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Luděk Matyska y Roberto Marabini por darme la oportunidad de cambiar un poco el mundo.

Mi profunda gratitud también va hacia Blanca Elena Benítez Silva, que me protegió de los peligros del

trabajo administrativo.

Gracias a los colegas con los que he colaborado por sus valiosas ideas y opiniones. No sólo su trabajo

marca la diferencia en la vida de las personas, sino que han hecho del lugar de trabajo un sitio divertido.

Por último, pero no menos importante, un enorme agradecimiento a Ana, mi familia y mis amigos.

Aunque les he prestado menos atención de la que merecían, siempre han estado ahí para mí.

xiii





Poděkováńi
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Abstract

Cryogenic Electron Microscopy (Cryo-EM) is a vital field in current structural biology. Unlike X-ray

crystallography and Nuclear Magnetic Resonance, it can be used to analyze membrane proteins and

other samples with overlapping spectral peaks. However, one of the significant limitations of Cryo-EM

is the computational complexity. Modern electron microscopes can produce terabytes of data per single

session, from which hundreds of thousands of particles must be extracted and processed to obtain a

near-atomic resolution of the original sample. Many existing software solutions use high-Performance

Computing (HPC) techniques to bring these computations to the realm of practical usability. The

common approach to acceleration is parallelization of the processing, but in praxis, we face many

complications, such as problem decomposition, data distribution, load scheduling, balancing, and

synchronization. Utilization of various accelerators further complicates the situation, as heterogeneous

hardware brings additional caveats, for example, limited portability, under-utilization due to synchro-

nization, and sub-optimal code performance due to missing specialization.

This dissertation, structured as a compendium of articles, aims to improve the algorithms used

in Cryo-EM, esp. the SPA (Single Particle Analysis). We focus on the single-node performance

optimizations, using the techniques either available or developed in the HPC field, such as hetero-

geneous computing or autotuning, which potentially needs the formulation of novel algorithms. The

secondary goal of the dissertation is to identify the limitations of state-of-the-art HPC techniques. Since

the Cryo-EM pipeline consists of multiple distinct steps targetting different types of data, there is no

single bottleneck to be solved. As such, the presented articles show a holistic approach to performance

optimization.

First, we give details on the GPU acceleration of the specific programs. The achieved speedup is

due to the higher performance of the GPU, adjustments of the original algorithm to it, and application

of the novel algorithms. More specifically, we provide implementation details of programs for movie

alignment, 2D classification, and 3D reconstruction that have been sped up by order of magnitude

compared to their original multi-CPU implementation or sufficiently the be used on-the-fly. In addition

to these three programs, multiple other programs from an actively used, open-source software package

XMIPP have been accelerated and improved.

Second, we discuss our contribution to HPC in the form of autotuning. Autotuning is the ability of

software to adapt to a changing environment, i.e., input or executing hardware. Towards that goal, we

present cuFFTAdvisor, a tool that proposes and, through autotuning, finds the best configuration of the

cuFFT library for given constraints of input size and plan settings. We also introduce a benchmark set

of ten autotunable kernels for important computational problems implemented in OpenCL or CUDA,

together with the introduction of complex dynamic autotuning to the KTT tool.

xvii



Third, we propose an image processing framework Umpalumpa, which combines a task-based

runtime system, data-centric architecture, and dynamic autotuning. The proposed framework allows for

writing complex workflows which automatically use available HW resources and adjust to different HW

and data but at the same time are easy to maintain.

Keywords

Cryo-EM, SPA, HPC, Autotuning, GPU, Optimization, Performance
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Resumen

La microscopía electrónica criogénica (Cryo-EM) es un campo vital en la biología estructural actual

ya que, a diferencia de la cristalografía de rayos X y la resonancia magnética nuclear, puede utilizarse

para analizar proteínas de membrana y otras muestras con picos espectrales superpuestos. Sin

embargo, una de las limitaciones significativas de la Cryo-EM es la complejidad computacional. Los

microscopios electrónicos modernos pueden producir terabytes de datos por sesión, de los que hay

que extraer y procesar cientos de miles de partículas para obtener una resolución casi atómica de la

muestra original. Muchas de las soluciones de software existentes utilizan técnicas de computación

de alto rendimiento (HPC) para llevar estos cálculos al ámbito de la utilidad práctica. La técnica más

común para lograr una mayor aceleración es la paralelización del procesamiento, pero en la práctica

nos enfrentamos a muchas complicaciones, como la descomposición del problema, la distribución

de los datos, la programación y el equilibrio de la carga y la sincronización. La utilización de varios

aceleradores complica aún más la situación, ya que el hardware heterogéneo conlleva limitaciones

adicionales, por ejemplo, una portabilidad limitada, una infrautilización debido a la sincronización y un

rendimiento subóptimo del código debido a la falta de especialización.

Esta tesis, estructurada como un compendio de artículos, pretende mejorar los algoritmos utilizados

en Cryo-EM, especialmente los de SPA (Single Particle Analysis). Nos centramos en las optimizaciones

del rendimiento de un solo nodo, utilizando las técnicas disponibles o desarrolladas en el campo de la

HPC, como la computación heterogénea o el autotuning, que potencialmente necesita la formulación

de nuevos algoritmos. El objetivo secundario de la tesis es identificar las limitaciones de las técnicas

de HPC más avanzadas. Dado que el proceso de Cryo-EM se compone de múltiples pasos distintos

dirigidos a diferentes tipos de datos, no existe un único bottleneck (atasco) que deba resolverse. Por

ello, los artículos presentados muestran un enfoque holístico de la optimización del rendimiento.

En primer lugar, damos detalles sobre la aceleración por GPU de los programas específicos. El

aumento de velocidad conseguido se debe al mayor rendimiento de la GPU, a los ajustes del algoritmo

original a la misma y a la aplicación de los nuevos algoritmos. En concreto, proporcionamos detalles

sobre la implementación de los programas de alineación de imágenes microscópicas, clasificación

2D y reconstrucción 3D, que se han acelerado en una orden de magnitud en comparación con su

implementación original en multiples CPUs o que se han acelerado suficientemente para ser usados

sobre la marcha. Además de estos tres programas, se han acelerado y mejorado varios programas de

un paquete de software de código abierto activamente utilizado por la comunidad, XMIPP.

En segundo lugar, hablamos de nuestra contribución a la HPC en forma de autotuning. El autotunig

(autoajuste) es la capacidad del software de adaptarse a un entorno cambiante, es decir, a los datos

o al hardware utilizado. Con este objetivo, presentamos cuFFTAdvisor, una herramienta que propone
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y, a través del autotunig, encuentra la mejor configuración de la biblioteca cuFFT para determinadas

restricciones de tamaño de los datos y la configuración del plan. También presentamos un conjunto

de referencia de diez kernels de autotunig implementados en OpenCL o CUDA para importantes

problemas computacionales, junto con la introducción de un dynamic autotuning dinámico complejo

en la herramienta KTT.

En tercer lugar, proponemos Umpalumpa, un framework (marco) de procesamiento de imágenes

que combina un sistema basado en tareas, una arquitectura centrada en los datos y un dynamic

autotuning. El framework propuesto permite escribir flujos de trabajo complejos que utilizan auto-

máticamente los recursos hardware disponibles y se ajustan a diferentes hardware y datos, pero al

mismo tiempo son fáciles de mantener.

Palabras clave

Cryo-EM, SPA, HPC, Autotuning, GPU, Optimización, Rendimiento
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Abstrakt

Kryogenní elektronová mikroskopie (Cryo-EM) je v současné strukturní biologii důležitým oborem.

Na rozdíl od rentgenové krystalografie a nukleární magnetické rezonance ji lze použít k analýze mem-

bránových proteinů a dalších vzorků s překrývajícími se spektrálními píky. Jedním z významných

omezení Cryo-EM je však výpočetní náročnost. Moderní elektronové mikroskopy mohou produkovat

terabajty dat na jednu relaci, z nichž je třeba extrahovat a zpracovat stovky tisíc částic, aby bylo

dosaženo téměř atomárního rozlišení původního vzorku. Mnoho stávajících softwarových řešení využí-

vá techniky High-Performance Computing (HPC), aby tyto výpočty přivedlo do oblasti praktické pou-

žitelnosti. Obvyklé přístupy k urychlení spočívají v paralelizaci zpracování, ale v praxi se setkáváme

s mnoha komplikacemi, jako je dekompozice problému, distribuce dat, plánování zátěže, vyvažování

a synchronizace. Využití různých akcelerátorů situaci dále komplikuje, protože heterogenní hardware

přináší další problémy, například omezenou přenositelnost, nedostatečné využití kvůli synchronizaci a

neoptimální výkon kódu kvůli chybějící specializaci.

Tato disertační práce, strukturovaná jako soubor článků, si klade za cíl zlepšit algoritmy používané

v Cryo-EM, zejména SPA (Single Particle Analysis). Zaměřujeme se na optimalizaci výkonu jednoho

uzlu s využitím technik dostupných nebo vyvinutých v oblasti HPC, jako jsou heterogenní výpočty nebo

autotuning, což potenciálně vyžaduje formulaci nových algoritmů. Sekundárním cílem disertační práce

je identifikovat omezení nejmodernějších technik HPC. Vzhledem k tomu, že se Cryo-EM rekonstrukce

skládá z více různých kroků zaměřených na různé typy dat, neexistuje jediný bottleneck (úzké místo),

které by bylo třeba vyřešit. Předložené články proto ukazují holistický přístup k optimalizaci výkonu.

Nejprve uvádíme podrobnosti o akceleraci konkrétních programů pomocí GPU. Dosažené zrychlení

je způsobeno vyšším výkonem GPU, úpravami původního algoritmu a aplikací nových algoritmů. Kon-

krétně uvádíme podrobnosti o implementaci programů pro zarovnávání snímků z mikroskopu, 2D

klasifikaci a 3D rekonstrukci, které byly oproti své původní, paralelní CPU implementaci řádově zrych-

leny, nebo zrychleny tak, aby mohly být použity za chodu. Kromě těchto tří programů bylo urychleno a

vylepšeno několik dalších programů z aktivně používaného open-source softwarového balíku XMIPP.

Za druhé se prezentujeme náš příspěvkem k HPC v podobě autotuningu. Autotuning je schopnost

softwaru přizpůsobit se měnícímu se prostředí, tj. vstupním datům nebo použitému hardwaru. Za tímto

účelem představujeme nástroj cuFFTAdvisor, který navrhuje a prostřednictvím autotuningu nachází

nejlepší konfiguraci knihovny cuFFT pro daná omezení velikosti vstupu a nastavení plánu. Představuje-

me také srovnávací sadu deseti autotuningových kódů pro důležité výpočetní problémy implementované

v OpenCL nebo CUDA. Navíc představujeme komplexní dynamický autotuningu implementovaný do

nástroje KTT.
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Zatřetí navrhujeme framework Umpalumpa, určený pro zpracování obrazových dat, který kombinuje

systém založený na úlohách, architekturu zaměřenou na data a dynamický autotuning. Navržený

framework umožňuje psát komplexní výpočení procedury, které automaticky využívají veškeré dostupné

zdroje a přizpůsobují se různému hardwaru a datům, ale zároveň se snadno udržují.

Kĺičová slova

Cryo-EM, SPA, HPC, Autotuning, GPU, Optimalizace výkonu
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1
Introduction

Cryogenic Electron Microscopy (Cryo-EM) is undoubtedly a vital field in current structural biology. It

originates back in the 1960s [28] when De Rosier and Klug obtained a three-dimensional density map

of the tail of bacteriophage T4, but it took another 40 years before it became a ’common’ technique.

In the meantime, X-ray crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy have

been used. Crystallography is, however, not well-suited for the analysis of membrane proteins due to

their inability to crystallize. On the other hand, NMR is difficult to apply to large proteins and requires

samples with nonoverlapping spectral peaks. Cryo-EM had the potential to overcome these problems,

but several issues had to be solved to make this method practically usable.

One of the most critical ones was severe radiation damage caused by the electron beam. The

microscope’s vacuum was also causing the water in which the samples were kept to evaporate. The

solution to these issues was freezing the sample to very low temperatures [90], using liquid nitrogen1

or similar agents.

Another serious issue was and still is the computational complexity of the whole process. Modern

electron microscopes can produce terabytes of data per single session2, which might take days to

process [18].

However, steady progress in sample preparation, instrumentation, hardware, and software resulted

in the publication of several high-resolution (below 10 Å) structures, ending the era of ’blob-ology’ [77].

A near-atomic resolution of 3 Å has been breached by 2015, resulting in a Method of the year award

by Nature [1] and the Nobel prize in 2017, namely to Jacques Dubochet, Joachim Frank, and Richard

Henderson for developing cryo-electron microscopy for the high-resolution structure determination of

biomolecules in solution.

With the increasing number of facilities, faster data acquisition, and decreasing price, more and

more structures are being resolved and deposited to the Protein Data Bank each year [55].

The final resolution of the model depends, in addition to the correctness and quality of the steps

1Boils at −195, 8◦C.

2Apoferritin sample (EMPIAR-10591) reconstructed at 1.15 Å, for example, consists of roughly 40 TB of the raw data.
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described in Section 1.2.1, on the number of particles used. Typically, hundreds of thousands of

particles need to be used during the 3D refinement to obtain a near-atomic resolution [39], which

requires hundreds of thousands of CPU hours [47], as just the reconstruction consists of at least 1015

operations [89]. Many existing software solutions use High-Performance Computing (HPC) techniques,

as we will show in Section 1.3.

One of the common approaches to acceleration is parallelization and simultaneous computation

on multiple threads or Processing Units (PUs), usually via MPI. Using N PUs could lead to an N×
speedup in theory, but in praxis, we face many complications, such as problem decomposition, data

distribution, load scheduling, balancing, and synchronization. Even though the basic implementation

is often straightforward and scales well, we can get additional performance and power efficiency by

increasing per-node performance.

The processing nodes are becoming more heterogeneous in recent years and include accelerators,

such as Many Integrated Core architectures (MICs)3, Graphical Processing Units (GPUs), or Field

Programmable Gate Arrays (FPGAs). These accelerators typically require specialized code, specifically

optimized for a given problem and hardware. Also, heterogeneous hardware introduces non-trivial

issues, for example, limited portability, under-utilization due to synchronization, and sub-optimal code

performance due to missing specialization. These can be mitigated, for instance, by autotuning and

task-based systems (see Sections 1.2.2 and 1.2.3, respectively).

The current generation of SW scales relatively well on a variety of HW, from laptops to clusters.

While the former is often used for a proof of concept, the latter is typically used for extensive reconstruc-

tions and in specialized centers, such as I2PC4. Even though it might seem that the performance of the

software is acceptable [18, 31], the current trend is to further improve the quality of the processing. This

can be partially achieved by combining the output of multiple algorithms [7, 78, 80]. While there is no

guarantee that the result is correct if two or more, ideally conceptually different algorithms, agree on it,

it at least allows us to identify results where at least one of the algorithms produced wrong results. This,

of course, brings additional performance drawbacks, which might be mitigated by better optimization.

The rest of this dissertation, structured as a compendium of articles, is organized as follows. Chapter

1 lists objectives of the dissertation (Section 1.1), briefly presents the typical processing pipeline of a

Cryo-EM, together with a short introduction to task-based systems and autotuning (Section 1.2), and

presents the current state of the art of HPC techniques and how they are used in Cryo-EM (Section 1.3).

Chapter 2 presents the proposed methods and achieved results. Chapter 3 lists all author publications.

The last Chapter 4 is dedicated to Conclusion and Future Work.

3Intel’s Xeon Phi

4http://i2pc.es/
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1.1. Objectives

1.1 Objectives

This dissertation, structured as a compendium of articles, aims to improve the algorithms used in Cryo-

EM, esp. the SPA. We focus on the single-node performance optimizations, using the techniques either

available or developed in the HPC field, such as heterogeneous computing or autotuning, and of course,

the formulation of novel algorithms.

The secondary goal of the dissertation is to identify the limitations of state-of-the-art HPC techniques

(by their application in Cryo-EM) and potentially extend those techniques to overcome their limitations.

In particular, we have identified the following research topics:

• Reformulation of the existing algorithms with respect to scalability. Many current algorithms are not well suited

for multi-parallel processing or do not scale well on multiple PUs due to, e. g., synchronization overhead. As we

show in Section 2.1.3, sometimes it is possible to change the underlying algorithms to optimize performance and

scalability, thus speeding up both the single-node and the multi-node computations.

• Automatic data optimization. As shown in Section 2.2.1, the performance of the Fast Fourier Transformation

(FFT), which is the core of many standard algorithms, is dependent on the size of the problem at hand. Where

appropriate, decreasing or increasing the input size might result in significant speedup and memory savings. Also,

data storage in the memory affects the access pattern of the algorithm. Therefore it might be beneficial to, e. g.,

automatically transpose the data, should it decrease the total execution time.

• Introduction of the (dynamic) autotuning (see Section 1.2.2) to the Cryo-EM pipeline. Since the performance of

the code depends on the input and executing hardware, autotuning will play an essential role in the performance

compatibility and maintainability of the code, as we show in Section 2.1.3, Section 2.2.2, and Section 2.3.1.

• Introduction of the task-based systems (see Section 1.2.3) to the Cryo-EM pipeline. With cloud computing [18, 24]

at hand, a sophisticated system for workload balancing is even more necessary for proper resource utilization.

Dividing algorithms into (in)dependent codelets also increases code reusability, maintainability, and readability, as

we show in Section 2.3.1.

The results are applied in a real-life, open-source software package XMIPP [86]5, dramatically

impacting the Cryo-EM community. Also, HPC results are generalized to be used in different parts of the

Cryo-EM pipeline and other fields. The additional aim, besides higher performance, is a simplification

of the current code, enhanced maintainability, flexibility, and stability.

1.2 Preliminaries

1.2.1 Cryo-EM processing pipeline

In the following lines, we will introduce the reader to the typical workflow of the Single Particle Analysis

(SPA) using the Cryo-EM (see Figure 1.1). We skip the sample preparation6 and start with the data

5https://github.com/i2pc/xmipp

6We encourage the curious reader to read more specific sources, such as [63] or [75].
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acquisition. It is sufficient to say that a prepared solution with samples is placed on a grid (see Figure

1.2), usually composed of carbon or gold, and rapidly frozen.

The grid is divided into patches, and each patch holds a vast amount of samples (typically proteins or

viruses). These samples are frozen in water, as the water is their natural environment, and they cannot

be studied in a vacuum without destroying their structures. The position and orientation of the samples

within the patch are mostly random (though some samples have so-called preferred orientation).

A microscope processes each patch of the grid. The beam of electrons passes through randomly

oriented samples and creates an image, a so-called frame, with their projections. The diagram of this

process, Transmission Electron Microscopy (TEM), is shown in Figure 1.3. To avoid sample damage,

the number of electrons is kept low, at the level of units of electron per Å2 per frame. Passing electrons

also cause the ’beam-induced motion’ of the samples. Long exposures would lead to a blurred image,

so several frames of the same patch are taken, thus creating a movie.

Figure 1.1: Typical SPA workflow [11]

Figure 1.2: Grid with the sample [21]

The second step is the so-called movie alignment and is described in more detail in [85]. It aims

to correct the movement of the frames/particles and thus increase the Signal-to-Noise Ratio (SNR)7.

7At the level of micrographs, SNR is typically between 1/10 and 1/100, i. e., there is 10–100 times more noise than signal.
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Figure 1.3: Principle of the TEM [22](modified)

Frames can be aligned in two ways - globally and locally. Global alignment corrects the apparent

movement of the entire frame, while local alignment should also compensate for local particle translation

due to, e.g., doming (see Figure 1.4) and other factors. Also, gain and dark8 correction usually happens

at this point.

The resulting object is a micrograph. It is a single image derived from the original movie, with

enhanced SNR (compared to a single frame). It is used for Contrast Transfer Function (CTF)9 estimation.

Micrographs and their CTF can be analyzed, and movies can be discarded from further processing

should they not pass some quality test due to, e.g., ice contamination or some problem during acquisition,

such as wrong gain correction.

Figure 1.4: (a)doming induced movement, (b) estimated global movement (long trace from the center

of the image), and local movements per patch [108](modified)

8A dark image is a residual signal generated by the sensor when no electrons are fired at it, and a gain image corrects the
uneven sensitivity of the sensor’s pixels.

9Describes the modulation of the data caused by the microscope.
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The next step is particle picking. Projections of the samples are extracted from the micrograph,

either by manual picking or (semi)automated process. Ideally, only true, homogeneous, non-overlapping

particles are selected and passed further in the pipeline.

2D classification groups together similar particles, usually through correlation, creating classes.

Classes are then used to remove ’garbage’, such as contamination, intersecting particles, and others.

The classes’ averages are used for ab-initio model building, i. e.the first 3D model of the particle in a

very low resolution.

3D refinement consists of two main steps — a per particle pose10 estimation and 3D reconstruction.

We give more details on 3D reconstruction in Section 2.1.3, but the general idea is that by using the

Fourier Slice Theorem [23], particles are transformed into Frequency Domain and inserted into a 3D

volume under their orientation (see Figure 1.5). The inverse Fourier Transformation of the whole volume

will result in the 3D model of the particle.

Figure 1.5: Fourier Slice Theorem [47](modified)

3D refinement is typically an iterative process, as particles are still very noisy, and pose estimation

tends to be inaccurate (see Figure 1.6). As a result, the resulting reconstruction is not precise, negatively

affecting the pose estimation. Also, the refinement can be further complicated by the presence of

particles with different conformations, so a 3D classification can be introduced as well.

Once the final reconstruction is done, additional steps might be performed. Noise suppression,

sharpening [68], resolution estimation [48], polishing [74], and model building [56] are the most common.

Most of them require additional manual intervention from the user, and their usage is often project-

specific.

10Rotation and shift in respect to some common origin.
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Figure 1.6: Iterations of the reconstruction

1.2.2 Autotuning

Autotuning is the ability of software to alter its implementation to a changing environment, e. g., input

or executing hardware. It is a general technique with a broad range of applications, including network

protocols, compilers, and database systems.

There are multiple possible approaches to autotuning. During the compilation phase, specific

instructions can be generated to utilize available features of the hardware. For example, the GCC

compiler has hundreds of performance-related flags [33], which can be combined. Some of them enable

multiple general optimizations (-O3) or allow for emitting machine-specific instructions(-march=cpu-

type [34]). Since their abuse can lead to a slowdown, autotuning the right combination seems to be

the right approach to better performance [65]. Another relatively often used technique is profiled-guided

optimization, which uses runtime information during recompilation to, e. g., identify which code branches

are more frequent.

The use of so-called fat binaries [36] allows selecting an HW-specific binary at the runtime. This

technique is, for example, used by NVIDIA in their two-stage compilation model. The first stage compiles

source device code to PTX virtual assembly, and the second stage compiles the PTX to binary code

for the target architecture. The CUDA driver can execute the second stage compilation at run time,

compiling the PTX virtual assembly “Just In Time”, should the HW-specific SASS code not be available.

Similar, but more high-level approach is to select a different implementation of the same algorithm at

the runtime. For example, the FFTW [32] and cuFFT [60] select the best implementation for a given

size and type of input.

Code performance is often sensitive to input size, data structure and content, or application settings,

so a code optimized for ’common case’ may run sub-optimally when conditions change [35, 64, 84].
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Should the code modification not be possible(e. g. external closed-source library), it might be possible

to change, for example, the input so that it better fits the available implementations, as we demonstrated

in [82].

If one has access to the source code, a set of parameters within the code, whose values affect the

performance — such as batch size, memory layout11, loop unrolling, and others can be identified. These

parameters create a multidimensional optimization space, where a combination of the best values leads

to optimal performance (global minima). A costly solution is to manually optimize code for multiple sizes

or structures of the input. Autotuning allows optimizing the application’s tuning parameters (properties

influencing the application performance) to perform the execution more efficiently. Autotuners search

the optimization space before the application’s run (offline tuning) or during the runtime (dynamic

tuning). We use dynamic tuning in [64, 84, 87] to optimize code at runtime.

While helping to optimize the performance, autotuning comes at a cost. It usually requires additional

effort from the programmers’ point of view and can even result in a slowdown when the autotuning

process takes a too long time compared to the runtime of the tuned application (typically when the

application is dynamically tuned for its changing input).

1.2.3 Task-based runtime systems

In the typical scenario, the CPU controls the accelerator or prepares the data. However, this can lead

to the under-utilization of the CPU or the accelerator. The solution is to distribute the computation

between both accelerator and CPU. This can increase the processing performance, but on the other

hand, it requires non-trivial orchestration of the workload. Sometimes it might also be faster to use the

slower CPU code than to overload the PCI-E bus between CPU and accelerator.

The idea behind the task-based systems is simple. Provided we can divide the algorithm into

multiple tasks and define a dependency between them, it should be possible to execute the tasks on

different hardware dynamically. Arguably, execution scheduling is the most complicated part of these

systems. It can be as simple as equally dividing the tasks or greedy distribution to the first available

resource. More sophisticated approaches include the construction of some performance models, which

also consider data transfers and overall memory utilization.

The existing solutions are multiple, spaning from low-level approaches, for example, OpenMP [62]

and DPC++ [43] to specialized frameworks [96]. From the task dependency point of view, we can divide

these systems into those expressing it via parameterized task graph, such as ParSEC [17], recursively,

like Cilk [14] or Cilk Plus [70], or as a sequential task flow in case of Legion [10] or StarPU [9].

Section 2.3.1 shows how we utilized the last one in our new framework.

11e. g., a structure of arrays vs. array of structures
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1.3 State-of-the-art

This section gives more details on the state of the art in HPC and SPA. After the Overview, we will

present various optimization techniques used by different software packages from Cryo-EM, focusing

on the GPU acceleration. The subsection is grouped into several blocks since the Cryo-EM processing

pipeline deals with different data types in different steps. While the most significant speedup is typically

achieved by selecting an appropriate algorithm for the particular problem in combination with efficient

implementation and platform-specific optimizations, some more general approaches and tools can be

used for performance optimization, as listed in the last subsection.

1.3.1 Overview

Due to a lengthy development and multiple approaches, the Cryo-EM field suffers from typical issues

in Information Technology (IT) — users with various levels of domain knowledge use multiple software

packages to process data stored in many different formats. Significant effort has been made to unify

these packages and formats and ensure the experiments’ traceability and reproducibility by developers

of Appion [49] and Scipion [27].

Many parts of the processing pipeline described in Section 1.2.1 have already been accelerated,

some even multiple times by different authors. All major software packages, such as Relion [110],

CryoSPARC [67], EMAN [53], Spider [76], Grigoriefflab [71], and XMIPP [26] incorporated some of the

HPC techniques, mainly GPU acceleration and multi-node computation.

Hardware used typically spans from the laptops, through local fat nodes12, to the clusters and

cloud [18, 24]. Linux is the most commonly supported Operating system (OS). However, Windows is

also supported by several packages.

Programming languages range from Matlab and Python for high-level parts of the code, C languages

(C, C++, C#) are commonly used for the core functionality, and specialized languages, such as OpenCL

and C for CUDA, are used for accelerators. Many packages are open-source, but there are also

some closed-source ones. Unfortunately, the open-source packages often do not report the technical

implementation details they used to accelerate the execution.

12Multi-CPU (multi)(GPU) machine.
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1.3.2 Cryo-EM pipeline acceleration

Data acquisition

Movie alignment and CTF estimation can detect potential problems with the imaging. Ideally, the data

stream from the microscope should be processed during the acquisition so that these problems can

be corrected as soon as they appear, thus avoiding unnecessary sample damage and time and money

loss13.

