
Research Paper

A GPU acceleration of 3-D Fourier
reconstruction in cryo-EM

David Střelák1,2, Carlos Óscar S Sorzano2,
José Marı́a Carazo2 and Jiřı́ Filipovič1

Abstract
Cryo-electron microscopy is a popular method for macromolecules structure determination. Reconstruction of a 3-D
volume from raw data obtained from a microscope is highly computationally demanding. Thus, acceleration of the
reconstruction has a great practical value. In this article, we introduce a novel graphics processing unit (GPU)-friendly
algorithm for direct Fourier reconstruction, one of the main computational bottlenecks in the 3-D volume reconstruction
pipeline for some experimental cases (particularly those with a large number of images and a high internal symmetry).
Contrary to the state of the art, our algorithm uses a gather memory pattern, improving cache locality and removing race
conditions in parallel writing into the 3-D volume. We also introduce a finely tuned CUDA implementation of our
algorithm, using auto-tuning to search for a combination of optimization parameters maximizing performance on a given
GPU architecture. Our CUDA implementation is integrated in widely used software Xmipp, version 3.19, reaching 11.4�
speedup compared to the original parallel CPU implementation using GPU with comparable power consumption.
Moreover, we have reached 31.7� speedup using four GPUs and 2.14�–5.96� speedup compared to optimized GPU
implementation based on a scatter memory pattern.

Keywords
Cryo-EM, GPU, CUDA, 3-D Fourier reconstruction, auto-tuning

1. Introduction

Cryo-electron microscopy (cryo-EM) is a popular method

for studying a structure of biological specimens, such as

proteins or larger particles, for example, viruses. In contrast

to X-ray crystallography, the specimen is studied in vitr-

eous ice at cryogenic temperatures, which allows it to

preserve the same conformation as in native environment.

Compared to nuclear magnetic resonance, cryo-EM

allows to study larger structures, making it a superior

method in many use cases. In recent years, rapid develop-

ment in cryo-EM allowed us to study specimens at near-

atomic resolution (Henderson, 2015), resulting in the

identification of cryo-EM as the method of the year by

Nature Methods in 2015 and winning the Nobel Prize in

Chemistry in 2017.

The crucial part of recent cryo-EM success is a combi-

nation between the introduction of direct electron detectors

and a progress in the image processing. The raw data

obtained from microscope contain many noisy images of

the specimen in unknown orientations. In order to fully

reconstruct a 3-D structure, high computational power is

needed. The main bottlenecks of the reconstruction

pipeline are movie alignment (alignment of multiple

frames obtained by a microscope into one image), 2-D

classification (classification and alignment of multiple spe-

cimens’ images in order to get rid of contaminants), 3-D

alignment (assigning projection directions to the experi-

mental images), and 3-D reconstruction (creating a 3-D

volume from many 2-D projections of the specimen, espe-

cially when a large number of images of a highly sym-

metric object as an icosahedral virus are available).

We focus on the 3-D reconstruction. During the 3-D

reconstruction, a 3-D volume is created from a large num-

ber of 2-D projections (images of the specimen). However,

the orientations of projections are not known a priori. In

order to determine the orientation of projections, we need

to iteratively solve the inverse problem: creation of the 3-D

1 Institute of Computer Science, Masaryk University, Brno, Czech

Republic
2 National Center for Biotechnology, Spanish National Research Council,

Madrid, Spain

Corresponding author:

Jiřı́ Filipovič, Institute of Computer Science, Masaryk University, Botanická

68a, Brno 602 00, Czech Republic.

Email: fila@mail.muni.cz

The International Journal of High
Performance Computing Applications
1–12
ª The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342019832958
journals.sagepub.com/home/hpc

https://orcid.org/0000-0002-5703-9673
https://orcid.org/0000-0002-5703-9673
mailto:fila@mail.muni.cz
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342019832958
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342019832958&domain=pdf&date_stamp=2019-03-11

volume from projections. However, the 3-D reconstruction

is not trivial due to noise in images, errors in orientation

parameters, and the finite number of discrete parameters

covering the projection space nonuniformly (Penczek,

2010). There are multiple approaches of the 3-D recon-

struction, which can be divided into three classes: alge-

braic (Sorzano et al., 2017), weighted back-projection

(Radermacher, 1992), and direct Fourier methods

(Abrishami et al., 2015). In this article, we focus on the

direct Fourier method: we introduce an auto-tuned gra-

phics processing unit (GPU)-accelerated version of the

algorithm introduced in the work of Abrishami et al.

(2015).

The direct Fourier reconstruction method is based on the

central slice theorem (Crowther et al., 1970; Jonic et al.,

2005): The 2-D Fourier transform of the projection of the 3-

D object lies on the plane centered at the origin of the 3-D

Fourier transform of the object and preserves the same

orientation as the projection. In order to reconstruct a 3-D

body from a given set of projections and their orientations,

we need to:

� perform Fourier transform of the projections;

� insert transformed projections into a 3-D spatial grid

with an interpolation kernel;

� normalize the reconstructed 3-D Fourier space to

deal with the nonuniform spatial distribution of the

projections; and

� perform inverse Fourier transform of the 3-D

volume.

We have accelerated the creation of the 3-D Fourier

space from projections, as this is one of the main com-

putational bottlenecks in some particular cases (there are

a few hundred thousands of projections with high inter-

nal symmetry, e.g., icosahedral symmetry implies that

every experimental projection is equivalent to other 59

projections from different directions). To the best of our

knowledge, all state-of-the-art GPU implementations of

the 3-D Fourier reconstruction use the scatter memory

pattern (Kimanius et al., 2016; Li et al., 2010; Su et al.,

2016; Zhang et al., 2010), which writes each pixel of the

2-D projection into multiple voxels of the 3-D space

(multiple voxels are affected due to the interpolation).

Although it is well known that scatter memory pattern is

suboptimal when data accessed by multiple threads

overlap, it is not straightforward to formulate 3-D Four-

ier reconstruction with a gather memory access pattern.

We introduce a novel approach to the parallelization of

3-D Fourier reconstruction, which results in gather

memory access. With our parallel algorithm, a value

of each voxel in the output 3-D volume is computed

by interpolating from multiple pixels of the 2-D projec-

tion. It eliminates race conditions in writing into the 3-D

volume and improves memory locality as repeated mem-

ory accesses are moved from the 3-D volume into the

much smaller 2-D projection.

The main impact of the article is as follows.

� we introduce a novel gather-based algorithm for

gridding-based direct Fourier reconstruction allow-

ing efficient fine-grained parallelization;

� we introduce a highly tuned CUDA implementation

of our algorithm with multiple optimizations;

� we demonstrate usage of implementation-

parameters auto-tuning, which significantly

improves portability of our implementation across

different GPU architectures.

