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C. O. S. Sorzano, A. Jiménez, J. Mota, J. L. Vilas, D. Maluenda, M.
Martı́nez, E. Ramı́rez-Aportela, T. Majtner, J. Segura, R. Sánchez-Garcı́a, Y.
Rancel, L. del Caño, P. Conesa, R. Melero, S. Jonic, J. Vargas, F. Cazals, Z.
Freyberg, J. Krieger, I. Bahar, R. Marabini and J. M. Carazo

Acta Cryst. (2019). F75, 19–32

IUCr Journals
CRYSTALLOGRAPHY JOURNALS ONLINE

Copyright c© International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that
this cover page is retained. Republication of this article or its storage in electronic databases other than as
specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Cryst. (2019). F75, 19–32 Sorzano et al. · Survey of continuous heterogeneity in EM

http://journals.iucr.org/f/
https://doi.org/10.1107/S2053230X18015108
http://journals.iucr.org/services/authorrights.html
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053230X18015108&domain=pdf&date_stamp=2019-01-01


research communications

Acta Cryst. (2019). F75, 19–32 https://doi.org/10.1107/S2053230X18015108 19

Received 30 May 2018

Accepted 26 October 2018

Edited by A. K. Mitra, University of Auckland,

New Zealand

Keywords: electron microscopy; image

processing; continuous heterogeneity;

single-particle analysis; normal-mode analysis.

Survey of the analysis of continuous conformational
variability of biological macromolecules by electron
microscopy

C. O. S. Sorzano,a* A. Jiménez,a J. Mota,a J. L. Vilas,a D. Maluenda,a M. Martı́nez,a

E. Ramı́rez-Aportela,a T. Majtner,a J. Segura,a R. Sánchez-Garcı́a,a Y. Rancel,a

L. del Caño,a P. Conesa,a R. Melero,a S. Jonic,b J. Vargas,c F. Cazals,d Z. Freyberg,e

J. Krieger,e I. Bahar,e R. Marabinif and J. M. Carazoa

aNational Center of Biotechnology (CSIC), Spain, bSorbonne Université, UMR CNRS 7590, Muséum National d’Histoire
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Single-particle analysis by electron microscopy is a well established technique

for analyzing the three-dimensional structures of biological macromolecules.

Besides its ability to produce high-resolution structures, it also provides insights

into the dynamic behavior of the structures by elucidating their conformational

variability. Here, the different image-processing methods currently available to

study continuous conformational changes are reviewed.

1. Introduction

Biological macromolecules adopt different structural confor-

mations in order to accomplish their biological functions and

in response to the continuous variation of cell environmental

conditions. Macromolecular dynamics manifests itself as

motions around an equilibrium position owing to thermal

fluctuations, random oscillations around favorable free energy

states, and structural changes essential for interaction with

other macromolecules, small ligands or natural substrates. As

a consequence of this dynamic behavior, and despite enrich-

ment conditions for a particular architecture, several distinct

conformations may coexist in the same sample. This confor-

mational heterogeneity poses a challenge to structural

analyses. Crystallography, nuclear magnetic resonance (NMR)

and electron microscopy (EM) are three complementary

techniques that are currently used to characterize the struc-

tures of biological macromolecules (van den Bedem & Fraser,

2015). Unlike crystallography, which is limited to a single

snapshot of the structural configuration space, NMR and EM

allow the analysis of different conformational states of

macromolecules. Whereas NMR studies usually yield an

ensemble of models consistent with the fluctuations of struc-

tures in solution for low-molecular-weight macromolecules

(99.3% of the NMR structures deposited in the Protein Data

Bank have molecular weights below 50 kDa), EM has a wider

scope, supporting the analysis of large-molecular-weight

structures under near-physiological conditions.

We normally refer to discrete heterogeneity when we have

one or a relatively small number of very stable structural

states, while by continuous flexibility we address situations in

which there are many transient states if not a continuum of

conformations. In this way, discrete heterogeneity is used to

refer to the existence of multiple biochemically different
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populations such as open/closed or inward/outward-facing

conformations, assembled/disassembled complexes, ligand or

factors bound/unbound, different oligomeric states etc. Several

methods have been proposed for the analysis of these

different states (Fu et al., 2007; Scheres et al., 2007; Sander et

al., 2010; Penczek et al., 2011; Scheres, 2012; Lyumkis et al.,

2013; Bai et al., 2015; Klaholz, 2015; Punjani et al., 2017).

Interestingly, Brink et al. (2004) were the first to merge

discrete classification with the continuous analysis of EM maps

through the use of normal modes. Continuous heterogeneity

encompasses a whole continuum of conformations adopted by

the macromolecule that are accessible by virtue of confor-

mational flexibility, or the so-called intrinsic dynamics (Bahar

et al., 2007, 2015; Ozgur et al., 2017). These motions can be

modeled at different scales, from full atomic to coarse-grained,

at various levels of resolution, including elastic network

models (Bahar et al., 1997; Doruker et al., 2000; Gur et al.,

2013; Kurkcuoglu et al., 2016), pseudoatomic representations

(Jin et al., 2014; Cazals et al., 2015; Jonić et al., 2016), whole

domains as rigid entities that move with respect to each other

(Tama et al., 2000; Doruker et al., 2002; Ponzoni et al., 2015;

Nguyen & Habeck, 2016) or even as a continuous material

(Bathe, 2008; Hanson et al., 2015; Sorzano, Martı́n-Ramos et

al., 2016; Solernou et al., 2018). The discrete and continuous

approaches to macromolecular dynamics are not mutually

exclusive and the discrete heterogeneity approach may be

considered as a sampling of the continuous conformational

population or, conversely, the binding to ligands or factors

may induce a continuous movement in one or both macro-

molecules. In fact, some methods try to reconcile both points

of view (Sorzano, Alvarez-Cabrera et al., 2016). On the other

hand, if the motion takes place mostly in large domains, one

could mask the images by removing the fixed domain and

perform a standard three-dimensional reconstruction and/or

classification (Bai et al., 2015; Ilca et al., 2015; Rawson et al.,

2016; Shan et al., 2016). This approach is known as projection

subtraction or focused classification. One drawback of this

approach is that the moving element needs to be rigidly

moving and of sufficient size that the subtracted projections

can be correctly aligned.

From the point of view of data analysis, one could perform

the analysis at the level of images (Dashti et al., 2014), volumes

(Klaholz, 2015; Haselbach et al., 2018) or a mixed approach of

both (Jin et al., 2014; Schilbach et al., 2017). The goal of all of

these approaches is to identify the underlying subspace of

conformational changes. Many algorithms aim at estimating

the variance or covariance of the reconstructed volume. They

recognize that there is not a single structure that is compatible

with the acquired projections, but rather than aiming at

determining concrete ensembles of structural models, they set

their goal at characterizing the structural variability in the data

set (Penczek, Yang et al., 2006; Zhang et al., 2008; Spahn &

Penczek, 2009; Zheng et al., 2012; Wang et al., 2013; Andén et

al., 2015; Katsevich et al., 2015; Liao et al., 2015; Tagare et al.,

2015; Gong & Doerschuk, 2016). Since the underlying

continuous changes are not usually directly recovered from

these approaches, they will not be reviewed in this article.

Gong & Doerschuk (2016) present a way of connecting the

covariance of the reconstructed volume to the mechanical

properties of the spring used in the normal-mode models

shown below.

In this article, we review the main ideas behind the analysis

of continuous heterogeneity in macromolecules. We cover the

landscape of free energy underlying continuous movements

and review the rationales behind the different data-analysis

approaches that are currently in use in single-particle analysis.

