gray value v, either in the
background or foreground area, is multiplied by F v( )N . That is, voxels
whose value is significantly larger than noise are multiplied by 1, while
those voxels not significantly larger than the noise will be dampened.
The overall effect of the filter is a denoising of the input reconstructed
volume.

This idea can be extended to any transformation of the input

volume. For instance, if we band-pass filter the volume, we may apply
the non-significant dampening above to each one of the band-pass fil-
tered versions of the input volume. Then, we may simply combine all
these denoised volumes

=
∑

∑
V

F V V
F V

( )
( )

ω N ω ω ω

ω N ω ω
filterbank

,
2

,
2

2

2

where ω defines the central frequency of the band-pass filter, Vω is the
band-pass filtered version of the reconstructed volume, and F N ω,2 is the
cumulative probability function of the instantaneous energy of the
band-pass filtered noise. Note that the noise distribution of any of the
volume transformations in this section is always measured in the
background area.

Finally, we may further use this distinction between the noise and
signal behavior to other signal operators. In particular, we may analyze
the noise response to the operator = +T I Δ, being I the identity op-
erator, and Δ the Laplacian operator. This operator returns the volume

Fig. 4. Left column: Results for Relion. Right column: Results for highres. a), b) and c) A sample slice of the 3D reconstructed volume by Relion Autorefine, Relion
Autorefine+Postprocessing, and highres. d) and e) Local resolution estimate at four different slices. f) and g) Histogram of the local resolution.
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with enhanced borders. The rationale for involving the Laplacian of the
input signal is that this operator boosts high frequencies with respect to
low frequencies. In this way we may analyze which is the behavior of
noise high frequencies (in the noise area) and suppress similar beha-
viors in the signal area. The idea is to find a denoised volume ∼V , such
that

=∼T V F T V T V( ) (| ( )|) ( )N T V,| ( )|

where |·| is the absolute value, and FN T V,| ( )| is the cumulative distribu-
tion function of the noise energy under the transformation T V| ( )|. That
is, the operator applied to the denoised volume must be equal to the
significance weighted version of the same operator applied to the input
volume. Without the weighting, the obvious solution is =∼V V , so that
the solution of the previous equation is not a volume with enhanced
borders, the main effect on ∼V is denoising, not sharpening. This equa-
tion is tightly related to the retinex image model and its solution is also
found in Fourier space as it was done in Limare et al. (2011) (see this
reference of the implementation of the solution to this equation).

Note that all these transformations aim at keeping the components
of the volume that behave, under various transformations, significantly
different from noise. This is exactly a task of signal detection in noise.
The noise suppression operations are performed in the whole volume,
not only the background, so that the overall effect is not simply masking
the volume, but inside the molecule it is expected that these operators
reduce the noise in the same way as outside it. All these transformations
are currently available in the implementation of highres within
Scipion and the user may decide to activate them or not.

2.5. Volume restoration

The two maps coming from the two dataset halves in the gold-
standard may be combined using image superresolution (Park et al.,
2003) rather than a simple average (note that the two half maps remain
to be independent in next iterations, only their combination, which is
not propagated to the following iterations, sees both volumes at the
same time).

Given the two independently reconstructed volumes, V1 and V2, the
traditional approach in EM combines them by a simple average. We
here propose to use a superresolution combination. The idea is to find a
higher resolution volume, ∗V , and two parameters ∗σ1 and ∗σ2 such that

Fig. 5. a: Fitting of the challenge atomic model to the Relion map. b: Fitting of the refined atomic model to the Relion map. c: Fitting of the refined atomic model to
the highres map. d: Both atomic models (green: refined to Relion, yellow: refined to highres) displayed in the highres map.

Fig. 6. Detail of the differences between the challenge atomic model (yellow),
the atomic model fitted to Relion (dark green) and the highres (green) maps
displayed in the highres map. Although the overall difference is only 0.79Å in
RMSD, there are regions where the orientation of side chains, like the pheny-
lalanine in this figure, significantly change.
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where ☆ is the convolution operator and Kσ is a Gaussian kernel whose
standard deviation is σ . Note that this volume does not participate in
the calculation of the resolution between the two halves, and it is used
only as the output at each iteration.

3. Results

We illustrate the performance of the proposed algorithm with two
different datasets: the Plasmodium falciparum 80S ribosome bound to
the anti-protozoan drug emetine (EMPIAR Entry: 10028 Wong et al.,
2014, an asymmetric structure), and the T20S Proteasome (EMPIAR
Entry: 10025 Campbell et al., 2015, a D7 symmetric structure). In both
examples we use highres as a refinement algorithm working on the final
result from a previous 3D reconstruction algorithm (in the examples
below, Relion). This is not a hard constraint of the method, and results
starting from the output of initial volume algorithms also converge to
the same structures as the ones reported in this section. However, they
involve at least three global assignment iterations to reach the high
resolution regime at which the local refinement is performed. Since
Relion is currently so fast on GPUs, we can easily avoid these extra
global assignment iterations by directly starting at the output of Relion.