The rest of the article is organized as follows. In Sec-

tion 2, we introduce how the 3-D Fourier reconstruction is

computed using the scatter pattern, analyze limits of the

scatter approach, and propose a gather-based algorithm.

Our GPU implementation of the gather algorithm with

various code optimization strategies and architecture of

the resulting software are introduced in Section 3. In Sec-

tion 4, we evaluate the effect of different code optimiza-

tions on various GPU architectures, compare speedup and

energy efficiency of our GPU-accelerated code to the

original CPU-based implementation and scatter-based

GPU implementation, and show that the quality of results

computed by GPU implementation is comparable to the

original algorithm. The comparison with related work is

provided in Section 5. Finally, we conclude and outline a

future work in Section 6.

2. Parallel 3-D Fourier reconstruction

In this section, we introduce the 3-D Fourier reconstruction

in greater detail, discuss limitations of the commonly used

scatter pattern, and introduce our gather algorithm.

2.1. 3-D Fourier reconstruction

During the 3-D Fourier reconstruction, 3-D frequency

domain is approximated on a regular 3-D lattice F3�Dð �RÞ
from the measured samples F3�Dð �QÞ (Fourier transform of

projections) as

F3-Dð �RÞ ¼
Z

F̂3-Dð �QÞKð �R� �QÞd �Q ð1Þ

where �R is a coordinate within a 3-D regular grid, �Q is a

frequency in the 2-D projection, and K is the interpolation

kernel. In our case, we are using the modified Kaiser–Bes-

sel interpolation, which is considered to be the best kernel

for gridding interpolation (Matej and Lewitt, 1995).

In cryo-EM experiment, we have a finite number of the

projections of the specimen. Thus, we need to solve a dis-

crete form of equation (1) for a limited set of frequencies
�Ri. Furthermore, we need to ensure uniform distribution of

samples contribution into the 3-D volume (the samples

distribution in space is not uniform). Therefore, equation

(1) is transformed into the following equation (see

Abrishami et al. (2015) for more detailed discussion)

2 The International Journal of High Performance Computing Applications XX(X)

F3-Dð �RÞ ¼

X
i
F̂3-Dð �RiÞKð �R� �RiÞX

i
Kð �R� �RiÞ

ð2Þ

In order to solve equation (2), we create two output

volumes: volume G contains the interpolated frequency

values given by the specimens (the sum in the numerator

in equation (2)) and volume W contains interpolation

weights (denominator in equation (2)). After adding all the

samples into W ;G, we can divide each element in G by a

corresponding element in W and obtain F3-D
�ðRÞ.

The straightforward computation of volumes G;W leads

to an algorithm using scatter access into the 3-D volumes,

as is shown in Algorithm 1. The algorithm input consists of

a set of samples S (2-D Fourier transforms of a specimen’s

projections), each sample s 2 S has a rotation matrix Rs,

determining its orientation in the 3-D space. The resolution

of all samples is r � r and the resolution of output volumes

is hence r � r � r. The value b upper-bounds the interpola-

tion radius (i.e. maximal distance where Kaiser–Bessel

interpolation window returns non-zero result). The output

of the algorithm is a 3-D volume G containing values from

samples and W containing weights. The function interp(v,

d) interpolates the value v according to distance d.

The algorithm is iterating over all pixels of the sample s

(lines 2 and 3). Each pixel is first transferred to a 3-D space

(line 5), and then algorithm iterates over voxels in a box

given by a position of the transformed pixel enlarged by the

interpolation radius (loops at lines 6 to 8). The pixel value

and interpolation weights are then written into G;W (lines

10 and 11).

Please note that we use full Fourier space (i.e. with

redundant complex elements) in this presentation, thus

s 2 S, G and W are stored in such a way that the origin

of the coordinate system is at the center of the volume or

the sample, so we do not need to solve symmetry explicitly.

For the clarity of the presentation, we have excluded out-

of-bound access checks to G;W in the algorithm. Please

also note that by pixel we mean a complex number in the 2-

D Fourier space, and voxel is a complex number in the 3-D

Fourier space.

Practically any loop of Algorithm 1 can be parallelized

in a coarse-grained fashion, where multiple output grids are

built and summed after the parallel section ends. For exam-

ple, we can parallelize the loop going over samples (line 1):

The multiple output arrays G1 . . . Gn and W1 . . . Wn will be

constructed by n threads, each of them processing a subset

of S. When the parallelized loop iterating over samples is

finished, we can compute G ¼
Pn

i¼1Gi and W ¼
Pn

i¼1Wi.

Clearly, this parallelization pattern has significant memory

footprint (we need n copies of 3-D arrays G;W), so it can

be executed on CPU (Abrishami et al., 2015), but it cannot

be used on GPUs due to insufficient amount of memory per

core. In our implementation, we use this coarse-grained

parallelization for multi-GPU implementation, where each

GPU constructs its own arrays Gi;Wi.

2.2. Limits of the scatter approach

Fine-grained parallelization of Algorithm 1, when multiple

threads construct one output array Gi;Wi, leads to race

conditions in updating the arrays (see lines 10 and 11).

More precisely, when the code is parallelized over the out-

ermost loop (line 1), the write conflict may arise in voxels

where different samples intersect. Parallelization of the

loops iterating over the sample (lines 2 and 3) may also

generate write conflict. The neighboring pixels of the sam-

ple may be projected into the same voxel (the longest dis-

tance in a voxel is
ffiffiffi
3
p

times higher than a distance of two

pixels). Thus, when processed in parallel, the pixels may

update the same voxel. Note that with Single Instruction

Multiple Data (SIMD) architectures, such as GPUs, blocks

of threads are asynchronous and thus it is not possible to

remove race conditions by, for example, processing only

selection of non-neighboring pixels at the same time.

Finally, the loops at lines 6 to 8 are not suitable for paral-

lelization as their iteration space is too small and they

perform a reduction.

For the fine-grained parallelization (i.e. using SIMD

processor), the race conditions in writing 3-D volume

become an issue. The write conflicts in arrays G;W can

be solved by atomic operations, which are, however, slower

than regular memory writes, since they enforce serializa-

tion during write conflicts.

Beside the need of atomic writes, the scatter pattern

exposes poor spatial and temporal cache locality. Each

pixel from a projection is written into multiple voxels (see

lines 6 to 8). Although the voxels are accessed multiple

times when the sample is written, the voxel space is too

big to fit into shared memory or cache at GPU processor (r

is typically from tens to several hundreds) and the memory

access pattern is strided arbitrarily due to rotation of the

specimen.

2.3. Gather approach

In order to eliminate race conditions in writing into arrays

G;W , we have to compute and write a value of each voxel

only once per sample. The main idea of the gather approach

is reversion of the scatter: It iterates in the 3-D volume,

Algorithm 1. 3-D reconstruction using scatter.