2. Macromolecular representations

In a very general approach, we can represent the electron

density of a macromolecule at a spatial location r 2 R
3 as a

summation of a set of basis functions multiplied by appro-

priate coefficients,

VðrÞ ¼ P
i

cibiðr� riÞ; ð1Þ

where ri determines the center of the ith basis function. The

nature of the basis function defines our vision of the protein.

For instance, we may adopt a voxel representation of the

molecule by setting all the basis functions to the same function

b(r) given by

bðrÞ ¼ 1 � 1
2 � x; y; z< 1

2

0 otherwise

�
: ð2Þ

Alternatively, we can choose Gaussians (Kawabata, 2008;

Jonić & Sorzano, 2016a,b; Jonić et al., 2016; Chen & Habeck,

2017), B-splines (Jonić et al., 2005), delta functions (Wriggers

et al., 1998; Chacón et al., 2003), modified Kaiser–Bessel

functions (Marabini et al., 1998) or any other basis function

(Lederman & Singer, 2017). All of these representations are

domain-agnostic and have been used to represent arbitrary

n-dimensional signals in many signal-processing applications.

When V(r) is a smooth function, the critical points of V

determine the topological changes of the level sets and the

shape of the molecule (Bader, 2002).

At the other extreme, we could have described our electron

density with a detailed list of all of its atoms, which is normally

called an atomic model. In this case, all of the ci values would

be equal and we would carefully represent the electron atomic

scattering factors bi of each of the different atoms (carbon,

oxygen, nitrogen, hydrogen etc.; Sorzano et al., 2015).

Depending on the size of the macromolecule, the number of

atoms can be relatively high, and we could take a simplified

representation of the atomic structure by considering only the

C� atoms, a bead per residue or any other coarse repre-

sentation such as the BLN representation (Brown et al., 2003;

Cazals et al., 2015), which represents each residue as a bead of

one of three types [hydrophobic (B), hydrophilic (L) or

neutral (N)].

We should distinguish between those representations that

place the basis functions in a regular grid and those that place

them in arbitrary spatial locations (these positions may be

determined experimentally or computationally). In the first

group, we find algorithms focused on the variability of the ci

research communications

20 Sorzano et al. � Survey of continuous heterogeneity in EM Acta Cryst. (2019). F75, 19–32

electronic reprint



coefficients for the basis functions in (2) (Penczek, Yang et al.,

2006; Spahn & Penczek, 2009; Zheng et al., 2012; Wang et al.,

2013; Andén et al., 2015; Katsevich et al., 2015; Liao et al., 2015;

Tagare et al., 2015) by estimating and analyzing the variance or

covariance volumes reconstructed from images. Note that this

group of algorithms is currently only able to produce a

prediction of the different conformational states in a contin-

uous way (typically along principal axes computed from the

three-dimensional covariance) and is not able to reconstruct

such states from images (although a pioneering concept by

which the eigenvolumes calculated from the covariance matrix

could serve as a basis for the search of continuous deforma-

tions is introduced in Section 7.3 of Andén & Singer, 2018).

Their main use is in the identification of the regions in the

volume with particularly high variability. In the second group

are those algorithms that analyze the continuous hetero-

geneity through the behavior of the ris. Between these two

families, we find some methods that consider the macro-

molecule as formed by a continuum medium (Hanson et al.,

2015; Solernou et al., 2018). In this review, we will concentrate

on the second family of methods.

3. The potential energy landscape and its exploration

In this section, we present the theory behind continuous

heterogeneity. This theory predicts possible movements of

the macromolecule and provides insight into the physical

mechanisms that underlie them. Electron microscopy provides

an experimental tool to directly observe ‘snapshots’ from

these movements, and the image-processing tools used to

identify them are presented in the next section. The theory

presented in this section allows decoupling of analysis of the

structure (Kirchoff connectivity matrix and normal-mode

analysis), its thermodynamics (population statistics) and

dynamics (for example molecular-dynamics and Markov state

models).

Continuous deformations in biological macromolecules

may be induced for several reasons: (i) the thermal energy at

their disposal and collisions with surrounding solvent mole-

cules, which promote random movements of the macro-

molecule atoms, (ii) the rigidity of covalent bonds and

dihedral angles between atoms in the peptide sequence, which

force the molecule to come back to the equilibrium inter-

atomic distances and angles, (iii) local charges, which create

local electromagnetic fields that exert new forces on the

moving atoms, etc. The list of physical effects involved in

atomic movements could be extended until all aspects of the

atomic interactions, including their quantum effects, are

included. Ultimately, macromolecules change their confor-

mations to accomplish specific biological functions (for

example protein synthesis, virus maturation etc.) and as a

consequence of their interaction with their environment

(solvent, ligands, factors, substrates, other macromolecules

etc.). The simulation of these atomic movements has been the

realm of molecular dynamics (MD; Karplus & McCammon,

2002; Phillips et al., 2005; Adcock & McCammon, 2006; Hess et

al., 2008; Brooks et al., 2009) and has largely been developed

by biophysicists and computational chemists. Table 1 shows

the different amplitudes of possible atomic movements inside

proteins (Adcock & McCammon, 2006).

From a broad perspective, macromolecules transit from one

state to another by ‘navigating’ their potential energy land-

scape (Wales & Bogdan, 2006). Many different effects can be

modeled into the potential energy (Field, 1999; Allen, 2004).

For instance, given a conformation V, the Lennard–Jones

potential energy

EðVÞ ¼ P
i;j
i6¼j

"
�ij

rij

� �12

� �ij

rij

� �6
" #

ð3Þ

is used to avoid atom clashing, where " is the depth of the

potential well, �ij is the distance of zero potential (normally

related to the size and charge of the two atoms involved, hence

the subscripts i and j) and rij = ||ri � rj|| is the distance between

the ith and jth atoms. The power 12 term models the repulsion

between the electron orbitals of both atoms, while the power

six term models the attraction at longer ranges (van der Waals

force). Electrostatic potential energies are also easily

modeled,

EðVÞ ¼ P
i;j
i6¼j

qiqj

4�"rij
; ð4Þ

where qi and qj are the net charges of the ith and jth atoms and

" is the dielectric constant, which depends on the solvent and

the macromolecule itself.

The potential energies above are based on physical laws,

and we could add as many different effects (including

quantum-mechanics effects) as desired. However, we can also

develop empirical energies. For instance, it has been observed

that the bond length between different atoms has certain

average values rij
avg, depending on the specific atom elements

linked and on the nature of the covalent bond (single, double

or triple). We may add an energy term that ‘encourages’ atoms

to respect these reference distances,

EðVÞ ¼ P
i;j
i 6¼j

kijðrij � r
avg
ij Þ2; ð5Þ

where kij is an elastic term that allows more or less departure

from the average. Equally, we could add empirical terms for

dihedral angles between atoms, or any other experimentally

known data (Bahar et al., 2017).
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Table 1
Sizes and time scales of different types of protein motions.

Motion Amplitude (Å) Time

Bond-length vibration 0.01–0.1 0.01–0.1 ps
Bond-angle vibration 0.05–0.5 1–10 ps
Torsional libration of buried groups 0.5 10–1000 ps
Domain movements 2–10 0.01–100 ns
Allosteric transitions 2–10 10 ms–1 s
Rotation of buried side chains 5 0.1 ms–1 s
Rotation of solvent-exposed side chains 5–10 10–100 ps
Local denaturation 5–10 10 ms–10 s
Loop motions 5–20 1 ns–0.1 ms
Helix–coil transitions 50– 0.1 s–1 h
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These energies have to be adapted to the information at

hand. For instance, coarse-grained models with information

about larger groups of atoms, such as residues, should reflect

the information known about the charge of the groups, their

sizes, their bonding characteristics with other residues etc. (for

a review of coarse-grained models, see Kar & Feig, 2014).