3.1. Plasmodium falciparum 80S ribosome

68,265 projection images were extracted from 600 micrographs (see
the experimental details of the acquisition at Wong et al. (2014); these
particles come after a particle picking performed in Scipion with the
Xmipp automatic picking algorithm (Abrishami et al., 2013) and
cleaning of the particles using CL2D stable cores (Sorzano et al., 2010;
Sorzano et al., 2014)). CTFfind4 was used to estimate the CTF required
by Relion and Xmipp CTF, which additionally estimates the CTF en-
velope, for our method. We used Relion autorefine, which resulted in a
structure with a resolution of 3.9Å (after Relion postprocessing, the
resolution goes up to 3.4Å, however, as is shown in the next section,
this increase in resolution severely degrades in relation to an atomic
model, while before postprocessing it has a much better agreement).
We then continued with highres. In this example we allowed for only
one angular position for each experimental image. We performed a
single global angular assignment and 4 iterations of local refinement
following the progressive strategy in parameters described in Section
2.2. The global alignment took 10 days in a machine with 48 CPU
processors and 16 GB of RAM, while the local alignment took 13 h in
the same machine. Fig. 2 shows the results for both approaches, the two
maps are in the same orientation so that the projection direction dia-
grams are comparable. As can be seen from Figs. 2a and b, the angular
coverage achieved by our method is larger than the one from Relion.
Only 31.8% of the images were assigned angles by Relion and highres
with an angular difference less than 15°, and more than 48.9% of the
particles moved further than 15° between the global and the local re-
finement inside highres. The fact that only a minority of the experi-
mental projections have a similar angular assignment between Relion
and highres indicates that it is not only the refinement of parameters like
the defocus, magnification or gray value normalization what is making
a difference between Relion and the new algorithm, but the whole
angular assignment procedure. Figs. 2c and d show a representative
slice by Relion and highres. Note that the slice of our reconstruction has
not been masked, but because of the signal detection operations de-
scribed in Section 2.4, the noise in the background and foreground has
been strongly attenuated.

The FSC resolution reported by our method was 2.7Å (the same
masks were used in Relion and our method; the original publication
reported 3.2Å (Wong et al., 2014)). The higher resolution of our
method is confirmed by the local resolution analysis performed with

MonoRes (Vilas et al., 2018) (Figs. 2e and f). The median local re-
solution for Relion was 4.9Å, while for our method was 2.96Å (note
that MonoRes local resolution estimates are invariant to isotropic
transformations like the B-factor correction of Relion postprocessing).
The median local resolution for the volume deposited at EMDB (entry
ID: 2660) was 6.88Å (but this volume has a severe misalignment of the
40S subunit).

Our method allows discriminating particles by different criteria at
each iteration. After the first local iteration, we inspected the cross-
correlation between reprojections of our volume and the experimental
projections within a circle enclosed in the projection image (this cor-
relation is referred to as cost). We discovered the presence of two modes
indicating the presence of two subpopulations in the dataset (see
Fig. 3). After thresholding on this criterion (all images with <cost 0.14
were eliminated), we see an important improvement of the gold stan-
dard FSC (see Fig. 3).

3.2. T20S proteasome

22,884 projection images were extracted from 196 micrographs (see
the experimental details of the acquisition at Campbell et al. (2015)).
We followed the standard image processing pipeline used with Relion,
including postprocessing (although this latter option resulted in a much
worse agreement with the atomic model). Then, we continued the
processing with highres making two global iterations with only one
angular position per experimental image, and three local iterations
progressively increasing the set of parameters to optimize, as re-
commended in the Methods Section. The global alignment took 16 h in
the same machine as in the previous structure, and the local alignment
14 h. Fig. 4 shows the results for both approaches. The FSC reported by
Relion was 3.4Å, while our method reported 2.5Å. The median of the
local resolution analysis (Vilas et al., 2018) for Relion was 3.5Å and for
our method was 2.2Å (the originally reported resolution was
2.8Å (Campbell et al., 2015)).