Li et al. [52] analyze and process each frame in parallel to its storage to speed up data acquisition.

Their system introduces a 10-20 seconds delay between the exposures, which are used to suppress

the mechanical motion of the microscope. Biyani et al. [13] designed Focus, a package to import and

manage data and to perform basic image processing tasks. Their setup was able to correct the drift,

estimate CTF, and pick particles on the fly, i. e., around 1 minute (in 2017). To some extent, Appion [49]

and Warp [95] can also be used for microscope monitoring.

Movie alignment, CTF correction, and particle picking

With the new detectors [37] and adjacent holes imaging, recording time sped dramatically, to as many

as four movies per minute [16]. The speed is expected [25] to reach as little as 5 seconds per movie

soon, and since the typical movie can represent more than 4 GB of raw data, new high-throughput

techniques and HW will be necessary should we stick to the on-the-fly processing.

Many authors focused on movie alignment before 2015. However, today, the industrial standard is

MotionCor2 by Zheng et al. [108]. It allows for both global and local alignment and is accelerated on

GPU. Like our method (see Section 2.1.1) or the one of Warp [95], it uses Cross-Correlation (CC) to

align frames or patches of the movie. The latest version of MotionCor2 is extremely well optimized,

reaching on-the-fly processing speeds.

The most popular programs for CTF correction are Gctf [107] and CTFFind4 [71]. Thanks to

algorithmic optimizations, the latter reports a 3.7× speedup over the previous version. Zhang [107]

reports 10−50× speedup (compared to competitors) due to algorithm reformulation, batch processing,

and optimized file reading, resulting in a fraction of a second of processing per micrograph.

Significant effort has been invested into particle picking too. The three major approaches are

template-based picking, feature-based picking, and Neural Networks (NNs), the latter being of major

interest due to their precision and high performance. Wang et al. [100] use cross-molecule training to

recognize molecules in the micrographs. They use Python + TensorFlow package in their implementation

without further details. Zhu et al. [109] use MATLAB and Deep Neural Networks (DNN) of 8 layers

without a template. Warp [95] uses convolutional deep residual network architecture with 72 layers.

13The access cost to the microscope ranges from $1000 to $3000 per day.
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Xiao and Yang [103] use Region Convolutional Neural Networks (RCNN) and report two seconds per

micrograph processing time. Other available software using Convolutional Neural Networks (CNN) is,

for example, crYOLO [99] or Topaz [12].

To enhance the picking quality, Sanchez-Garcia et al. [72] designed Deep Consensus, a CNN that

compares the output of several picking algorithms and thus removes false-positive particles.

2D classification, model building, and 3D refinement

The processing pipeline’s most performance-critical (or demanding) part is the iterative loop of 2D

classification, model building, and 3D refinement. Generally speaking, the processing time is linear to

the number of images/projections used, especially for samples with low or no symmetry. Since these

steps are usually executed iteratively, many software packages offer them together or perform them

within a single application run. We will, therefore, present achieved results by software instead of the

pipeline step.

FREALIGN, since version 8.08, uses MPI to accelerate 3D reconstruction. GPU version [51] reports

10× speedup in search of the orientation parameter and refinement, and up to 240× speedup in 3D

reconstruction, using 8 GPUs. For small images (less than 56px squared), a slowdown (compared to

the CPU version) has been observed.

RELION was one of the first software to be accelerated. Hence the majority of publications are

focused on further improving its performance. The first version [73] used algorithmic optimization to

decrease the computational requirements. In addition, it used MPI for distributing images between

nodes and POSIX threads to process batches of images. Zhang et al. [106] focused, among others, on

memory fragmentation and better data structure and obtained speedup up to 105×. RELION-2 itself

produced speedup up to 96× on the same dataset. The follow-up [105] introduces bucket sort and

particle weighting, resulting in an additional 1.22× speedup.

RELION-1.4 was a starting point for Su et al. [88]. Their multi-GPU implementation (4 and 8 GPUs)

outperformed 256 CPU cores of the original version, as it exhibited slowdown due to synchronization of

more than 64 cores.

RELION-2 was, naturally, also accelerated using GPU [47]. The image classification and refinement

are reported to be an order of magnitude faster.

Finally, RELION-3 [110] used the experience gained from the GPU implementation and started

using a single-precision for the CPU code, resulting in a 1.5−2.5× speedup. The authors also optimized

the code for better vectorization, and with Intel C++ Compiler (ICC) and forced vectorization, they got a

total 5.6× speedup.

CryoSPARC [67] uses a stochastic gradient descent, and the branch-and-bound approach resulted

in approx. 9× speedup in comparison to RELION-2. Unlike most of the rest of the software, which
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has been eventually ported to GPUs from the original CPU implementation, CryoSPARC was primarily

targeted for GPUs.

1.3.3 General optimization approaches, techniques, and tools

Use of lower-precision arithmetics

The current generation of the consumer-class Graphical Processing Units (GPUs) is optimized for

Single-Precision (SP)14 and Half-Precision (HP)15, contrary to Double-Precision (DP)16 traditionally

used in the simulations. While HP is typically twice as fast as an SP, DP can be multiple times slower.

Table 1.1 shows the performance comparison of several accelerators. All GPUs have comparable

performance both in SP and HP, but penalization for using DP is the most severe for the consumer-class

GPUs (RTX 2080 Ti and Radeon VII), which can be up to 32× slower, while the professional-class GPU

(V100) is only two times slower. It should be noted that GPUs with the worst ratio are prohibited from

being used for professional computing17. However, they are a common choice for desktop machines

due to their low price.

Precision DP SP HP

Intel® Xeon Phi 7290 2.92 (1:2) 5.84 —

AMD Radeon VII 3.360 (1:4) 13.44 26.88 (2:1)

NVIDIA GeForce RTX 2080 Ti 0.41 (1:32) 13.45 26.90 (2:1)

NVIDIA TITAN RTX 0.51 (1:32) 16.31 32.62 (2:1)

NVIDIA Tesla V100 7.06 (1:2) 14.13 28.26 (2:1)

Intel Core I9-7980XE 1.12 (1:2) 2.24 —

Table 1.1: Raw performance (TFLOPS) comparison of multiple accelerators and processors [19, 46,

91, 92, 93, 94])

Therefore, applications targeting the GPU should use SP or HP where possible. The obvious

drawback of this recommendation is a possible loss of precision. While some loss is occasionally

reported, it is usually due to additional factors, such as interpolation via texture memory [40]18. Other

authors agree that precision loss is negligible with proper control of error propagation [20, 40, 41, 47,

106, 110].

1432 bits per floating-point number.

1516 bits per floating-point number.

1664 bits per floating-point number.

17The license forbids use in the data centers.

18A special technique available for NVIDIA cards which allows for hardware-level interpolation using a 9-bit fixed point
format [61].
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The Turing family of NVIDIA GPUs also includes so-called Tensor Cores (TCs), which have ac-

celerated HP, which can be used in Artificial Intelligence (AI) and Machine Learning (ML). Recent

research [2] suggests that it is possible to use TCs to accelerate General Matrix Multiply (GEMM) up to

2.5× without precision loss while keeping the result in DP.

Storage and memory

GPU memory is scarce19 and susceptible to fragmentation [106]. In principle, the GPU resources can

also be shared with other processes (e.g., X-server), leading to runtime errors (insufficient memory).

There are several ways to deal with insufficient memory on GPU, namely lower precision, batch20

processing, and multi-GPU processing. Some form of batching is probably used by most of the Cryo-EM

software. However, it is explicitly mentioned only by a few authors [84, 107]. While allowing for better

memory utilization, batching can also lead to higher performance due to memory transfer masking, and

sufficient compute unit saturation. Multi-GPU processing is used mainly in the 3D reconstruction, where

typically, the entire volume (or its half, if Hermitian symmetry is exploited) [101] needs to be transformed

from Frequency Domain. Using NVIDIA’s NVLink, up to 96 GB of GDDR6 memory can be nowaday

used.

Fragmentation can be tackled by three means. FREALIGN [51] avoids it by allocating all necessary

resources at the beginning of the execution. RELION-2 [47] also uses it to prevent other processes

from using GPU by simply allocating all available memory. The second approach is to use some form

of hierarchical allocation, similarly to the work of Zhang et al. [106]. The last option is to use a custom

allocation [101].

Cryo-EM processing also requires many IO operations. A single project in Scipion can consist

of hundreds of GBs, not counting temporary files. HDD read/write operations can, therefore, quickly

become a bottleneck. The most common solutions are general file reading optimizations [97, 107], the

use of the SSD or RAM disk for caching the data on the local machines [47], and batch processing or a

producer-consumer approach with a thread pool to avoid HDD congestion [41].

As shown in Table 1.2, the transfer rates of different memory storages range from MBs per second

to hundreds of GBs per second. Also, the latency is quite different, ranging from several cycles in the

case of L1 to hundreds of cycles in the case of RAM. In the case of CPUs, cache-aware algorithm

design, optimizing both spatial and temporal locality can bring significant speedup. A similar situation

is on GPUs, where constant and shared memory utilization can result in an substantial performance

boost.

19Typically 6-12 GB on consumer-class cards, up to 48 GB on professional-class cards.

20Here, we use the term batch both for a set of smaller ’items’ and for a subset of a bigger ’item’ being processed simultaneously.
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Introduction

Memory storage Peak transfer rate

USB 2.0 60 MB/s

USB 3.2 (Gen 2x2) 2.4 GB/s

SATA rev. 3.0 (Serial ATA-600) 600 MB/s

NVMe (PCI-e) 4 GB/s

DDR4 25 GB/s (per channel)

GDDR6x 936 GB/s

L1 cache 1639 GB/s

Table 1.2: Theoretical transfer rate of different memory storages

Parallelization

There are multiple levels of parallel processing. We skip bit-level parallelism, vectorization, and instruc-

tion-level parallelism, as those are typically performed automatically by a compiler for compatible code

or by the hardware itself. We also skip thread and process-level parallelism, as their usage is discussed

in Section 1.3.2 for different software packages, focusing more on task-based parallelism.

To decrease the processing time, the problem can often be split into (in)dependent tasks and each

task assigned to the processing elements as they become idle. Mittal and Vetter [57] published a

survey that focuses on different processing units, power consumption, planning, pipelining, and other

techniques that can be used. Tasks can be, e. g., 2D slices of the volume in ET, as shown by Agulleiro

et al. [5]. Reported speedup to GPU-only or CPU-only setup is up to 2×, in favor of the hybrid solution.

Cossio et al. [20] also mentioned the need for automatic load balancing. 30% speedup is reported by

Li et al. [50], who divide the workload based on the relative performance of the PU.

A well-known approach is to use some task-based runtime system, e. g., StarPU [9]. It has been

experimentally tested on the Fourier Reconstruction [66]. However, there are many other approaches

to task definition and execution, ranging from languages and language extensions such as Cilk [69] and

OpenMP (starting with version 3.0) [15] to standalone libraries such as DuctTeip [104] or PaRSEC [42].

Autotuning

Autotuning, more specifically autotuning of source code parameters, has been receiving increased

attention in the last few years. Currently, there are multiple available implementations of the tuners

(responsible for code generation and execution) and searchers (responsible for configuration space

generation and navigation) or their combination. We used KTT [30] throughout this dissertation, as it

supports offline and dynamic autotuning of OpenCL, CUDA kernels and GLSL compute shaders. KTT

API is derived from CLTune [59], which also supports CUDA and OpenCL, but does not support kernel

composition, i. e., coordinated tuning of kernels using the same parameters, and dynamic autotuning.
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1.3. State-of-the-art

OpenTuner framework [8] can tune arbitrary problems regardless of the programming language but

supports only offline autotuning, and the execution step has to be provided by a user. Kernel Tuner [98]

is then Python-based. It does not support dynamic tuning but can tune both CUDA and OpenCL.

HyperMapper [58] focuses on multi-objective optimization, unknown feasibility constraints, and cate-

gorical/ordinal variables space exploration. Last but to least, ytopt [102] uses machine learning and

Bayesian optimization to explore the configuration space.

The community attention is now focusing on analyzing the configuration space, its generation, and

traversal in search of global minima. Other ’hot’ topics are the unification of autotuning terminology,

interoperability between tuners/searchers, benchmark methodology unification, and results reutilization.

Tools

There are numerous tools that can be used for performance analysis. Command-line tools like time and

atop can be used to measure high-level runtime and system resources utilization. For more detailed

analysis, perf, callgrind, or VTune by Intel21 can be used to identify bottlenecks and to measure other

metrics, such as page faults or cache-misses. NVIDIA then offers Nsight Compute22 for detailed CUDA

kernel analysis and Nsight Systems23 for system-wide performance analysis.

21https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

22https://docs.nvidia.com/nsight-compute/NsightCompute/

23https://developer.nvidia.com/nsight-systems
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2
Methodology and achieved results

In this chapter, we will present the methodology and obtained results.

Presented articles show a holistic approach to performance optimization. Since the Cryo-EM pipeline

consists of multiple distinct steps targeting different types of data, there is no single bottleneck to be

solved.

First, we give details on the acceleration of the specific programs using GPU. The achieved speedup

is due to the higher performance of the GPU, adjustments of the original algorithm to it, and application

of the novel algorithms.

Then we discuss our contribution to autotuning. We show how the input data can be modified to

better fit the performance characteristics of the cuFFT library. Then we present our contribution to the

code-level optimizations for CUDA and OpenCL.

Last, we generalize our experience from the acceleration of Cryo-EM programs and autotuning by

proposing a new framework that combines task-based runtime systems with autotuning.

2.1 Acceleration of Cryo-EM programs

One of the most straightforward ways of shorting the execution of a program is to use an accelerator. We

opted for GPUs for their excellent performance in general image processing and being readily available.

2.1.1 FlexAlign: An Accurate and Fast Algorithm for Movie Alignment in

Cryo-Electron Microscopy

One of the first programs we have accelerated was a program for movie alignment. Three factors

have driven the need for a new program. The first is quality. The original CPU version of the program

was able to perform only global alignment, which treats each frame as a rigid object. With a push to

higher resolution, it is crucial to have as sharp particles as possible hence a local alignment was also

necessary. The second is speed. The CPU version of the algorithm could not keep pace with a new
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generation of detectors. Being able to validate data during the acquisition allows us to correct potential

problems with the imaging as soon as they appear. The third is the ability to backtrack the position

of each particle to the level of the frame to further enhance the quality of the reconstruction during

polishing. None of the programs available for movie alignment back then provided this information. The

only exception was Optical flow [4], which saves a 2D shift vector for each frame pixel. However, Optical

flow is not GPU-accelerated.

The requirements above were considered while preparing FlexAlign [85], whose text is attached

in Appendix A. Our approach of two-stage global and elastic local alignment using CC and B-spline

interpolation generates micrographs with high contrast, seems to be more resilient to noise than other

compared programs, and also preserves higher frequencies. Last but not least, the information neces-

sary to track particles are stored in a compact way of the B-spline coefficients.

Figure 2.1: Quality of the movie alignment using phantom. FlexAlign (left), CryoSPARC (middle),

MotionCor2 right)

Since FlexAlign is heavily dependent on the performance of the FFT, we optimized calls to the cuFFT

library via cuFFTAdvisor [82], which led to an 18% speedup on average. Since the publication, we have

introduced several other performance optimizations, as shown in Table 2.1, reaching an additional 36%

speedup on average. While we are still aware of several bottlenecks, the performance of FlexAlign is

fully compatible with on-the-fly processing while generating high-quality micrographs.

Size Published version Current version

Falcon 4096 × 4096 × 40 9.2 s 5.3 s

K2 3838 × 3710 × 40 7.6 s 4.9 s

K2 super 7676 × 7420 × 40 25.6 s 17.2 s

K3 5760 × 4092 × 30 8.8 s 5.4 s

K3 super 11,520 × 8184 × 20 20.5 s 13.8 s

Table 2.1: Performance of the FlexAlign for most typical movie sizes. Original implementation as

in [85] using Testbed 1 vs. current version using Testbed 1 with CUDA 11.2 and driver 460.80. Tuned

by cuFFTAdvisor.
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2.1.2 Align Significant

Another performance-critical part of the processing pipeline is 2D classification and 3D alignment. One

of the steps is an estimation of the pose of a vast amount of particles, and this step is typically executed

multiple times. We have focused on our previously published Reconstruct Significant [79] algorithm. To

find the best relative pose of a particle projection to a reference projection, we first estimate the shift,

then the rotation to the reference projection. We repeat this step three times because the shift might

have been incorrectly estimated due to rotation. To avoid finding local minima, we also try the whole

process again, estimating first the rotation and then the shift. The best pose, measured by CC, is then

used. This operation is performed for all combinations of experimental and reference projections. Once

done, we can find the best-matching reference projection for each particle and identify which particles

well represent specific reference projections.

The Align Significant, the accelerated version of the original program, is approximately 32× faster

than the original MPI version of the program, as shown in Table 2.2. The achieved speedup can be used

to increase the precision of the 3D alignment, as demonstrated in [45]. During the 3D alignment step, we

try to find the original orientation in 3D space for each particle image. If the sample does not exhibit any

symmetry, we typically use a sampling rate of 5◦, which results in roughly 1700 reference projections.

We have successfully trained a CNN to decide whether a particle belongs to a particular course grain

region on a 3D sphere. In case of no symmetry, we tried 42 regions, each region representing roughly

40 reference projections. Once the network sorts particles by region, we can increase the sampling rate

per region (in the article, we use 300 reference projections per region) and thus obtain better alignment

precision1. As the proposed technique is one of the first in the field to use deep learning as a baseline

technique to obtain the alignment parameters, it is of particular interest for consensus. Indeed, when

using only particles with the same orientation estimated by DeepAlign and Relion, the resolution is

further enhanced2.

Size
Align Significant,

wall time

Reconstruct Significant,

wall time / user time

Wall time

speedup

32×32 21.7s 10m42s / 127m32s 29.5×
64×64 50.7s 27m46s / 331m36s 32.8×
128×128 2m53s 95m31s / 1143m55s 33.1×
256×256 10m41s 422m38s / 3304m431 39.5×

Table 2.2: Performance of Align Significant and Reconstruct Significant for several sizes. Aligning
2000 experimental images to 1692 reference images. Using a single RTX 2080 / 6 cores of Intel(R)
Core(TM) i7-8700 CPU @ 3.20GHz (using 12 MPI processes)
1 Only 8 MPI processes were used due to limited RAM.

13.5Å vs. 4Å compared to Relion for the same time for Plasmodium falciparum 80S ribosome.

2To 2.9Å for Plasmodium falciparum 80S ribosome.
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2.1.3 A GPU acceleration of 3-D Fourier reconstruction in Cryo-EM

The last significant contribution was toward 3D reconstruction through the Reconstruct Fourier [84].

Reconstruction is highly computationally demanding, especially when a more complicated interpolation

method is used. While most software uses trilinear interpolation, we use modified Kaiser–Bessel

interpolation, as it gives better results [3]. To decrease the number of collisions during writing to the

3D volume and improve cache locality, we have used a novel approach of the so-called gather memory

access pattern. To the best of our knowledge, all GPU accelerated versions of this algorithm use some

variation of the scatter pattern: each pixel of the interpolated projection contributes to multiple voxels

of the 3D volume. In our approach, each voxel queries multiple projection pixels to find their respective

contribution, see Figure 2.2. To determine which voxels might be affected by the interpolation window,

we precompute the iteration space (see Figure 2.3) on the CPU and then use that information on GPU.

(a) Scatter approach (b) Gather approach

Figure 2.2: Comparison of the scatter (left) and the gather (right) approach in a cut of the 3D grid.

The solid line represents a sample s; red dots represent pixels; black dots represent written voxels.

The pixels’ weighted value is written into multiple voxels with the scatter pattern. With the gather

pattern, the voxel value is computed using multiple pixels.

Figure 2.3: Schematic view of the iteration space in the cut of the 3D grid. The solid line represents

a sample s; dashed lines represent the boundaries of an area affected by the interpolation window.

Arrows show the computation of the initial iteration in the third dimension (i. e., dimension not iterated

at the iteration plane). The updated voxels are emphasized.
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To further improve the performance, we have identified multiple different algorithm variations. We

then utilized the KTT tool [30] to find the best-performing one for various GPUs. We achieved over

11× speedup compared to the original multi-CPU version of the program and lowered the power

consumption, as shown in Table 2.3. Our approach is at least twice as fast compared to the scatter

version of the algorithm using the same interpolation. Last but not least, we have designed an approxi-

mative, up to 3× faster version of the algorithm that can be used during the first few steps of the iterative

reconstruction process.

Configuration Wall time Parallel region Speedup Used power

2× Xeon E5-2650 v4 155m00s 150m n/a 1,845 kJ

1× Tesla P100 13m35s 12m42s 11.4× 182.2 kJ

2× Tesla P100 8m14s 6m50s 18.8× 159.6 kJ

4× Tesla P100 4m53s 3m26s 31.7× 139.9 kJ

Table 2.3: Performance and power usage comparison of the original CPU and our GPU 3D Fourier

reconstruction using different numbers of GPUs. The wall time shows the overall application time;

the parallel region shows the time of the parallelized code of samples insertion into the 3D grid. The

speedup is the relative difference of the wall time.

2.1.4 General Contributions to Xmipp

In addition to the programs and algorithms mentioned above, we have directly participated in the

optimization of multiple other programs from the XMIPP package. An overview of all changes since

2013 done by over 70 people has been published in [86].

To give a general idea of the size of the package, XMIPP currently versions over 419,000 LOC

(Lines of Code, comments excluded, including tests)) in 4 main repositories, contributing to 110 Scipion

protocols3 and 290 scripts and executables. Most of them are in C/C++17, but we also use Python

3.x for Scipion protocols and Java 11. XMIPP also provides Python and optional Matlab binding and

can use CUDA 8 to 11 and OpenCV versions 2 to 4. At least 29 Scipion protocols are at least partially

accelerated via GPU.

We use multiple technologies to parallelize and optimize the execution of our binaries. In addition

to MPI (https://www.open-mpi.org/) and built-in parallelization in Scipion, we use the CTPL library

(https://github.com/vit-vit/CTPL) for multithreading, CUDA (https://developer.nvidia.com/

cuda-toolkit) and cuFFTAdvisor (https://github.com/HiPerCoRe/cuFFTAdvisor) for GPU accel-

eration , and deep learning via TensorFlow (https://www.tensorflow.org/) and Keras (https://

keras.io/). We have also significantly improved the performance via compile and link-time optimiza-

tions, internal data management, and other general optimizations.

3A protocol is typically a high-level operation performed via Scipion and consists typically of invocations to multiple
executables.

David Střelák 21
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To ensure a certain quality of the code, we use a combination of unit testing via googletest (https:

//github.com/google/googletest), GitHub Actions for automatic project build, static code analysis

via SonarCloud (https://sonarcloud.io/organizations/i2pc/projects), pull request reviews, and

integration testing via dedicated buildbot (https://buildbot.net/, http://scipion-test.cnb.csic.

es:9980/)).

2.1.5 Publication Summary

Further details about the proposed solutions for enhancing the performance of specific algorithms
and other contributions to the XMIPP package can be found in the following relevant (co-)authored
publications:

• David Střelák, Jiří Filipovič, Amaya Jiménez-Moreno, José-María Carazo, and Carlos Óscar Sánchez Sorzano.

Flexalign: An accurate and fast algorithm for movie alignment in cryo-electron microscopy. Electronics, 9(6):

1040, Jun 2020. ISSN 2079-9292. doi: 10.3390/electronics9061040. URL http://dx.doi.org/10.3390/

electronics9061040 [85]

• Amaya Jiménez-Moreno, David Střelák, Jiří Filipovič, José-María Carazo, and Carlos Óscar Sánchez Sorzano.

Deepalign, a 3d alignment method based on regionalized deep learning for cryo-em. Journal of Structural Biology,

213(2):107712, Jun 2021. ISSN 1047-8477. doi: 10.1016/j.jsb.2021.107712. URL http://dx.doi.org/10.

1016/j.jsb.2021.107712 [45]

• David Střelák, Carlos Óscar Sánchez Sorzano, José-María Carazo, and Jiří Filipovič. A gpu acceleration of 3-d

fourier reconstruction in cryo-em. The International Journal of High Performance Computing Applications, 33(5):

948–959, Mar 2019. ISSN 1741-2846. doi: 10.1177/1094342019832958. URL http://dx.doi.org/10.1177/

1094342019832958 [84]

• David Střelák, Amaya Jiménez-Moreno, José Luis Vilas, Erney Ramírez-Aportela, Ruben Sánchez-García, David

Maluenda, Javier Vargas, David Herreros, Estrella Fernández-Giménez, Federico P. de Isidro-Gómez, Jan Horáček,

David Myška, Martin Horáček, Pablo Conesa, Yunior C. Fonseca-Reyna, Jorge Jiménes, Marta Martinez, Mohamad

Harastani, Slavica Jonić, Jiří Filipovič, Roberto. Marabini, Jose M. Carazo, and Carlos O. S. Sorzano. Advances

in xmipp for cryo–electron microscopy: From xmipp to scipion. Molecules, 26(20):6224, 2021. ISSN 1420-3049.

doi: 10.3390/molecules26206224 [86]

The complete publications are enclosed as Appendices A, B, C, and D.

2.2 Contributions towards HPC

Following two sections present contributions to autotuning. We show how the input data can be modified

to better fit the performance characteristics of the cuFFT library. Then we present our contribution to

the code-level optimizations for CUDA and OpenCL.
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2.2. Contributions towards HPC

2.2.1 Performance Analysis and Autotuning Setup of the CuFFT Library

Fast Fourier Transformation (FFT) has many applications and is often one of the most computationally

demanding kernels, like in the case of the FlexAlign discussed above. FFT libraries usually have

many possible settings, and it is not always easy to deduce which settings should be used for optimal

performance. In many applications, it is possible to relax the requirements of the ’exact’ size of the

signal: it might be acceptable to crop (both in the time / frequency domain) or pad it with zeros (in the

time domain) prior to the transformation. Surprisingly, a majority of state-of-the-art papers focus on

answering the question of how to implement FFT under given settings but do not pay much attention to

the question of which settings result in the fastest computation.

In our paper [82], we analyzed the behavior and the performance of the cuFFT library with respect

to input sizes and plan settings. As demonstrated in Figure 2.4, there are groups of sizes that are

processed much faster than others. The official documentation provides a set of recommendations.

However, we have identified additional undocumented behavior of the library. For optimal performance,

the size of the input should be such that it can be processed by as few kernel calls as possible.

Unfortunately, the library does not provide this information, so we have tried to reverse-engineer the

plan creation process.

Figure 2.4: Comparison of the performance of multiple 1D transformations using recommended

sizes (input sizes that can be written in form 2a × 3b × 5c × 7d) and different precision.

Based on our findings, we designed a new tool, cuFFTAdvisor4, which proposes and, through

autotuning, finds the best configuration of the library for given constraints of input size and plan settings.

Following the official documentation, the best performing size should be described by as few terms (out

of 2a × 3b × 5c × 7d) with as low prime factor as possible. Table 2.4 shows the relative performance of

1D FFT with random size after padding it to a different nearest size described by a specific number of

terms. We developed a heuristic, which also considers the probable number of invoked kernels. With

autotuning of the heuristic suggestions, we can suggest a size that is processed almost seven times

faster on average.