More challenging are those coarse-grained models based on a

generic kind of pseudo-atom (typically Gaussians) because

there is no information about their chemical properties. In

these cases, instead of calculating the energy of a conforma-

tion, we may study the change in energy with respect to one

reference conformation, V0. If we expand the energy around

the energy of the reference, we obtain

EðVÞ ’ EðV0Þ þ ½DrEðV0Þ�ðr� r0Þ
þ 1

2ðr� r0ÞT ½D2
rEðV0Þ�ðr� r0Þ; ð6Þ

where

r ¼
r1

r2

. . .
rN

0
BB@

1
CCA ð7Þ

is the position vector formed by concatenation of all of the

locations of the N pseudo-atoms of the conformation V, r0 is a

similar vector for the conformation V0, and DrE and Dr
2E

represent the gradient and the Hessian of the potential energy

function E with respect to the location of the pseudo-atoms.

The same quadratic form appears in three different contexts:

(i) the Hessian of the potential energy at a local minimum, (ii)

a spring model and (iii) the covariance matrix of an ensemble

of macromolecules. The three contexts will be connected in

this review. This energy is at the core of the elastic network

model (ENM; Brooks & Karplus, 1983, 1985; Tirion, 1996;

Bahar et al., 1997; Tama & Sanejouand, 2001; Ming et al., 2002;

Tama et al., 2002, 2004a,b; Rader et al., 2006; Peng et al., 2010;

Bahar et al., 2010, 2017; Al-Bluwi et al., 2013; Lopéz-Blanco &

Chacón, 2016), and an obvious limitation of this approach is

that it is only valid in the conformational vicinity of the

reference structure (Mahajan & Sanejouand, 2017). If V0 is

considered to be a stable conformation then it must be at a

minimum of the potential energy, and consequently

Dri
EðV0Þ ¼ 0 for all i (critical points exist for all indices, so

that one needs to check the eigenvalues to make sure that it is

a local minimum). In this way, we could compute the differ-

ence in energy as

EðVÞ ’ EðV0Þ þ 1
2 �rTH�r; ð8Þ

where the matrix H has been used for the Hessian to simplify

the notation. The matrix H is an N � N block matrix of 3 � 3

matrices

H ¼
H11 H12 . . . H1N

H21 H22 . . . H2N

. . . . . . . . . . . .
HN1 HN2 . . . HNN

0
BB@

1
CCA; ð9Þ

where each Hij block is given by

Hij ¼ D2
ri;rj

EðV0Þ ¼
@2E
@xi@xj

@2E
@xi@yj

@2E
@xi@zj

@2E
@yi@xj

@2E
@yi@yj

@2E
@yi@zj

@2E
@zi@xj

@2E
@zi@yj

@2E
@zi@zj

0
BB@

1
CCAðV0Þ: ð10Þ

One of the ENMs is the anisotropic network model (ANM)

that sets the energy function to

EðVÞ ¼ P
i;j

1
2 �ijkrij � r0

ijk2uð�0 � rijÞ; ð11Þ

where rij and rij are defined as in (1), �0 > 0 is a parameter and

u(x) is the Heaviside step function (Doruker et al., 2000;

Atilgan et al., 2001). This energy function links all pseudo-

atoms whose locations are closer than �0 with a spring of

elastic constant � ij. Toussi & Soheilifard (2017) thoroughly

discuss the selection of the �0 parameter. If we have

biochemical information about the strength of the binding

between the ith and jth elements, we may use it to specify the

elastic constants � ij. If we do not have such information, we

may set all constants to the same value �. Typically, �0 takes a

value of between 10 and 15 Å; the larger this value is the more

connected the structure becomes and its movements will be

more collective and more rigid. The ANM is an extension of

the Gaussian network model (GNM; Bahar et al., 1997), which

is a residue-level ENM inspired by the full atomic ENM of

Tirion (1996). The GNM and similar coarse-grained ENMs

(Tama & Sanejouand, 2001; Tama et al., 2004a,b) use the same

simplified potential energy function introduced by Tirion

(1996), namely

EðVÞ ¼ P
i;j

1
2 �ijðrij � r0

ijÞ2
uð�0 � rijÞ: ð12Þ

It must be noted that the ANM does not penalize a change in

the direction of interatomic distance, while the GNM does. As

a consequence, it has been shown that the GNM is more

accurate in representing the fluctuations that are experimen-

tally observed in biological macromolecules (Bahar et al.,

2010). The GNM and ANM are both included under the

ENMs, and several reviews of these methods are available

(Lopéz-Blanco & Chacón, 2016; Bahar et al., 2017; Wako &

Endo, 2017).

The harmonic approximation of the potential energy in (1)

is used for normal-mode analysis of the protein structure. In

the following we show the analysis for the ANM, but any other

energy function could have been used. The Hessian of the

energy in (1) is (Rader et al., 2006)

Hij ¼ �ijI3; ð13Þ
where I3 is the 3 � 3 identity matrix and �ij is a scalar value

defined as

�ij ¼
��ij if i 6¼ j and rij � �0

0 if i 6¼ j and rij >�0

� P
i;j6¼i

�ij if i ¼ j

8><
>: : ð14Þ

We may collect all the �ij scalars into a single matrix C, called

the Kirchoff connectivity matrix, which is simply the Laplacian

of the graph describing the topology of the macromolecule
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with cutoff �0. �ii is the weighted degree of the ith element (it

is related to the number of j elements it is connected to) and

�ij = �� ij if i and j are connected and 0 otherwise. Interest-

ingly, this Hessian implies that the dynamic behavior of the

macromolecule is entirely described by the topology of the

graph induced by the cutoff �0, and the same holds in general

for all ENMs. Xia (2018) extends this model to multiple scales.

There have also been extensions to include the interactions

with other molecules (Oliwa & Shen, 2015), which are able to

have large deformations (Kirillova et al., 2008), simulate

ligand binding (Wako & Endo, 2011), study residue commu-

nities (Sun, 2018) or use torsional angles or internal coordi-

nates (Mendez & Bastolla, 2010; Jensen & Palmer, 2011;

Lopéz-Blanco et al., 2011; Wako & Endo, 2013; Frezza &

Lavery, 2015) as a way to produce more accurate predictions.

3.1. Molecular-dynamics (MD) simulations

Once we have the potential energy function for every

conformation V, we can use it to define a force that makes the

atoms move according to Newton’s second law of motion,

M
d2r

dt2
¼ F ¼ �DrEðVÞ; ð15Þ

where M is a diagonal matrix with the element masses mi.

Verlet’s numerical algorithm is a very simple iteration that

results in an fourth-order integration of this differential

equation,

rðt þ�tÞ ¼ 2rðtÞ � rðt ��tÞ �M�1DrEðVÞðtÞð�tÞ2: ð16Þ
We see that to numerically solve this equation all we need is

two successive positions, r(t) and r(t � �t), a time step and a

definition of the potential energy of each conformation. Then,

we can simulate the behavior of the macromolecule for as long

as desired. Typical simulation times in MD cover the range

from picoseconds to microseconds. Beyond this time,

enhanced sampling MD methods are used (Adcock &

McCammon, 2006). By changing the initial conditions, most

often the initial velocities, we can perform multiple simula-

tions, resulting in an ensemble of trajectories accessible from

the current configuration of the macromolecule.

Many other numerical algorithms and experimental

considerations such as molecular solvation, pressure,

temperature, boundary conditions etc. can be considered. For

a detailed review, the reader is referred to Adcock &

McCammon (2006).