We constructed an atomic model of the T20S proteasome based on
the atomic model deposited at the Map Challenge web page. We fol-
lowed the same procedure for the Relion and highres map. The chal-
lenge atomic model did not fit in some of the places (see Fig. 5 a). For
this reason we refined the atomic model using Coot (Emsley et al.,
2004) real space refinement in both maps, Relion and highres (see Fig. 5
b, c and d). The refined models are not largely different between each
other (the RMSD between both is 0.79Å, see Figs. 5d and 6). We
evaluated the quality of the fitting using EMRinger (Barad et al., 2015).
The EMRinger score for the Relion map was 2.61 and for the highres
map 2.69; the rotamer ratio increased from 0.886 in Relion to 0.931 in
highres; and the max Zscore increased from 4.085 to 4.208. It has be-
come customary to perform a Relion postprocess after Relion auto-
refine. In this case, the EMRinger score drops to 2.01, the rotamer ratio
drops to 0.729, and the max Zscore drops to 3.138. The reason is that B-
factor correction flattens a middle range of the Fourier spectrum of the
map, while macromolecules are not flat in this region.

4. Conclusions

In this article we have introduced a new algorithm for aligning and
reconstructing EM projection images in Single Particle Analysis. The
algorithm is based on a subproblem decomposition of the 3D alignment
and reconstruction problem, as was traditionally done in the field be-
fore ML and MAP approaches were introduced. In our method the
concept of significance is deeply involved (at the level of angular
alignment, 3D reconstruction and volume denoising). The algorithm is
based on a few ideas: 1) Two halves of the dataset are independently
refined; 2) An image can occupy multiple positions with a merit func-
tion calculated from the significance of the angular alignment, how-
ever, we strongly recommend to use only 1 position; 3) The angular
alignment is performed globally until it stabilizes at the level of angular
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changes and FSC; 4) Local refinement includes anisotropic magnifica-
tion, defocus and gray value optimization beside the more classical
angular alignment parameters; 5) The CTF amplitude is corrected by
Wiener filtering before performing the 3D reconstruction; 6) The re-
construction is performed in Fourier space with weights calculated from
the significance of the merits of the alignment by defocus groups; 7)
The reconstructed volumes are denoised analyzing the significance of
the coefficients in the signal area under various transformations; 8) The
two independent halves are combined into a single volume using a
superresolution algorithm.

We have shown that the combination of these steps extract in-
formation from the electron micrographs to high resolution. The algo-
rithm is still open for new weighting schema taking into account the
Signal-to-Noise Ratio of the input images as well as their angular sta-
bility, for example.
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Supplementary Information: High-resolution
reconstruction of Single Particles by Electron

Microscopy

Supplementary Information

Mathematical/Implementation details

Multiresolution. At each iteration the user may specify the target resolution
in Å(Rtarget,k). Assume the resolution at the previous iteration was Rk−1. This
user supplied target resolution is limited to

Rtarget,k = max

(
Rk−1

2
, Rtarget,k

)
if the alignment at this iteration is global and to

Rtarget,k = max

(
4Rk−1

5
, Rtarget,k

)
if the alignment at this iteration is local.

The sampling rate (Å/pixel) at this iteration is calculated as

Tk = min

(
Ts,

Rtarget,k
3

)
being Ts the original sampling rate. This sampling rate guarantees that, if the
original sampling rate is high enough, the target resolution at this iteration
occupies 2/3 of the Fourier space. The reason for limiting the target resolution
at a given iteration is avoiding overfitting by having two many degrees of freedom
at the early iterations.

Given the size of the images at the current sampling rate, Xdim, the angular
step for global angular assignment is calculated as

∆θ = max

(
3◦, tan−1 Rtarget,k

XdimTk

)
This limit on the angular sampling rate aims at gaining speed and, again, not
having too many degrees of freedom at the level of global alignments.

Angular assignment.
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• Construction of the next reference. By default, the current reconstruction
is filtered by the Fourier Shell Correlation (FSC) at the current iteration as
a way to avoid overfitting[4]. Additionally, the user may choose to apply
a lowpass filter with a frequency defined by the current resolution (the
current resolution plus or minus a user-defined offset), to apply a user-
defined mask (normally wide enough as to hold the structure features but
not background overfitting), a spherical mask, and a non-negative mask
(all negative voxels are set to 0). Additionally, the user may give a shell
command or batch that filters/masks the reference volume in any desired
way.

• Global alignment. For the global alignment we use an algorithm that takes
into account the significance of a volume reprojection to the experimental
image and viceversa (xmipp reconstruct significant [5]). Based on
these significances the alignment algorithm computes a weight that is later
used for reconstruction (Sorzano et al.[5] Eq. 7). The significance in this
application is set very high such that each experimental image participates
at most at a few (typically, 1 or 2) projection directions, being this number
specified by the user.

• Local alignment. The alignment parameters (angular orientation and in-
plane shift, anisotropic scale changes, defocus refinement and gray value
optimization) are optimized using Powell’s method[3]. The objective func-
tion is the cross-correlation between the reprojected volume taking into
account the CTF and the experimental image within a circular mask (ex-
cept when the gray value transformation must be estimated, in which the
objective function is the L1 norm of the difference between the experimen-
tal image and the gray transformed projection).