Střelák et al. 3

computes projection of each voxel into the 2-D sample, and

computes the interpolated value within the sample (see

Figure 1 for illustration). More precisely, the voxel at coor-

dinates x0; y0; z0 can be transformed to image space by multi-

plying by Rs
�1, getting coordinates x; y; z, where x; y is the

position in the 2-D sample and z is the distance from the

image (influences the weights computation).

Naive implementation of the gather approach would

iterate over the full 3-D volume, so iteration space for each

sample would increase from Oðr2Þ to Oðr3Þ (recall that r is

the resolution of the sample and also the 3-D volume).

However, the number of voxels affected by the sample is

in Oðr2Þ for both scatter and gather patterns, thus most of

the iterations of the naive implementation would not update

its voxel. To use the gather pattern efficiently, we need to

reduce the iteration space to Oðr2Þ.
The iteration space can be reduced to Oðr2Þ by iterating

over only two selected dimensions, an iteration plane.

Obviously, we can select three different iteration planes:

XY, XZ, and YZ. The iteration plane is selected such that

the area of the sample projection to the iteration plane is

maximized (we select the plane for which the dot product

of the sample normal and the plane normal is the highest).

This is crucial for a fine-grained parallelization (processing

iterations in parallel), as amount of work per each iteration

is then more uniform compared to other iteration planes. In

each iteration, the two coordinates are determined by the

position in the iteration plane, so only one column of the

3-D volume can be processed. At the beginning of

the iteration, we calculate an interval of updated voxels in

the column (it can be determined by computing intersection

of the column and the sample) and update only voxels within

the interval (see Figure 2 for illustration). The number of

voxels within the interval is upper-bound by
ffiffiffi
2
p
� 2b, where

b is the interpolation radius. Therefore, the time complexity

is Oðr2Þ, as b is small constant independent on r.

The 3-D reconstruction using gather approach is shown

in Algorithm 2. Please note that Algorithm 2 is simplified

for clarity of presentation: It demonstrates functionality for

only one iteration plane and does not handle array bound-

aries. The algorithm iterates over an iteration plane XY at

lines 4 and 5. Then, the first voxel at coordinates [i, j, kl],

which may be affected by a sample s, has to be determined.

We compute its z position using an equation of plane of the

sample s, which is shifted by an interpolation radius b (lines

7 to 10). To do so, we must know the normal of the sample

(computed at line 2) and some point of the shifted plane,

which is computed at line 3. Having z position computed,

we can iterate over updated voxels affected by a pixel only

(line 11). In each iteration, we compute projection of the

voxel to the 2-D sample space, iterate around distance b

from the projection center (lines 14 and 15), and compute

grid and weight values using interp function taking the real

distance (i.e. also with height of the projected voxel) into

consideration (lines 16 and 17). The writing into 3-D space

is realized only once per voxel in lines 18 and 19.

Note that Algorithm 2 does not require atomic writes

into G;W as long as the loop over samples is not

Figure 1. Comparison of the scatter (left) and the gather (right)
approach in a cut of the 3-D grid. The solid line represents a
sample s, red dots represent pixels, and black dots represent
written voxels. With the scatter pattern, the pixels weighted
value is written into multiple voxels. With the gather pattern, the
voxel value is computed using multiple pixels.

Figure 2. Schematic view of the iteration space in the cut of the
3-D grid. The solid line represents a sample s, and dashed lines
represent boundaries of an area affected by the interpolation
window. Arrows show computation of the initial iteration in the
third dimension (i.e. dimension not iterated at the iteration plane).
The updated voxels are emphasized.

Algorithm 2. 3-D reconstruction using gather (for XY iteration
plane).

4 The International Journal of High Performance Computing Applications XX(X)

parallelized. The cache locality is also better than in Algo-

rithm 1, since repetitive access into the 3-D arrays G;W has

been replaced by repetitive access into the 2-D array s.

The numerical accuracy of Algorithms 1 and 2 is com-

parable; however, their results differ due to interpolation of

the sample data computed from different points. More pre-

cisely, Algorithm 1 iterates over the sample, so the real

position in 3-D volume is computed by transforming inte-

ger position within the 2-D sample. On the contrary, Algo-

rithm 2 iterates over the integer coordinates in 3-D volume,

which are transformed into the real coordinates in the 2-D

sample. Thus, the coordinates of the points which are used

for interpolation of the sample values are different. When

testing correctness of the gather algorithm, we cannot com-

pare its results byte-to-byte to the scatter algorithm, but

rather compare them statistically.

3. GPU implementation

In this section, we describe our CUDA implementation of

Algorithm 2 in greater detail and introduce the overall

architecture of the implementation. We have implemented

several optimization strategies, which may easily interfere

with each other. Thus, we have used a Kernel Tuning

Toolkit (KTT) (Filipovič et al., 2017), to automatically

search for the optimal combination of optimizations.

3.1. Fine-grained parallelization

The fine-grained parallelization of Algorithm 2 is realized

through parallelizing loops going over the iteration plane

(lines 4 and 5). More precisely, we create a thread blocks

of size B � B threads and grid of size (so that thread

blocks cover the whole iteration plane). Each thread then

performs codes at lines 6 to 19. It iterates over all voxels

which are affected by the sample plane and are projected

to its position in the iteration plane (line 11). With this

parallelization strategy, we do not need atomic writes into

output volumes G;W as long as only one sample s is

processed simultaneously.

However, the parallelization approach described

above may introduce insufficient parallelism for small

r: for example, input samples of size 64 � 64 may be

processed by at most 4096 threads, which may not be

enough to fully occupy contemporary high-end GPUs.

Moreover, such kernel may be too fast, emphasizing

overhead of the kernel execution.

In order to improve strong scaling of our implementa-

tion and reduce kernel execution overhead, we have imple-

mented two modifications.

With the first modification, the kernel processes multi-

ple samples in a serial fashion. As the thread blocks may be

executed in any order, we have no guarantee that only one

sample is processed at a time. Thus, volumes G;W have to

be updated by atomic operations (recall that different sam-

ples may intersect, so there may be write conflicts). How-

ever, the number of atomic writes is much lower than in the

scatter pattern (each voxel is updated at most once by a

sample) and the probability of write conflict is low (they

may occur only in samples intersection), so atomic opera-

tions could not be an issue here.

The strong scaling may be further improved by the sec-

ond modification: addition of p samples si . . . siþp 2 S into

G;W in parallel. More precisely, we create a grid of

blocks, where thread blocks process different samples

according to their position in the z-dimension. As multiple

samples are inserted into G;W in parallel, atomic opera-

tions have to be used to update G;W . The number of write

conflicts is potentially higher compared to the first modi-

fication, as multiple samples processed in parallel may

have similar rotation and thus affect the same voxels.