4https://github.com/HiPerCoRe/cuFFTAdvisor
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1 term 2 terms 3 terms 4 terms 1-4 terms Heuristics Autotuned

count 2000 1927 1963 1972 2000 2000 2000

mean 5.05 5.94 5.84 5.61 5.90 6.03 6.94

std 1.70 1.80 1.71 1.68 1.67 1.68 1.81

min 0.54 0.93 0.82 0.80 1.00 1.00 1.01

25% 3.79 4.59 4.57 4.21 4.64 4.73 5.46

50% 4.73 5.49 5.43 5.36 5.51 5.69 6.68

75% 5.98 7.25 7.11 6.84 7.22 7.39 8.22

max 11.65 12.65 14.42 12.16 14.42 14.42 13.77

Table 2.4: Speedup obtained by increasing the transformation’s size to a different nearest size

described by a specific number of terms. Column “1-4 terms” contains performance for the nearest

recommended size with any number of terms.

2.2.2 A Benchmark Set of Highly-efficient CUDA and OpenCL Kernels

and its Dynamic Autotuning with Kernel Tuning Toolkit

Due to the complexity of heterogeneous architectures, optimizing codes for a particular type of ar-

chitecture and porting codes across different architectures while maintaining a comparable level of

performance can be extremely challenging, and one of the possible remedies seems to be autotuning.

Autotuning performance-relevant source-code parameters allows to tune applications automatically

without hard-coded optimizations and thus helps keep the performance portable. Our paper [64] intro-

duces a benchmark set of ten autotunable kernels for important computational problems implemented in

OpenCL or CUDA, one of them is the Reconstruct Fourier program discussed earlier. We also introduce

dynamic autotuning of code optimization parameters during application runtime. With dynamic tuning,

the Kernel Tuning Toolkit enables applications to re-tune performance-critical kernels at runtime when-

ever needed, for example, when input data changes.

When working on the Reconstruct Fourier, we have identified six different optimizations: the inter-

polation weights can be either computed on-demand or precomputed on CPU and read from global

or shared memory, the projection image data can be read from global or shared memory, thread

tiling, thread coarsening and different work-group size. Using these six dimensions, we have defined

360 possible configurations, and we tested them all for a variety of data sizes on several GPUs.

As demonstrated in Table 2.5, Reconstruct Fourier optimized for one GPU but executed on another

one runs on average at 74% of the possible maxima but, in the worst case, can run at only 31%

of the reachable performance. Table 2.6 shows the same situation for different sizes of the single-

particle images. Code optimized for 128×128 will process images of size 32×32 at only 32% of the

performance of the code explicitly optimized for 32×32.
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The article on other benchmarks shows that this is not specific to Reconstruct Fourier but a relatively

common property of various codes. As suggested by the article, dynamic autotuning can optimize code

at the runtime and thus avoid the performance penalization caused by offline autotuning. Among others,

we show that with reasonably constructed tuning (configuration) space, as few as 50 random autotuning

steps can lead to finding a configuration resulting in around 90% of the reachable maxima.

2080Ti 1070 750 680

2080Ti 100% 99% 31% 49%

1070 99% 100% 31% 50%

750 43% 67% 100% 94%

680 60% 72% 71% 100%

Table 2.5: Performance portability of 3D Fourier reconstruction with 128 × 128 samples. The rows

represent GPUs used for offline tuning; the columns represent GPUs used for execution. The

percentage shows how performance differs compared to the code using the best combination of

tuning parameters (for example, the code tuned for GeForce GTX 1070 and executed on GeForce

GTX 750 runs at only 31% of the speed of the code both tuned and executed on GeForce GTX 750).

128x128 91x91 64x64 50x50 32x32

128x128 100% 100% 77% 70% 32%

91x91 100% 100% 76% 68% 33%

64x64 94% 94% 100% 91% 67%

50x50 79% 78% 98% 100% 86%

32x32 65% 67% 80% 92% 100%

Table 2.6: Performance portability on GeForce GTX1070. The rows represent samples resolution

used for offline tuning, the columns represent samples resolution used for execution. The percentage

shows relative performance compared to the code autotuned for the used resolution.

2.2.3 Publication Summary

Further details about the proposed solutions to autotuning of the cuFFT library and code-level optimiza-
tions for CUDA and OpenCL can be found in the following relevant (co-)authored publications:

• David Střelák and Jiří Filipovič. Performance analysis and autotuning setup of the cufft library. In Proceedings of

the 2nd Workshop on AutotuniNg and ADaptivity AppRoaches for Energy Efficient HPC Systems, ANDARE ’18,

New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450365918. doi: 10.1145/3295816.
3295817. URL https://doi.org/10.1145/3295816.3295817 [82]

• Filip Petrovič, David Střelák, Jana Hozzová, Jaroslav Ol’ha, Richard Trembecký, Siegfried Benkner, and Jiří

Filipovič. A benchmark set of highly-efficient cuda and opencl kernels and its dynamic autotuning with kernel

tuning toolkit. Future Generation Computer Systems, 108:161–177, Jul 2020. ISSN 0167-739X. doi: 10.1016/j.
future.2020.02.069. URL http://dx.doi.org/10.1016/j.future.2020.02.069 [64]

The complete publications are enclosed as Appendices E and F.
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2.3 Contribution toward generic image processing

The last section presents a novel image processing framework, which internally combines task-based

runtime systems with dynamic autotuning of the GPU kernels.

2.3.1 Umpalumpa: a framework for efficient execution of complex image

processing workloads on heterogeneous nodes

Modern computers are typically heterogeneous devices – besides the standard central processing unit

(CPU), they commonly include an accelerator such as a graphics processing unit (GPU). However,

exploiting the full potential of such computers is challenging, especially when complex workloads

consisting of multiple computationally demanding tasks, like those found in the Cryo-EM programs

described in previous sections, are to be processed.

To ease programming and optimize runtime performance, we have proposed a new framework

called Umpalumpa [87]. Firstly, it implements a data-centric design, where data are described by their

physical properties (e. g., location in memory, size) and logical properties (e. g., dimensionality, shape,

padding). Secondly, Umpalumpa utilizes task-based parallelism to schedule tasks on heterogeneous

nodes. We have used StarPU [6] as it is a reasonably mature open-source task programming library

with its own runtime system and scheduling algorithms. Thirdly, tasks can be dynamically autotuned on

a source code level according to the hardware where the task is executed and the processed data using

our KTT tool. To test the capabilities of the Umpalumpa framework, we used it to implement the core

functionalities of two previously presented programs: the frame alignment procedure from FlexAlign

and the 3D reconstruction from Reconstruct Fourier.

Table 2.7 shows the wall time of 10 iterations of the global alignment procedure of the FlexAlign

program5 using NVIDIA GeForce RTX 3090. Not only is the main program loop much simpler to

program and maintain, but the automatic distribution of the tasks leads to an average of 30 % speedup.

As demonstrated in an earlier section, the performance portability of Reconstruct Fourier is limited

both to HW and the size of the data. Single-particle projections have another property called symmetry,

which describes a number of symmetries of the original sample and typically ranges from 1 to 78.

Reconstruct Fourier gets limited by the speed of data preprocessing data on CPU when the number of

symmetries is low. When the number of symmetries is high, the performance is limited by the kernel

inserting projections to 3D volume (even if this kernel runs on GPU).

Previous work [66] demonstrated that task-based parallelism provides approximately 80 % perfor-

5Notice that Table 2.1 shows the runtime of single program execution, including data loading, local alignment, final
interpolation, and data storing. Table 2.7 shows the runtime of 10 global alignment steps without data loading and interpolation,
i. e. they are not directly comparable.
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2.3. Contribution toward generic image processing

Size XMIPP Umpalumpa Speedup

Falcon 4096 × 4096 × 40 7.5 s 5.7 s 133%

K2 3838 × 3710 × 40 6.4 s 4.7 s 136%

K2 super 7676 × 7420 × 40 23.3 s 21.2 s 110%

K3 5760 × 4092 × 30 7.3 s 5.7 s 128%

K3 super 11,520 × 8184 × 20 19.6 s 13.2 s 148%

Table 2.7: The wall time of 10 FlexAlign global alignment procedures in seconds, single GPU.

Speedup is computed relative to XMIPP implementation.

mance boost in the case of a few symmetries but does not help when many symmetries are used.

Table 2.8 shows that dynamic autotuning can deliver up to almost 7 × speedup by optimizing the

implementation at runtime to specific data size.

Resolution Symmetries Projections XMIPP Umpalumpa Speedup

64 × 64 78 100 000 43,6 6,3 696 %

128 × 128 78 30 000 14,4 7,6 190 %

256 × 256 78 10 000 12,2 11,7 104 %

512 × 512 78 10 000 46,0 39,4 117 %

Table 2.8: The runtime of Fourier Reconstruction in seconds, entire machine. Speedup is computed

relative to experimental StarPU XMIPP implementation.

2.3.2 Publication Summary

Further details about the proposed solutions toward generic image processing can be found in the
following relevant authored publication:

• David Střelák, David Myška, Filip Petrovič, Jan Polák, Jaroslav Ol’ha, and Jiří Filipovič. Umpalumpa: a framework

for efficient execution of complex image processing workloads on heterogeneous nodes. Computing, Submitted.

ISSN 1436-5057 [87]

The complete publication is enclosed in Appendix G.
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Filipovič. A benchmark set of highly-efficient cuda and opencl kernels and its dynamic autotuning with kernel

tuning toolkit. Future Generation Computer Systems, 108:161–177, Jul 2020. ISSN 0167-739X. doi: 10.1016/
j.future.2020.02.069. URL http://dx.doi.org/10.1016/j.future.2020.02.069 [64]

• In this article, we introduce a benchmark set of ten autotunable kernels for important computational

problems implemented in OpenCL or CUDA. Using our Kernel Tuning Toolkit, we show that with

autotuning, most of the kernels reach near-peak performance on various GPUs and outperform

baseline implementations on CPUs and Xeon Phis. In addition to offline tuning, we also introduce

dynamic autotuning of code optimization parameters during application runtime.

• I have designed and implemented two benchmarks within the set. I have also participated in the

design of dynamic autotuning (10 %).

• IF (2020): 7.187 (Q1); Scopus (2020): Q1
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David Střelák 31

https://doi.org/10.1145/2910674.2935835


List of publications

75(10):882–894, Oct 2019. ISSN 2059-7983. doi: 10.1107/s2059798319011860. URL http://dx.doi.org/

10.1107/s2059798319011860 [54]

• In this article, we show that Scipion v.2.0 allows image-processing pipelines to be constructed in a

streamed fashion up to particle extraction.

• I participated on the performance optimization of various protocols and on testing (4 %).

• IF (2019): 5.266 (Q1); Scopus (2019): Q2

4.– Marta Martínez, Amaya Jiménez-Moreno, D. Maluenda, E. Ramírez-Aportela, Roberto Melero, Ana Cuervo,

Pablo Conesa, Laura del Caño, Yunior Fonseca, Ruben Sánchez-García, and et al. Integration of cryo-em model

building software in scipion. Journal of Chemical Information and Modeling, 60(5):2533–2540, Jan 2020. ISSN

1549-960X. doi: 10.1021/acs.jcim.9b01032. URL http://dx.doi.org/10.1021/acs.jcim.9b01032 [56]

• In this article, we present a major extension of the image processing framework Scipion that

provides inter-package integration in the model building area and full tracking of the complete work-

flow, from image processing to structure validation.

• I gave technical support during the implementation, and I have participated in the testing phase

(3 %).

• IF (2020): 4.956 (Q1); Scopus (2020): Q1

5.– Carlos Óscar Sánchez Sorzano, Amaya Jiménez-Moreno, David Maluenda, Erney Ramírez-Aportela, Marta

Martínez, Ana Cuervo, Roberto Melero, Jose Javier Conesa, Ruben Sánchez-García, David Střelák, and et al.
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4
Conclusion and FutureWork

The main focus of this dissertation, structured as a compendium of articles, was to improve the al-

gorithms used in Cryo-EM, esp. the SPA. To that end, several performance-critical programs used

in different parts of the processing pipeline have been accelerated, either to make them usable on-

the-fly in the case of FlexAlign, or by order of magnitude in the case of Align Significant sub-routine

and Reconstruct Fourier. In addition to these programs, multiple other programs from the XMIPP

software package have been accelerated and improved. As XMIPP is open-source and actively used

by the community, these changes significantly impact the community and greatly contribute to the

entire research related to Cryo-EM. In addition to faster processing, these optimizations allow for more

complex pipelines utilizing, for example, consensus and can be used as construction blocks for more

computationally complex algorithms.

The secondary goal of the dissertation was to identify the limitations of state-of-the-art HPC tech-

niques (by their application in Cryo-EM) and potentially extend those techniques to overcome their

limitations. Towards that end, we have proposed two contributions. cufftAdvisor is an open-source

tool that proposes and, through autotuning, finds the best configuration of the cuFFT library for given

constraints of input size and plan settings. We have also significantly contributed to autotuning by

introducing complex dynamic autotuning to the KTT tool. As demonstrated, autotuning is a key factor

in performance portability between different hardware data.

Last but not least, we have proposed an image processing framework Umpalumpa, which combines

a task-based runtime system, data-centric architecture, and dynamic autotuning. The proposed frame-

work allows for writing complex workflows which automatically use available HW resources and adjust

to different HW and data but at the same time are easy to maintain. By rewriting core procedures, the

additional speedup from 10 % to 48 % in the case of FlexAlign and 4 % to almost 700 % in the case of

Reconstruct Fourier has been achieved.
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4.1 Future work

We have several topics that we would like to focus on in the future.

Cryogenic electron tomography has been experiencing considerable growth within the scientific

community during the last few years, leading to the development of specialized algorithms and data

models. From a technical computing point of view, the main aspect that should be considered is the

transit from working with images to working with volumes, which means a considerable increase in the

size of the datasets. This leads to different bottlenecks and complications in the processing pipeline.

Naturally, we would like to increase the variety of algorithms provided by the Umpalumpa framework.

We also believe that the proposed design can be used to autotune multiple processing steps, which

might bring additional performance gain. We would also like to integrate Umpalumpa into the XMIPP

package as a new computational core.

In the HPC field, we want to focus on analyzing the configuration (tuning) space. Configuration

space is typically discrete, non-linear, and non-convex and thus very hard to navigate through. However,

during dynamic autotuning, the fast discovery of the global minima is critical to justify the autotuning

overhead.

We also expect that further improvements to schedulers used in task-based runtime systems will

be necessary. Effective dynamic planning is challenging by itself, and in combination with dynamic

autotuning of specific tasks or complete pipelines, it will require novel approaches.

Last but not least, we would like to return to cuFFTAdvisor, which was initially designed by analyzing

1D transformations using CUDA 8.0. As newer versions of cuFFT typically bring some performance

optimizations, and since we mostly use 2D transformations that follow slightly different rules, we might

be able to optimize calls to the library further.
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5
Conclusión y Trabajo Futuro

El objetivo principal de esta tesis, estructurada como un compendio de artículos, era mejorar los

algoritmos utilizados en Cryo-EM, especialmente el SPA. Con este fin, se han acelerado varios progra-

mas críticos para el rendimiento utilizados en diferentes partes de la cadena de procesamiento, ya sea

para hacerlos utilizables sobre la marcha en el caso de FlexAlign, o por orden de magnitud en el caso

de la subrutina Align Significant y el programa Reconstruct Fourier. Además de estos programas, se

han acelerado y mejorado otros múltiples programas del paquete de software XMIPP. Como XMIPP

es de código abierto y es utilizado activamente por la comunidad, estos cambios tienen un impacto

significativo en la comunidad y contribuyen en gran medida a toda la investigación relacionada con

Cryo-EM. Además de un procesamiento más rápido, estas optimizaciones permiten realizar proce-

samientos más complejos utilizando, por ejemplo, el consenso, y pueden utilizarse como bloques de

construcción para algoritmos más avanzados desde el punto de vista computacional.

El objetivo secundario de la tesis era identificar las limitaciones de las técnicas HPC del estado

del arte (por su aplicación en Cryo-EM) y ampliar potencialmente esas técnicas para superar sus

limitaciones. Con este fin, hemos propuesto dos contribuciones. cufftAdvisor es una herramienta

de código abierto que propone y, a través del autotuning, encuentra la mejor configuración de la

biblioteca cuFFT para unas restricciones dadas de tamaño de datos y configuración del plan. También

hemos contribuido significativamente al autotuning introduciendo un complejo autotuning dinámico en

la herramienta KTT. Como se ha demostrado, el autotuning es un factor clave para la portabilidad del

rendimiento entre diferentes datos de hardware.

Por último, pero no por ello menos importante, hemos propuesto un framework de procesamiento

de imágenes, Umpalumpa, que combina un sistema de ejecución basado en tareas, una arquitectura

centrada en los datos y un autotuning dinámico. El framework propuesto permite escribir flujos de

trabajo complejos que utilizan automáticamente los recursos HW disponibles y se ajustan a diferentes

HW y datos, pero al mismo tiempo son fáciles de mantener. Mediante la reescritura de los procedi-

mientos principales, se ha conseguido un aumento de velocidad adicional del 10 % al 48 % en el caso

de FlexAlign y del 4 % a casi el 700 % en el caso de Reconstructr Fourier.
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5.1 Trabajo futuro

Hay varios temas en los que nos gustaría centrarnos en el futuro.

La tomografía electrónica criogénica ha experimentado un crecimiento considerable dentro de la

comunidad científica durante los últimos años, lo que ha llevado al desarrollo de algoritmos y modelos

de datos especializados. Desde el punto de vista técnico informático, el principal aspecto que debe

considerarse es el tránsito del trabajo con imágenes al trabajo con volúmenes, lo que supone un

aumento considerable del tamaño de los conjuntos de datos. Esto conlleva diferentes cuellos de botella

y complicaciones en la cadena de procesamiento.

Naturalmente, nos gustaría aumentar la variedad de algoritmos que ofrece el marco Umpalumpa.

También creemos que el diseño propuesto puede utilizarse para el autotuning de múltiples pasos de

procesamiento, lo que podría suponer una ganancia de rendimiento adicional. También nos gustaría

integrar Umpalumpa en el paquete XMIPP como un nuevo núcleo computacional.

En el ámbito de HPC, queremos centrarnos en el análisis del espacio de configuración (o espacio

de tuning). El espacio de configuración suele ser discreto, no lineal y no convexo, por lo que es

muy difícil de navegar. Sin embargo, durante el autotuning dinámico, el descubrimiento rápido de los

mínimos globales es fundamental para justificar la sobrecarga de autotuning.

También esperamos que sean necesarias nuevas mejoras en los programadores utilizados en los

sistemas de ejecución basados en tareas. La planificación dinámica eficaz es un reto en sí misma, y en

combinación con el autotuning dinámico de tareas específicas o líneas completas, requerirá enfoques

novedosos.

Por último, pero no por ello menos importante, nos gustaría volver a cuFFTAdvisor, que se diseñó

inicialmente analizando transformaciones 1D con CUDA 8.0. Como las nuevas versiones de CUDA

suelen traer algunas optimizaciones de rendimiento, y como nosotros utilizamos principalmente trans-

formaciones 2D que siguen reglas ligeramente diferentes, podríamos optimizar aún más las llamadas

a la biblioteca.
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Jiří Filipovič, Roberto. Marabini, Jose M. Carazo, and Carlos O. S. Sorzano. Advances in xmipp

for cryo–electron microscopy: From xmipp to scipion. Molecules, 26(20):6224, 2021. ISSN 1420-

3049. doi: 10.3390/molecules26206224.
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OpenCL Open Computing Language.

OpenMP Open Multi-Processing.
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Abstract: Cryogenic Electron Microscopy (Cryo-EM) has been established as one of the key players
in Structural Biology. It can reconstruct a 3D model of the sample at the near-atomic resolution,
which led to a Method of the year award by Nature, and the Nobel Prize in 2017. With the growing
number of facilities, faster microscopes, and new imaging techniques, new algorithms are needed to
process the so-called movies data produced by the microscopes in real-time, while preserving a high
resolution and maximum of additional information. In this article, we present a new algorithm used
for movie alignment, called FlexAlign. FlexAlign is able to correctly compensate for the shift produced
during the movie acquisition on-the-fly, using the current generation of hardware. The algorithm
performs a global and elastic local registration of the movie frames using Cross-Correlation and
B-spline interpolation for high precision. We show that our execution time is compatible with
real-time correction and that we preserve the high-resolution information up to high frequency.

Keywords: cryo-em; movie alignment; acceleration; gpu; flexalign; cuda; autotuning; cufft;
cufftadvisor

1. Introduction

The processing pipeline of the Cryo-EM consists of several steps, movie alignment being the very
first one. A movie is a sequence of frames produced by the microscope, with each frame recording a
projection of tens to hundreds of particles. By averaging frames, a micrograph is produced, which is
later used for particle picking, Contrast Transfer Function (CTF) estimation, and other steps of the
image processing pipeline. Due to beam-induced motion and other changes within the recorded area
during the screening, simple averaging of the frames is not sufficient.

To obtain a single frame, a beam of electrons is fired against the sample. After passing the sample,
the beam is recorded by a direct electron detection camera. This is known as Transmission Electron
Microscopy (TEM), see Figure 1. Since the electron beam causes radiation damage, the electron dose
has to be very low, about one electron per Å2 and frame (electron arrival is supposed to occur following
a Poisson distribution; this means that the most common observations are 0 or 1 electron per pixel).
This, on the other hand, results in an extremely low Signal-to-Noise Ratio (SNR). To get more signal,
we can repeat the imaging several times using the same sample and then average the resulting frames.

Electronics 2020, 9, 1040; doi:10.3390/electronics9061040 www.mdpi.com/journal/electronics
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Figure 1. Principle of the TEM.

However, before averaging the frames, they have to be properly aligned as the sample moves
during the acquisition. The reasons for this movement may vary from sample to sample and they
are carefully described by [1]. This movement can be both global and local, and both types need to
be corrected.

Global alignment is trying to compensate for the apparent movement of the entire frame.
Even though this can lead to incorrect alignment at a specific location, the overall SNR will be highly
improved. For that reason, it is often used as the first step before local alignment. In Figure 2, we can see
the possible effect of (not) performing the global alignment on a noiseless phantom movie, generated
and aligned as described in Section 4.1.

Figure 2. Phantom movie (grid, detail), an average of 10 frames, nth frame shifted by the vector [2n, 3n],
before global alignment (left), after global alignment (right).

The aim of the local alignment is to compensate for more complex movements of the particles,
should they be caused by the beam, doming, or another cause. Typically, it works on a divide and
conquer basis—the movie is divided into small patches, and the alignment is solved independently
for each patch. Figure 3 shows the possible effect of (not) performing the local alignment on a
phantom movie.
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Figure 3. Phantom movie (grid, detail), an average of 50 frames, frames shifted + doming applied,
using only global alignment (left), after local alignment (right).

The requirement for fast and precise algorithms for movie alignment is driven by three factors.
The first is speed. The new generation of detectors [2] and acquisition practices reduced the recording
time to 4 movies per minute [3], and this time is expected [4] to reach as little as 5 s per movie soon.
It is crucial to be able to process these movies in real-time, as potential problems with the imaging can
be corrected as soon as they appear during the acquisition (the access cost to the microscope ranges
from $1000 to $3000 per day).

The second is accuracy. The goal of Cryo-EM is to produce near-atomic models of the
macromolecules under study [5]. This goal sets an important challenge to all the image processing
steps, especially this one, as the SNR of the micrographs ranges from 1/10 to 1/100 (At the level of the
frame, this SNR has to be divided by the number of frames, typically between 10 and 100.).

The third is particle tracking for polishing. Being able to accurately track the particles back to the
originating frames is crucial during the polishing phase, which aims to further improve the resolution
of the final 3D reconstruction.

In this article, we introduce a tool for movie alignment called FlexAlign. We give details of our
algorithm to perform the movie alignment using the Graphical Processing Unit (GPU) and Compute
Unified Device Architecture (CUDA). We propose a two-stage (global and local) movie alignment
algorithm based on Cross-Correlation (CC) and B-spline interpolation for the description of the local
shifts. As we show, FlexAlign produces high contrast micrographs, it is rather robust to noise, and it is
able to process movies at the microscope acquisition speed, using the current generation of the GPUs.

The rest of the paper is organized as follows. Section 2 gives additional details on movie
alignment, including the (non) functional requirements of the algorithm. In Section 3, we describe our
implementation. Quality and performance evaluation is done in Section 4. Conclusions and future
work can be found in Section 5.

Comparison to Other Implementations

Probably the most commonly used SW for movie alignment is currently MotionCor2 [6].
While MotionCor2 provides good performance and precision, it is not providing, to the best of our
knowledge, the data needed for particle tracking. It allows for both global and local alignment and
is accelerated on GPU. Similarly to our method or the one of Warp [7], it uses CC to align frames or
patches of the movie.

The Optical Flow [8] approach can describe the per-pixel movement, but at the cost of high storage
requirements—for each pixel of each frame, a 2D shift-vector has to be stored (Provided the shift-vector
is stored in single precision, we would need 128 MB per frame of 4000 × 4000 pixels, or 6.25 GB for a
movie with 50 frames. Movies are often stored in single-precision, uncompressed format, meaning
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that the storage requirement would triple.). In addition, the optical flow is computationally expensive,
even in a GPU accelerated version.

Relion [9] implements Bayesian polishing, and to expose the metadata of the movie alignment,
they provide their Central Processing Unit (CPU) version of the MotionCor2.

The brief overview of the current alignment algorithms can be found in the Table 1.
The goal of FlexAlign is to combine the best of these, namely, the short

computational time, the flexibility of elastic deformations, support for detailed pixel tracking,
and open-source implementation.

Table 1. Comparison of various movie alignment algorithms.

Program HW Method + Interpolation

MotionCor2 GPU CC + polynomial
Relion MotionCor CPU CC + polynomial
Optical flow CPU/GPU optical flow + cubic interpolation
Warp GPU CC + higher-order schemes
FlexAlign GPU CC + B-spline

2. Movie Alignment

2.1. Our Method

2.1.1. Global Alignment

For each pair of frames fi and f j (where j > i), we estimate their apparent shift r̂ij exploiting
the correlation theorem of the Fourier Transformation (FT). Then, we try to find a sequence of shifts
between one frame and the next that explains the observed shifts between any pair of frames (see
Equation (1)). For doing that, we try to find a unique shift-vector per frame such that the sum of the
shifts of all intervening frames ri . . . rj matches the observation:

ri + ri+1 + · · ·+ rj−1 = r̂ij (1)

We get an overdetermined set of linear equations, as the number of unknowns r1 . . . rn−1 is smaller
than the known shifts r̂ij. It can be expressed in a matrix form as

Ar = r̂ (2)

The actual per frame movement can be computed by solving Equation (3) in the Least
Squares sense

r = (AT A)−1 AT r̂ (3)

The equation system in Equation (2) may contain outliers due to misestimates of the true shifts
between pairs of frames. After solving the equation system, we compute the residuals for each equation
and remove those equations whose residual is larger than three standard deviations in absolute value.
Then, the equation system is solved again with the remaining equations.

For each frame within the micrograph, we report the global shift parameters. In this way, decisions
on the stability of the acquisition process can be quickly taken.

2.1.2. Local Alignment

The local alignment uses a principle similar to the global alignment. We cut each frame into several
possibly overlapping rectangular segments (see Figure 4). The equivalent segments in consecutive
frames are called patches.
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Figure 4. Division of the frames to patches for local alignment.