There are two important variants of the molecular-dynamics

methods presented above. The first is to add the solvent, which

exerts a friction and random forces on each of the atoms of the

macromolecule. In the implicit solvent model, also called

Brownian dynamics, the effect of solvent is modeled by

Langevin’s equation (Oda et al., 2008; Sachs et al., 2017),

M
d2r

dt2
¼ �DrEðVÞ � fðVÞ dr

dt
þ RðVÞ dW

dt
; ð17Þ

where f(V) is a diagonal matrix with the friction coefficient for

each element, �i, R(V) is a matrix that characterizes the

stochastic effects of collisions and W is a vector of N inde-

pendent and time-uncorrelated Wiener processes such that

E
dW

dt
ðtÞ

� �
¼ 0;

E
dWi

dt
ðtÞ dWj

dt
ðt0Þ

� �
¼ �ij�ðt � t0Þ: ð18Þ

In the case where all frictions take the same value, �i = �, then

f(V) = �I and R(V) = (2�kBT)1/2I, where kB is the Boltzmann

constant and T is the temperature of the system (Sachs et al.,

2017). Solvent can also be modeled explicitly as atoms or as

coarse-grained representations (Riniker et al., 2012;

Ingólfsson et al., 2014; Kar & Feig, 2014; Takada et al., 2015).

Wu & Brooks (2011) developed rapid ways of exploring the

energy landscape implied by Langevin’s equation.

The other important variant is the simulation of quantum

mechanics (QM) or hybrid quantum mechanics/molecular

mechanics (QM/MM). These methods are beyond the scope of

this review as they aim at effects with very short time spans

(below picoseconds); the interested reader may consult Senn

& Thiel (2009), Dror et al. (2012) and van der Kamp &

Mulholland (2013).

3.2. Normal-mode analysis (NMA)

NMA can be considered as an alternative to molecular

dynamics that allows larger displacements around the current

structure, but under the condition that the harmonic approx-

imation of the potential energy function remains valid for

these larger motions. To illustrate this idea, let us connect the

ANM to its statistical mechanics foundation (Rader et al.,

2006). Starting from (8) and using the Kirchoff connectivity

matrix, we can write

EðVÞ ’ EðV0Þ þ 1
2 �xTC�xþ 1

2 �yTC�zþ 1
2 �xTC�z

¼ EðV0Þ þ 1
2 �rTðC� I3Þ�r: ð19Þ

Here, �x, �y and �z are the x, y and z components of �r. �
represents the Kronecker matrix product. The probability of a

given fluctuation can be measured as a function of the ratio of

its potential energy with respect to the thermal energy,

pðVÞ / exp �EðVÞ
kBT

� �
’ exp � 1

2

�rTðC� I3Þ�r

kBT

� �
¼ pð�rÞ:

ð20Þ
This statistical distribution is known as a Boltzmann distri-

bution. That is, �r is a multivariate Gaussian variable with

mean 0 and covariance matrix kBTH
�1, where H is the Hessian

defined in (9). In the spring model presented above H is not

invertible, and its inverse, H�1, is found by its reconstruction

with the nonzero eigenvalues of H.

Now we can compute the expected mean-squared fluctua-

tions around the current positions of each one of the elements,

Ef�r�rTg ¼ kBTH
�1;

Efk�rik2g ¼ 3kBTð��1Þii;
Ef�rTi �rjg ¼ 3kBTð��1Þij; ð21Þ
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and the correlation between the movement of two elements,

Cij ¼
Ef�rTi �rjg

ðEfk�rik2gEfk�rjk2gÞ1=2
¼ ð��1Þij

½ð��1Þiið��1Þjj�1=2
: ð22Þ

The B factors calculated in crystallography are related to these

expected fluctuations by Rader et al. (2006) and Yang, Song et

al. (2009),

Bi ¼
8�2

3
Efk�rik2g: ð23Þ

Normal-mode analysis comes from the diagonalization of the

H matrix (note that H is of size 3N � 3N; Keskin et al., 2002),

H ¼ UKUT; ð24Þ
where U is a unitary matrix whose columns are the eigen-

vectors of H and K is a diagonal matrix with the corresponding

eigenvalues. The eigenvalues �k (k = 1, 2, . . . , 3N) are related

to the frequency of the movement (see our explanation

below); let us call the corresponding eigenvector uk the kth

normal mode. Note that H is positive semidefinite and

consequently �k � 0 for all k. The slowest eigenvectors

represent more collective movements than the fast move-

ments, which are more localized movements. The first six

smallest eigenvalues of H are zero, coming from the six rigid-

body degrees of freedom (three global rotations and three

global translations) that do not change the potential energy of

the conformation because rij = r0
ij. If we now reanalyze the

energy of a conformation, we see that we can express it as a

function of the uk eigenvectors

EðVÞ ’ EðV0Þ þ 1
2 �rT

P
k

�kuku
T
k

� �
�r

¼ EðV0Þ þ 1
2

P
k

�k�rTuku
T
k�r: ð25Þ

We note that the set of eigenvectors uk forms an orthonormal

basis set for expressing for the displacements. The displace-

ment can therefore be expressed as a linear combination of

eigenvectors with coefficients �k,

�r ¼ P
k

�kuk: ð26Þ

Since the eigenvectors are orthonormal, we will have

EðVÞ ’ EðV0Þ þ 1
2

P
k

�k�
2
k: ð27Þ

As expected from the Taylor expansion, this latter equation

shows that any displacement from the V0 configuration is

energetically unfavorable because its energy is always larger

than that of V0. For this reason, if we let any displaced solution

V evolve using Newton’s second law of dynamics, we will

always come back to V0. This is valid if the harmonic

approximation of the potential energy holds (8), and in the

absence of external forces. It is also interesting to point out the

conversion between kinetic energy and potential energy as a

driving force to cross barriers. In biological systems, macro-

molecules do cross these energy barriers in order to perform

their physiological functions. They do so prompted by external

forces or exploiting the energy released by biochemical reac-

tions.

However, this is not the case of Langevin’s equation owing

to the external driving forces. In this case we would have [note

that (dr/dt) = (d�r/dt)]

M
d2�r

dt2
¼ �H�r� fðVÞ d�r

dt
þ RðVÞ dW

dt
: ð28Þ

For simplicity, let us work with matrices that do not depend on

the structure. We can then rearrange the differential equation

as

M
d2�r

dt2
þ f

d�r

dt
þH�r ¼ R

dW

dt
: ð29Þ

This is the differential equation for a damped harmonic

oscillator [m(d2x/dt2) + c(dx/dt) + kx = Fext, where m is the

mass at the end of the spring, c is the viscous damping coef-

ficient of the medium, k is the spring constant and Fext is the

external force]. The homogeneous solution of this equation

takes the form �r = ukexp(zkt), where uk is a complex-valued

vector and zk is some complex number. uk and zk are then

solutions of the matrix equation

ðz2
kMþ zkf þHÞuk ¼ 0: ð30Þ

If there is no friction and all masses are equal to m, which

implies M = mI, then the equation above simplifies to

Huk ¼ �mz2
kuk: ð31Þ

This is an eigenvalue problem in which H is a positive semi-

definite matrix by construction and consequently all of its

eigenvalues must be non-negative. This implies that zk must be

of the form j!k and the corresponding eigenvalue �k becomes

�k ¼ m!2
k: ð32Þ

Since all of the eigenvalues are real and non-negative, the

corresponding eigenvectors will also be real-valued as

expected, since we need them to shift the different atom

positions in real space. Actually, the homogeneous solution to

the differential equation will be formed by any linear combi-

nation of the N eigenvectors, as we performed in (26). This

analysis involves the same calculations as we performed in

(24), but now we have more insight into the meaning of the

normal modes. They are the basis of the homogeneous solu-

tion of Langenvin’s equation when we assume there is no

friction with the surrounding solvent (� = 0) and all masses are

equal (M = mI). Additionally, the corresponding eigenvalue is

proportional to the square of the oscillation frequency. If any

of the two assumptions are violated then the molecule will

oscillate differently and, in general, Langenvin’s equation

must be numerically solved.