The loops at lines 11, 14, and 15 of Algorithm 2 are

performed in serial. The number of iterations of those loops

is determined by a position of the projected voxel and an

interpolation radius b, which is a small number in practice.

If an interpolation method with greater radius would be

used, parallelization of one or more loops at lines 11, 14,

and 15 could improve performance by releasing some

resources consumed by each GPU thread.

3.2. Interpolation

In our implementation of the 3-D Fourier reconstruction,

the Kaiser–Bessel interpolation is used. The radius of the

interpolation window is set to 1.8 by default, so the voxel

value is computed using approximately 10 pixels (area of

disc of radius 1.8) with the gather pattern.1 While the gather

pattern improves the memory pattern, the computation of

the interpolation weights is still demanding. More pre-

cisely, the interpolation weight in general differs for each

combination of sample and voxel, as voxels are projected to

a floating point position in the 2-D sample according to

rotation of the sample.2 This is in contrast to typically used

stencil computations, where vector of the interpolation

weights is constant within the sliding interpolation window

and thus can be precomputed or hard-coded easily. We

have identified three ways to implement the interpolation

weight calculation:

� precomputation into the global memory;

� precomputation and explicit caching in the shared

memory; and

� on-the-fly weights computation.

In the original CPU code in Xmipp, weights are precom-

puted on a finely sampled interval, using 10,000 samples of

distances in [0, b]. We have incorporated the same precom-

putation to our GPU algorithm. The precomputed table may

be directly read from the global memory, or may be cached

in faster shared memory (the table size is 40,000 bytes,

which fits into shared memory of all modern NVIDIA

GPUs). The advantage of the shared memory is faster

access compared to the global memory cache on most NVI-

DIA architectures. However, it is not known a priori which

Střelák et al. 5

elements of the table will be read, thus the whole table is

cached in our implementation with potentially a lot of

unused elements. Moreover, the table typically consumes

more than half of the available shared memory, thus only

one block can run at GPU multiprocessor. This may not be

an issue if blocks of sufficient size are used. However, large

blocks may be suboptimal when resolution of the input

samples (hence also of the output volumes) is low. In such

a case, smaller blocks expose better parallel efficiency.

The alternative way is to compute weights on-the-fly.

The on-the-fly weights computation neither stresses the

memory subsystem nor limits the amount of blocks running

at multiprocessor. However, it introduces significant com-

putation overhead, as it adds tens of floating point opera-

tions per interpolation. On the other hand, it may be

beneficial on GPU architectures having much higher float-

ing point performance than cache or memory bandwidth.

We use several implementations of the modified Bessel

function Ia. For the most common case (a 0; d ¼
[0, 15]), we use approximation by polynomial of the

4th degree (Blair and Edwards, 1974; Table 5), other-

wise we use original Xmipp calculation (more precise,

but also more computationally demanding). Note that

the numerical precision of approximated version com-

puted on-the-fly is comparable to using more precise

version with precomputation (as it is precomputed for

a finite subset of distances). We have used templating to

select the appropriate code variant (i.e. setting of Bessel

function) without runtime overhead.

3.3. Sample caching

Reading pixels of the sample images exposes poor spatial

locality, as the transformation from 3-D space to 2-D (see

line 12 of Algorithm 2) breaks coalesced memory access.

However, the temporal locality is rather good, as one pixel

can be read up to 10�when default interpolation window is

used (see Section 3.2). We have identified two possible

implementations of accessing the 2-D image:

� direct reading from the global memory with cache

blocking and

� explicit caching in the shared memory.

The input sample may be read directly from the global

memory, which is cached in modern GPUs. We can either

map a thread ID into position in the iteration plane and

hence the 3-D grid, or we may tile indices into smaller 2-

D rectangles in order to improve a cache locality when grid

indices are transformed into sample space

x0 ¼ x mod T þ ððy � Bþ xÞOðB � TÞÞ � T ð3Þ

y0 ¼ ððy � Bþ xÞOTÞ mod B ð4Þ

where x and y are original thread coordinates within the

block of size B � B, T is size of a tile, mod is modulo

operator, and O is integer division. This tiling pattern

groups thread into small rectangles, which is expected to

reduce warp divergence (which arises when we are mapped

out of the image enlarged by the interpolation window) and

also improve spatial locality (as more threads within warp

should hit the same cache line for any transformation Rs
�1).

An alternative way is to store the 2-D sample into the

shared memory. The sample may be too large to be com-

pletely stored in the shared memory (there may be hundreds

of pixels in both dimensions), so we have to restrict the area

which may be read from a thread block. For a rectangular

block of size B � B, the amount of pixels touched by the

thread block can be determined by the block area enlarged

by the interpolation window radius. The area is further

multiplied by
ffiffiffi
2
p

as the image may be rotated by 45� with

respect to the iteration plane and by
ffiffiffi
3
p

since the rotated

image can be tilted in the 3-D volume. Thus, the amount of

pixels which need to be stored in shared memory is upper-

bound by an equation

e ¼ d
ffiffiffi
2
p ffiffiffi

3
p
ðBþ 2bÞe2 ð5Þ

where b is the interpolation window radius.

The kernel may start with a pre-allocated shared mem-

ory according to the computed upper-bound e and then

transfer only the pixels which can be accessed by the

block of threads. To compute which part of the sample

is to be moved to the shared memory, an access aligned

bounding box (AABB) is created for the area of voxels

accessed by a given thread block (given by loops at lines

4, 5, and 11 of Algorithm 2) and transferred back to image

space by multiplying each corner by Rs
�1. Then, the pixel

area defined by a minimal access-aligned rectangle

including all points of the transformed AABB block is

loaded into the shared memory.

We note that it is not straightforward to decide which

method of accessing 2-D sample data is favorable. The

access into the shared memory is faster. However, using

it for the sample requires overhead computation (transfor-

mation of AABB), overhead memory transfers (reading

pixels which will not be used) and is mutually exclusive

with caching interpolation weights in shared memory due

to limited size of the shared memory.

3.4. Application architecture

During the 3-D Fourier reconstruction, the loop iterating

over the samples needs to (i) load input images from a disc,

(ii) perform their fast Fourier transform (FFT), and (iii)

insert transformed samples into the 3-D grid. After the loop

finishes, computed weights are applied to the grid, and

inverse 3-D FFT of the grid is computed to obtain the

result. In our implementation, the loop going over the sam-

ples is parallelized: The steps (i) and (ii) are not highly

computationally demanding and thus performed on CPU,

whereas step (iii) is accelerated on GPU. The final weight

application and inverse FFT is performed on CPU, as its

influence on overall performance is negligible: It is per-

formed only once per reconstruction, and the performance

6 The International Journal of High Performance Computing Applications XX(X)

is limited rather by storing 3-D volume to the disc than by

the FFT.