Patches can be handled in the same way as regular movie frames, i.e., we can compute the
alignment between them. Once we know the relative shift between all pairs of patches, we can try to
fit a smoothing function to this data. We use cubic B-splines, which provide a good trade-off between
smoothing quality and computational complexity [10]. Let us refer as rp

i = (rp
i,x, rp

i,y) to the shift of the
patch p in frame i calculated in the same way as we did for the global alignments. Let us refer as (xp,
yp) to the coordinate center of the patch p in the coordinate system of the micrograph ((0, 0) is in the
top-left corner) before alignment. Then, we look for the B-spline coefficients clmn,x and clmn,y such that

rp
i,x = ∑

l
∑
m

∑
n

clmn,xB

(
i

Tf
− l

)
B
(

xp

Tx
−m

)
B
(

yp

Ty
− n

)
(4)

where B(·) is the cubic B-spline function, Tf , Tx, and Ty are the separation between spline nodes
in the time, x and y directions, respectively. The equation above should hold for all patches p and
frames i. A similar equation applies to clmn,y. Note that the equation system above is linear in the c
coefficients, and we also solve it through the Least Squares problem in which we identify outliers and
remove them.

We store the B-spline interpolation c coefficients together with the interpolation nodes geometry
(Tf , Tx, and Ty), with each micrograph. In that way, we are able to backtrack the movement of each
pixel of each frame and allow for particle polishing (that is, a more precise local shift estimation
per particle).

2.1.3. Complexity

As can be seen, for the global alignment, our algorithm needs N forward FTs, and N(N−1)
2 inverse

FTs, where N is the number of frames. The dimension of the data during the forward FT is typically the
original size of the frame, while the size of the inverse FT is usually smaller (Full-scale forward FT is
followed by a cropping of the high-frequency data. While downscaling speeds up the transformation,
it also improves the precision by suppresing noise.).

The local alignment part needs an additional MN forward FTs and M N(N−1)
2 inverse FTs, where M

is the number of segments.
Other operations, such as equation system solving, are negligible in comparison to the total

computational demand of the FTs.
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3. Implementation

3.1. Alignment Estimation

The pseudocode of the core functionality—alignment estimation of several images (either frames
or patches) is shown in Algorithm 1 and Figure 5. As can be seen, for each image, we need to iterate
through all consecutive images and compute the relative shift using CC. Ideally, both parts of the
algorithm would be executed on GPU, to avoid memory transfer overhead. However, the current
generation of GPUs is still manufactured with a rather small amount of on-board memory, which is
typically in the range of 6–12 GB on consumer-class cards, and up to 48 GB on professional-class cards.

Figure 5. Flowchart of the core idea of the algorithm. Algorithm overview (left), alignment
subroutine (right).

Algorithm 1 Compute alignment estimation

1: function COMPUTE_ALIGNMENT(images) // frames or patches
2: images′c = {}
3: for all imgi ∈ images do
4: img′i = FT(i1) // conversion to FD
5: // crop very high frequencies and apply the filter on the rest
6: img′ic = lowpass_ f ilter(img′i , f ilter)
7: images′c.append(img′ic)
8: solver = equation_system_solver()
9: for all img′ic ∈ images′c do

10: for all img′jc ∈ (img′(i+1)c, . . . img′nc) do
11: x, y = shi f t_alignment(img′ic, img′jc)
12: cc′ = i′′1c · i′′2c // cross-correlation
13: cc = IFT(cc′) // inverse transformation
14: x, y = pos(max(cc)) // position of the maxima is the estimated shift
15: solver.add_equation((img′ic, img′jc), (x, y))
16:
17: return solver.solve()

Like other authors, we have used batch processing to overcome this issue. This requires the
reorganization of some steps of the algorithm. First, we transfer N images to GPU, perform forward
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FT, low pass filtering including cropping, and we download the resulting images in the Frequency
Domain (FD) to Random Access Memory (RAM) (see Line 7 of Algorithm 1). N is selected such that
we have enough space for out-of-place FT, cropped data and the low pass filter. Transfer back to
RAM creates natural synchronization/debug point, and allows us to process data even on low-end
GPUs, or high-resolution movies with many frames. The pseudocode of this process is shown in
Algorithm 2. For simplicity, we skip the boundary and other checks and kernel settings.For filtering,
we use standard low-pass Gaussian filter with given maximal resolution. Due to the properties of the
Gaussian distribution (99.7% of the values are within three standard deviations from mean.), we know
that values at four standard deviations are almost zero, i.e., we can crop out these values completely.
The remaining values are multiplied by the weight as given by the distribution. We compute sigma as

σ = Ts
Rmax
·
√

−1
2 log 0.5 , where Ts is the target resolution in pixels and Rmax is the maximal resolution to

preserve in Å.
The following step (of Algorithm 1) is the computation of the CC between images. The pseudocode

of this process, without boundary and other checks, is outlined in Algorithms 3 and 4.

Algorithm 2 Batched FT and low-pass filtering

1: function TRANSFORM_TO_FD(images, f ilter)
2: result = {} // cropped and filtered images in FD
3: N = f ind_batch_size(images, f ilter)
4: for i = 0; i < |images|; i += N do
5: batch = trans f er_to_GPU(images, i, i + N)
6: batch′ = FT(batch) // conversion to FD
7: batch′f iltered = lowpass_ f ilter_kernel(batch′, f ilter)
8: result.append(trans f er_ f rom_GPU(batch′f iltered))
9: return result

Algorithm 3 Batched shift estimation

1: function COMPUTE_SHIFT_ESTIMATION(images)
2: result = {} // cropped correlation centers
3: I, J = f ind_bu f f er_and_batch_size(images)
4: for i = 0; i < |images|; i += I do
5: bu f f er1 = trans f er_to_GPU(images, i, i + I)
6: result.append(batch_cc(bu f f er1, bu f f er1, J) // see Algorithm 4
7: for j = i + 1; j < |images|; j += I do
8: bu f f er2 = trans f er_to_GPU(images, j, j + I)
9: result.append(batch_cc(bu f f er1, bu f f er2, J) // see Algorithm 410:

11: return result

Algorithm 4 Batched CC

1: function BATCH_CC(bu f f er1, bu f f er2, batch_size)
2: result = {}//cropped correlation f unctions
3: no_o f _cc = compute_number_o f _correlations(bu f f er1, bu f f er2)
4: for i = 0; i < no_o f _cc + batch_size; i += batch_size do
5: cc′ = pointwise_multiply_and_shi f t_kernel(bu f f er1, bu f f er2, i)
6: cc = IFT(cc′)
7: centers = crop_centers(cc)
8: result.append(trans f er_ f rom_GPU(centers))
9: return result

We use four buffers on the GPU:

• The first two represent two floating windows, each holding I consecutive images from the
previous step.

• The other two hold results of J pointwise multiplications of the images, in FD and in Spatial
Domain (SD) respectively (variables cc and cc′ on Lines 5 and 6 of the Algorithm 4).
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I and J are selected so that they fit into available GPU memory. First, we upload to GPU I images
into the first buffer, and another I images to the second buffer. Then, we run a kernel performing
pointwise multiplication of all pairs of images in the first buffer, in batch of J images (see the first step
in Figure 6). Since we always use images of even size, we also multiply each element of the resulting
image by −1(i+j), where i, j are positions of each element. After inverse FT, this results in shifting
the correlation function to the center of the image. The last step is to crop the correlation centers and
download them to RAM for further processing.

Figure 6. Data processing using two buffers. First, we process images in the first (red) buffer (1),
then all pairs of images in both buffers (2). We iteratively fill the second (green) buffer with remaining
images (3, arrows skipped for brevity). When all images pairs for the first buffer are processed, we load
new images into the first buffer (4).

Similarly, we get centers of correlations between images in the buffers, see the second step in
Figure 6. We keep loading consecutive images to the second buffer until we pass through all of them,
as shown in step three in Figure 6. Once that happens, we upload new images also to the first buffer
and repeat the process until all pairs of images are processed.

To locate the position of the maxima, we use sub-pixel averaging. We locate the pixel with
maximal value. From it, we search for the nearest pixel with value max/

√
2. Distance to this pixel

determines an area, in which we do a weighted average of the pixels. The position of this average is the
requested shift. Due to a complicated memory access pattern and low exposed parallelism, we kept
this code on the CPU side. The obtained positions of the maxima, i.e., relative shifts of all pairs of
frames, are used as input to the linear equation system solver, as described in Section 2.1.1.

3.2. Global Alignment

Our algorithm starts by loading all frames into a consecutive block of RAM. During the load,
we also apply a gain and dark image correction (A dark image is a residual signal generated by the
sensor when no electrons are fired at it, and a gain image corrects uneven sensitivity of the sensor’s
pixels.), if requested. Then, we apply a low pass filter and estimate the shifts of all frames, as described
in the previous subsection.

3.3. Local Alignment

Local alignment is a direct extension of the global alignment. We use the fact that we already
have frames loaded in RAM. We process the frames by segments—we copy out proper patches, and at
the same time, we compensate for the global shift estimated in the previous step. Since patches
are typically smaller than frames, we average data from several (three, by default) frames together,
to suppress the noise and enhance the signal. As typical particle has size of 200–300 Å, we use by
default patches of 500 × 500 Å, so that at least one particle can fit in it.

Once extracted, patches are then handled in the same fashion as frames of the global alignment.
The pseudocode without frame averaging is shown in Algorithm 5.
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Algorithm 5 Local movie alignment

1: function LOCAL_ALIGNMENT( f rames)
2: global_shi f t = compute_alignment( f rames)
3: patch_shi f ts = {} // absolute shift of each patch
4: for all s ∈ segments do
5: solver = equation_system_solver()
6: patches = extract_patches_ f rom_ f rames( f rames, global_shi f t, s)
7: patches_shi f ts = compute_alignment(patches)
8: solver.add_equations(patches, patches_shi f ts)
9: patch_shi f ts.append(s, solver.solve())

10: return patch_shi f ts

3.4. CuFFTAdvisor

As can be seen from the text above and Section 2.1.3, our method is strongly dependent on the
performance of the FT.

We use the standard NVIDIA’s cuFFT library [11]. As the performance and additional
memory consumption of this library depend on the size of the input data and type of the
transformation, we have developed custom software, cuFFTAdvisor [12] that uses autotuning to
help us to automatically determine the best settings.

During the global alignment, we search for the size of the frame, which could be up to 10% smaller
and is faster to process. This can also result in up to 8 times less space used by the library itself, see [12]
for details.

As stated earlier, during filtering, we crop high frequencies (over four standard deviations) of
the frames in the FD. We autotune for the sizes which could be up to 10% bigger, but faster to process.
Once we know this size, we simply have to alter the filter to take this size change into account.

Sizes of the (filtered) patches during the local alignment are obtained in a similar fashion.
To compensate for the time spent on autotuning, we store the autotuned sizes in a user-defined

file as key-value pairs. As key, we use a combination of the GPU used, input size of the movie,
and available GPU memory. The value is, then, the optimized size.

Users can also opt-out of this autotuning step, should it lead to overall slow-down, e.g., during the
processing of a few movies only.

4. Quality and Performance Analysis

To ensure that our algorithm is able to cope with complex movements and noise, we have run a
collection of tests.

4.1. Phantom

First, we have generated a phantom movie, consisting of 30 frames of 4096 × 4096 pixels.
Each frame contains a grid of 5 pixels wide lines 50 pixels apart. Grid pixels were set to
one, background ones to zero. Each pixel [x, y] of each frame t has been shifted using the
following formulas:

x(t) = a1(n− t) + a2(n− t)2 + cos(n− t)/10
y(t) = b1(n− t) + b2(n− t)2 + sin((n− t)2)/5

(5)

After the shift, a doming has been applied, with the center of the doming located in the middle of
the frame, using the normalized distance r from it:

k1 = k1s + t(k1e − k1s)/n
k2 = k2s + t(k2e − k2s)/n

rout = rin(1 + k1r2
in + k2r4

in)

(6)
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where rout and rin are the radial coordinate of the pixel in the output and input images, respectively.
We have used the following constants: n = 30; a1 = −0.039; a2 = 0.002; b1 = −0.02; b2 =

0.002; k1s = 0.04; k1e = 0.05; k2s = 0.02; k2e = 0.025 and bilinear interpolation between pixels.
We got a phantom movie with a grid, which has both translation and doming applied between

each frame. We used this phantom to simulate the image acquisition process in the electron microscope
as follows. For each pixel value v, we simulate the arrival of i electrons using a Poisson distribution
whose average is controlled by the corresponding phantom pixel:

µ = µb − (µb − µ f )v

P(i|µ) = e−µµi

i!

(7)

We used values µb = 1.25 for background pixels and µ f = 1.05 for foreground (grid) pixels.
Using this phantom, we have tested FlexAlign, MotionCor2 v.1.3.1, Warp 1.07W, cryoSPARC v2.15

(patch_motion_correction_multi) [13] and Relion’s MotionCor v.3.0.8. We have used 9× 9 segments per
frame of 500 × 500 pixels (assumed pixel size = 1.0). CryoSPARC sets the number of segments to 7 × 7
and does not allow for manual override. As can be seen in Figure 7, both MotionCor2 and FlexAlign
were able to correct combined shifts correctly, FlexAlign producing a higher contrast micrograph. High
contrast is important especially during the picking stage, where it allows for more reliable particle
selection, and also could indicate better high-frequency preservation. The other three programs were
not able to correct for the shift near the corner of the resulting micrograph. While Relion MotionCor
and cryoSPARC get gradually worse, Warp produces a sharper transition.

4.2. Real Movies

We have run similar tests on experimental data. We used the EMPIAR data sets 10288 [14],
10314 [15] and 10196 [16].

4.2.1. EMPIAR 10288

The EMPIAR 10288 dataset consists of movies of 40 frames, each frame having a resolution of
3838 × 3710 pixels. The pixel size is 0.86 Å, which resulted in 9 × 9 patches. The average exposure and
the camera model is not specified. Gain correction images are provided for a subset of the movies.

Figure 8 shows a trace of the reported global alignment and histogram of the first frame. As we
can see, all programs report very similar shifts, except Warp, which reports around two pixels shorter
track. It is worth mentioning that this might be compensated during the local alignment step.
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Figure 7. Detail of the frame of the phantom movie (top left), detail of produced micrograph,
normalized: cryoSPARC (top right), FlexAlign (center left), Warp (center right), MotionCor2 (bottom
left), Relion MotionCor (bottom right).
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Figure 8. Detail of the frame from the EMPIAR 10288 (normalized) with histogram (before
normalization) (top), reported global shifts by different programs (bottom).

Details of the obtained micrographs are shown in Figure 9. All programs produce relatively sharp
micrographs. We can see that MotionCor2 clamps low values a little.



Electronics 2020, 9, 1040 13 of 25

Figure 9. Detail of the produced micrograph using EMPIAR 10288 dataset (normalized) with histogram
(before normalization): FlexAlign (top left), Warp (top right), cryoSPARC (center), MotionCor2
(bottom left), Relion MotionCor (bottom right).
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Figure 10 shows the radial average of the Power Spectrum Density (PSD) for the resulting
micrographs. As can be seen, micrographs contain useful information up to a resolution between 4
to 5 Å. The power increase at high frequencies of MotionCor2 might indicate some high frequency
enhancement, while decreasing tendency of the FlexAlign, Warp, and Relion MotionCor suggest
dampening of the high frequencies.

Figure 10. Radial average of the PSD of the produced micrograph using EMPIAR 10288.

4.2.2. EMPIAR 10314

The EMPIAR 10314 dataset consists of movies of 33 frames, each frame having a resolution
of 4096 × 4096 pixels and an average exposure of 1.51 e/Å2. The pixel size is 1.12 Å, so we have
used 8 × 8 patches. The camera model is not specified and neither gain nor dark correction images
are provided. For Warp, the movie has been converted from original .tif format with AdobeDeflate
compression to .mrc, as the former is not yet supported.

Figure 11 shows a trace of the reported global alignment and histogram of the first frame. As we
can see from the histogram, movie frames have probably been somehow post-processed. For that
reason, FlexAlign in default settings (FlexAlign 30 Å) reports a different shift in the x-direction,
compared to other programs. However, the difference is rather small, around 1.2 Å on the span of
the whole movie. It is interesting that the total shift in the y-direction is over 8 times higher than
in the x-direction. If we change the filtering to 10 Å, FlexAlign (FlexAlign 10 Å) results in a global
trajectory that is consistent with other algorithms. This experiment highlights the need for the lowpass
filter during the calculation of the relative shifts: it is primarily aimed at making sure that the signal
being correlated has enough information (remind that normally more than half of the pixels of the
frames have no electron hit, and for a typical dose in an area of 30 Å2 there are about 450 pixels hit
by electrons); if the frame already has enough local information (as in this example), it is best not to
blur it.

Details of the obtained micrographs are shown in Figure 12. All programs produce sharp
micrographs, without any cropping of the high/low values.
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Figure 11. Details of the frame from the EMPIAR 10314 (normalized) with histogram (before
normalization) (top), reported global shifts by different programs (bottom).



Electronics 2020, 9, 1040 16 of 25

Figure 12. Details of the produced micrograph using EMPIAR 10314 dataset (normalized) with
histogram (before normalization): FlexAlign (top left), FlexAlign with low-pass filter at 10 Å
(top right), Warp (center left), cryoSPARC (center right), MotionCor2 (bottom left), Relion MotionCor
(bottom right).
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Figure 13 shows the radial average of the PSD for the resulting micrographs. These micrographs
contain frequencies of up to three and a half Å. Again, MotionCor2’s PSD might indicate problem with
handling high frequencies, while decreasing tendency of the cryoSPARC, FlexAlign, Relion MotionCor
and Warp suggests dampening of the high frequencies (either by the movie alignment algorithm,
the image interpolation scheme to produce the micrograph, or as originally recorded by the movie).
Warp dampens the most, followed by Relion MotionCor, FlexAlign and cryoSPARC. CryoSPARC,
FlexAlign, Warp, and Relion MotionCor also seem to preserve bit higher frequencies than MotionCor2.

Figure 13. Radial average of the PSD of the produced micrograph using EMPIAR 10314.

4.2.3. EMPIAR 10196

The EMPIAR 101096 dataset consists of movies of 40 frames, each with a size of 7420 × 7676
pixels and an average exposure of 1.264 e/Å2. The pixel size is 0.745 Å (super-resolution) and we
used 20 × 21 patches. CryoSPARC used 9 × 10 patches. The camera model is a K2 on a Talos Arctica.
Gain is provided along with instructions on application (must be rotated 90 degrees left and flipped
horizontally). Figure 14 shows a trace of the reported global alignment and histogram of the first
frame. Despite all efforts, we were not able to align this movie with Warp (we were getting zero shift
for all frames).

From the reported global shift, we can see that it has an unusually high drift of almost 80 pixels.
FlexAlign in default settings checks for shifts of up to 40 pixels (FlexAlign max shift 40) and therefore
reports different values as compared to both Relion MotionCor and MotionCor2. This error is
partially compensated during the local alignment phase, which is able to compensate for an additional
40-pixel shift. If we allow for higher shifts, FlexAlign (FlexAlign max shift 80) reports similar trace
to other algorithms. Details of the obtained micrographs are shown in Figure 15. Again, we can
see that MotionCor2 crops the low values. It is worth noticing the difference at the edges of the
micrograph—programs handle them differently, and particles coming from these areas should not be
used for further steps.
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Figure 14. Details of the frame from the EMPIAR 10196 (normalized) with histogram (before
normalization) (top), reported global shifts by different programs (bottom).



Electronics 2020, 9, 1040 19 of 25

Figure 15. Details of the produced micrograph using EMPIAR 10196 dataset (normalized) with
histogram (before normalization): FlexAlign (top left), FlexAlign with max shift of 80 px (top right),
cryoSPARC (center), MotionCor2 (bottom left), Relion MotionCor (bottom right).
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Figure 16 shows the radial average of the PSD for the resulting micrographs. These micrographs
contain very low frequencies, below 10 Å, and as such, they might be considered for discarding.
Again, MotionCor2’s PSD has increasing tendency, while FlexAlign and Relion MotionCor show
decreasing tendency. Similarly to dataset 10288, cryoSPARC does not seem to increase nor decrease
the frequencies.

4.2.4. Number of Patches

In the aforementioned tests, we have automatically set the number of segments/patches that are
used by FlexAlign during the local alignment estimation, based on the pixel size and the resolution
of the frames. By default, we use patches of 500 × 500 Å that we equally distribute to fully cover the
frames, i.e., per dimension we use n = dR f /Rpe patches, where R f is resolution of the frame in Å and
Rp is resolution of the patch in Å. The first and the last patch are aligned with the edges of the frame,
and the rest is equally distributed between them.

Figure 16. Radial average of the PSD of the produced micrograph using EMPIAR 10196.

Figure 17 shows a 10× magnified estimated total (local + global) shift in the grid of 200 × 100 px,
using the Covid-19 spike movie we helped to process. The movie consists of 30 frames of 5760 × 4092
pixels, and pixel size of 1.047 Å per pixel. For this resolution, we would use 12 × 8 patches. As can
be seen, even four times fewer patches can give us a general idea of the shift in different parts of the
movie. Our default value seems to capture all major deviations. Twice as many patches give us even
more detailed insight, but might result in overfitting (see the bottom of the last figure), and as such we
believe that it is not necessary during this stage of the processing pipeline. It is also worth noticing that
the entire first half of the frames move much more than the second half, while the literature generally
mentions a big drift of only the first few frames.

We have also tried a different number of patches for MotionCor2 with our phantom movie.
As shown in Figure 18, 5 × 5 patches (The default value when used via Scipion.) are not sufficient
to compensate the shift, while 9 × 9 (our default value) result in sharp edges. Neither MotionCor2
nor Relion MotionCor offers an automatic patch size setting, so we used the same values as used
by FlexAlign throughout the testing. CryoSPARC does not allow for a manual set of the number
of patches.
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Figure 17. Influence on shift estimation using a different number of patches: 3 × 2 (top), 12 × 8
(middle, default value), 24 × 16 (bottom).
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4.3. Performance

We have compared the performance of the FlexAlign, Warp, and MotionCor2 using three
machines, as described in Table 2. Relion MotionCor is CPU only and therefore skipped, as well
as cryoSPARC, which cannot be set with the same settings. As we could not install MS Windows on
the Testbeds 1 and 2, we have compared Warp and FlexAlign using different machines. These results
should be taken as illustrative only.

We have tested the most common sizes of the movies, with the default settings for each program,
with exception to the number of patches, which was set the same for both programs. The resolution
used and the name of the direct detection camera using such a resolution are shown in Table 3.
Each configuration has been run five times, and we present the average of these values.

Figure 18. Normalized micrograph of the phantom movie produced by MotionCor2, using different
number of patches: 5 × 5 (left), 7 × 7 (middle), 9 × 9 (right).

Table 2. HW used for benchmarking.

Testbed 1 Testbed 2 Testbed 3

CPU Intel(R) Core(TM) i7-8700 (12 cores, 3.20 GHz) Intel(R) Core(TM) i7-7700HQ (4 cores, 2.80 GHz)
GPU GeForce RTX 2080 GeForce GTX 1070 GeForce GTX 1060
CUDA/driver 10.1/418.39 10.1/418.67 8.0.61/436.02 (Win 10)/390.116 (Ubuntu 18.04)
SSD Samsung SSD 970 EVO 500 GB NVMe TOSHIBA 1024 GB
RAM 2 × 16 GB DDR4 @ 2.6 GHz 2 × 16 GB DDR4 @ 2.4 GHz

Table 3. Resolution and number of frames used for testing.

Size No. of Patches

Falcon 4096 × 4096 × 40 9 × 9
K2 3838 × 3710 × 40 8 × 8
K2 super (resolution) 7676 × 7420 × 40 16 × 15
K3 5760 × 4092 × 30 12 × 9
K3 super (resolution) 11,520 × 8184 × 20 24 × 17

As discussed in Section 3.4, we dynamically change the size of the patches and frames to
speed up the processing. For FlexAlign, we have therefore measured the time without autotuning,
with autotuning, and after autotuning, when the new sizes are loaded from the local storage.
Since autotuning slows down only the first execution, we also report the minimal number of movies
necessary to compensate for this extra time. Results can be found in Table 4 for Testbed 1, Table 5
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for Testbed 2, and Table 6 for Testbed 3, where we show Warp and tuned times of FlexAlign only
for brevity.

As can be seen, MotionCor2 is very well optimized for all tested sizes and GPU architectures.
FlexAlign is on average at 63% of its performance after autotuning (51% without autotuning), but both
programs are able to process the movies on-the-fly.

In terms of autotuning, it is more important for less powerful GPU, where it pays-off after as few
as 6 movies (13 on average). For high-end GPU, at least 20 movies have to be processed (on average)
to compensate for the time spent on autotuning. Since typically hundreds to thousands of movies are
processed, we use autotuning by default.

Table 4. Execution time on Testbed 1.

Falcon K2 K2 Super K3 K3 Super

MotionCor2 4.6 s 4.3 s 15.7 s 5.0 s 13.1 s
FlexAlign (tuned) 9.2 s 7.6 s 25.6 s 8.8 s 20.5 s
FlexAlign (autotuning) 49.2 s 34.4 s 71.9 s 59.3 s 72.2 s
FlexAlign (non-tuned) 10.8 s 9.1 s 31.5 s 10.7 s 22.9 s
Movies to pay-off 25 18 8 27 22

Table 5. Execution time on Testbed 2.

Falcon K2 K2 Super K3 K3 Super

MotionCor2 5.5 s 5.2 s 20.3 s 5.9 s 15.7 s
FlexAlign (tuned) 9.0 s 8.2 s 27.3 s 9.3 s 21.1 s
FlexAlign (autotuning) 47.8 s 38.7 s 73.3 s 56.2 s 65.7 s
FlexAlign (non-tuned) 11.7 s 10.4 s 35.2 s 11.5 s 26.9 s
Movies to pay-off 15 14 6 22 8

Table 6. Execution time on Testbed 3.

Falcon K2 K2 Super K3 K3 Super

Warp 11.7 s 10 s 14.2 s 13.1 s 15.6 s
FlexAlign (tuned) 11.9 s 9.9 s 35.5 s 11.3 s 27.7 s

5. Conclusions

In this paper, we have presented our new program for movie alignment, called FlexAlign.
FlexAlign is a GPU accelerated program able to correct both the global and local shifts of the movies.
Using current generations of GPUs, our program is able to process the most common sizes of the
movies on-the-fly, though it is slower than its direct competitor, MotionCor2. Compared to MotionCor2,
FlexAlign produces micrographs with higher contrast, and it seems to be more resilient to noise than
both MotionCor2 and Relion MotionCor. It also tends to preserve higher frequencies in the resulting
micrograph. Last but not least, FlexAlign stores the data necessary to track the particle movement with
each micrograph to allow for precise particle polishing, in a compact way of the B-spline coefficients.

In future releases, we plan to address several bottlenecks that we have identified in our current
implementation, and also to use the information on the local shift during the particle picking
and polishing.

FlexAlign is implemented in Xmipp [17], an open-source suite of Cryo-EM algorithms
available under GNU General Public License. As part of Xmipp, it is also freely available in the
Scipion [18] framework.

Author Contributions: Methodology: J.F. and C.Ó.S.S.; Software: D.S. and A.J.-M.; Text: D.S.; Supervision: J.M.C.
All authors have read and agreed to the published version of the manuscript.
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A B S T R A C T   

Cryo Electron Microscopy (Cryo-EM) is currently one of the main tools to reveal the structural information of 
biological specimens at high resolution. Despite the great development of the techniques involved to solve the 
biological structures with Cryo-EM in the last years, the reconstructed 3D maps can present lower resolution due 
to errors committed while processing the information acquired by the microscope. One of the main problems 
comes from the 3D alignment step, which is an error-prone part of the reconstruction workflow due to the very 
low signal-to-noise ratio (SNR) common in Cryo-EM imaging. In fact, as we will show in this work, it is not 
unusual to find a disagreement in the alignment parameters in approximately 20–40% of the processed images, 
when outputs of different alignment algorithms are compared. 