The lowest frequency modes represent more global motions

than the highest frequency modes and are normally preferred

for the analysis of the heterogeneity of macromolecular

structures. However, we may measure collectivity in some

other ways (Brüschweiler, 1995) and choose the normal modes

we want to explore based on these other collectivity measures

(Jin et al., 2014).
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An extension of the NMA presented in this section is the

so-called rotation–translation block (RTB), in which the NMA

is performed on blocks of atoms so that the atoms are fixed

inside the block, but the blocks are allowed to move with

respect to each other. This approach strongly reduces the size

of the matrix to diagonalize and has been shown to be

appropriate for very large macromolecules (Durand et al.,

1994; Lezon et al., 2010; Hoffmann & Grudinin, 2017).

3.3. Random walks

We may construct hybrid approaches combining move-

ments along normal modes with molecular dynamics, as was

performed by Isin et al. (2008), Gur et al. (2013) and Costa et

al. (2015), in which normal-mode steps are alternated with

molecular-dynamics steps to explore the conformational space

of the macromolecule. We may think of the normal-mode

steps as ‘accelerators’ of the limited scope of the molecular-

dynamics time steps. However, we must then devise a new

mechanism to let the macromolecule evolve over time. An

approach is to use Monte Carlo simulations (Gur et al., 2013;

Cazals et al., 2015). In this new approach, at time t we start at

some configuration V(t). The next state, V(t+1), is given by some

displacement �r(t+1) that can be achieved by a displacement in

the normal-mode space or following the gradient of the energy

landscape, as in the molecular-dynamics simulation approach.

Owing to the high packing of protein cores, this task is espe-

cially challenging as it requires correlated atomic moves

(Bottaro et al., 2012).

In the case of displacements in the normal-mode space, the

following procedure has been adopted (Gur et al., 2013): (i) we

randomly choose one of the calculated modes, uk
(t+1), with a

probability that is inversely proportional to its frequency (so

that low-frequency modes are more often chosen), and (ii) we

choose a displacement along that direction �r(t+1)= �k
(t+1)uk

(t+1),

where �k
(t+1) is a small random number with zero mean.

However, more complicated schemes could have been

adopted, for example choosing a random subset of modes and

performing a random movement along each one of the modes

in the subset.

At this moment we have two macromolecular structures,

V(t), our current state, and V(t+1), a candidate to be the next

macromolecular state. We can measure the energy change

from E[V(t)] to E[V(t+1)]. The Metropolis (Monte Carlo)

simulation moves the macromolecule from V(t) to V(t+1) if

E[V(t+1)] < E[V(t)] since the new conformation is energetically

favored. In the opposite case, E[V(t+1)] > E[V(t)], we may still

move to the new conformation with a probability �VðtÞ!Vðtþ1Þ

that is given by the difference between the energies at both

states compared with the thermal energy,

�VðtÞ!Vðtþ1Þ ¼ exp �E½V ðtþ1Þ� � E½VðtÞ�
kBT

� �
: ð33Þ

At high temperatures, the macromolecule is thus allowed to

explore many new conformations, even if they are energeti-

cally more costly. The extra energy is given by the surrounding

molecules [the external driving force in Langevin’s equation,

R(V)(dW/dt)] that are not explicitly modeled in this paradigm.

At lower temperatures, the macromolecule is trapped in its

current state since it does not have sufficient energy to over-

come the surrounding energy barriers.

This way of jumping from one conformation to another

directly results in a first-order Markov process in which the

next state only depends on the current state. This formulation

clearly contradicts the molecular-dynamics approach, in which

the velocity of each atom, and not only its position, is

considered at each time. The Markov chain approach could

have been extended so that the current state includes the

current position and velocity; in this way, molecular dynamics

and the Markov chain approach would be equivalent. Li &

Dong (2016) studied the discretization of the molecular-

dynamics results in order to construct a Markov chain.

We may also bias the random walk towards a particular

state (Gur et al., 2013). This is very useful when two states

dominate the conformational landscape; for instance, open

and closed states. We may start at one of the states, A,

V(0) = VA, and introduce a biasing term in the potential energy

that drives the structure towards the B state,

EðVÞ ¼ . . .þ wBdðV;VBÞ; ð34Þ

where wB is a weight of the distance d(V, VB) between the

conformation V and the VB state. Alternatively, we may only

perform random movements on those normal modes that

‘point’ towards VB (Yang, Májek et al., 2009).

Schröder et al. (2007) introduced an algorithm to explore

the conformational space of an ENM using chemical restric-

tions and biasing the movements of the atoms by the corre-

lation of the atomic model converted to a density volume with

an EM map. They showed that this bias restricted the

exploration of the conformational space to the subspace

supported by the low-resolution EM map. Although with a

different goal in mind, we may consider flexible fitting based

on normal modes as a related topic, and the interested reader

is referred to Delarue & Dumas (2004) and Suhre et al. (2006).

3.4. Molecular ensembles

As we have seen so far, a macromolecule is a dynamic

object. Rather than having a single static conformation, it has

an ensemble of different, but related, conformations. We may

explore these relationships with molecular dynamics, normal

modes or Monte Carlo simulations. In the end, we will have a

collection of structures, each one with a different displacement

with respect to a reference structure. Let us refer to an

ensemble of M such structures as

� ¼ f�rð0Þ;�rð1Þ; . . . ;�rðM�1Þg: ð35Þ

Note that each one of these vectors is a 3N-dimensional vector

that encodes the displacement with respect to the reference

structure r0. In some experiments, M may take on values of up

to a few million (Nedialkova et al., 2014). If the mean of all

these vectors is 0, we may calculate the covariance of this

ensemble as
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R ¼ Ef�r�rTg: ð36Þ
This covariance matrix is a 3N � 3N matrix formed by N � N

blocks of size 3 � 3. The (i, j)th block is

�ij ¼ Ef�ri�rTj g: ð37Þ

If these structures have been drawn from the random distri-

bution shown in (20), then, as we saw in (21),

R ¼ kBTH
�1 ¼ UðkBTK

�1ÞUT : ð38Þ
That is, the eigenvectors uk of the Hessian of the potential

energy function are also the eigenvectors of the covariance

matrix of the conformational space (Levy et al., 1984; Bahar et

al., 2010).

Note, however, that this diagonalization is nothing more

than performing a principal component analysis (PCA) of the

set of observed conformations, and in the general case (in

which the different conformations have not been drawn from

the normal-mode distribution in equation 20) the basis for the

diagonalization of the covariance matrix does not need to

coincide with the basis of the diagonalization of the Hessian

H.

PCA is a linear approximation to the subspace containing

the set �. This set of structures is supposed to form a manifold

in some high-dimensional space. Mathematically, a manifold is

a topological structure that resembles an Euclidean space

locally at every point (technically, they are homeomorphic),

although globally it may not; for example, the surface of a

sphere locally looks as a plane at every point, but globally it is

not like a plane. Non-crossing curves and surfaces are mani-

folds, but crossing lines, for example a figure 8, are not because

the Euclidean space lacks the topological properties of an

intersection. An interesting property of manifolds is that one

can continuously move from one point to the next without

needing to get out of the manifold. The number of orthogonal

directions in which we can travel without getting out of the

manifold is the local dimension of the manifold at that point.