The architecture of the parallel region of the 3-D Fourier

reconstruction is sketched in Figure 3. It is parallelized at

multiple levels:

� independent Message Passing Interface (MPI) pro-

cesses may utilize multiple GPUs and multiple

nodes;

� independent threads and GPU streams (one stream is

used per one thread) utilize multiple CPU cores,

allow overlapping of kernels and memory copies

from CPU to GPU memory; and

� CUDA blocks and threads, utilizing SIMD architec-

ture of the GPU.

The MPI parallelization works in the same way as in the

original implementation of Xmipp: The master process

splits a set of samples S into multiple chunks and sends the

chunks to worker processes. Each worker process inserts

assigned samples to its local volumes Gl;Wl. After all

worker processes finish their job, the master process sums

local volumes into G;W , computes F3-Dð �RÞ by multiplying

G by W elementwise (see equation (2)), and computes

inverse Fourier transform of F3-Dð �RÞ.
In our implementation, each worker process utilizes

only one GPU and multiple CPU cores, so multiple MPI

processes have to be executed at nodes with multiple GPUs.

The CPU cores are responsible for the 2-D sample

preparation (performing Fourier transform, shifting, and

clipping data), and GPU inserts these samples into the 3-

D volumes Gl;Wl. According to our experience, four CPU

cores are fast enough to keep high-end GPU busy. Each

thread uses a separate stream, so copying transformed sam-

ples is fully overlapped with computing kernels. Moreover,

the GPU kernels may also overlap if atomic writes into

Gl;Wl are used, which allows for better utilization of the

GPU when a single kernel does not expose sufficient par-

allelism. Otherwise, streams have to be synchronized to

execute at most one kernel in time.

4. Evaluation

In this section, we evaluate the performance of our imple-

mentation on various hardware. We compare performance

of the original CPU and our GPU implementation and

demonstrate that it produces results of comparable quality

(recall that gather pattern changes rounding fashion by iter-

ating over 3-D integer coordinates instead of iterating over

samples integer coordinates). We also discuss the optimal

combination of tuning parameters (optimizations described

in Section 3) for different GPUs.

4.1. Testbed setup

The comparison of the original and GPU-accelerated

implementation is performed on a node equipped by

dual-socket CPU Intel Xeon E5-2650 v4 (24 physical cores

Figure 3. Architecture of the application.

Střelák et al. 7

at 2.2 GHz in total), 512-GB RAM, and four NVIDIA Tesla

P100 SXM2 with 16-GB HBM RAM.

To test our algorithm with different GPU architectures,

we have also used desktop machines with NVIDIA

GeForce GTX 1070 (Pascal architecture), NVIDIA

GeForce GTX 750 (Maxwell architecture), and NVIDIA

GeForce GTX 680 (Kepler architecture). See Table 1 for

comparison of hardware used in our test. All tested GPUs

have installed the driver version 384.90 and CUDA

Toolkit 8.0.61.

The comparison between CPU and GPU has been made

on a real-world example of 3-D reconstruction using

28,881 projection images of size 420 � 420 pixels of the

brome mosaic virus (Wang et al., 2014; EMPIAR entry

10010). This virus has icosahedral symmetry which results

in 1,732,860 samples (each image is equivalent to other 59

images). The overall execution time has been measured.

For the comparison of different GPU architectures, only

the kernel time has been measured (to hide bias introduced

by the rest of the application), thus we may use much

smaller benchmark with 52 samples of size 128 � 128.

Note that the GPU kernel is always executed on small

batches of samples (also on benchmark using 28,881 pro-

jection images), thus there is no reason to test bigger

amount of images for the kernel auto-tuning.

4.2. Evaluation of tuning parameters influence

We have auto-tuned our kernel for all GPUs available,

using all possible combinations of tuning parameters.

Thus, we have found an optimal combination of tuning

parameters for each GPU, and we can evaluate the

effects of optimizations introduced in Section 3. The

complete list of tuning parameters and their values is

given in Table 2. The optimal combinations for different

GPUs are shown in Table 3.

As we can see, not all tuning parameters for parallelism

are changed for different architectures: The BLOCK_DIM

differs quite significantly, but the ATOMICS is always set

to 1 and GRID_DIM_Z differs only for GTX 750. We note

that with smaller sample (e.g. 64 � 64), the GRID_DIM_Z

is set to a higher value at all architectures and that it influ-

ences the performance significantly. We suppose that

GRID_DIM_Z ¼ 1 is preferred for larger images at most

of GPU architectures as it already exposes enough paral-

lelism and minimizes number of conflicts in atomic

updates of G;W . We have not found any case preferring

to not use atomic updates at all (i.e. ATOMICS ¼ 0), so

atomics are not an issue when conflicts are minimized by

the gather pattern.

The interpolation weights are precomputed at Pascal and

Maxwell architectures, whereas on Kepler the on-the-fly

computation is preferred. We suppose that the reason is

that the throughput of shared memory for 32-bit values is

quite limited on Kepler architecture, so it is faster to

Table 1. Theoretical performance (in single-precision Tflops),
memory bandwidth (in GB/s), and power consumption (in Watts)
of hardware used in the evaluation.

Processor
Single-precision

performance
Memory

bandwidth TDP

2� Xeon E5-2650 v4 0.845 154 210
1� Tesla P100 9519 732 300
4� Tesla P100 38,076 2928 1200
GeForce GTX 1070 5783 256 150
GeForce GTX 750 1044 80.2 55
GeForce GTX 680 3090 192 195

TDP: Thermal Design Power.

Table 2. Tuning parameters.

Parameter Values Description

BLOCK_DIM 8, 12, 16,
20, 24, 28,

32

x and y dimensions of thread block
(square-shaped blocks are used)

ATOMICS 0, 1 Allows (1) or prohibits (0) using
atomic updates in accessing G,W
(see Section 3.1)

GRID_DIM_Z 1, 4, 8, 16 Number of samples processed in
parallel (see Section 3.1), must
be 1 if ATOMICS ¼ 0

PRECOMP_INT 0, 1 Switch on-the-fly computation (0)
or precomputation (1) of
interpolation weights (see
Section 3.2)

SHARED_INT 0, 1 Cache precomputed interpolation
weight in shared memory (1), or
read it directly from global
memory (0), set only when
PRECOMP_INT ¼ 1

SHARED_IMG 0, 1 Cache input sample in shared
memory (1) or read directly
from global memory (0) (see
Section 3.3), may be 1 only if
SHARED_INT ¼ 0 due to
limited shared memory capacity
in current GPUs

TILE_SIZE 1, 2, 4, 8 Size of a tile formed from threads
(see Section 3.3), TILE> 1 is
allowed only when
SHARED_IMG ¼ 0 and must
divide BLOCK_DIM

GPU: graphics processing unit.