In this work, we present a novel method to align sets of single particle images in the 3D space, called 
DeepAlign. Our proposal is based on deep learning networks that have been successfully used in plenty of 
problems in image classification. Specifically, we propose to design several deep neural networks on a region-
alized basis to classify the particle images in sub-regions and, then, make a refinement of the 3D alignment 
parameters only inside that sub-region. We show that this method results in accurately aligned images, 
improving the Fourier shell correlation (FSC) resolution obtained with other state-of-the-art methods while 
decreasing computational time.   

1. Introduction 

Single Particle Analysis (SPA) for Cryo Electron Microscopy (Cryo- 
EM) has become one of the major tools to reveal the three-dimensional 
(3D) structure of macromolecules at high resolution, allowing to un-
derstand molecular interactions and being crucial to start understanding 
the function of biological ensembles (Nogales, 2016). When high reso-
lution is achieved in the reconstructed 3D maps, it is possible to recover 
a great amount of biological information. However, it is common to find 
3D maps or part of them with lower resolutions, which is due to errors in 
the reconstruction procedure (Henderson, 1992), among other 
problems. 

One of the most complicated steps in a common workflow to obtain a 
3D reconstructed map is the highly error-prone 3D alignment step. The 
goal of the 3D alignment is to find parameters describing orientation and 
position in a 3D sphere for every particle image. These parameters are: 

the in-plane rotation and the shift translations in both axis of the 2D 
projection, and then two angles to orient the projection in the 3D sphere 
(commonly named rotation and tilt). These five parameters completely 
define the orientation of every particle image in the 3D space. 

The 3D alignment step is affected by the very low Signal-to-Noise 
Ratio (SNR) that reduces the accuracy in the obtained alignment pa-
rameters, which results in artifacts in the reconstructed map. Moreover, 
as this step is an optimization problem in a high-dimensional space, 
common statistical approaches can easily get stuck in local minima. As 
we will demonstrate later, it is common to find a disagreement of more 
than 10◦ in the alignment parameters obtained with different alignment 
algorithms in approximately 20–40% of the particle images. 

1.1. State-of-the-art 

We can find several ways to tackle the 3D alignment in the literature, 
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(e.g. Penczek et al., 1992; Penczek et al., 1994; Scheres et al., 2005; 
Scheres et al., 2007; Scheres, 2012; Elmlund et al., 2013; Vargas et al., 
2014; Sorzano et al., 2015; Punjani et al., 2017; Sorzano et al., 2018; 
Sorzano et al., 2018). The standard approach to the 3D alignment 
problem was the so-called “Projection Matching” (Penczek et al., 1992; 
Penczek et al., 1994). Then, statistical tools as Maximum Likelihood 
(ML), Maximum a posteriori (MAP), and Bayesian prior methods started to 
be a relevant way to face the alignment problem, following in the footsteps of 
Sigworth (1998) where ML was firstly used for Cryo-EM. Scheres et al. 
(2005), Scheres et al. (2007) and Scheres (2012) presented alignment 
procedures based on ML and Bayesian reconstruction, in which the particle 
images can take all projection directions with different weights, which were 
calculated from a Bayesian prior on the distribution of noise and signal co-
efficients. This method solved the optimization problem in a greedy way, 
starting from an initial estimation of the 3D map to be reconstructed. In 
Elmlund et al. (2013) a similar optimisation probabilistic approach was 
proposed but in a non-greedy way, in which an image could be assigned to a 
subset of so-called feasible directions, using different weights calculated from 
a heuristically determined function, which could help to avoid local minima. 
Vargas et al. (2014) described also a statistical approach focused on trying 
to avoid local minima by reducing the search space using image subsets, 
randomly assigning orientations, and checking which of the assignments was 
more successful. Sorzano et al. (2015) considered the alignment problem as 
a weighted least squares optimisation based on the concept of statistical sig-
nificance, rather than a closed form optimisation of a given functional under 
a simplified set of assumptions. Novel ML implementations based on branch- 
and-bound technique, stochastic gradient descent, and GPU processing have 
gained much attention, significantly reducing the processing time (Punjani 
et al., 2017). Sorzano et al. (2018) proposed to use the statistical signifi-
cance as weight, instead of using the likelihood, and recommended an angular 
assignment in which each image receives a single angular orientation, unlike 
some previous works. Other works, (e. g., Sorzano et al., 2018), took the 
approach of generating many different volumes (preferably with different 
algorithms) and ranking the volumes according to their fit to the experimental 
data. 

Despite the availability of all these methods, current practice shows 
that, due to the previously mentioned problems, there are situations in 
which the approaches above fail to produce a satisfactory result and 
more robust techniques are still needed. 

Our method presents a new framework based on deep learning to 
manage the 3D alignment problem. Deep learning is a machine learning 
technique, derived from neural networks, able to learn from multiple 
levels of feature representation. In the last years, it has become a revo-
lutionary tool in computer vision, e.g. image classification, object 
recognition, and tracking. In Cryo-EM, deep learning is being used 
already for particle picking, or annotation of different parts in the 
reconstructed structure of proteins, (e.g. Wang et al., 2016; Li et al., 
2016; Zhu et al., 2017; Chen et al., 2017; Sanchez-Garcia et al., 2018; 
Wagner et al., 2018; Zhang et al., 2019). There are some attempts to use 
deep learning in the 3D reconstruction step, (e. g. Gupta et al., 2020; 
Zhong et al., 2019; Zhong et al., 2020. Gupta et al., 2020) used a 
generative adversarial network to learn the 3D density map whose 
projections are the most consistent with the given input particle set. 
However, this approach was not able to produce a sufficiently accurate 
3D map to resolve the biological structure. Zhong et al. (2019) and 
Zhong et al. (2020) presented one of the first successful approach for 
Cryo-EM reconstruction based on deep learning, specifically a varia-
tional autoencoder is used to find out discrete states as well as contin-
uous conformational changes. Thus, this method was able to manage 3D 
heterogeneity; however, the particle orientation needed to be previously 
determined by other technique. Therefore, to the best of our knowledge, 
our proposal is one of the first methods based on deep learning dealing 
with the 3D alignment process. 

1.2. Introduction to DeepAlign 

In this work, we present DeepAlign, a new proposal built on Con-
volutional Neural Networks (CNNs), that have revolutionized the field of 
neural networks for image processing, as they have boosted the per-
formance in a large variety of tasks. The CNNs are designed with the first 
part of convolutional layers devoted to extracting several levels of fea-
tures based on a non-linear filtering process. The second part of layers is 
dedicated to the classification itself, generating a label for the input 
image knowing the features previously calculated in the convolutional 
part of the network (more details will be given in the following section). 
Unlike common machine learning approaches, which typically use 
handcrafted filters to extract the features, CNNs have the ability to learn 
these filters on its own by means of the feature extraction layers. 

Moreover, our proposal is built on a regionalized basis. Creating only 
one network to predict the location of the particle images in the whole 
3D sphere can result in a very high-complexity network due to the dif-
ficulty of this task. Instead, we propose to divide the 3D projection 
sphere, which means the angular space of orientations in 3D, into non- 
overlapping regions and create a simpler deep neural network in each 
region to detect if the experimental image comes or not from that region, 
which can be done with high accuracy. Following this reasoning, we 
obtain so many deep neural networks as regions and, for every particle 
image, we calculate the probability of that image coming from each 
region, and select that with the highest probability. The final alignment 
parameters (rotation, tilt, and in-plane angle and shifts) are finally ob-
tained running a simplified alignment procedure based on correlation 
only in the region of interest. 

Additionally, taking into account the high disagreement that can be 
found in the alignment parameters obtained with different algorithms, 
we also propose a consensus tool. The idea is to select only those particle 
images in which the angular differences between alignment methods are 
low, so it is more likely that these images are accurately assigned. 
Building the 3D reconstructed map taking into account only those im-
ages, could avoid the appearance of artifacts and improve the obtained 
resolution. 

2. Methods 

2.1. Regionalized deep learning approach 

Our deep learning proposal relies on CNNs, which have successfully 
proved their usefulness in a variety of problems related to image 
processing. 

In a CNN, the convolutional layers are able to successfully capture 
the spatial dependencies in an image through the application of 
consecutive filters of different sizes, going from basic features, like edges 
or corners, to detailed features more specific to the problem to be solved. 
The filter kernels are the values to be learned in the training process. A 
convolution operation will be applied between image and filters to 
obtain the features present in the image. In other words, the CNN 
network can be trained to understand the characteristics of the image 
better than other approaches. 

The fully connected layers in the second part of the network is a way 
of learning a non-linear function in the feature space, weighting the 
features obtained with the previous convolutional part. The output of 
these layers are real values that will be converted into a label (or 
probability). In this way, the network classifies the input image into that 
class with the highest probability. 

Specifically, the design of our networks is as follows:  

• The size of the input layer is that of the input particle images. This 
can be downsampled to avoid memory overload and to alleviate the 
computational burden, while we try to preserve the main details of 
the images that are decisive to properly train the networks. 
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• Three convolutional layers are applied with kernel sizes adapted to 
the input (1/3, 1/10, and 1/20 of the input size, respectively). The 
number of filters is 16 for the first layer, 32 for the second, and 64 for 
the last one.  

• In between every convolutional layer, a normalization and max- 
pooling with size 2 × 2 (which will halve the input in both spatial 
dimensions) are carried out. 

• A dropout layer is included to prevent overfitting after the con-
volutional part. This layer randomly drops a fraction of input units at 

Fig. 3. A schematic representation of the training process. Every particle has an angular assignment and can be assigned to a specific region. The subset of particles 
assigned to every region will be used for training that network model. 

Fig. 2. (a) Top view of region centers shown in dots, example with regions separated 30◦. (b) Illustrative example of the labeling for a particle: the distance between 
the particle (red point) and all the region centers (for clearness just six regions are drawn, A, B, C, D, E and F) is calculated, the minimum distance give the label for 
the particle (B in this example). 

Fig. 1. Network design. For an input image of 
size 128 × 128, the first convolutional layer 
(Conv 1) is created with 16 filters of size 42 ×
42, then max pooling of size 2 ×2 is applied (MP 
1), the second convolutional layer (Conv 2) has 
32 filters of size 12 × 12, another max pooling 
layer follows (MP 2), and the last convolutional 
layer (Conv 3) has 64 filters of 6 ×6 followed by 
the last max-pooling (MP 3). The first fully 
connected layer (FC 1) has a size of 256 neurons 
and the output layer (FC 2) with one neuron will 
give us the classification probability.   
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each update during training time. In our design, that fraction is fixed 
to 0.2.  

• We used two fully connected layers, the first with 256 neurons and 
the second with just one neuron (the output layer with only one 
neuron will give us the output probability). The first fully connected 
layer uses a Rectified Linear Unit (ReLU) activation function, whilst 
the second layer uses a sigmoid.  

• The optimizer for the training process is Kingma et al. (2014) with a 
learning rate of 0.002. 

A graphical representation of the network design can be found in Fig. 1. 
CNNs identical to the one explained above, are set up to work on a 

regionalized basis. The idea of working by regions is the following: we 
need to find for every particle image the set of alignment parameters to 
place that image in the 3D sphere. However, to predict with only one 
network the whole set of parameters could be a very difficult task, 
considering the low SNR and the high probability of finding a local 
minimum in the solution space. For that reason, we decided to simplify 
the problem and divide the 3D sphere into non-overlapping smaller 
regions (an example is shown in Fig. 2(b)). For every region, a unique 
CNN is trained to give the probability of a particle image belonging to 
that region (but not the specific projection direction corresponding to 
that particle image), which is a simpler problem that can be managed 
with the low complexity CNN described above. The selected region for a 
particle image is the one with the highest output probability. The final 
alignment parameters are obtained running an alignment method based 
on correlation only in the selected region, which reduces the complexity 
burden. 

2.2. CNNs training 

To train the CNNs we need a set of particle images with the associ-
ated label of the region where the image comes from. To this end, a small 
random subset (approximately 10% of the input size) of the input par-
ticle set must be aligned with another method, (e.g., Sorzano et al., 
2018; Scheres, 2012), or (Punjani et al., 2017). Then, knowing the 
alignment parameters and using the distance to the center of regions 
(Fig. 2), the image label will be the region whose center is closer to the 
image. To train a CNN, we take the subset of images assigned to that 
region as positive labels and all the remaining ones as negative labels. 
This results in a very unbalanced number of images for every label, 
which can be problematic in the training process. Therefore, we build 
balanced sets by randomly sampling these two sets to a final equal size. 

Moreover, we use a data augmentation procedure to increase the 
power of the network to recognize particles in different in-plane 

orientations. During the data augmentation we take a training image 
(particle image) and we repeat it several times with random rotations 
and shifts in the in-plane parameters. In Fig. 3 a schematic representa-
tion of the training process is shown. 

Regarding the accuracy of the training process, although CNNs are 
known for being robust to mislabelling and we can expect good behavior 
from them (Rolnick et al., 2018), it is key to check how the error rate 
evolves during the training process. To obtain a low error rate on the 
validation set is the way to know if the training is correct. As we will 
show in the Results section, to achieve a 3D reconstruction in the mid- 
range of resolutions with, approximately, a 10% of the particle im-
ages, was enough in our test cases to get a proper training set, even in 
challenging cases with very noisy images. On the other hand, if higher 
reliability in the angular assignment of the training set is required, a 
higher percentage of images can be used to train, or a consensus before 
the training could be applied. This means, to use two different algo-
rithms to assign the angles for the training particles, selecting then the 
subset with coincident angles, which could assure us to have very ac-
curate assignments. Also, Sorzano et al. (2018) can be used to build a 
reconstruction in a particular range of resolutions, as this method has an 
option to select the target resolution and work in that range. 

2.3. Predicting image label and obtaining final alignment parameters 

Fig. 4 shows a summary of the prediction and final alignment steps. 
Once the CNNs for every 3D region are ready, prediction can be carried 
out for the whole input set of particle images. Every image is presented 
to all CNNs and the output probabilities are gathered. The region with 
the highest output probability is selected for each image. In this way, the 
algorithm locates for each image a narrow 3D region from which it likely 
comes. To find out the alignment parameters, we run an alignment 
method based on correlation; specifically, this method is a GPU version 
of the significant assignment of Xmipp, (Sorzano et al., 2015; Sorzano 
et al., 2018). This alignment is carried out in every region of interest and 
with the particle subset assigned to it. This greatly reduces the search 
space as the number of comparisons between input images and repro-
jections of the reference volume, which is the most expensive part of any 
3D angular assignment algorithm, is divided by the number of 3D 
regions. 

In some cases, several of the highest CNN output probabilities could 
have similar values, which could point out to regions where it is difficult 
to distinguish between them. To manage this situation, we give the 
option to select the number of regions to be considered per image. That 
is, several regions (those with the highest output probabilities) can be 
selected for one particle image and, then, the alignment algorithm will 

Fig. 4. A schematic representation of the prediction process.  
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be in charge of selecting the best 3D location, that could be inside any of 
the available regions. This is also a way to minimize classification errors 
by the deep learning approach, even the errors coming from the mis-
labelling in the training process (these labels come from the alignment 
parameters obtained by another method that will have some error per-
centage) will be reduced thanks to the possibility of using several re-
gions to align. Although there is a tradeoff between classification error 
rate and complexity burden to take into account. 

2.4. Complexity optimization 

The training and final alignment steps are responsible for the main 
complexity burden in our proposal. All the deep learning procedures 
included in this method are developed using Keras library (Chollet et al., 
2015) and exploit its GPU implementation. 

The training step depends on the number of regions considered (as it 
is equal to the number of CNNs) that, on its turn, depends on the region 
size and the symmetry, as only the non-symmetric part of the 3D space is 
considered. Moreover, this step is parallelized at GPU level, as training 
of every CNN is completely independent of each other. So, when several 
GPUs are available, these tasks can be divided among them. We must 
highlight that the complexity of the training per region does not depend 
on the number of input particle images, as we use data augmentation to 
keep the same training set size. The whole training step has a complexity 
that depends on the parameters of the training, e.g. number of epochs 
and batch size, that can be selected by the user, and the size of the 
training images. 

The prediction is carried out for the whole set of input particles and 
considering all the available regions, so its runtime depends on both. 
Anyway, this time is clearly lower than the one required for the training 
step. Thus, for simplicity, we decided not to parallelize it at GPU level. 

The final alignment based on correlation is also implemented in GPU 
and, as in the training step, the alignment for every region is indepen-
dent of the other ones, so it can be also additionally parallelized at GPU 
level. Thus, the alignment in every region can be executed in different 
GPUs. 

The method presented in this paper was implemented in Xmipp (de 
la Rosa-Trevín et al., 2013) and included in Scipion (de la Rosa-Trevín 
et al., 2016). 

2.5. Consensus tool 

A comparison in angular assignments between several methods is 
presented in Fig. 5. Specifically, we plot the angular differences, from 
lowest to highest, between the angles obtained for every particle image 
with Xmipp Highres (Sorzano et al., 2018) and Relion (Scheres, 2012) 
for structure T20S proteasome in part (a) of the figure, and between 

(Scheres, 2012) and DeepAlign for structure Plasmodium falciparum 80S 
ribosome in part (b). These results show that approximately 70–80% of 
images have angular assignments that differ in less than 10◦. Thus, there 
is a significant number of images in which the angular differences highly 
increases up to very high values, indicating around 20–30% of images 
cannot be accurately aligned (however, we have seen this value to go up 
to 40–50% for some datasets). Obviously, if these significant disagree-
ments are translated in wrongly assigned images, the obtained resolu-
tion for the 3D reconstructed map could be damaged. 

The consensus tool presented in this work aims to solve the previous 
problem. If we have several alignment results for every particle image, 
we can check if the different methods give similar solutions or not. In the 
case of low angular differences, there is no evidence that the particles 
come from different directions. Otherwise, when the angular differences 
are large, the probability of a wrong assignment could be significant. 
The consensus tool is in charge of discarding images for which the 
angular difference is above some user-defined threshold. Images for 
which two or more angular assignment algorithms agree in their 
orientation, are used to refine the 3D map. This procedure could 
improve the obtained resolution as we are discarding particle images 
that do not contain enough information to be properly located. 

A possible caveat of any consensus tool comes from the comparison 
using similar techniques, as they can discover similar local minimum. 
Since most of the available techniques to carry out the alignment process 
rely on ML approaches, we can expect a similar behavior among them in 
terms of accuracy. Therefore, most of the subset with the wrongly 
assigned images could have similar statistical characteristics, and the 
same holds true for the subset of well assigned images. DeepAlign is 
based on a completely different approach. Its hits and miss subset will 
have a different statistical basis, giving extra information to select the 
particle image subset that will likely be correctly aligned. 

3. Results 

In this section, we present the results obtained with DeepAlign in 
comparison with other methods in the state-of-the-art, specifically 
Xmipp Highres (Scheres, 2012), Relion (Sorzano et al., 2018) (v3.0), and 
CryoSparc (Punjani et al., 2017) (v2.14). The structures Plasmodium 
falciparum 80S ribosome (with codes 10028 in EMPIAR and 2660 in 
EMDB databases), T20S proteasome (with codes 10025 in EMPIAR and 
6287 in EMDB), and SARS-CoV-2 Spike (Melero et al., in press) have 
been used. The GPUs used were GeForce RTX 2080 Ti with 11 GB of 
memory, and the CPUs were Intel(R) Xeon(R) Silver 4114 at 2.20 GHz. 

3.1. Plasmodium falciparum 80S ribosome 

The tests with this structure were carried out with a distance of 30◦

Fig. 5. Angular differences sorted from lower to higher. (a) Xmipp Highres vs Relion for proteasome. (b) Relion vs DeepAlign for ribosome.  
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between region centers. As this structure presents no symmetry, the total 
number of regions considered was 42. The number of experimental 
images was 85,012 with a size of 300 × 300 pixels and a pixel size of 
1.34 Å/pixel. The original achieved resolution for this structure was 3.2 
Å (Wong et al., 2014). A target resolution of 10 Å was used to rescale the 
input particle images and volume, thus the image size was reduced to 
120 × 120 pixels. From this input set, we randomly took 5,000 images 
for training that were aligned with Relion and labeled according to the 
region from which they come. Data augmentation procedure generates a 
total of 10,000 images per region, applying random in-plane rotations 
and shifts to every image. Thus, in the training of a CNN we have 10,000 
positive labeled images and 410,000 negative examples, which is a very 
unbalanced set. To solve this, in every batch generated during the 
training, we maintain the same proportion of positive and negative ex-
amples. Additionally, we selected the two best regions per image, to find 
the optimal location inside them. 

The number of epochs for training the CNNs was 10, and the batch 
size was 128. The training process of a region started with a loss 
(measured with mean absolute error) near 0.9 and accuracy of 0.5 
(corresponding to random predictions), in the first epoch a loss of 0.2 
and accuracy of 0.8 were already achieved, and the training process was 
finished with a loss of 0.1 and accuracy of 0.9 on the validation set. So, 
we were able to generate a proper training set with which the network 
can learn the alignment parameters quite fast. 

The training time (without taking into account the required time by 
Relion to align the 5,000 images) per region took 20 min on average, the 
prediction step 40 min in total, and the alignment inside the two selected 
regions 1 min per region. Running the process in two GPUs, the whole 
algorithm required approximately 9 h (additional steps, such as data 
read/write and preprocessing took additional 30 min). After running a 
local refinement (using Xmipp Highres) we got a resolution of 3.8 Å. It 
must be taken into account that we started with the information of 5,000 
aligned particles as input to our method that would give rise to a very 
rough 3D map estimation of around 10 Å. Relion running also in two 
GPUs took 20 h to converge and obtained a resolution of 4.0 Å. If we run 
one more local refinement step of the DeepAlign results, we reached a 
processing time of also 20 h, the same as Relion, but the obtained res-
olution was 3.5 Å. The consensus tool was tested in this example 
comparing the alignment angles obtained with our proposal and Relion 
and selecting the particle subset with a difference between them in less 
than 5◦. This, reduced the number of particle images in approximately 
27,000 images (from 85,012 to 57,886) which is over 30%. Then, a local 
refinement using only this subset was carried out. We obtained a reso-
lution of 2.9 Å compared to the previous 3.5 Å. This result indicates that 

a lower number of images with an accurate alignment leads to better 
reconstruction than using a bigger set of particles containing misaligned 
or noisy images. The Fourier shell correlation (FSC) curves are presented 
in Fig. 6.1 

Fig. 7. Local resolution of the reconstructed 3D maps for ribosome. (a) Relion, 
(b) DeepAlign, and (c) DeepAlign consensus. 

Fig. 6. FSC curves obtained for ribosome. Relion 4.0 Å, DeepAlign 3.5 Å, and 
DeepAlign consensus 2.9 Å are compared. 

1 To measure the FSC after using Xmipp Highres or a local refinement based 
on this method, we have disabled the post-processing options of this method, 
thus we obtain FSC curves comparable to the other approaches. 
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The local resolution was also measured using Monores (Vilas et al., 
2018) and comparing the three considered approaches, obtaining the 
results presented in Fig. 7. This analysis confirms the trend of the FSC 
curves, our proposals were able to obtain better resolution in most of the 
voxels of the structure, specially improving in the inner part of the 
structure from the obtained 3.0 Å with Relion to 2.75 Å with DeepAlign 
and consensus. Some selected slices taken from the three reconstructed 
3D maps are presented in Fig. 8. 

Finally, we represent the 3D structures obtained with DeepAlign 
consensus tool in comparison with Relion in Fig. 9. (a) and (b) represent 
the whole structure where some densities started to appear in the outer 
areas of the structure that in the map obtained with Relion are lost (red 
circles in Fig. 9(b)). Parts (c) and (d) of the figure show a zoomed area on 
a helix with the deposited atomic model (PDBPDB3j7j79) fitted in it. As 
it can be seen, after the post-processing and fitting steps similar results 
are achieved with both methods. We used Refmac (Murshudov et al., 

Fig. 8. Central slices of the reconstructed 3D map for ribosome. (a) and (b) Z-axis and Y-axis with DeepAlign (3.5 Å). (c) and (d) Z-axis and Y-axis with Relion 
autorefine (4.0 Å). (e) and (f) Z-axis and Y-axis with DeepAlign consensus tool (2.9 Å). 
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2011) to refine the fitting, obtaining an average Fourier shell correlation 
of 0.45 with DeepAlign and 0.43 with Relion (note that the model only 
corresponds to one sub-unit), confirming that both methods are able to 
perform similarly. 

3.2. T20S proteasome 

This structure presents a dihedral symmetry (D7) with a size of 400 
× 400 pixels and a pixel size of 0.66 Å/pixel. The original achieved 
resolution was 2.8 Å (Campbell et al., 2015). The distance between re-
gion centers was 20◦ which generates 92 regions to cover the whole 3D 
space but only 9 were actually assigned to the asymmetric part of the 
molecule. The algorithm was configured to select the best two regions to 
find out the location for each particle. We had 26,230 experimental 
particles as input, from which only 3,000 (randomly selected) were used 
to carry out the training process. These 3,000 images were aligned and 
afterwards labeled with Xmipp Highres. With data augmentation we 
were able to generate 10,000 positive examples and 80,000 negative 
examples to train every network. These sets were balanced during the 
generation of the batches for the training, as in the previous example. 
The target resolution was 4 Å, so the image size was reduced to 197 ×
197. All the remaining steps and parameters to make the training stayed 
as in the previous example. 

On average, the training process of a region started with a loss near 
0.9 and accuracy of 0.5 (corresponding to random predictions), in the 
first epoch a loss of 0.2 and 0.85 of accuracy were achieved and, the 
training process was finished with a loss of 0.02 and an accuracy of 0.99 
on the validation set. 

In this example, the new alignment parameters obtained with 
DeepAlign and locally optimized lead to a reconstructed 3D map with a 
resolution of 2.9 Å, compared to the 3.3 Å obtained with Xmipp Highres. 

The consensus tool was run with the subset of images for which the 
angular difference was lower than 5◦. This, reduced the input set of 
particle images from 26,230 to 19,086, a 28% of reduction. After a local 
refinement, the achieved resolution was 2.7 Å. The local resolution 
analysis with Monores also showed that Xmipp Highres and our pro-
posals were able to obtain a high resolution reconstruction in most of the 
areas of the structure, but DeepAlign and the consensus tool got some 
improvements. These results prove that our method was able to find a 
slightly better solution. Figs. 10–12 show the obtained FSCs, the local 
resolution, and some slices taken from the reconstructed 3D maps. 

Xmipp Highres needed more than 2 days using 24 cores to make the 
whole alignment process. The proposed method took 30 min, on 
average, to train every region (without taking into account the time to 
firstly align 3,000 images with Xmipp Highres). Thus, using 5 GPUs 
training in parallel, DeepAlign was able to complete the training process 
in just 1 h. The prediction time took 10 min. Finally, the step to obtain 
the final alignment parameters took 4 min per region, on average, so a 
total of barely 10 min in 5 GPUs aligning in parallel. The entire process 
was done in 1 h and a half using 5 GPUs. 

The 3D maps obtained with Xmipp Highres and with DeepAlign 
consensus tool can be seen in Fig. 13. The whole 3D structures for both 
methods are presented in (a) and (b). Sharper details showed up in the 
DeepAlign reconstruction and some new densities appeared in the outer 
central part of the macromolecule (highlighted with red circles). A 
zoomed area on a pair of helices is shown in Fig. 13(c,d), showing 
slightly sharper details in the areas expected to correspond with side 
chains. In this example, there is no atomic model included in the 
deposited data, so it is not included in the analysis. 