Fig. 1 shows a two-dimensional manifold in R
3. In our

macromolecular problem, each point would represent a

structure. To move from a state A to another state B we need

to ‘travel’ from one structure to the next without getting out of

the manifold. The manifold represents physically feasible

structures, while structures outside the manifold are physically

unfeasible (for instance, they may imply atom clashes, bond

disruptions etc.). We can see that very low dimensional PCAs

traverse the unfeasible regions, giving a false impression about

the conformational space. The same unfeasibility problems are

faced by linear interpolation morphing or volume registration

between two conformations; although it gives an important

intuition of the global movements that are required to trans-

form a conformation into another one, the specific details of

the movement may not be necessarily accurate. Still, this

registration approach to conformational changes allows one to

study local strains and rotations at low resolution, providing

relevant information about the mechanical forces that are

locally in action (Sorzano, Martı́n-Ramos et al., 2016).

However, many other subspace approximations are avail-

able from the shelf of dimensionality-reduction tools: multi-

dimensional scaling (MDS, which is strongly connected to

PCA; Cazals et al., 2015), ISOMAP (a nonlinear version of

MDS; Das et al., 2006), diffusion maps (Coifman & Lafon,

2006; Nedialkova et al., 2014) and locally scaled diffusion maps

(Rohrdanz et al., 2011). In all of them it is very important to

use a distance between structures that does not allow the

space outside the manifold to be traversed. This is accom-

plished, for instance, by the geodesic distance, which calculates

the distance between two points through the length of the

shortest path between these two points that is fully contained

in the manifold. To calculate this distance it is crucial to

determine relationships for identifying neighboring structures

and the distance between these neighbors (which we may

approximate by the Euclidean distance thanks to the local

homeomorphism between the manifold and the Euclidean

space). In these methods, locality along the tangent space of

the targeted manifold must be preserved. For example, in

ISOMAP the relationships used to define the graph from

which shortest paths are defined should not cut across the

empty space connecting sheets of the manifold. Likewise, in

diffusion maps, where a kernel is used to define the weights of

the Laplacian matrix used, the bandwidth must be adapted so

as to preserve locality (Rohrdanz et al., 2011).

Instead of computing local distances, many methods

equivalently calculate the probability of transitions, assuming

that a structure is very likely to transform into a neighboring

structure and is less likely to transform into a more distant

one. Given any pair of structures �r(m) and �r(m0), we need to

quantify the probability of moving from conformation m to

conformation m0. To compute this probability, we could use

the Taylor expansion of (8) around one of the structures, for

instance �r(m). We could then use the Gaussian distribution in

(20) to calculate the transition probability
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Figure 1
Example of a two-dimensional manifold in a three-dimensional
Euclidean space. Locally the manifold is similar to a plane at every
point. The red and black points are the projections of the points of the
manifold onto a one-dimensional and a two-dimensional PCA subspace.
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�m!m0 ¼ exp � 1

2kBT
½�rðmÞ ��rðm

0Þ�TH½�rðmÞ ��rðm
0Þ�

� �
:

ð39Þ
Nedialkova et al. (2014) make the simplification that H is a

diagonal matrix H = (2kBT/	2)I for any pair of structures. This

results in a transition probability based on the Euclidean

distance,

�m!m0 ¼ exp �k�rðmÞ ��rðm
0Þk2

	2

� �
: ð40Þ

	 is interpreted as the region around �r(m) such that the

manifold of structures around it can be approximated well by a

hyperplane. Rohrdanz et al. (2011) extended this model to

�m!m0 ¼ exp �k�rðmÞ ��rðm
0Þk2

	m	m0

� �
ð41Þ

and proposed a method to estimate the 	 constants as a

function of the density of samples around each structure.

With these transition probabilities between any of the M

structure samples in the � set, we may analyze the diffusion

properties inside the manifold (starting from a structure, how

a random walk with these probabilities might evolve) which

would result in an estimate of its local dimensionality. We may

also project the � set onto a lower dimensional space, but

using the geodesic distance as a metric, and interpret the basis

of this space as reaction coordinates and the local density of

structures in the projection as a representation of the land-

scape of free energy (Nedialkova et al., 2014; Rohrdanz et al.,

2011). Additionally, we may study the k-nearest neighbors

graph (Cazals et al., 2015) and analyze different transition

graphs which help to calculate trajectories between different

states of the conformational space (Seyler et al., 2015). Sittel &

Stock (2016) studied local minima of the free-energy land-

scape as a way of identifying metastable microstates.

All of these techniques assume that the set � is a random

sampling of some static probability distribution. However, the

probability distribution itself is subjected to time evolution.

Let us denote �(V, t) as the probability of any of the molecules

at time t adopting the conformation V. For a fixed t, �(V, t) is a

probability density function over the set of conformations V.

At constant temperature and in the limit of high friction, the

Fokker–Planck equation governs the temporal evolution of

the probability density function (Rohrdanz et al., 2011),

@�

@t
¼ �P3N

i¼1

@

@ð�rÞi
kBT

@

@ð�rÞi
þ @EðVÞ

@ð�rÞi

� �
� ¼ HFP�; ð42Þ

where we have defined the differential operator HFP to

encapsulate all of the partial derivatives depending on the

conformation. This is a homogeneous differential equation,

the solution of which can be expressed as a linear combination

of the eigenfunctions ’(�r) of the operator HFP. The eigen-

values of this operator are �0 = 0 � �1 � �2 � . . . The solution

of this equation is then of the form

�ðV; tÞ ¼ ’0ð�rÞ þ P1
n¼1

cn’nð�rÞ expð��ntÞ; ð43Þ

where cn is some set of arbitrary constants. For systems with a

few slow processes dominating the dynamics we will have

some gap in the eigenspectrum (�k+1 	 �k), and for time

scales much longer than the threshold 1/�k+1 we may truncate

the series at the kth index. It has been shown (Rohrdanz et al.,

2011) that the functions ’n/’0 act as reaction coordinates in a

Markovian sense. After a long time and in the absence of

additional (external) forces, the limit (equilibrium) distribu-

tion, that is the one typically encountered in EM, would be

�ðV;1Þ ¼ ’0ð�rÞ; ð44Þ
which is the same as the Boltzmann probability distribution in

(20).

4. Image-processing approaches

So far, we have presented the dynamic nature of macro-

molecules and ways to predict possible movements associated

with their biochemical composition and spatial conformation.

During the freezing stage of sample preparation for EM each

specimen would have been caught in a specific conformation,

assumed to be an instance of the macromolecule being studied

and hopefully one of the architectures predicted by the theory

above. In this section, we review the different approaches

already suggested in EM to analyze the continuous confor-

mational space.

Given a large population of biochemically identical

macromolecules, the probability of finding any conformation

V should be inversely proportional to its potential energy

�ðVÞ / exp �EðVÞ
kBT

� �
: ð45Þ

If we observe NP electron-microscopy projections from a

sample preparation, one would expect to have

EfNPðVÞg ¼ �ðVÞNP projections coming from conformation

V, from which we can estimate the proportion

�̂�ðVÞ ¼ NPðVÞ
NP

: ð46Þ

Let us consider two different conformations as Vm and Vm0; we

may then estimate the potential energy difference between

these two states as

NPðVmÞ=NP

NPðVm0 Þ=NP

¼
exp �EðVmÞ

kBT

� �

exp �EðVm0 Þ
kBT

� � ; ð47Þ

from which

�EðVm;Vm0 Þ ¼ EðVmÞ � EðVm0 Þ ¼ kBT log
NPðVm0 Þ
NPðVmÞ

: ð48Þ

If Vm0 is a fixed, reference conformation V0, for example the

most populated conformation, then the equation above gives

us a way to estimate the potential energy landscape.

We now describe the main approaches currently proposed

for the analysis of continuous heterogeneity. Although it is

difficult to give a systematic classification, we have tried to
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categorize them with regard to their approach to angular

alignment and three-dimensional classification.