Table 3. Optimal combinations of tuning parameters.

GPU model P100 GTX1070 GTX750 GTX680

BLOCK_DIM 20 16 8 16
ATOMICS 1 1 1 1
GRID_DIM_Z 1 1 8 1
PRECOMP_INT 1 1 1 0
SHARED_INT 1 1 0 0
SHARED_IMG 0 0 0 0
TILE_SIZE 4 2 4 8

GPU: graphics processing unit.

8 The International Journal of High Performance Computing Applications XX(X)

recompute weights than cache them in the shared or global

memory (GTX 680 does not have a L2 data cache). The

precomputed weights are cached in the shared memory on

P100 and GTX 1070, whereas GTX 750 prefers to use the

global memory and data cache. We suggest that this differ-

ence may be induced by large thread blocks on P100 and

GTX 1070, which better reuses data in the shared memory.

All the architectures prefer to read the input images

directly from the global memory without shared memory

usage. The global memory access is tiled with all architec-

tures; however, the tile size differs. Although the shared

memory caching is not used with any GPU tested, we con-

sider it as a prospectively beneficial optimization: The

future GPUs will probably have higher flop-to-word ratio,

so it may be faster to compute interpolation weights on-the-

fly and cache the images in the shared memory. We are

pretty close to this situation with GTX1070, where the

implementation with SHARED_IMG ¼ 1 and PRECOM-

P_INT ¼ 0 is less than 5% slower than the fastest one.

The different optimal combination of tuning parameters

does not automatically mean that the performance is not

portable, as they may have negligible influence on the speed

of the kernel. However, as is shown in Table 4, implementa-

tions optimized to a given hardware perform rather poorly

when executed on a different hardware (reaching only 31%
of the fastest implementation performance in the worst case).

We can even see that performance portability is limited

(although not so significantly) also within the Pascal gener-

ation. Note that for images larger than 128 � 128, the selec-

tion of optimal parameters does not differ, although the

performance of powerful GPUs is higher (e.g. performance

of P100 is 1.24� better in terms of inserted pixels per second

when samples of 512 � 512 are used).

4.3. GPU speedup

We have compared the original CPU implementation

(Abrishami et al., 2015), using all 48 virtual cores of the

testbed machine (this configuration results in better perfor-

mance than using physical cores only) against our GPU

implementation using one, two, and four GPUs. The result-

ing times are shown in Table 5, where the walltime and

time of parallel region (the insertion of samples into the 3-

D grid presented in this article) are shown. As we can see in

the table, using single GPU brings 11.4� speedup over

original implementation comparing the walltime of the

executions. Using all four GPUs brings additional 2.78�
speedup resulting in overall speedup of factor 31.7�. Note

that the scaling of the multi-GPU implementation is limited

by the final summation of the partial volumes, which is

serial in the current implementation. The parallelized part

of the computation (computing 2-D FFT on CPU and

inserting samples into the volumes on GPU) scales much

better: using two and four GPUs brings 1.86� and 3.7�
speedup compared to single GPU.

Although GPU implementation is much faster, the

power consumption is also significant nowadays. Thus,

we have measured and compared the power consump-

tion using Intel RAPL and NVIDIA SMI. Note that only

the power consumption of the parallel region is mea-

sured, as power consumption during summation of the

partial volumes, inverse 3-D Fourier transform, and the

storage of the output volume is comparable to the idle

power. The CPU power is computed as a sum of CPU

and RAM power and is counted for both CPU and GPU-

accelerated implementation. We have not counted idle

power of unused GPUs to mimic situation where the

computing node is not equipped by them. As we can

see in Table 6, the power saved using single GPU is

comparable to time-saving: We are able to compute a

reconstruction with 10.1� better power efficiency.

Moreover, the power efficiency is further slightly

improved with multi-GPU implementation, whereas the

time is still improved significantly.

Table 4. Performance portability of our CUDA implementation.
The rows represent GPUs used for tuning and the columns
represent GPUs used for execution. The percentage shows how
performance differs compared to the code using the best
combination of tuning parameters (e.g. the code tuned for GTX
1070 and executed on GTX 750 runs at only 31% of speed of the
code both tuned and executed on GTX 750).

P100 (%) GTX1070 (%) GTX750 (%) GTX680 (%)

Tesla P100 100 95 44 96
GTX 1070 88 100 31 50
GTX 750 65 67 100 94
GTX 680 71 72 71 100

GPU: graphics processing unit.

Table 5. Performance comparison of the original CPU and our
GPU 3-D Fourier reconstruction using different numbers of
GPUs. The walltime shows overall application time, the parallel
region shows time of the parallelized code of samples insertion
into the 3-D grid. The speedup is computed as the relative
difference of the walltime.

Configuration Walltime Parallel region Speedup

CPU only 155 min 00 s 150 min n/a
1� P100 13 min 35 s 12 min 42 s 11:4�
2� P100 8 min 14 s 6 min 50 s 18:8�
4� P100 4 min 53 s 3 min 26 s 31:7�

GPU: graphics processing unit.

Table 6. Power consumption of CPU and GPU 3-D Fourier
reconstruction.

Configuration Time Input (W) Used power (kJ)

CPU only 150 m 206 1845
1� P100 12 min 42 s 253 182.2
2� P100 6 min 50 s 397 159.6
4� P100 3 min 26 s 679 139.9

GPU: graphics processing unit.

Střelák et al. 9

4.4. Comparison to scatter pattern

The timing of our GPU implementation is not directly com-

parable with implementations presented in the work of

Kimanius et al. (2016), Su et al. (2016), Zhang et al.

(2010), and Li et al. (2010), because those implementations

do not use the same interpolation function. More precisely,

the radius of the interpolation window affects the amount of

data used to produce one voxel, and the type of the inter-

polation function affects the number of floating point oper-

ations required per voxel. Therefore, the same data set

would produce results of different qualities with incompar-

able demands on computational resources.

To demonstrate the benefit of the gather pattern, we

have implemented a kernel using the scatter pattern with

the same Kaiser–Bessel interpolation kernel as is used in

our gather-based implementation. The scatter kernel has

also been auto-tuned with KTT, implementing tuning

parameters BLOCK_DIM, GRID_DIM_Z, PRECOM-

P_INT, SHARED_INT, and TILE_SIZE. Other tuning

parameters were not used as they cannot be combined

with the scatter pattern (ATOMICS must be always 1 and

SHARED_IMG has no performance impact as there is no

temporal locality in reading samples). The scatter kernel

has been benchmarked with samples of 128 � 128 bring-

ing following slow-downs compared to the gather imple-

mentation: 2.85� on Tesla P100, 2:14� on GTX1070,

3:49� on GTX 750, and 5:96� on GTX 680. Note that

the slowdown of the scatter pattern is lower for smaller

samples and higher for larger ones (as cache locality is

worser and number of conflicts in atomic updates higher

with larger images).