3.3. SARS-CoV-2 Spike 

In this test case, our goal is to check if our proposal is able to achieve 
results comparable to other state-of-the-art approaches with a more 
challenging data set. We use the SARS-CoV-2 Spike data set (Melero 
et al., in press) whose characteristics are: size of 400 × 400 pixels, pixel 
size of 1.05 Å/pixel, and no symmetry. We considered a distance be-
tween regions of 30◦, which results in 42 regions, and a target resolution 
of 4 Å to rescale the input particle images and volume to a size of 314 ×
314 pixels. The data set consisted of 36,558 images, from which we 
randomly took 5,000 for the training. The alignment of the training set 
was carried out with CryoSparc. As in the previous test, data augmen-
tation was used to generate a more complete training set with 10,000 
images per region, and balanced sets were generated during the creation 
batches for the training. The remaining parameters were kept as in the 

Fig. 9. 3D reconstructed maps for ribosome. (a) and (b) Whole 3D maps 
reconstructed by Relion and DeepAlign, respectively. (c) and (d) Zoom in a 
specific helix for Relion and DeepAlign reconstructions, respectively, with the 
atomic model fitted. 

Fig. 10. FSC curves obtained for proteasome. Xmipp Highres 3.3 Å, DeepAlign 
2.9 Å, and DeepAlign consensus 2.7 Å are compared. 
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Fig. 11. Local resolution of the reconstructed 3D maps for proteasome. (a) Xmipp HighRes, (b) DeepAlign, and (c) DeepAlign consensus.  
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previous examples. 
During the training, the average loss obtained was 0.06 with an ac-

curacy of 0.94. However, there were three regions in which the loss was 
around 0.2 and the accuracy was not better than 0.8. As only three re-
gions presented this behavior, we decide to allow 5 regions per image. In 
this way, we tried to solve the slight uncertainty introduced because of 
those three regions with worse accuracy. 

We used 7 GPUs to run DeepAlign with these data. The time required 
to train one region was, on average, 9 h, so to train the 42 regions we 
needed 54 h. The prediction time was 3 h, and the final alignment 
required 20 min, on average, per region, so a total of 2 h were dedicated 
to this step. The entire process, taking into account some additional 
steps, took approximately 2 days and a half. These times are higher than 
the ones shown in the previous examples, but here we are working with 

Fig. 12. Central slices of the reconstructed 3D map for proteasome. (a) and (b) Z-axis and Y-axis with DeepAlign (2.9 Å). (c) and (d) Z-axis and Y-axis with Xmipp 
Highres (3.3 Å). (e) and (f) Z-axis and Y-axis with DeepAlign consensus tool (2.7 Å). 
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bigger and noisy images which required more time to train. 
Here, we want to compare the best results obtained after a whole 

processing using CryoSparc with the possibility of using that informa-
tion in DeepAlign to make one extra step of alignment and check if we 
are able to improve the previous solution. 

The obtained results are shown in Figs. 14–17. Fig. 14 shows the FSC 
curves obtained for the whole processing with CryoSparc, one more step 

Fig. 15. Local resolution of the reconstructed 3D maps for SARS-CoV-2 Spike. 
(a) CryoSparc, (b) DeepAlign, and (c) DeepAlign consensus. 

Fig. 13. 3D reconstructed maps for proteasome. (a) and (b) Whole 3D maps 
reconstructed by Xmipp Highres and DeepAlign, respectively. (c) and (d) Zoom 
in an area with two representative helices for Xmipp Highres and DeepAlign, 
respectively. 

Fig. 14. FSC curves obtained for SARS-CoV-2 Spike. CryoSparc 3.1 Å, Deep-
Align 2.7 Å, and DeepAlign consensus 2.4 Å are compared. 
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of DeepAlign, and the consensus tool considering both methods (using 
the subset of images in which the disagreement was less than 10◦). The 
obtained resolution values were 3.1 Å for CryoSparc, 2.7 Å for Deep-
Align, and 2.4 Å for DeepAlign consensus tool. The FSC curves were very 
similar, but it can be highlighted that DeepAlign was able to obtain a 
flatter curve in the range from 6 to 4 Å, and the fall of the curves in the 
higher frequencies is softer compared to the one obtained with Cry-
oSparc. The local resolution analysis obtained with Monores is presented 
in Fig. 15 and it shows a very similar behaviour between all the 
compared methods, but the best resolution achieved with DeepAlign for 
some voxels was lower (2.25 Å), than that of CryoSparc (3.25 Å). 

Fig. 16 and Fig. 17 show how the reconstructed map can benefit from 
using DeepAlign. 

Fig. 16 shows some particular slices of the 3D map. We can see that 
the main parts of the structure are clearly represented in the three maps. 
However, the halo surrounded the density is reduced with DeepAlign 
and even more with the consensus. This halo is mainly due to particles 
with wrong angular assignments, as several particles showing not 
concordant parts of the macromolecule could contribute to the same 

projection direction. This is an advantage of using DeepAlign, which was 
able to obtain better alignment. This is even more clear in the consensus 
results, as with this tool we selected only the subset of particle images 
where DeepAling and CryoSparc agreed in the angular assignment, 
which reduced the number of images from 36,558 to 17,207 (more than 
a 50% of reduction). 

Finally, Fig. 17 shows a 3D representation of the reconstructed maps. 
(a) and (b) parts show the whole 3D map for CryoSparc and DeepAlign 
consensus, respectively. Some areas are slightly better defined and 
sharper in the reconstruction obtained with DeepAlign, which can be 
seen in the areas surrounded by a red circle. Part (c) and (d) of the figure 
show a zoomed area where several helices are located showing similar 
level of detail, DeepAlign was able to improve in the upper part of the 
helices but generating more noise in the lower part. 

4. Conclusions 

In this work, we have presented a new method to carry out the 3D 
alignment of particle images to obtain a 3D reconstructed map. This 
work is one of the first in the field using deep learning as baseline 
technique to obtain the alignment parameters for every image. Specif-
ically, the whole 3D space is divided into small non-overlapping regions. 
In every one of them, a classifier based on CNNs is used to decide if an 
image comes from that region or not. Within the region, the final 
alignment parameters are obtained using an alignment method based on 
correlation. The CNNs have a light complexity, enough to be able to 
learn the classification problem, but keeping it as low as possible to 

Fig. 16. Central slices of the reconstructed 3D map for SARS-CoV-2 Spike. (a) 
and (b) Z-axis and Y-axis with DeepAlign (2.7 Å). (c) and (d) Z-axis and Y-axis 
with CryoSparc (3.1 Å). (e) and (f) Z-axis and Y-axis with DeepAlign consensus 
tool (2.4 Å). 

Fig. 17. 3D reconstructed maps for SARS-CoV-2 Spike. (a) and (b) Whole 3D 
maps reconstructed by CryoSparc and DeepAlign, respectively. (c) and (d) 
Zoom in a specific area showing several helices for CryoSparc and DeepAlign, 
respectively. 
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maintain low the total computational burden of the method. Moreover, 
this method is optimized to run on several GPUs, alleviating greatly the 
training time, which is the most consuming time step in the whole 
process. 

The method was tested with three structures and compared with 
several 3D alignment approaches in the literature. The experiments have 
shown that this proposal is able to obtain competitive results compared 
to that in the state-of-the-art and generates 3D reconstructed maps with 
well-defined features and resolutions. In addition, the computational 
time to use our method is quite reasonable, as the training time is 
bounded and the workload can be distributed between multiple GPUs. 

It is noteworthy that the deep learning basis of DeepAlign is different 
from the ones in other state-of-the-art approaches based on maximizing 
probability functions. We can expect that methods with different basis 
will give rise to different 3D reconstructions (different local minima in 
the solution space). DeepAlign, which is based on CNNs that have 
proven to be very robust in image processing tasks, could give us better 
angular assignments, as the results presented in this work seem to point 
out. 

We have also demonstrated the usefulness of the consensus tool, 
which selects only the particle images that were aligned with similar 
parameters by several alignment procedures. Our experiments show that 
this tool can be very useful to further improve the reconstructed 3D 
maps. The consensus tool is taking advantage of using alignment pa-
rameters obtained with methods with different basis, and this can be 
done thanks to the development of DeepAlign. 

As future work, we plan to manage 3D heterogeneity following the 
deep learning approach established in this work. Thus, we expect to be 
able to generate several 3D maps representing the different conforma-
tions present in the sample, deciding not only the alignment of the 
particle images but also the 3D class. 
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Vilas, J.L., Gómez-Blanco, J., Conesa, P., Melero, R., Miguel de la Rosa-Trevín, J., 
Otón, J., Cuenca, J., Marabini, R., Carazo, J.M., Vargas, J., Sorzano, C.O.S., 2018. 
Monores: Automatic and accurate estimation of local resolution for electron 
microscopy maps. Structure 26 (2), 337–344.e4. 

Wagner, T., Merino, F., Stabrin, M., Moriya, T., Gatsogiannis, C., Raunser, S., 2018. 
Sphire-cryolo: A fast and well-centering automated particle picker for cryo-em, 
bioRxiv. 356584. 

Wang, F., Gong, H., Liu, G., Li, M., Yan, C., Xia, T., Li, X., Zeng, J., 2016. DeepPicker: A 
deep learning approach for fully automated particle picking in cryo-EM. J. Struct. 
Biol. 195 (3), 325–336. 

Wong, Wilson and Bai, Xiao-chen and Brown, Alan and Fernandez, Israel S and Hanssen, 
Eric and Condron, Melanie and Tan, Yan Hong and Baum, Jake and Scheres, Sjors 
HW, Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the 
anti-protozoan drug emetine, eLife 3 (2014) e03080. 

Zhang, J., Wang, Z., Chen, Y., Han, R., Liu, Z., Sun, F., Zhang, F., 2019. PIXER: an 
automated particle-selection method based on segmentation using a deep neural 
network. BMC Bioinformatics 20, 41. 
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A GPU acceleration of 3-D Fourier
reconstruction in cryo-EM

David Střelák1,2, Carlos Óscar S Sorzano2,
José Marı́a Carazo2 and Jiřı́ Filipovič1

Abstract
Cryo-electron microscopy is a popular method for macromolecules structure determination. Reconstruction of a 3-D
volume from raw data obtained from a microscope is highly computationally demanding. Thus, acceleration of the
reconstruction has a great practical value. In this article, we introduce a novel graphics processing unit (GPU)-friendly
algorithm for direct Fourier reconstruction, one of the main computational bottlenecks in the 3-D volume reconstruction
pipeline for some experimental cases (particularly those with a large number of images and a high internal symmetry).
Contrary to the state of the art, our algorithm uses a gather memory pattern, improving cache locality and removing race
conditions in parallel writing into the 3-D volume. We also introduce a finely tuned CUDA implementation of our
algorithm, using auto-tuning to search for a combination of optimization parameters maximizing performance on a given
GPU architecture. Our CUDA implementation is integrated in widely used software Xmipp, version 3.19, reaching 11.4�
speedup compared to the original parallel CPU implementation using GPU with comparable power consumption.
Moreover, we have reached 31.7� speedup using four GPUs and 2.14�–5.96� speedup compared to optimized GPU
implementation based on a scatter memory pattern.

Keywords
Cryo-EM, GPU, CUDA, 3-D Fourier reconstruction, auto-tuning

1. Introduction

Cryo-electron microscopy (cryo-EM) is a popular method

for studying a structure of biological specimens, such as

proteins or larger particles, for example, viruses. In contrast

to X-ray crystallography, the specimen is studied in vitr-

eous ice at cryogenic temperatures, which allows it to

preserve the same conformation as in native environment.

Compared to nuclear magnetic resonance, cryo-EM

allows to study larger structures, making it a superior

method in many use cases. In recent years, rapid develop-

ment in cryo-EM allowed us to study specimens at near-

atomic resolution (Henderson, 2015), resulting in the

identification of cryo-EM as the method of the year by

Nature Methods in 2015 and winning the Nobel Prize in

Chemistry in 2017.

The crucial part of recent cryo-EM success is a combi-

nation between the introduction of direct electron detectors

and a progress in the image processing. The raw data

obtained from microscope contain many noisy images of

the specimen in unknown orientations. In order to fully

reconstruct a 3-D structure, high computational power is

needed. The main bottlenecks of the reconstruction

pipeline are movie alignment (alignment of multiple

frames obtained by a microscope into one image), 2-D

classification (classification and alignment of multiple spe-

cimens’ images in order to get rid of contaminants), 3-D

alignment (assigning projection directions to the experi-

mental images), and 3-D reconstruction (creating a 3-D

volume from many 2-D projections of the specimen, espe-

cially when a large number of images of a highly sym-

metric object as an icosahedral virus are available).

We focus on the 3-D reconstruction. During the 3-D

reconstruction, a 3-D volume is created from a large num-

ber of 2-D projections (images of the specimen). However,

the orientations of projections are not known a priori. In

order to determine the orientation of projections, we need

to iteratively solve the inverse problem: creation of the 3-D
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volume from projections. However, the 3-D reconstruction

is not trivial due to noise in images, errors in orientation

parameters, and the finite number of discrete parameters

covering the projection space nonuniformly (Penczek,

2010). There are multiple approaches of the 3-D recon-

struction, which can be divided into three classes: alge-

braic (Sorzano et al., 2017), weighted back-projection

(Radermacher, 1992), and direct Fourier methods

(Abrishami et al., 2015). In this article, we focus on the

direct Fourier method: we introduce an auto-tuned gra-

phics processing unit (GPU)-accelerated version of the

algorithm introduced in the work of Abrishami et al.

(2015).

The direct Fourier reconstruction method is based on the

central slice theorem (Crowther et al., 1970; Jonic et al.,

2005): The 2-D Fourier transform of the projection of the 3-

D object lies on the plane centered at the origin of the 3-D

Fourier transform of the object and preserves the same

orientation as the projection. In order to reconstruct a 3-D

body from a given set of projections and their orientations,

we need to:

� perform Fourier transform of the projections;

� insert transformed projections into a 3-D spatial grid

with an interpolation kernel;

� normalize the reconstructed 3-D Fourier space to

deal with the nonuniform spatial distribution of the

projections; and

� perform inverse Fourier transform of the 3-D

volume.

We have accelerated the creation of the 3-D Fourier

space from projections, as this is one of the main com-

putational bottlenecks in some particular cases (there are

a few hundred thousands of projections with high inter-

nal symmetry, e.g., icosahedral symmetry implies that

every experimental projection is equivalent to other 59

projections from different directions). To the best of our

knowledge, all state-of-the-art GPU implementations of

the 3-D Fourier reconstruction use the scatter memory

pattern (Kimanius et al., 2016; Li et al., 2010; Su et al.,

2016; Zhang et al., 2010), which writes each pixel of the

2-D projection into multiple voxels of the 3-D space

(multiple voxels are affected due to the interpolation).

Although it is well known that scatter memory pattern is

suboptimal when data accessed by multiple threads

overlap, it is not straightforward to formulate 3-D Four-

ier reconstruction with a gather memory access pattern.

We introduce a novel approach to the parallelization of

3-D Fourier reconstruction, which results in gather

memory access. With our parallel algorithm, a value

of each voxel in the output 3-D volume is computed

by interpolating from multiple pixels of the 2-D projec-

tion. It eliminates race conditions in writing into the 3-D

volume and improves memory locality as repeated mem-

ory accesses are moved from the 3-D volume into the

much smaller 2-D projection.

The main impact of the article is as follows.

� we introduce a novel gather-based algorithm for

gridding-based direct Fourier reconstruction allow-

ing efficient fine-grained parallelization;

� we introduce a highly tuned CUDA implementation

of our algorithm with multiple optimizations;

� we demonstrate usage of implementation-

parameters auto-tuning, which significantly

improves portability of our implementation across

different GPU architectures.

The rest of the article is organized as follows. In Sec-

tion 2, we introduce how the 3-D Fourier reconstruction is

computed using the scatter pattern, analyze limits of the

scatter approach, and propose a gather-based algorithm.

Our GPU implementation of the gather algorithm with

various code optimization strategies and architecture of

the resulting software are introduced in Section 3. In Sec-

tion 4, we evaluate the effect of different code optimiza-

tions on various GPU architectures, compare speedup and

energy efficiency of our GPU-accelerated code to the

original CPU-based implementation and scatter-based

GPU implementation, and show that the quality of results

computed by GPU implementation is comparable to the

original algorithm. The comparison with related work is

provided in Section 5. Finally, we conclude and outline a

future work in Section 6.

2. Parallel 3-D Fourier reconstruction

In this section, we introduce the 3-D Fourier reconstruction

in greater detail, discuss limitations of the commonly used

scatter pattern, and introduce our gather algorithm.

2.1. 3-D Fourier reconstruction

During the 3-D Fourier reconstruction, 3-D frequency

domain is approximated on a regular 3-D lattice F3�Dð �RÞ
from the measured samples F3�Dð �QÞ (Fourier transform of

projections) as

F3-Dð �RÞ ¼
Z

F̂3-Dð �QÞKð �R� �QÞd �Q ð1Þ

where �R is a coordinate within a 3-D regular grid, �Q is a

frequency in the 2-D projection, and K is the interpolation

kernel. In our case, we are using the modified Kaiser–Bes-

sel interpolation, which is considered to be the best kernel

for gridding interpolation (Matej and Lewitt, 1995).

In cryo-EM experiment, we have a finite number of the

projections of the specimen. Thus, we need to solve a dis-

crete form of equation (1) for a limited set of frequencies
�Ri. Furthermore, we need to ensure uniform distribution of

samples contribution into the 3-D volume (the samples

distribution in space is not uniform). Therefore, equation

(1) is transformed into the following equation (see

Abrishami et al. (2015) for more detailed discussion)
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F3-Dð �RÞ ¼

X
i
F̂3-Dð �RiÞKð �R� �RiÞX

i
Kð �R� �RiÞ

ð2Þ

In order to solve equation (2), we create two output

volumes: volume G contains the interpolated frequency

values given by the specimens (the sum in the numerator

in equation (2)) and volume W contains interpolation

weights (denominator in equation (2)). After adding all the

samples into W ;G, we can divide each element in G by a

corresponding element in W and obtain F3-D
�ðRÞ.

The straightforward computation of volumes G;W leads

to an algorithm using scatter access into the 3-D volumes,

as is shown in Algorithm 1. The algorithm input consists of

a set of samples S (2-D Fourier transforms of a specimen’s

projections), each sample s 2 S has a rotation matrix Rs,

determining its orientation in the 3-D space. The resolution

of all samples is r � r and the resolution of output volumes

is hence r � r � r. The value b upper-bounds the interpola-

tion radius (i.e. maximal distance where Kaiser–Bessel

interpolation window returns non-zero result). The output

of the algorithm is a 3-D volume G containing values from

samples and W containing weights. The function interp(v,

d) interpolates the value v according to distance d.

The algorithm is iterating over all pixels of the sample s

(lines 2 and 3). Each pixel is first transferred to a 3-D space

(line 5), and then algorithm iterates over voxels in a box

given by a position of the transformed pixel enlarged by the

interpolation radius (loops at lines 6 to 8). The pixel value

and interpolation weights are then written into G;W (lines

10 and 11).

Please note that we use full Fourier space (i.e. with

redundant complex elements) in this presentation, thus

s 2 S, G and W are stored in such a way that the origin

of the coordinate system is at the center of the volume or

the sample, so we do not need to solve symmetry explicitly.

For the clarity of the presentation, we have excluded out-

of-bound access checks to G;W in the algorithm. Please

also note that by pixel we mean a complex number in the 2-

D Fourier space, and voxel is a complex number in the 3-D

Fourier space.

Practically any loop of Algorithm 1 can be parallelized

in a coarse-grained fashion, where multiple output grids are

built and summed after the parallel section ends. For exam-

ple, we can parallelize the loop going over samples (line 1):

The multiple output arrays G1 . . . Gn and W1 . . . Wn will be

constructed by n threads, each of them processing a subset

of S. When the parallelized loop iterating over samples is

finished, we can compute G ¼
Pn

i¼1Gi and W ¼
Pn

i¼1Wi.

Clearly, this parallelization pattern has significant memory

footprint (we need n copies of 3-D arrays G;W ), so it can

be executed on CPU (Abrishami et al., 2015), but it cannot

be used on GPUs due to insufficient amount of memory per

core. In our implementation, we use this coarse-grained

parallelization for multi-GPU implementation, where each

GPU constructs its own arrays Gi;Wi.

2.2. Limits of the scatter approach

Fine-grained parallelization of Algorithm 1, when multiple

threads construct one output array Gi;Wi, leads to race

conditions in updating the arrays (see lines 10 and 11).

More precisely, when the code is parallelized over the out-

ermost loop (line 1), the write conflict may arise in voxels

where different samples intersect. Parallelization of the

loops iterating over the sample (lines 2 and 3) may also

generate write conflict. The neighboring pixels of the sam-

ple may be projected into the same voxel (the longest dis-

tance in a voxel is
ffiffiffi
3
p

times higher than a distance of two

pixels). Thus, when processed in parallel, the pixels may

update the same voxel. Note that with Single Instruction

Multiple Data (SIMD) architectures, such as GPUs, blocks

of threads are asynchronous and thus it is not possible to

remove race conditions by, for example, processing only

selection of non-neighboring pixels at the same time.

Finally, the loops at lines 6 to 8 are not suitable for paral-

lelization as their iteration space is too small and they

perform a reduction.

For the fine-grained parallelization (i.e. using SIMD

processor), the race conditions in writing 3-D volume

become an issue. The write conflicts in arrays G;W can

be solved by atomic operations, which are, however, slower

than regular memory writes, since they enforce serializa-

tion during write conflicts.

Beside the need of atomic writes, the scatter pattern

exposes poor spatial and temporal cache locality. Each

pixel from a projection is written into multiple voxels (see

lines 6 to 8). Although the voxels are accessed multiple

times when the sample is written, the voxel space is too

big to fit into shared memory or cache at GPU processor (r

is typically from tens to several hundreds) and the memory

access pattern is strided arbitrarily due to rotation of the

specimen.

2.3. Gather approach

In order to eliminate race conditions in writing into arrays

G;W , we have to compute and write a value of each voxel

only once per sample. The main idea of the gather approach

is reversion of the scatter: It iterates in the 3-D volume,

Algorithm 1. 3-D reconstruction using scatter.

950 The International Journal of High Performance Computing Applications 33(5)



computes projection of each voxel into the 2-D sample, and

computes the interpolated value within the sample (see

Figure 1 for illustration). More precisely, the voxel at coor-

dinates x0; y0; z0 can be transformed to image space by multi-

plying by Rs
�1, getting coordinates x; y; z, where x; y is the

position in the 2-D sample and z is the distance from the

image (influences the weights computation).

Naive implementation of the gather approach would

iterate over the full 3-D volume, so iteration space for each

sample would increase from Oðr2Þ to Oðr3Þ (recall that r is

the resolution of the sample and also the 3-D volume).

However, the number of voxels affected by the sample is

in Oðr2Þ for both scatter and gather patterns, thus most of

the iterations of the naive implementation would not update

its voxel. To use the gather pattern efficiently, we need to

reduce the iteration space to Oðr2Þ.
The iteration space can be reduced to Oðr2Þ by iterating

over only two selected dimensions, an iteration plane.

Obviously, we can select three different iteration planes:

XY, XZ, and YZ. The iteration plane is selected such that

the area of the sample projection to the iteration plane is

maximized (we select the plane for which the dot product

of the sample normal and the plane normal is the highest).

This is crucial for a fine-grained parallelization (processing

iterations in parallel), as amount of work per each iteration

is then more uniform compared to other iteration planes. In

each iteration, the two coordinates are determined by the

position in the iteration plane, so only one column of the

3-D volume can be processed. At the beginning of

the iteration, we calculate an interval of updated voxels in

the column (it can be determined by computing intersection

of the column and the sample) and update only voxels within

the interval (see Figure 2 for illustration). The number of

voxels within the interval is upper-bound by
ffiffiffi
2
p
� 2b, where

b is the interpolation radius. Therefore, the time complexity

is Oðr2Þ, as b is small constant independent on r.

The 3-D reconstruction using gather approach is shown

in Algorithm 2. Please note that Algorithm 2 is simplified

for clarity of presentation: It demonstrates functionality for

only one iteration plane and does not handle array bound-

aries. The algorithm iterates over an iteration plane XY at

lines 4 and 5. Then, the first voxel at coordinates [i, j, kl],

which may be affected by a sample s, has to be determined.

We compute its z position using an equation of plane of the

sample s, which is shifted by an interpolation radius b (lines

7 to 10). To do so, we must know the normal of the sample

(computed at line 2) and some point of the shifted plane,

which is computed at line 3. Having z position computed,

we can iterate over updated voxels affected by a pixel only

(line 11). In each iteration, we compute projection of the

voxel to the 2-D sample space, iterate around distance b

from the projection center (lines 14 and 15), and compute

grid and weight values using interp function taking the real

distance (i.e. also with height of the projected voxel) into

consideration (lines 16 and 17). The writing into 3-D space

is realized only once per voxel in lines 18 and 19.

Note that Algorithm 2 does not require atomic writes

into G;W as long as the loop over samples is not

Figure 1. Comparison of the scatter (left) and the gather (right)
approach in a cut of the 3-D grid. The solid line represents a
sample s, red dots represent pixels, and black dots represent
written voxels. With the scatter pattern, the pixels weighted
value is written into multiple voxels. With the gather pattern, the
voxel value is computed using multiple pixels.

Figure 2. Schematic view of the iteration space in the cut of the
3-D grid. The solid line represents a sample s, and dashed lines
represent boundaries of an area affected by the interpolation
window. Arrows show computation of the initial iteration in the
third dimension (i.e. dimension not iterated at the iteration plane).
The updated voxels are emphasized.

Algorithm 2. 3-D reconstruction using gather (for XY iteration
plane).

Střelák et al. 951



parallelized. The cache locality is also better than in Algo-

rithm 1, since repetitive access into the 3-D arrays G;W has

been replaced by repetitive access into the 2-D array s.

The numerical accuracy of Algorithms 1 and 2 is com-

parable; however, their results differ due to interpolation of

the sample data computed from different points. More pre-

cisely, Algorithm 1 iterates over the sample, so the real

position in 3-D volume is computed by transforming inte-

ger position within the 2-D sample. On the contrary, Algo-

rithm 2 iterates over the integer coordinates in 3-D volume,

which are transformed into the real coordinates in the 2-D

sample. Thus, the coordinates of the points which are used

for interpolation of the sample values are different. When

testing correctness of the gather algorithm, we cannot com-

pare its results byte-to-byte to the scatter algorithm, but

rather compare them statistically.

3. GPU implementation

In this section, we describe our CUDA implementation of

Algorithm 2 in greater detail and introduce the overall

architecture of the implementation. We have implemented

several optimization strategies, which may easily interfere

with each other. Thus, we have used a Kernel Tuning

Toolkit (KTT) (Filipovič et al., 2017), to automatically

search for the optimal combination of optimizations.

3.1. Fine-grained parallelization

The fine-grained parallelization of Algorithm 2 is realized

through parallelizing loops going over the iteration plane

(lines 4 and 5). More precisely, we create a thread blocks

of size B � B threads and grid of size (so that thread

blocks cover the whole iteration plane). Each thread then

performs codes at lines 6 to 19. It iterates over all voxels

which are affected by the sample plane and are projected

to its position in the iteration plane (line 11). With this

parallelization strategy, we do not need atomic writes into

output volumes G;W as long as only one sample s is

processed simultaneously.

However, the parallelization approach described

above may introduce insufficient parallelism for small

r: for example, input samples of size 64 � 64 may be

processed by at most 4096 threads, which may not be

enough to fully occupy contemporary high-end GPUs.

Moreover, such kernel may be too fast, emphasizing

overhead of the kernel execution.