4.1. Global rigid three-dimensional alignment and
classification

Haselbach et al. (2018) collected NP particles (about 2.2

million) from a given complex. These images were randomly

divided into NG equally sized subgroups (about ten groups)

and these groups were classified into K three-dimensional

maps using RELION (Scheres, 2012), resulting in NGK maps

(about 220 in their example). All of these volumes were then

low-pass filtered (to 20 Å in their work), aligned and projected

onto one or two principal axes (the axes were from the PCA of

the volumes). Let us refer to these projections as sm. The

projection onto one principal axis gives a sorting of the

structures and an easy way to cluster them, while the projec-

tion onto two principal axes allowed a potential energy map to

be visualized. This map was calculated by interpolating a

surface on the [sm, �E(Vm, V0)] data.

This approach has a number of merits, as it has pointed out

a practical approach to the identification of the underlying

potential energy landscape. However, it also has a number of

drawbacks: (i) as we have seen before, the conformations of a

macromolecule in a manifold are not necessarily linear, thus

embedding this manifold into a linear subspace implies a

strong simplification; (ii) the potential energy map thus

calculated does not include the possibility that many of the

NGK maps may be close to each other in the conformational

space and the local map density is not explicitly considered;

(iii) the method strongly relies on the capacity of the three-

dimensional classifier to effectively count the number of

projections from different three-dimensional conformations

present in the two-dimensional projections. However, this

count is a very unreliable measure because three-dimensional

classification is specially affected by the ‘attraction problem’

(Sorzano et al., 2010): unless carefully designed against it,

classifiers tend to assign experimental images to those three-

dimensional classes and projection directions with larger

signal-to-noise ratios (SNRs), independently of whether the

particle really belongs to that three-dimensional class and

projection direction. This effect is easily recognized in Fig. S5

of Haselbach et al. (2018). To explain the idea behind the

attraction problem, let us assume that an image Yi is from a

model Vm following a given, but unknown, projection direc-

tion �,

Yi ¼ P�fVmg þ Ni: ð49Þ
The three-dimensional classification process must distinguish

between different models Vm0 and different projection direc-

tions �0. As shown in Sorzano et al. (2010), the algorithm takes

the correct decision if for all m0 and �0 it is verified that

1

Npix

kP�fVmg � P�0 fVm0 gk2 >

2

M�;m

� 
2

M�0;m0

����
����; ð50Þ

where Npix is the number of pixels of the images, 
2 is the

variance of the noise in the images and M�,m is the number of

images already assigned to the model m in the � direction.

This problem is also shared by all maximum-likelihood

approaches, including their regularized maximum a posteriori

versions. In plain terms, this constraint implies that if a

direction �0 or a model m0 starts to gain SNR by averaging out

the noise from many structurally different images, then an

image Yi is correctly assigned only if the difference between

the two competing projections, P�{Vm} and P�0{Vm0}, is large

enough to overcome the difference, mostly in the background

noise, caused by the averaging of a different number of

images. This attraction problem is well known by practitioners

using RELION two-dimensional and three-dimensional clas-

sification, and it limits the detection of subtle differences

between three-dimensional classes.

Classification and angular assignment errors are inherent to

the analysis of cryo-EM images owing to the high level of

noise of the images (the SNR of which is between 0.1 and 0.01;

that is, there is between ten and 100 times more noise than

signal) and owing to the introduced attraction problem. For

this reason, image-processing algorithms must be designed in

order to be robust to many correlated errors (a misaligned

image introduces systematic errors in all voxels of the volume)

as opposed to random noise, which is easily removed by

averaging a larger number of images. However, we must not

be pessimistic at this point and we must realize that many

biologically useful results have been produced over the years

thanks to these image-processing algorithms, despite their

limitations.

4.2. Global flexible alignment and flexible classification

Jin et al. (2014) and Sorzano, de la Rosa-Trevı́n et al. (2014)

introduced an algorithm in which NMA is performed on a

reference conformation V0, which can be an atomic structure

or an EM map. Then, using an elastic projection matching the

reference V0, each experimental image receives an estimate of

its projection direction �, in-plane shifts and the deformation

(displacement) amplitudes along the normal modes, resulting

in the conformation Vm that is most compatible with it. All of

these parameters (angles, shifts and normal-mode amplitudes)

are simultaneously optimized, resulting in a very accurate,

although costly, analysis of the data set at hand. Once these

parameters have been determined for all experimental images,

the data set can be analyzed in the conformational space using

a dimensionality-reduction technique of our choice (Sorzano,

Vargas et al., 2014), preferably one based on geodesic

distances. Despite its high accuracy, this approach has two

drawbacks: firstly, because of the simultaneous search of

angles, shifts and normal-mode amplitudes, the computational

cost of the algorithm is high; secondly, the method uses fixed

normal modes (computed using the reference V0) for the

iterative refinement of different parameters (angles, shifts and

conformations) and it is thus most accurate for conformational

change amplitudes in the vicinity of the reference conforma-

tion (where the harmonic approximation of the potential

energy function is still valid). Obviously, the same analysis can

be repeated with multiple reference volumes obtained by a
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discrete classification or the method could be modified to

include an iterative update of normal modes (NMA of

candidate conformations), both at the price of a higher

computational cost. Additionally, nonlinear NMA (Hoffmann

& Grudinin, 2017) could be implemented, which has been

shown to be more accurate for larger deformation amplitudes

than the classical, linear NMA. Section 7.3 of Andén & Singer

(2018) introduces a similar approach in which the normal

modes are replaced by the eigenvolumes of the covariance

matrix, assuming that the conformational heterogeneity is not

too strong, so that the particle orientation and translation in

each image can be accurately determined using traditional

methods before computing the covariance matrix.

4.3. Global rigid alignment and local flexible classification

If the different conformations of a macromolecule lie in

some high-dimensional manifold of conformations, so do their

projections, which now lie in an even higher dimensional space

(the complexity of the projection-images manifold arises from

the different conformations and the different projection

directions). Dashti et al. (2014) tackle this higher complexity

by decoupling the effects. They first perform an angular

assignment of all images with respect to a single reference V0

(assuming that the angular assignment of an image will not be

too disturbed by the heterogeneity of the macromolecule).

The projection sphere is then divided into many small subsets

[great circles (Dashti et al., 2014) or cones (Dashti et al.,

2018)]. Inside each subset, the manifold of all images assigned

to it is analyzed using diffusion maps (Coifman & Lafon,

2006). Finally, all local manifolds are ‘stitched’ together into a

manifold embedding using nonlinear Laplacian spectral

analysis (NLSA) such that every image in the data set is

assigned to a single coordinate in the embedding. The free-

energy landscape is estimated from the local density of points

in the manifold embedding. Note that this method is less

prone to the attraction problem since there is no classification

during the angular assignment. On the other hand, the angular

assignment with a single reference may not be so accurate

owing to the mismatch between the reference structure used

for the alignment and the actual structure.

4.4. Multibody alignment and classification

These methods assume that the macromolecule is composed

of a set of rigid domains that can move with respect to each

other. This is a compromise between a detailed description of

the deformation field and a discrete classification into a few

classes. They rely on the user providing a segmentation of the

different domains. This segmentation is used to avoid the

projection of the rest of the molecule and to perform a three-

dimensional classification and alignment on the region corre-

sponding to each one of the moving domains. If the domain is

small then the classification becomes rather unstable owing to

the low signal content in the images.

The differences between the various methods stem basically

from the method of constructing and tracking the different

domains. Bai et al. (2015) and Ilca et al. (2015) assume a fixed

segmentation performed at the beginning of the analysis so

that the signal subtraction is performed only once, while

Nakane et al. (2018) track the segmentation during the

refinement so that signal subtraction is performed on the fly

for every candidate projection direction. Schilbach et al.