4.5. Results comparison

In this section, we compare the precision of our gather-

based GPU implementation to the original CPU-based

implementation. The quality of results has been tested on

the brome mosaic virus using Fourier shell correlation

(FSC): (i) the set of input particles has been divided into

two halves; (ii) the 3-D reconstruction (angular assignment

þ creation of 3-D volumes) has been performed indepen-

dently for those halves; and (iii) the correlation of volumes

computed from different halves has been computed. We

can determine the reconstruction resolution from FSC—the

low correlation at some frequency means that we are get-

ting different information from different halves, so the fre-

quency is already out of the volume resolution.

The FSC between two halves for the original and our

GPU implementation is shown in Figure 4. As we can see,

the implementations have very similar results in the rele-

vant region (where FSC is more than 0.5, which is gener-

ally considered to be within the resolution) and the

resolution is also the same. The GPU implementation is

more consistent in the background (i.e. the high-

frequency noise is more stable with GPU implementation

as it has higher correlation).

5. Related work

In this section, we compare our GPU algorithm to other

GPU-accelerated algorithms for 3-D reconstruction. We

are focusing on how those algorithms use GPU hardware,

omitting that they implement slightly different computa-

tion (e.g. use different interpolation kernel); however, all

of them are somehow putting 2-D samples into 3-D

volumes. To the best of our knowledge, the state-of-the-

art GPU implementations are based on the scatter pattern

(Kimanius et al., 2016; Su et al., 2016; Zhang et al., 2010;

Li et al., 2010).

In the work of Kimanius et al. (2016), the authors have

tested both scatter and gather algorithms. Their motivation

for testing gather algorithm was to omit atomic updates;

however, they concluded that scatter algorithm is faster due

to smaller iteration space. We have solved this issue by

reducing iteration space using 2-D iteration plane in gather

algorithm. The scatter pattern with atomic operations has

also been used in the work of Su et al. (2016).

In the work of Zhang et al. (2010), the authors combine

the scatter pattern with atomic-free volume updates. How-

ever, the drawback of their solution is that it is usable with

nearest-neighbor interpolation only. They use interleaved

scheme, where no neighboring pixels of the sample are

transferred in the same time. When their GPU kernel

is executed four times, each time processing non-

neighboring pixels of the sample, the race conditions are

successfully removed. Obviously, with an interpolation

kernel spanning among multiple voxels, the much more

aggressive interleaving would be needed to not overlap

area written by different threads. With such an aggressive

interleaving, more kernel executions would be needed and

the kernel would have limited strong scaling and more

scatter memory access.

The implementation in the work of Li et al. (2010)

claims that atomic updates are not needed as their used

synchronization between read and write. We are convinced

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/999.0 1/20.00 1/10.00 1/6.67 1/5.00 1/4.00 1/3.33 1/2.86 1/2.50

F
S

C

Frequency (1/A)

FSC GPU
FSC CPU

Figure 4. FSC between two halves of samples computed by the
original and proposed GPU implementations. FSC: Fourier shell
correlation; GPU: graphics processing unit.

10 The International Journal of High Performance Computing Applications XX(X)

that race conditions in updating resulting volume may

occasionally arise in such implementation as synchroniza-

tions cannot be applied among thread blocks.3

Besides acceleration of 3-D reconstruction, the active

research is also done in improving mathematical methods

for the reconstruction. In CryoSparc (Punjani et al., 2017),

the order-of-magnitude speedup is reached by improving

the optimization algorithm, outperforming GPU-

accelerated reconstruction described in the work of Kima-

nius et al. (2016). It is possible to combine advanced

optimization algorithm with GPU-accelerated 3-D vol-

ume creation such as discussed in this article to gain even

better performance.

6. Conclusion and future work

In this article, we have introduced a novel approach to

parallelization of 3-D Fourier reconstruction. Our approach

uses the gather memory pattern, making it more suitable for

SIMD-based processor, such as GPUs. We have implemen-

ted our algorithm in CUDA with various optimizations

exposed as tuning parameters to auto-tuning framework

KTT and use it to search their best combination.

The precision of our algorithm is comparable to the

original CPU version, whereas the performance is up to

31:7� higher using a multi-GPU machine and real-world

example. The power efficiency is more than 10� higher

with single and multi-GPU setup. Compared to the scatter-

based GPU algorithm, we reach 2:14�–5:96� speedup.

In future work, we plan to implement online auto-

tuning. The current version allows only offline tuning (the

tuning is performed before application execution), thus we

have not included it in a production code yet. Instead we

define optimal combinations of tuning parameters found by

the tuner in a header file and let user to select which archi-

tecture should be the GPU code optimized for during the

Xmipp compilation. We plan to fully integrate the auto-

tuner once it will support online auto-tuning, so it will be

possible to retune application for different image sizes or

hardware during computation. The auto-tuning may be

applied to other parts of the 3-D reconstruction as well: For

example, we can tune the number of threads (and hence

CUDA streams) per GPU, or relocate computation of the

2-D images FFT to GPUs when particles with lower sym-

metry are analyzed. We also plan to exploit possibilities to

accelerate other bottlenecks of Xmipp toolkit, such as

movie alignment.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work has been done as part of the

WestLife VRE (www.west-life.eu), a project funded by the

European Commission contract H2020-EINFRA-2015-1-

675858. This work has also been supported by the

European Regional Development Fund-Project “CERIT Sci-

entific Cloud” (No. CZ.02.1.01/0.0/0.0/16_013/0001802),

the Spanish Ministry of Economy and Competitiveness

through Grant BIO2016-76400-R(AEI/FEDER, UE), and

the “Comunidad Autónoma de Madrid” through Grant:

S2017/BMD-3817.

ORCID iD

Jiřı́ Filipovič https://orcid.org/0000-0002-5703-9673

Notes

1. With the scatter pattern, one pixel is typically written

into approximately 24 voxels (volume of a sphere of

radius 1.8).

2. And analogously for the scatter pattern.

3. Inter-block synchronization is possible under perfor-

mance penalty with CUDA 9.0 and Pascal generation

of graphics processing units, but this hardware was not

available in 2010.