In order to improve strong scaling of our implementa-

tion and reduce kernel execution overhead, we have imple-

mented two modifications.

With the first modification, the kernel processes multi-

ple samples in a serial fashion. As the thread blocks may be

executed in any order, we have no guarantee that only one

sample is processed at a time. Thus, volumes G;W have to

be updated by atomic operations (recall that different sam-

ples may intersect, so there may be write conflicts). How-

ever, the number of atomic writes is much lower than in the

scatter pattern (each voxel is updated at most once by a

sample) and the probability of write conflict is low (they

may occur only in samples intersection), so atomic opera-

tions could not be an issue here.

The strong scaling may be further improved by the sec-

ond modification: addition of p samples si . . . siþp 2 S into

G;W in parallel. More precisely, we create a grid of

blocks, where thread blocks process different samples

according to their position in the z-dimension. As multiple

samples are inserted into G;W in parallel, atomic opera-

tions have to be used to update G;W . The number of write

conflicts is potentially higher compared to the first modi-

fication, as multiple samples processed in parallel may

have similar rotation and thus affect the same voxels.

The loops at lines 11, 14, and 15 of Algorithm 2 are

performed in serial. The number of iterations of those loops

is determined by a position of the projected voxel and an

interpolation radius b, which is a small number in practice.

If an interpolation method with greater radius would be

used, parallelization of one or more loops at lines 11, 14,

and 15 could improve performance by releasing some

resources consumed by each GPU thread.

3.2. Interpolation

In our implementation of the 3-D Fourier reconstruction,

the Kaiser–Bessel interpolation is used. The radius of the

interpolation window is set to 1.8 by default, so the voxel

value is computed using approximately 10 pixels (area of

disc of radius 1.8) with the gather pattern.1 While the gather

pattern improves the memory pattern, the computation of

the interpolation weights is still demanding. More pre-

cisely, the interpolation weight in general differs for each

combination of sample and voxel, as voxels are projected to

a floating point position in the 2-D sample according to

rotation of the sample.2 This is in contrast to typically used

stencil computations, where vector of the interpolation

weights is constant within the sliding interpolation window

and thus can be precomputed or hard-coded easily. We

have identified three ways to implement the interpolation

weight calculation:

� precomputation into the global memory;

� precomputation and explicit caching in the shared

memory; and

� on-the-fly weights computation.

In the original CPU code in Xmipp, weights are precom-

puted on a finely sampled interval, using 10,000 samples of

distances in [0, b]. We have incorporated the same precom-

putation to our GPU algorithm. The precomputed table may

be directly read from the global memory, or may be cached

in faster shared memory (the table size is 40,000 bytes,

which fits into shared memory of all modern NVIDIA

GPUs). The advantage of the shared memory is faster

access compared to the global memory cache on most NVI-

DIA architectures. However, it is not known a priori which
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elements of the table will be read, thus the whole table is

cached in our implementation with potentially a lot of

unused elements. Moreover, the table typically consumes

more than half of the available shared memory, thus only

one block can run at GPU multiprocessor. This may not be

an issue if blocks of sufficient size are used. However, large

blocks may be suboptimal when resolution of the input

samples (hence also of the output volumes) is low. In such

a case, smaller blocks expose better parallel efficiency.

The alternative way is to compute weights on-the-fly.

The on-the-fly weights computation neither stresses the

memory subsystem nor limits the amount of blocks running

at multiprocessor. However, it introduces significant com-

putation overhead, as it adds tens of floating point opera-

tions per interpolation. On the other hand, it may be

beneficial on GPU architectures having much higher float-

ing point performance than cache or memory bandwidth.

We use several implementations of the modified Bessel

function Ia. For the most common case (a 0; d ¼
[0, 15]), we use approximation by polynomial of the

4th degree (Blair and Edwards, 1974; Table 5), other-

wise we use original Xmipp calculation (more precise,

but also more computationally demanding). Note that

the numerical precision of approximated version com-

puted on-the-fly is comparable to using more precise

version with precomputation (as it is precomputed for

a finite subset of distances). We have used templating to

select the appropriate code variant (i.e. setting of Bessel

function) without runtime overhead.

3.3. Sample caching

Reading pixels of the sample images exposes poor spatial

locality, as the transformation from 3-D space to 2-D (see

line 12 of Algorithm 2) breaks coalesced memory access.

However, the temporal locality is rather good, as one pixel

can be read up to 10�when default interpolation window is

used (see Section 3.2). We have identified two possible

implementations of accessing the 2-D image:

� direct reading from the global memory with cache

blocking and

� explicit caching in the shared memory.

The input sample may be read directly from the global

memory, which is cached in modern GPUs. We can either

map a thread ID into position in the iteration plane and

hence the 3-D grid, or we may tile indices into smaller 2-

D rectangles in order to improve a cache locality when grid

indices are transformed into sample space

x0 ¼ x mod T þ ððy � Bþ xÞOðB � TÞÞ � T ð3Þ

y0 ¼ ððy � Bþ xÞOTÞ mod B ð4Þ

where x and y are original thread coordinates within the

block of size B � B, T is size of a tile, mod is modulo

operator, and O is integer division. This tiling pattern

groups thread into small rectangles, which is expected to

reduce warp divergence (which arises when we are mapped

out of the image enlarged by the interpolation window) and

also improve spatial locality (as more threads within warp

should hit the same cache line for any transformation Rs
�1).

An alternative way is to store the 2-D sample into the

shared memory. The sample may be too large to be com-

pletely stored in the shared memory (there may be hundreds

of pixels in both dimensions), so we have to restrict the area

which may be read from a thread block. For a rectangular

block of size B � B, the amount of pixels touched by the

thread block can be determined by the block area enlarged

by the interpolation window radius. The area is further

multiplied by
ffiffiffi
2
p

as the image may be rotated by 45� with

respect to the iteration plane and by
ffiffiffi
3
p

since the rotated

image can be tilted in the 3-D volume. Thus, the amount of

pixels which need to be stored in shared memory is upper-

bound by an equation

e ¼ d
ffiffiffi
2
p ffiffiffi

3
p
ðBþ 2bÞe2 ð5Þ

where b is the interpolation window radius.

The kernel may start with a pre-allocated shared mem-

ory according to the computed upper-bound e and then

transfer only the pixels which can be accessed by the

block of threads. To compute which part of the sample

is to be moved to the shared memory, an access aligned

bounding box (AABB) is created for the area of voxels

accessed by a given thread block (given by loops at lines

4, 5, and 11 of Algorithm 2) and transferred back to image

space by multiplying each corner by Rs
�1. Then, the pixel

area defined by a minimal access-aligned rectangle

including all points of the transformed AABB block is

loaded into the shared memory.

We note that it is not straightforward to decide which

method of accessing 2-D sample data is favorable. The

access into the shared memory is faster. However, using

it for the sample requires overhead computation (transfor-

mation of AABB), overhead memory transfers (reading

pixels which will not be used) and is mutually exclusive

with caching interpolation weights in shared memory due

to limited size of the shared memory.

3.4. Application architecture

During the 3-D Fourier reconstruction, the loop iterating

over the samples needs to (i) load input images from a disc,

(ii) perform their fast Fourier transform (FFT), and (iii)

insert transformed samples into the 3-D grid. After the loop

finishes, computed weights are applied to the grid, and

inverse 3-D FFT of the grid is computed to obtain the

result. In our implementation, the loop going over the sam-

ples is parallelized: The steps (i) and (ii) are not highly

computationally demanding and thus performed on CPU,

whereas step (iii) is accelerated on GPU. The final weight

application and inverse FFT is performed on CPU, as its

influence on overall performance is negligible: It is per-

formed only once per reconstruction, and the performance
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is limited rather by storing 3-D volume to the disc than by

the FFT.

The architecture of the parallel region of the 3-D Fourier

reconstruction is sketched in Figure 3. It is parallelized at

multiple levels:

� independent Message Passing Interface (MPI) pro-

cesses may utilize multiple GPUs and multiple

nodes;

� independent threads and GPU streams (one stream is

used per one thread) utilize multiple CPU cores,

allow overlapping of kernels and memory copies

from CPU to GPU memory; and

� CUDA blocks and threads, utilizing SIMD architec-

ture of the GPU.

The MPI parallelization works in the same way as in the

original implementation of Xmipp: The master process

splits a set of samples S into multiple chunks and sends the

chunks to worker processes. Each worker process inserts

assigned samples to its local volumes Gl;Wl. After all

worker processes finish their job, the master process sums

local volumes into G;W , computes F3-Dð �RÞ by multiplying

G by W elementwise (see equation (2)), and computes

inverse Fourier transform of F3-Dð �RÞ.
In our implementation, each worker process utilizes

only one GPU and multiple CPU cores, so multiple MPI

processes have to be executed at nodes with multiple GPUs.

The CPU cores are responsible for the 2-D sample

preparation (performing Fourier transform, shifting, and

clipping data), and GPU inserts these samples into the 3-

D volumes Gl;Wl. According to our experience, four CPU

cores are fast enough to keep high-end GPU busy. Each

thread uses a separate stream, so copying transformed sam-

ples is fully overlapped with computing kernels. Moreover,

the GPU kernels may also overlap if atomic writes into

Gl;Wl are used, which allows for better utilization of the

GPU when a single kernel does not expose sufficient par-

allelism. Otherwise, streams have to be synchronized to

execute at most one kernel in time.

4. Evaluation

In this section, we evaluate the performance of our imple-

mentation on various hardware. We compare performance

of the original CPU and our GPU implementation and

demonstrate that it produces results of comparable quality

(recall that gather pattern changes rounding fashion by iter-

ating over 3-D integer coordinates instead of iterating over

samples integer coordinates). We also discuss the optimal

combination of tuning parameters (optimizations described

in Section 3) for different GPUs.

4.1. Testbed setup

The comparison of the original and GPU-accelerated

implementation is performed on a node equipped by

dual-socket CPU Intel Xeon E5-2650 v4 (24 physical cores

Figure 3. Architecture of the application.
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at 2.2 GHz in total), 512-GB RAM, and four NVIDIA Tesla

P100 SXM2 with 16-GB HBM RAM.

To test our algorithm with different GPU architectures,

we have also used desktop machines with NVIDIA

GeForce GTX 1070 (Pascal architecture), NVIDIA

GeForce GTX 750 (Maxwell architecture), and NVIDIA

GeForce GTX 680 (Kepler architecture). See Table 1 for

comparison of hardware used in our test. All tested GPUs

have installed the driver version 384.90 and CUDA

Toolkit 8.0.61.

The comparison between CPU and GPU has been made

on a real-world example of 3-D reconstruction using

28,881 projection images of size 420 � 420 pixels of the

brome mosaic virus (Wang et al., 2014; EMPIAR entry

10010). This virus has icosahedral symmetry which results

in 1,732,860 samples (each image is equivalent to other 59

images). The overall execution time has been measured.

For the comparison of different GPU architectures, only

the kernel time has been measured (to hide bias introduced

by the rest of the application), thus we may use much

smaller benchmark with 52 samples of size 128 � 128.

Note that the GPU kernel is always executed on small

batches of samples (also on benchmark using 28,881 pro-

jection images), thus there is no reason to test bigger

amount of images for the kernel auto-tuning.

4.2. Evaluation of tuning parameters influence

We have auto-tuned our kernel for all GPUs available,

using all possible combinations of tuning parameters.

Thus, we have found an optimal combination of tuning

parameters for each GPU, and we can evaluate the

effects of optimizations introduced in Section 3. The

complete list of tuning parameters and their values is

given in Table 2. The optimal combinations for different

GPUs are shown in Table 3.

As we can see, not all tuning parameters for parallelism

are changed for different architectures: The BLOCK_DIM

differs quite significantly, but the ATOMICS is always set

to 1 and GRID_DIM_Z differs only for GTX 750. We note

that with smaller sample (e.g. 64 � 64), the GRID_DIM_Z

is set to a higher value at all architectures and that it influ-

ences the performance significantly. We suppose that

GRID_DIM_Z ¼ 1 is preferred for larger images at most

of GPU architectures as it already exposes enough paral-

lelism and minimizes number of conflicts in atomic

updates of G;W . We have not found any case preferring

to not use atomic updates at all (i.e. ATOMICS ¼ 0), so

atomics are not an issue when conflicts are minimized by

the gather pattern.

The interpolation weights are precomputed at Pascal and

Maxwell architectures, whereas on Kepler the on-the-fly

computation is preferred. We suppose that the reason is

that the throughput of shared memory for 32-bit values is

quite limited on Kepler architecture, so it is faster to

Table 1. Theoretical performance (in single-precision Tflops),
memory bandwidth (in GB/s), and power consumption (in Watts)
of hardware used in the evaluation.

Processor
Single-precision

performance
Memory

bandwidth TDP

2� Xeon E5-2650 v4 0.845 154 210
1� Tesla P100 9519 732 300
4� Tesla P100 38,076 2928 1200
GeForce GTX 1070 5783 256 150
GeForce GTX 750 1044 80.2 55
GeForce GTX 680 3090 192 195

TDP: Thermal Design Power.

Table 2. Tuning parameters.

Parameter Values Description

BLOCK_DIM 8, 12, 16,
20, 24, 28,

32

x and y dimensions of thread block
(square-shaped blocks are used)

ATOMICS 0, 1 Allows (1) or prohibits (0) using
atomic updates in accessing G,W
(see Section 3.1)

GRID_DIM_Z 1, 4, 8, 16 Number of samples processed in
parallel (see Section 3.1), must
be 1 if ATOMICS ¼ 0

PRECOMP_INT 0, 1 Switch on-the-fly computation (0)
or precomputation (1) of
interpolation weights (see
Section 3.2)

SHARED_INT 0, 1 Cache precomputed interpolation
weight in shared memory (1), or
read it directly from global
memory (0), set only when
PRECOMP_INT ¼ 1

SHARED_IMG 0, 1 Cache input sample in shared
memory (1) or read directly
from global memory (0) (see
Section 3.3), may be 1 only if
SHARED_INT ¼ 0 due to
limited shared memory capacity
in current GPUs

TILE_SIZE 1, 2, 4, 8 Size of a tile formed from threads
(see Section 3.3), TILE> 1 is
allowed only when
SHARED_IMG ¼ 0 and must
divide BLOCK_DIM

GPU: graphics processing unit.

Table 3. Optimal combinations of tuning parameters.

GPU model P100 GTX1070 GTX750 GTX680

BLOCK_DIM 20 16 8 16
ATOMICS 1 1 1 1
GRID_DIM_Z 1 1 8 1
PRECOMP_INT 1 1 1 0
SHARED_INT 1 1 0 0
SHARED_IMG 0 0 0 0
TILE_SIZE 4 2 4 8

GPU: graphics processing unit.
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recompute weights than cache them in the shared or global

memory (GTX 680 does not have a L2 data cache). The

precomputed weights are cached in the shared memory on

P100 and GTX 1070, whereas GTX 750 prefers to use the

global memory and data cache. We suggest that this differ-

ence may be induced by large thread blocks on P100 and

GTX 1070, which better reuses data in the shared memory.

All the architectures prefer to read the input images

directly from the global memory without shared memory

usage. The global memory access is tiled with all architec-

tures; however, the tile size differs. Although the shared

memory caching is not used with any GPU tested, we con-

sider it as a prospectively beneficial optimization: The

future GPUs will probably have higher flop-to-word ratio,

so it may be faster to compute interpolation weights on-the-

fly and cache the images in the shared memory. We are

pretty close to this situation with GTX1070, where the

implementation with SHARED_IMG ¼ 1 and PRECOM-

P_INT ¼ 0 is less than 5% slower than the fastest one.

The different optimal combination of tuning parameters

does not automatically mean that the performance is not

portable, as they may have negligible influence on the speed

of the kernel. However, as is shown in Table 4, implementa-

tions optimized to a given hardware perform rather poorly

when executed on a different hardware (reaching only 31%
of the fastest implementation performance in the worst case).

We can even see that performance portability is limited

(although not so significantly) also within the Pascal gener-

ation. Note that for images larger than 128 � 128, the selec-

tion of optimal parameters does not differ, although the

performance of powerful GPUs is higher (e.g. performance

of P100 is 1.24� better in terms of inserted pixels per second

when samples of 512 � 512 are used).

4.3. GPU speedup

We have compared the original CPU implementation

(Abrishami et al., 2015), using all 48 virtual cores of the

testbed machine (this configuration results in better perfor-

mance than using physical cores only) against our GPU

implementation using one, two, and four GPUs. The result-

ing times are shown in Table 5, where the walltime and

time of parallel region (the insertion of samples into the 3-

D grid presented in this article) are shown. As we can see in

the table, using single GPU brings 11.4� speedup over

original implementation comparing the walltime of the

executions. Using all four GPUs brings additional 2.78�
speedup resulting in overall speedup of factor 31.7�. Note

that the scaling of the multi-GPU implementation is limited

by the final summation of the partial volumes, which is

serial in the current implementation. The parallelized part

of the computation (computing 2-D FFT on CPU and

inserting samples into the volumes on GPU) scales much

better: using two and four GPUs brings 1.86� and 3.7�
speedup compared to single GPU.

Although GPU implementation is much faster, the

power consumption is also significant nowadays. Thus,

we have measured and compared the power consump-

tion using Intel RAPL and NVIDIA SMI. Note that only

the power consumption of the parallel region is mea-

sured, as power consumption during summation of the

partial volumes, inverse 3-D Fourier transform, and the

storage of the output volume is comparable to the idle

power. The CPU power is computed as a sum of CPU

and RAM power and is counted for both CPU and GPU-

accelerated implementation. We have not counted idle

power of unused GPUs to mimic situation where the

computing node is not equipped by them. As we can

see in Table 6, the power saved using single GPU is

comparable to time-saving: We are able to compute a

reconstruction with 10.1� better power efficiency.

Moreover, the power efficiency is further slightly

improved with multi-GPU implementation, whereas the

time is still improved significantly.

Table 4. Performance portability of our CUDA implementation.
The rows represent GPUs used for tuning and the columns
represent GPUs used for execution. The percentage shows how
performance differs compared to the code using the best
combination of tuning parameters (e.g. the code tuned for GTX
1070 and executed on GTX 750 runs at only 31% of speed of the
code both tuned and executed on GTX 750).

P100 (%) GTX1070 (%) GTX750 (%) GTX680 (%)

Tesla P100 100 95 44 96
GTX 1070 88 100 31 50
GTX 750 65 67 100 94
GTX 680 71 72 71 100

GPU: graphics processing unit.

Table 5. Performance comparison of the original CPU and our
GPU 3-D Fourier reconstruction using different numbers of
GPUs. The walltime shows overall application time, the parallel
region shows time of the parallelized code of samples insertion
into the 3-D grid. The speedup is computed as the relative
difference of the walltime.

Configuration Walltime Parallel region Speedup

CPU only 155 min 00 s 150 min n/a
1� P100 13 min 35 s 12 min 42 s 11:4�
2� P100 8 min 14 s 6 min 50 s 18:8�
4� P100 4 min 53 s 3 min 26 s 31:7�

GPU: graphics processing unit.

Table 6. Power consumption of CPU and GPU 3-D Fourier
reconstruction.

Configuration Time Input (W) Used power (kJ)

CPU only 150 m 206 1845
1� P100 12 min 42 s 253 182.2
2� P100 6 min 50 s 397 159.6
4� P100 3 min 26 s 679 139.9

GPU: graphics processing unit.
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4.4. Comparison to scatter pattern

The timing of our GPU implementation is not directly com-

parable with implementations presented in the work of

Kimanius et al. (2016), Su et al. (2016), Zhang et al.

(2010), and Li et al. (2010), because those implementations

do not use the same interpolation function. More precisely,

the radius of the interpolation window affects the amount of

data used to produce one voxel, and the type of the inter-

polation function affects the number of floating point oper-

ations required per voxel. Therefore, the same data set

would produce results of different qualities with incompar-

able demands on computational resources.

To demonstrate the benefit of the gather pattern, we

have implemented a kernel using the scatter pattern with

the same Kaiser–Bessel interpolation kernel as is used in

our gather-based implementation. The scatter kernel has

also been auto-tuned with KTT, implementing tuning

parameters BLOCK_DIM, GRID_DIM_Z, PRECOM-

P_INT, SHARED_INT, and TILE_SIZE. Other tuning

parameters were not used as they cannot be combined

with the scatter pattern (ATOMICS must be always 1 and

SHARED_IMG has no performance impact as there is no

temporal locality in reading samples). The scatter kernel

has been benchmarked with samples of 128 � 128 bring-

ing following slow-downs compared to the gather imple-

mentation: 2.85� on Tesla P100, 2:14� on GTX1070,

3:49� on GTX 750, and 5:96� on GTX 680. Note that

the slowdown of the scatter pattern is lower for smaller

samples and higher for larger ones (as cache locality is

worser and number of conflicts in atomic updates higher

with larger images).

4.5. Results comparison

In this section, we compare the precision of our gather-

based GPU implementation to the original CPU-based

implementation. The quality of results has been tested on

the brome mosaic virus using Fourier shell correlation

(FSC): (i) the set of input particles has been divided into

two halves; (ii) the 3-D reconstruction (angular assignment

þ creation of 3-D volumes) has been performed indepen-

dently for those halves; and (iii) the correlation of volumes

computed from different halves has been computed. We

can determine the reconstruction resolution from FSC—the

low correlation at some frequency means that we are get-

ting different information from different halves, so the fre-

quency is already out of the volume resolution.

The FSC between two halves for the original and our

GPU implementation is shown in Figure 4. As we can see,

the implementations have very similar results in the rele-

vant region (where FSC is more than 0.5, which is gener-

ally considered to be within the resolution) and the

resolution is also the same. The GPU implementation is

more consistent in the background (i.e. the high-

frequency noise is more stable with GPU implementation

as it has higher correlation).

5. Related work

In this section, we compare our GPU algorithm to other

GPU-accelerated algorithms for 3-D reconstruction. We

are focusing on how those algorithms use GPU hardware,

omitting that they implement slightly different computa-

tion (e.g. use different interpolation kernel); however, all

of them are somehow putting 2-D samples into 3-D

volumes. To the best of our knowledge, the state-of-the-

art GPU implementations are based on the scatter pattern

(Kimanius et al., 2016; Su et al., 2016; Zhang et al., 2010;

Li et al., 2010).

In the work of Kimanius et al. (2016), the authors have

tested both scatter and gather algorithms. Their motivation

for testing gather algorithm was to omit atomic updates;

however, they concluded that scatter algorithm is faster due

to smaller iteration space. We have solved this issue by

reducing iteration space using 2-D iteration plane in gather

algorithm. The scatter pattern with atomic operations has

also been used in the work of Su et al. (2016).

In the work of Zhang et al. (2010), the authors combine

the scatter pattern with atomic-free volume updates. How-

ever, the drawback of their solution is that it is usable with

nearest-neighbor interpolation only. They use interleaved

scheme, where no neighboring pixels of the sample are

transferred in the same time. When their GPU kernel

is executed four times, each time processing non-

neighboring pixels of the sample, the race conditions are

successfully removed. Obviously, with an interpolation

kernel spanning among multiple voxels, the much more

aggressive interleaving would be needed to not overlap

area written by different threads. With such an aggressive

interleaving, more kernel executions would be needed and

the kernel would have limited strong scaling and more

scatter memory access.

The implementation in the work of Li et al. (2010)

claims that atomic updates are not needed as their used

synchronization between read and write. We are convinced
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Figure 4. FSC between two halves of samples computed by the
original and proposed GPU implementations. FSC: Fourier shell
correlation; GPU: graphics processing unit.
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that race conditions in updating resulting volume may

occasionally arise in such implementation as synchroniza-

tions cannot be applied among thread blocks.3

Besides acceleration of 3-D reconstruction, the active

research is also done in improving mathematical methods

for the reconstruction. In CryoSparc (Punjani et al., 2017),

the order-of-magnitude speedup is reached by improving

the optimization algorithm, outperforming GPU-

accelerated reconstruction described in the work of Kima-

nius et al. (2016). It is possible to combine advanced

optimization algorithm with GPU-accelerated 3-D vol-

ume creation such as discussed in this article to gain even

better performance.

6. Conclusion and future work

In this article, we have introduced a novel approach to

parallelization of 3-D Fourier reconstruction. Our approach

uses the gather memory pattern, making it more suitable for

SIMD-based processor, such as GPUs. We have implemen-

ted our algorithm in CUDA with various optimizations

exposed as tuning parameters to auto-tuning framework

KTT and use it to search their best combination.

The precision of our algorithm is comparable to the

original CPU version, whereas the performance is up to

31:7� higher using a multi-GPU machine and real-world

example. The power efficiency is more than 10� higher

with single and multi-GPU setup. Compared to the scatter-

based GPU algorithm, we reach 2:14�–5:96� speedup.

In future work, we plan to implement online auto-

tuning. The current version allows only offline tuning (the

tuning is performed before application execution), thus we

have not included it in a production code yet. Instead we

define optimal combinations of tuning parameters found by

the tuner in a header file and let user to select which archi-

tecture should be the GPU code optimized for during the

Xmipp compilation. We plan to fully integrate the auto-

tuner once it will support online auto-tuning, so it will be

possible to retune application for different image sizes or

hardware during computation. The auto-tuning may be

applied to other parts of the 3-D reconstruction as well: For

example, we can tune the number of threads (and hence

CUDA streams) per GPU, or relocate computation of the

2-D images FFT to GPUs when particles with lower sym-

metry are analyzed. We also plan to exploit possibilities to

accelerate other bottlenecks of Xmipp toolkit, such as

movie alignment.
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Notes

1. With the scatter pattern, one pixel is typically written

into approximately 24 voxels (volume of a sphere of

radius 1.8).

2. And analogously for the scatter pattern.

3. Inter-block synchronization is possible under perfor-

mance penalty with CUDA 9.0 and Pascal generation

of graphics processing units, but this hardware was not

available in 2010.
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Abstract: Xmipp is an open-source software package consisting of multiple programs for processing
data originating from electron microscopy and electron tomography, designed and managed by the
Biocomputing Unit of the Spanish National Center for Biotechnology, although with contributions
from many other developers over the world. During its 25 years of existence, Xmipp underwent
multiple changes and updates. While there were many publications related to new programs and
functionality added to Xmipp, there is no single publication on the Xmipp as a package since 2013.
In this article, we give an overview of the changes and new work since 2013, describe technologies
and techniques used during the development, and take a peek at the future of the package.

Keywords: Xmipp; Cryo-EM; Scipion; single-particle analysis

1. Introduction

Xmipp is a software package for cryo-electron microscopy (Cryo-EM) and electron
tomography (ET), available as a standalone project or via Scipion [1] framework. It offers
multiple programs for almost all steps of the typical single particle analysis (SPA) processing
pipeline and several programs for ET.

Originally, Scipion started from the graphical user interface of Xmipp, but it quickly
branched off as a separate project of its own. At that time, Scipion and Xmipp [2] were
available only as a single unit. Scipion was responsible for the inter-package operations
between other programs and scripts, while Xmipp provided the programs, methods, and
scripts for the actual processing.
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Since 2018, Xmipp and Scipion are separate software packages. However, Xmipp is
still providing some crucial functionality to Scipion and many auxiliary protocols that can
be used in the processing pipeline of the Scipion project.

This article provides an overview of the work of the Biocomputing Unit of the CNB-
CSIC, Madrid, concerning Xmipp. In the rest of the text, we use the term program to refer
to the Xmipp executable and protocol to refer to the Scipion protocol provided by Xmipp.
However, both expressions are interchangeable, as the executable is typically at the core
of its respective protocol. Unless stated otherwise, this article refers to the latest Xmipp
release available at the moment, i.e., version 3.21.06, released on 29 June 2021.