3D Reconstruction with weights. Our 3D reconstruction algorithm in Fourier
space admits the use of weights[1]. We divide the experimental images into
defocus groups. Within each defocus group, we use as weights the percentile
occupied by the objective function of each experimental image within this group
mapped between wmin (this value is defined by the user and it is typically 0.1)
and 1. In this way, good images (those whose objective function is well ranked
with respect to the rest of the group) have higher weights than worse images.
This is a way of pushing the significance of the angular assignment of each image
into the 3D reconstruction.

The images used for reconstruction are the Wiener filtered versions of the
experimental images. In this way, we compensate for the effects of the CTF
envelope at different frequencies. In our view, it is important to introduce
amplitude compensated Fourier components in the Fourier interpolation process
implied by the 3D Fourier reconstruction. Otherwise, the 3D reconstruction
would incorrectly estimate the Fourier coefficients of the reconstructed volume.

Signal detection and voxel significance. Single Particle Analysis is normally
performed in a context in which there is a region of the volume for which it
is known for sure that there should not be any structural detail. This area is
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called the background and it is normally defined as a mask (in the absence of
user-defined mask the largest sphere fitting inside the box containing the macro-
molecule serves as a suitable mask defining the background). We analyze the
statistical behavior of instantaneous energy of noise in this area by estimating
its cumulative probability distribution, FN (n). Then, every voxel in the volume
with gray value v, either in the background or foreground area, is multiplied by
FN (v). That is, voxels whose value is significantly larger than noise are mul-
tiplied by 1 or a number close to 1, while those voxels not significantly larger
than the noise will be dampened. The overall effect of the filter is a denoising
of the input reconstructed volume.

This idea can be extended to any transformation of the input volume. For
instance, if we bandpass filter the volume, we may apply the non-significant
dampening above to each one of the bandpass filtered versions of the input
volume. Then, we may simply combine all these denoised volumes

Vfilterbank =

∑
ω
FN2,ω(V 2

ω )Vω∑
ω
FN2,ω(V 2

ω )

where ω defines the central frequency of the bandpass filter, Vω is the band-
pass filtered version of the reconstructed volume, and FN2,ω is the cumulative
probability function of the energy of the bandpass filtered noise.

Finally, we may further use this distinction between the noise and signal
behavior to other signal operators. In particular, we may analyze the noise
response to the operator T = I + ∆, being I the identity operator, and ∆ the
Laplacian operator. The idea is to find a denoised volume Ṽ , such that

T (Ṽ ) = FN,|T (V )|(|T (V )|)T (V )

where | · | is the absolute value. That is, the operator applied to the denoised
volume must be equal to the significance weighted version of the same operator
applied to the input volume. This equation is tightly related to the retinex
image model and its solution is also found in Fourier space as it was done in
Limare et al [2]. The rationale for involving the Laplacian of the input signal is
that this operator boosts high frequencies with respect to low frequencies. In
this way we may analyze which is the behavior of noise high frequencies (in the
noise area) and suppress similar behaviors in the signal area.

Note that all these transformations aim at keeping the components of the
volume that behave, under various transformations, significantly different from
noise.

Post-processing. The volumes coming out from the previous step may be
masked, symmetrized or a part of it symmetrized. These are options offered to
the user and none of them is compulsory.

Image superresolution. Given the two independently reconstructed volumes,
V1 and V2, the traditional approach in EM combines them by a simple average.
We here propose to use a superresolution combination. The idea is to find a
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higher resolution volume, V ∗, and two parameters σ∗1 and σ∗2 such that

V ∗, σ∗1 , σ
∗
2 = arg min

V,σ1,σ2

‖V ? Kσ1
− V1‖2 + ‖V ? Kσ2

− V2‖2

where ? is the convolution operator and Kσ is a Gaussian kernel whose standard
deviation is σ. Note that this volume does not participate in the calculation of
the resolution between the two halves, and it is used only as the output at each
iteration.

Particle selection. Our implementation allows executing iterations one by
one. At the end of each iteration (after reconstruction), each particle in the
input dataset is assigned its angular orientation and is qualified with the angular
assignment objective function, the percentile this objective function occupies
within its defocus group, the weight assigned by the reconstruct significant

algorithm, the in-plane shift and change of scale, etc. The user may look at the
distribution of these parameters and decide whether particles at the extremes
are of sufficient quality to participate in the next iteration. This option has not
been used in this article in order to perform a fair comparison with existing
image processing algorithms in the field. However, we find this possibility very
useful in our daily data processing.
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