References

Abrishami V, Bilbao-Castro JR, Vargas J, et al. (2015) A fast

iterative convolution weighting approach for gridding-based

direct Fourier three-dimensional reconstruction with correc-

tion for the contrast transfer function. Ultramicroscopy 157:

79–87. DOI: 10.1016/j.ultramic.2015.05.018

Blair J and Edwards C (1974) Stable rational minimax approx-

imations to the modified Bessel functions I0(X) and I1(X):

Technical Report AECL–4928. Chalk River, Ontario: Atomic

Energy of Canada Ltd, Chalk River Nuclear Labs.

Crowther RA, DeRosier DJ and Klug FRS (1970) The reconstruc-

tion of a three-dimensional structure from projections and its

application to electron microscopy. In: Proceedings of the

Royal Society of London A: Mathematical, Physical and Engi-

neering Sciences 317(1530): 319–340. DOI: 10.1098/rspa.

1970.0119

Filipovič J, Petrovič F and Benkner S (2017) Autotuning of

OpenCL kernels with global optimizations. In: Proceedings

of the 1st workshop on AutotuniNg and aDaptivity

AppRoaches for Energy Efficient HPC systems (ANDARE

‘17) (ed Barbosa J), Portland, Oregon, USA, 9 September

2017, New York, NY, USA: ACM.

Henderson R (2015) Overview and future of single particle elec-

tron cryomicroscopy. Archives of Biochemistry and Biophysics

581: 19–24.

Jonic S, Sorzano COS, Thévenaz P, et al. (2005) Spline-based

image-to-volume registration for three-dimensional electron

microscopy. Ultramicroscopy 103(104): 303–317.

Kimanius D, Forsberg BO, Scheres S, et al. (2016) Accelerated

cryo-EM structure determination with parallelization using

GPUs in RELION-2. eLife 5: e18722.

Li X, Grigorieff N and Cheng Y (2010) GPU-enabled FREALIGN:

accelerating single particle 3D reconstruction and refinement in

Střelák et al. 11

http://www.west-life.eu
https://orcid.org/0000-0002-5703-9673
https://orcid.org/0000-0002-5703-9673
https://orcid.org/0000-0002-5703-9673

Fourier space on graphics processors. Journal of Structural

Biology 172(3): 407–412. DOI: 10.1016/j.jsb.2010.06.010

Matej S and Lewitt RM (1995) Efficient 3D grids for image

reconstruction using spherically-symmetric volume elements.

IEEE Transactions on Nuclear Science 42(4): 1361–1370.

DOI: 10.1109/23.467854

Penczek PA (2010) Chapter one – fundamentals of three-

dimensional reconstruction from projections. In: Jensen

JG (ed) Cryo-EM, Part B: 3-D Reconstruction, Methods

in Enzymology, vol 482. Cambridge, USA: Academic

Press, pp. 1–33. DOI: 10.1016/S0076-6879(10)82001-4

Punjani A, Rubinstein J, Fleet DJ, et al. (2017) cryoSPARC:

algorithms for rapid unsupervised cryo-EM structure determi-

nation. Nature Methods 14: 290–296.

Radermacher M (1992) Weighted Back-Projection Methods. Bos-

ton: Springer US, pp. 91–115. ISBN 978-1-4757-2163-8. DOI:

10.1007/978-1-4757-2163-8_5

Sorzano COS, Vargas J, Otón J, et al. (2017) A survey of the use

of iterative reconstruction algorithms in electron microscopy.

BioMed Research International 2017: 6482567.

Su H, Wen W, Du X, et al. (2016) GeRelion: GPU-enhanced

parallel implementation of single particle cryo-EM image pro-

cessing. bioRxiv 075887. DOI: 10.1101/075887

Wang Z, Hryc CF, Bammes B, et al. (2014) An atomic model of

brome mosaic virus using direct electron detection and real-

space optimization. Nature Communications 5: 4808.

Zhang X, Zhang X and Zhou Z (2010) Low cost, high perfor-

mance GPU computing solution for atomic resolution cryoEM

single-particle reconstruction. Journal of Structural Biology

172(3): 400–406. DOI: 10.1016/j.jsb.2010.05.006

Author biographies

David Střelák holds MSc and BSc from Faculty of Infor-

matics, Masaryk University. He is currently a PhD candi-

date at Universidad Autónoma de Madrid and Faculty of

Informatics, Masaryk University. His research interests

include high performance computing (heterogeneous com-

puting, algorithm optimization techniques and autotuning)

and image processing algorithms.

Carlos Óscar Sánchez Sorzano holds BSc and MSc in Elec-

trical Engineering with two specialities (Electronics and

Networking, University of Málaga), BSc in Computer Sci-

ence (University of Málaga), BSc and MSc in Mathematics,

(speciality in Statistics, UNED), PhD in Biomedical Engi-

neering (Universidad Politécnica de Madrid), and PhD in

Pharmacy (Universidad CEU San Pablo). In 2006, he

received the Ángel Herrera research prize. He is a senior

member of the IEEE since 2008 and that same year he was

accredited as “profesor titular de universidad” by ANECA.

In 2009, he was appointed as “Profesor Agregado” at Uni-

versidad CEU San Pablo, awarded a Ramón y Cajal

research contract, and appointed as technical director of

the INSTRUCT Image Processing Center for Microscopy.

In 2011 and 2012, he was the President of the National

Association of Ramón y Cajal researchers. He has been

coordinating the service of image processing and statistical

analysis of the CNB since 2011. In 2013, he was accredited

as Full Professor. Since 2017, he is part of the permanent

staff of CSIC.

José Marı́a Carazo holds MSc in Physics (University of

Granada) and PhD in Molecular Biology (Autonomous

University of Madrid). He joined the IEEE in 1982, being

now a Senior Member. He performed his postdoctoral work

at the Department of Health, Wadsworth Center, Albany,

NY, USA, under the direction of Dr Joachim Frank (Nobel

Laureate in Chemistry in 2017) from 1986 to 1989. In

1989, he set up the BioComputing Unit of the National

Center for Biotechnology (CNB) in Madrid, that he heads

since then. He is also the Director of the Instruct Image

Processing Center and of the CSIC node of Elixir-Spain. He

is Full Professor of Spanish CSIC.

Jiřı́ Filipovič holds BSc and MSc in Applied Informatics

(Masaryk University) with specialization on numerical

computing and PhD in Informatics (Masaryk University).

In 2012, he received the first prize in Joseph Fourier Award

in Computer Science. After defending PhD, he worked as a

postdoc at Masaryk University and University of Vienna.

Since 2017, he has been the head of High Performance

Computing research group in CERIT-SC Centre at the

Institute of Computer Science, Masaryk University. His

research interests include scientific and high-performance

computing, in particular methods for auto-tuning, source-

to-source code transformation, and heterogeneous comput-

ing and computational biology.

12 The International Journal of High Performance Computing Applications XX(X)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