(2017) construct the masks automatically by performing an

NMA analysis of a reference structure V0 and identifying a

three-dimensional segmentation that minimizes the mean

intra-region across all normal modes. Shan et al. (2016) use a

complementary version of the subtraction approach. Instead

of subtracting the rest of the domains, they optimize the

position of one of the domains while keeping the rest fixed.

The main drawbacks of these approaches are (i) the strong

constraints imposed on the flexibility of molecules by

considering rigid domains, (ii) the need to manually segment a

reference structure V0 or rely on automatic segmentations that

might result in inaccurate masking (for example masks that

are too small) and (iii) the instability of the alignment and

classification with very small regions owing to the even lower

SNR. Additionally, the analysis is valid only in the vicinity of

the V0 conformation from which the segmentation was

performed.

4.5. Coarse manifold embedding

In many practical situations, one performs a discrete clas-

sification approach using one of the many available algorithms

(Kimanius et al., 2016; Punjani et al., 2017; Grant et al., 2018),

obtaining a number of three-dimensional class averages

(usually between three and 20, depending on the studied

biomolecular complex and the number of images). One could

think of these averages (three-dimensional reconstructed

density maps) as representative samples of the continuous

manifold of possible conformations (knowing that these

density maps are necessarily the average density maps of many

structurally similar conformations).

One method that connects the three-dimensional variance

of the reconstructed volume with the obtention of a discrete

set of classes is that reported by Penczek, Frank et al. (2006)

and Zhang et al. (2008). The three-dimensional variance was

heuristically calculated by performing B three-dimensional

reconstructions from the entire image data set by boot-

strapping. If there are NP projections in the original data set

the bootstrap sample also has NP projections. However, they

have been randomly chosen with replacement from the

original data set, so that some images will be repeated in each

bootstrap sample. From each bootstrap sample a three-

dimensional reconstruction is performed, assuming that the

angular assignment performed with a single reference volume

is constant. This three-dimensional reconstruction results in a

volume Vb (b = 1, 2, . . . , B) and the three-dimensional

variance is estimated as


2ðrÞ ¼ 1

B� 1

PB
b¼1

VbðrÞ �
1

B

PB
b0¼1

Vb0 ðrÞ
� �2

: ð51Þ

A binary mask is constructed selecting regions of

high variance in this three-dimensional variance map. This
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three-dimensional binary mask is projected onto a uniform

angular distribution with l projection directions and the

projections are again binarized. Now, we have a set of l two-

dimensional binary masks. For each mask, projections

assigned to the same or similar projection directions are

classified into K clusters according to their mean inside the

two-dimensional mask. At this point, we have l classifications

of K clusters each that have to be reconciled into K three-

dimensional clusters that are subsequently refined using any

multireference classification. If the heterogeneity is caused by

the presence or absence of a factor, then the reconciliation can

be performed by distinguishing between high and low density

in the two-dimensional masks. For continuous heterogeneity, it

is unclear how to construct the K clusters in three dimensions.

Additionally, for a large number of projections (of the order of

one million), it is unclear that the bootstrap samples will easily

reveal the regions of large variability since all the three-

dimensional reconstructions will be ‘equally mixed’. However,

this criticism is easily solved by subsampling instead of boot-

strapping (Efron, 1982). Subsampling is in fact the statistical

basis of the method presented by Haselbach et al. (2018) and

introduced at the beginning of this section.

Once the input data set has been divided into K three-

dimensional clusters, one might try to recover the manifold

embedding by obtaining the coordinates of each of these

density maps in a common space, so that the user may try to

‘reconstruct’ the conformational variability around these

average conformations. To perform this, a useful measure of

distance is required. This is what was proposed in Sorzano,

Alvarez-Cabrera et al. (2016), where the distance between any

two conformations was calculated by computing the defor-

mation needed in normal-mode space to go from any one of

the structures to any other. A rough analysis of the underlying

continuous variability might be performed in this way at a very

low computational cost.

5. Conclusions

Electron microscopy provides a unique opportunity to study

the conformational heterogeneity of macromolecular struc-

tures. This heterogeneity can be discrete (ligand-bound/

unbound, full or partial complex etc.), continuous (many

intermediate conformational states of a complex whose atoms

move more or less collectively) or a mixture of both. While the

theoretical analysis of possible movements is well established

at the level of atomic and coarse-grained models, it is only now

that a connection between predictions and experimental

observations at the microscope is being made at the image

level. As we have seen, a number of algorithms have been

developed to try to ascertain the continuous deformations of

macromolecules as observed in electron micrographs.

However, none of them can be considered as being well

established, with all of them having at least one of the

following problems: computational cost, validity of the

analysis only in the vicinity of a reference conformation,

inaccurate image orientation in the case of strong conforma-

tional heterogeneity, instability of the alignment and

classification of projections owing to the low SNR and/or the

attraction problem, or too restrictive a model of deformations.

Despite all these problems, many successful biological studies

have already been published, giving a glimpse of the bright

future that is expected for this kind of analysis (des Georges et

al., 2016; Frank & Ourmazd, 2016; Dashti et al., 2018; Hasel-

bach et al., 2018). The continuous heterogeneity problem is

currently one of the most active fields of research, and new

and more powerful methods are expected to appear in the

near future.
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edited by P. von Ragué Schleyer, N. L. Allinger, T. Clark, J.
Gasteiger, P. A. Kollman, H. F. Schaefer & P. R. Schreiner. New
York: Wiley.

Bahar, I., Atilgan, A. R. & Erman, B. (1997). Fold. Des. 2, 173–181.
Bahar, I., Cheng, M. H., Lee, J. Y., Kaya, C. & Zhang, S. (2015).
Biophys J. 109, 1101–1109.

Bahar, I., Chennubhotla, C. & Tobi, D. (2007). Curr. Opin. Struct.
Biol. 17, 633–640.

Bahar, I., Jernigan, R. L. & Dill, K. (2017). Protein Actions: Principles
and Modeling. New York: Garland Science.

Bahar, I., Lezon, T. R., Bakan, A. & Shrivastava, I. H. (2010). Chem.
Rev. 110, 1463–1497.

Bai, X.-C., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. W. (2015).
Elife, 4, e11182.

research communications

30 Sorzano et al. � Survey of continuous heterogeneity in EM Acta Cryst. (2019). F75, 19–32

electronic reprint



Bathe, M. (2008). Proteins, 70, 1595–1609.
Bedem, H. van den & Fraser, J. S. (2015). Nature Methods, 12, 307–

318.
Bottaro, S., Boomsma, W. E., Johansson, K., Andreetta, C.,

Hamelryck, T. & Ferkinghoff-Borg, J. (2012). J. Chem. Theory
Comput. 8, 695–702.

Brink, J., Ludtke, S. J., Kong, Y., Wakil, S. J., Ma, J. & Chiu, W. (2004).
Structure, 12, 185–191.

Brooks, B. R., Brooks, C. L., Mackerell, A. D. Jr, Nilsson, L., Petrella,
R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S.,
Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S.,
Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J.,
Ovchinnikov, V., Paci, E., Pastor, R. W., Post, C. B., Pu, J. Z.,
Schaefer, M., Tidor, B., Venable, R. M., Woodcock, H. L., Wu, X.,
Yang, W., York, D. M. & Karplus, M. (2009). J. Comput. Chem. 30,
1545–1614.

Brooks, B. & Karplus, M. (1983). Proc. Natl Acad. Sci. USA, 80, 6571–
6575.

Brooks, B. & Karplus, M. (1985). Proc. Natl Acad. Sci. USA, 82, 4995–
4999.

Brown, S., Fawzi, N. J. & Head-Gordon, T. (2003). Proc. Natl Acad.
Sci. USA, 100, 10712–10717.
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