The article is divided into three parts. In Section 2, we overview the new programs
and protocols added to the Xmipp package since its last dedicated publication in 2013.
This section can also be interpreted as an overview of the most active research areas
of the Biocomputing Unit of the CNB-CSIC, Madrid. For detailed information on each
program or protocol, the reader is encouraged to visit the corresponding paper. This section
also assumes that the reader has a general understanding of the SPA processing pipeline.
Section 3 then talks about technologies and techniques used during the development. The
last section summarizes our contribution to Cryo-EM, ET, and SPA in the last eight years
and discusses possible future directions of the research.

2. New Programs and Protocols

The image processing pipeline of the Cryo-EM project might be very complicated.
However, it is typically divided into several general steps, as shown in Figure 1. In this
section, we present new programs and protocols for Scipion added to Xmipp since 2013,
thematically grouped.

Figure 1. Typical steps of the Single Particle Analysis processing pipeline [3].

2.1. Movie Acquisition and Frame Alignment

With the adoption of faster microscopes, the acquisition speed and the amount of
the collected data steadily increases, and microscopes are expected to produce one super-
resolution movie every few seconds soon. This creates high demands for (semi)automatic
quality assurance and movie processing algorithms.

In 2016, in collaboration with the industry (Thermo Fisher Scientific), we proposed
an image selection method using fast and efficient image quality descriptors computed
during the acquisition that can be used to reject movies before further processing [4]. This
algorithm was included in the current version of the EPU.

As for the frame alignment, in 2015, we designed a program for compensating the
beam-induced motion called Optical Alignment, using Optical Flow (OF) [5]. The advan-
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tage of the OF is its parameter-free description of local movements, which gives it extremely
high flexibility. In 2020, we presented FlexAlign [6], a GPU accelerated algorithm able to
correctly compensate for the local shifts on the fly, using the current generation of hardware.
This second algorithm sacrifices the flexibility of OF by using a small set of B-splines to
describe the local movements. In practice, we have not found any significant difference
between FlexAlign and Optical Alignment, meaning that the local deformation fields are
sufficiently smooth. With this change, we have gained the possibility to store the local
deformation with a minimal set of coefficients (as opposed to deformation fields twice as
large as the movies themselves).

Xmipp also provides several other utility protocols, for example, the Movie Maxshift
protocol for movie rejection based on the maximum shift of the corrected frames, the Split
frames protocol for extracting only odd/even frames, the Movie Average protocol for
creation of a simple movie average, or the automatic Movie Gain detection protocol [7]
that can identify cases of incorrectly calibrated cameras. In addition, Xmipp provides
the Preprocess Micrograph protocol for micrograph preprocessing, such as filtering or
normalization.

2.2. CTF Estimation

There are multiple approaches to estimate the CTF of a given micrograph. For that
reason, our group initiated the “CTF Estimation Challenge” [8] back in 2015 in collaboration
with the National Center for Macromolecular Imaging (NCMI) at Houston. We have
also designed the CTF consensus protocol, which can compare outputs of multiple CTF
estimation algorithms. The CTF itself can be estimated via the CTF Estimation protocol,
which we accelerated by using Zernike polynomials in [9].

2.3. Particle Picking

Particle picking is a challenging task, given the low Signal-to-Noise ratio of the
input micrographs and the acquisition rate of modern microscopes. There are multiple
approaches to detect particles. We used several new discriminative shape-related features
and some statistical descriptions of the image grey intensities to train two support vector
machine classifiers in the Particle Auto-Picking protocol for SPA [10].

In Random Conical Tilt and Orthogonal Tilt Reconstruction, particle picking is further
complicated by the need to identify particle pairs, which we tried to address via Delaunay
triangulation [11]. It can be found under Assign Tiltpairs protocol in Scipion.

Once the particle centers are known, particles can be extracted and further analyzed. In
the Screen Particles protocol, we implemented a novel particle quality assessment and
sorting method that can separate most erroneously picked particles from correct ones [12].
The Deep Consensus Picking protocol [13] utilizes a deep learning-based algorithm to
lower the incorrectly picked particles by combining results of multiple pickers without any
user intervention. We also used deep learning to detect carbon and other different types of
high-contrast contamination in the Deep Micrograph Cleaner protocol [14].

In addition to the above-mentioned protocols, Xmipp provides several utility pro-
tocols, e.g., the Extract (Movie) Particles protocol for particle extraction from the
micrograph or the movie, the Center Particles protocol for realignment of the uncen-
tered particles, the Remove Duplicates protocol, the Screen Particles and Screen Deep
Learning protocols for rejection based on several metrics or a deep learning model, or the
protocol for Particle Boxsize estimation.

2.4. 2D Classification

2D classification is used to group similar particles into 2D classes, which are then
filtered (to remove bad particles that the previous step has incorrectly identified as good
ones) and used to generate the first 3D model of the sample at low resolution.

In 2014, we designed the CL2D protocol [15] for automatic 2D classification and outlier
detection using a mixture between robust K-means and a hierarchical clustering algorithm.
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We showed that the core class (particles with low variation around the centroid of the
homogeneous class) and the stable class core (a subset of class core images that is classified
together in the classification hierarchy) could effectively remove contaminating particles.
CL2D was accelerated via GPU in 2018 in the GL2D protocol. This GPU version of CL2D
also includes the possibility of assigning particles to a certain class of a static set of classes
on the fly.

In addition to CL2D, Xmipp provides protocols for 2D-alignment using a maximum-
likelihood target function (ML2D) and the protocol for classification using Kohonen’s Self-
Organizing Feature Maps (SOM) and Fuzzy c-means clustering technique (FCM) called
KerdenSOM.

2.5. Ab-Initio Model Building

In 2014, we proposed a method based on an initial non-linear dimensionality reduction
approach and random sample consensus [16], available via the RANSAC protocol. In 2015, we
revised the fundamental mathematical expressions supporting Random Conical Tilt [17],
that can be used to produce the initial structure. We also reformulated the initial volume
problem within a weighted least squares framework, calculating the weights through a
statistical approach based on the cumulative density function of different image similarity
measures [18]. This work is available via the Reconstruct Significant protocol.

The most recent approach that we proposed [19] is a consensus protocol for the initial
volume. It considers the whole population of initial volumes along with the experimental
images. It allows the population to evolve according to the dynamics given by swarm
optimization, thus avoiding user intervention. It can be used through the Swarm Consensus
protocol.

To evaluate the quality of the 3D volumes, we suggested a statistical methodology
that does not require tilt-pair images [20]. We further enhanced this method [21] to provide
objective information about the precision and accuracy of each experimental particle
image used in the reconstruction. These two methods are available through the Validate
Nontilt and the Multireference Alignability protocols.

Xmipp also provides the Shift Particles protocol to correct the center of the parti-
cles in 2D if the 3D map compatible with them is shifted by any arbitrary amount in any
direction.

2.6. 3D Alignment and Reconstruction

We introduced a gridding-based direct Fourier method for the three-dimensional
reconstruction approach that uses a weighting technique to compute a uniform sampled
Fourier transform [22] in 2015. In 2019, we accelerated this algorithm [23] as part of
the extended collaboration with the High-Performance Computing research group at the
CERIT-SC Centre in the Czech Republic. Both the CPU and GPU versions are available via
the Reconstruct Fourier protocol.

While participating in the Map Challenge by the Electron Microscopy Data Bank, we
developed the High-Resolution Reconstruction Protocol (HighRes) [24]. This protocol uses
an approach similar to the standard projection matching with some important modifica-
tions, especially in detecting significant features in the reconstructed volume. HighRes was
eventually accelerated using GPU in 2020.

We also helped with the evaluation of the Map Challenge [25] and we proposed a pair
comparison method to sort reconstructions based on a figure of merit [26].

DeepAlign is our latest contribution towards 3D alignment [27]. We showed that the
combination of deep learning and the classical projection matching approach could lead to
improved reconstructions while decreasing the computational time.

In addition to the aforementioned protocols, Xmipp provides several utility protocols
for volume (pre)processing, such as Preprocess volumes for thresholding or segmentation,
the Filter Volumes for filtering, the Crop/resize volumes protocol, the Create|Apply
3D mask protocol, the Helical|Rotational Symmetry parameter estimation protocol, and
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the Validate overfitting protocol for checking how the resolution changes with the
number of projections used for the 3D reconstruction.

2.7. 3D Classification

With the increasing resolution of the microscopes, automated data acquisition, and
better and faster processing abilities, we can detect minor conformational changes in the
examined sample. We participated in the web service 3DEM Loupe [28], which allowed for
analysis of the reconstructed volume via Normal Mode Analysis (NMA). This service is
no longer available. In 2014, we published a method on the detection of the continuous
heterogeneity in Cryo-EM images and the visualization of these images in a conformational
space of reduced dimension (Hybrid Electron Microscopy NMA, HEMNMA [29]), featuring
easy-to-use and comprehensible graphical interface and the protocol in Xmipp [30]. This
method is based on NMA of an atomic structure or a Gaussian-based representation of the
reconstructed volume. The Gaussian-based representation of the reconstructed volume is
described in detail and its performance fully evaluated in 2016 for NMA [31] and other
tasks such as volume denoising in [32]. All work related to NMA is currently available via
the ContinuousFlex plugin in Scipion [33], which is maintained by the group of Dr. Jonić.

The ContinuousFlex plugin currently contains the protocols required to run HEMNMA
method (e.g., Convert to Pseudoatoms protocol, NMA Analysis protocol, NMA Alignment
protocol, and NMA Dimred protocol) [33], StructMap method (Structure Mapping proto-
col) [34], and HEMNMA-3D method (Convert to Pseudoatoms protocol, NMA Analysis
protocol, NMA Alignment Vol protocol, and NMA Vol Dimred protocol) [35]. The same
Convert to Pseudoatoms and NMA Analysis protocols are called in both HEMNMA and
HEMNMA-3D. The ContinuousFlex plugin additionally provides a protocol for synthesiz-
ing single particle images (Synthesize Images protocol) and a protocol for synthesizing
subtomograms (Synthesize Subtomograms protocol) from a given atomic structure or an
EM map. As these protocols can synthetize Cryo-EM and Cryo-ET data with several types
of conformational distributions as well as without any conformational heterogeneity, they
can be used for testing various methods, including those provided by ContinuousFlex
plugin.

StructMap features a visualization technique that is based on a statistical analysis of
distances among elastically aligned pairs of EM maps [34]. If one map is continuously
deformed to fit the other map, we can visualize an arbitrary number of Cryo-EM maps as
points in lower-dimensional distance space.

HEMNMA-3D is an extension of HEMNMA to analysing continuous heterogeneity in
Cryo-ET subtomograms and includes missing-wedge compensation [35]. Each Cryo-ET
subtomogram is analyzed in terms of conformational differences with respect to a reference
(an atomic structure, a Cryo-EM map or a subtomogram average), independently from
other subtomograms, which results in a conformational space of reduced dimension in
which all subtomograms are visualized.

One of the main limitations after discrete 3D classification is that typically we obtain
few majoritarian classes. These classes are capturing most of the particles and can be
used to generate high-resolution maps. The rest of the 3D classes captured are usually
minoritarian with low Signal-to-Noise ratios, which cannot be refined to high resolution.
To increase the population of these minoritarian classes, we have recently proposed an
approach to locally deform particles by the Optical Flow algorithm from one conformation
to a different (but close) conformation, thus, increasing the number of particles of the
minoritarian 3D classes [36]. This work is available via the Enrich protocol.

In 2016, we published a work on the automatic analysis of the forces associated with
local deformations [37] available via the Calculate Strain protocol.

2.8. Sharpening, Denoising, and (Local) Resolution Estimation

Interpretation of the reconstructed volume can still be challenging due to the noise at
high-frequency signal components. In 2016, we proposed denoising the EM maps using
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Gaussian functions [32]. This work is available via the Convert to Pseudoatoms protocol
from the ContinuousFlex plugin for Scipion.

Local MonoRes protocol [38] is our method for local resolution estimation, which
provides fully automatic and fast per-voxel resolution estimations. We later modified
the algorithmic core of this MonoRes to deal with spatially variant noise and, therefore,
estimate the local resolution in Electron Tomography. This algorithm is called MonoTomo [39]
and, up to our knowledge, is the unique local resolution method for electron tomography.

In 2019, we proposed Local DeepRes, a deep learning 3D feature detection algorithm
for local resolution estimation [40], and Localdeblur Sharpening [41], a fully automatic
local sharpening method exploiting the local resolution information.

While local resolution provides a per-voxel estimation of the final resolution, it still
does not provide information about resolution in specific directions. In 2020, we proposed
MonoDir [42], which decomposes local resolution into the different projection directions,
thus, providing a detailed level of analysis of the final map.

Our newest contribution is towards comparison of the Cryo-EM volumes. Current
proposals to compare Cryo-EM volumes perform map subtraction based on adjustment
of each volume grey level to the same scale. In [43], we present a more sophisticated way
of adjusting the volumes before the comparison, which implies adjustment of grey level
scale and spectrum energy, but keeping phases intact inside a mask and imposing the
results to be strictly positive. The adjustment that we propose leaves the volumes in the
same numeric frame, allowing to perform operations among the adjusted volumes in a
more reliable way. This work is available in the development version of Xmipp and will
be included in the next release via Volumes Adjust, Volumes Subtraction and Volume
Consensus protocols.

2.9. Model Building

Partially related to model building is our contribution to the 3D model construction
from the atomic structures using a very accurate conversion with Electron Atomic Scattering
Factors [44]. It is available via the Convert PDB protocol.

In 2020, we contributed towards the inter-package integration of the model-building
tools in Scipion [45] by adding several protocols, e.g., Extract Asymmetric Unit protocol
or Export to DB protocol to help in the export process to the EMDB/PDB database. Note
that to see these protocols, Scipion View has to be changed to the Model building.

To evaluate the quality of the map-to-model fit, we have proposed the FSC-Q mea-
sure [46] available via the Validate FSC-Q protocol, which is a quantitative estimation of
how much of the model is supported by the signal content of the map.

2.10. Our Other Contributions and Xmipp Applications

We have used our knowledge of the SPA and many of the above-mentioned programs
while processing data of multiple challenging structures. For example, we helped to
reconstruct or analyze the VirE2-ssDNA complex [47], a bacterial multidrug homodimeric
ABC transporter [48], human adenovirus light particles [49], polyhedral protein cages
that efficiently self-assemble in vitro and in vivo [50], three-dimensional structure of
paired C2S2M PSII-LHCII supercomplexes [51], oligomers of HsCPAP897-1338 [52], human
RuvBL2 protein coding gene [53], human mAb–fHbp–mAb cooperative complexes [54],
the flexibility and conformational dynamics of the infamous SARS-CoV-2 spike [55], and
the triangular bipyramid fold comprising 18 coiled-coil-forming segments [56].

In 2014, we proposed a standard for transferring the information on the three-dimensional
orientation between packages [57].

In 2017, we provided a detailed survey of the iterative reconstruction algorithms used
in SPA and Electron Tomography [58]. In the same year, we also analyzed theoretical foun-
dations and derivation of several concepts and thresholds used for resolution assessment
in 3DEM [59].



Molecules 2021, 26, 6224 7 of 14

In 2019, we published a survey of the analysis of continuous conformational variability
of biological macromolecules [60] and reference analysis of the β-galactosidase using
streaming in Scipion [61].

In 2020, we showed that global B-factor sharpening and deposition of only the sharp-
ened maps in the Electron Microscopy DataBase could be detrimental [62]. In the same
year, we also published a review of local resolution concepts and algorithms [63].

In 2021 we had a look at several issues related to data processing. In [64], we suggested
that principal component analysis (PCA) is a useful tool to analyze flexibility, but only
at low resolution. In [65], we analyzed the sensitivity to preferred orientations of several
image processing algorithms used for angular assignment and 3D reconstruction. Then, we
showed how to combine Xmipp and other plugins in Scipion to distinguish correctly from
incorrectly estimated parameters of the processing pipeline to achieve a more confident
assessment about the reconstructed structures [66]. Finally, in [67] we showed how Xmipp
could be utilized with other protocols available via the Scipion framework in a complex
processing pipeline. We also showed how combination of different packages and consensus
tools can improve the resolution of the reconstructed volume. More specifically, the
Plasmodium falciparum 80S Ribosome (EMPIAR entry: 10028, EMDB entry: 2660) with
reported resolution of 3.2 Å has been reconstructed at 3 Å.

2.11. GPU Acceleration

Several of the Xmipp protocols and programs have their computationally intensive
portions of the code accelerated via GPU using the CUDA Toolkit. The deep learning
programs then use TensorFlow or Keras. The list includes the most performance critical
protocols, such as CL2D (GL2D) [15], DeepAlign [27], RANSAC [16], FlexAlign [6], Projection
Matching, Reconstruct Fourier [23], Reconstruct Significant [18], HighRes [24],
Swarm Consensus [19], Split Volume, and Validate Overfitting protocol.

Programs using deep learning and the Optical Flow movie alignment can be executed
both on CPU and GPU, though GPU is recommended for performance reasons.

We also use two additional tools to further optimize the performance of the GPU
code. We have experimentally used the Kernel Tuning Toolkit (KTT) [68] to optimize
the execution of several programs on the most commonly used GPUs. We also use the
cuFFTAdvisor [69] to optimize the parameters used for the invocation of the cuFFT library.

2.12. New Programs and Protocols Summary

Figure 2 shows publications listed above, except those listed in the Section 2.10 [1,2,35].
As can be seen, the majority of contributions was towards the 3D classification and ab-initio
model building, followed by 3D alignment and reconstruction and sharpening, denoising,
and (local) resolution estimation. This is expected, as with the advances in the quality
and amount of the input images, we need new techniques to fully utilize the information
present in data. On the other end of the spectra, we have published only a single publication
on the 2D classification implying that we no longer see 2D classification as a limiting factor.

One of the possible ways to measure the impact of the presented work is via citations.
Figure 3 shows citations (As reported by Scopus, August 2021) of publications listed above,
except those listed in the Section 2.10 and [35]. Our most cited papers, [2] and [1] with
208 and 165 citations, are also excluded. On average, we have over 14 citations per paper
and over 63 citations on average per category. The most cited paper included in the figure
is [38] with 74 citations, followed by [29] with 49 citations and [5,10,16] with 43 citations
each.

Figure 4 shows publications of the presented work by year, including those listed in
the Section 2.10, [2] and [1], excluding [35]. On average, we publish or participate in over
7 papers per year.

Figure 5 shows citations of Xmipp related publications mentioned above by the year
of publishing, including those listed in the Section 2.10, [2] and [1], excluding [35]. As can
be seen, both [2] and [1] had a huge impact on the Cryo-EM community.
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Scipion Protocol Popularity

Scipion provides a list of the most used protocols at http://scipion.i2pc.es/report_
protocols/protocolTable/. Provided that the user agreed with this data collection, each
time the Scipion project is opened, a list of protocols used within this project is sent to our
servers. This information is useful for checking which protocols are more used than others
and concentrating on any performance issue related to those. This database currently holds
information about over 25,000 workflows opened since November 2016.

At the time of writing this article (August 2021), Xmipp provided 37 out of the 100
most popular protocols. Out of them, the Manual|Auto Picking protocol [10], CL2D [15],
HighRes [24], MonoRes [38], and several auxiliary protocols were the most used (each one
has been used over 3000 times).

3. Technologies Used in Xmipp

As mentioned before, Xmipp is a suite of programs and (Scipion) scripts. It is a
collaborative open source project hosted on GitHub, divided into four main repositories:

• Xmipp (https://github.com/I2PC/xmipp/) is the main repository.
• XmippCore (https://github.com/I2PC/xmippCore/) contains code responsible for

data handling.
• XmippViz (https://github.com/I2PC/xmippViz/) contains code responsible for data

visualization.
• Scipion-em-xmipp (https://github.com/I2PC/scipion-em-xmipp/) contains proto-

cols for Scipion.

Historically, over 70 people participated in writing Xmipp. Currently, we version
786 C/C++ files (419,000 LOC (Lines of Code, comments excluded, including tests)),
278 Python files (55,500 LOC), and almost 200 Java files (31,100 LOC), contributing to the
290 executables and scripts used in 110 Scipion protocols.

Xmipp requires C++11 compatible compiler and JDK 11. Scipion protocols are written
with Python 3.x. Xmipp provides Python binding, as well as optional Matlab binding.
Optionally, Xmipp can use CUDA 8 to 11 and OpenCV versions 2 to 4. Xmipp uses SCons
(https://scons.org/) as its construction tool.

We use multiple technologies to parallelize the execution of our binaries. In addi-
tion to MPI (https://www.open-mpi.org/) and built-in parallelization in Scipion, we
use the CTPL library (https://github.com/vit-vit/CTPL) for multithreading, CUDA
(https://developer.nvidia.com/cuda-toolkit) and cuFFTAdvisor (https://github.com/
HiPerCoRe/cuFFTAdvisor) for GPU acceleration, and deep learning via TensorFlow
(https://www.tensorflow.org/) and Keras (https://keras.io/). Experimentally, we also
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use StarPU (https://files.inria.fr/starpu/) for processing on heterogeneous machines and
KTT (https://github.com/HiPerCoRe/KTT) for CUDA kernel optimization.

To ensure a certain quality of the code, we use a combination of unit testing via
googletest (https://github.com/google/googletest), GitHub Actions for automatic project
build, and static code analysis via SonarCloud (https://sonarcloud.io/organizations/i2
pc/projects), pull request reviews, and integration testing via dedicated buildbot (https:
//buildbot.net/, http://scipion-test.cnb.csic.es:9980/)).

4. Summary

As can be seen, Xmipp has been heavily enhanced since its last publication in 2013.
We have proposed, implemented, and provided to the community multiple algorithms for
solving many steps of the SPA and ET processing pipeline.

There are three main general focus points of Xmipp.

1. High-quality results. As a general premise, we have favored accurate results over
execution speed.

2. Automation of the data processing. The benefits include increased reproducibility
and faster processing due to the minimization of manual intervention.

3. Consensus algorithms. By combining the results of multiple algorithms solving the
same problem, we may verify the correctness of the answer.

4. Acceleration of the processing. Proper resource utilization and utilization of GPUs
allow for much faster processing than just a few years ago.

We are also working hard to introduce new protocols for Electron Tomography, which
is getting popular and a novel approach to conformational landscape analysis. Both will be
accompanied by a publication once ready.

We also plan on improving the so-called meta-protocols, that is, protocols that create
multiple intermediate protocols. These meta-protocols allow for fine-level control of the
computation, such as the HighRes refinement or 3D classification of the input images.

In addition to the aforementioned papers, we are preparing a publication on ap-
proximating deformation fields to analyze continuous heterogeneity of biological macro-
molecules by 3D Zernike polynomials. This publication has been accepted and it is to be
published soon.

We would also like to focus more on additional performance and resource utilization
optimization as part of the long-term collaboration with the High-Performance Comput-
ing research group at the CERIT-SC Centre, Institute of Computer Science at Masaryk
University in the Czech Republic.
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6. Střelák, D.; Filipovič, J.; Jiménez-Moreno, A.; Carazo, J.M.; Sorzano, C.Ó.S. FlexAlign: An Accurate and Fast Algorithm for Movie
Alignment in Cryo-Electron Microscopy. Electronics 2020, 9, 1040. [CrossRef]

7. Sorzano, C.Ó.S.; Fernández-Giménez, E.; Peredo-Robinson, V.; Vargas, J.; Majtner, T.; Caffarena, G.; Otón, J.; Vilas, J.L.; de la
Rosa-Trevín, J.M.; Melero, R.; et al. Blind estimation of DED camera gain in Electron Microscopy. J. Struct. Biol. 2018, 203, 90–93.
[CrossRef]

8. Marabini, R.; Carragher, B.; Chen, S.; Chen, J.; Cheng, A.; Downing, K.H.; Frank, J.; Grassucci, R.A.; Bernard Heymann, J.; Jiang,
W.; et al. CTF Challenge: Result summary. J. Struct. Biol. 2015, 190, 348–359. [CrossRef]
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and OpenCL kernels and its dynamic autotuning with Kernel Tuning Toolkit. Future Gener. Comput. Syst. 2020, 108, 161–177.
[CrossRef]
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ABSTRACT
Fast Fourier transform (FFT) has many applications. It is often one
of themost computationally demanding kernels, so a lot of attention
has been invested into tuning its performance on various hardware
devices. However, FFT libraries have usually many possible settings
and it is not always easy to deduce which settings should be used
for optimal performance. In practice, we can often slightly modify
the FFT settings, for example, we can pad or crop input data. Sur-
prisingly, a majority of state-of-the-art papers focus to answer the
question how to implement FFT under given settings but do not pay
much attention to the question which settings result in the fastest
computation.

In this paper, we target a popular implementation of FFT for
GPU accelerators, the cuFFT library. We analyze the behavior and
the performance of the cuFFT library with respect to input sizes
and plan settings. We also present a new tool, cuFFTAdvisor, which
proposes and by means of autotuning finds the best configuration
of the library for given constraints of input size and plan settings.

We experimentally show that our tool is able to propose different
settings of the transformation, resulting in an average 6× speedup
using fast heuristics and 6.9× speedup using autotuning.
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1 INTRODUCTION AND RELATED WORK
The Fourier Transform is an important tool in many fields of science.
Digital signal processing [3], optics [7], astronomy [14], all these
are using its variant, so called Fast Fourier Transform (FFT) to
somehow process the data. Currently, there is a number of libraries
for virtually any target device. To name the most popular ones, one
should mention FFTW [5] for CPU, clFFT [1] and cuFFT [2] for
GPU.
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cuFFT is an NVIDIA proprietary implementation of the FFT, with
API similar to the one of the FFTW and is de-facto a standard GPU
implementation for developers using CUDA. cuFFT allows a user
to perform the following transformations:

• in / out-of-place;
• real / complex;
• forward / inverse;
• single / batched;

• strided / consecutive;
• 1D / 2D / 3D;
• half / float / double pre-
cision;

The size of the signal and parameters of FFT affect numerical
precision, the execution time and memory requirements necessary
to perform the transformation. In many applications, it is possible
to relax the requirements of an ’exact’ size of the signal. It might be
acceptable to crop (both in time / frequency domain) or pad it with
zeros (in the time domain) prior the transformation. In other cases,
the processing pipeline can be altered to support batched execu-
tion and thus minimize the kernel execution overhead, increase
parallelism or possibly mask the memory transfers.

Even though there is a comprehensive manual available for the
library, it doesn’t explicitly state which settings should be used
for maximum performance, e. g. if increasing the signal size will
result in shorter execution time due to better effectivity or longer
execution due to more data being processed.

In this paper, we show the comprehensive analysis of the behav-
ior of the cuFFT library for 1D signals. We analyze the performance
and memory requirement necessary to perform the different types
of transformations. We also present a new tool that can be used to
obtain better settings of the cuFFT library for the required transfor-
mation, which is using both heuristics and autotuning.

To the author’s best knowledge, no extensive analysis of the be-
havior of this library has been performed, except [10], who analyze
the influence of stride and batch parameter of the FFT. Unlike e. g.
Govindaraju et al. [8] who focused on efficient implementation of
FFT, we are looking for optimal parameters with a given imple-
mentation. Steinbach and Werner [15] introduce a benchmark for
heterogeneous platforms that supports multiple FFT implementa-
tions and allow the user to select the best library for their need, but
does not recommend efficient setup.

There is a number of other articles that focus on better / faster
implementation for e. g. FPGA [9], autotuning for a specific dimen-
sion of the input [13], using autotuning with OpenCL [11] or FFT
for specific purposes [4]. However, none of the papers cited above
analyses the behavior of the cuFFT in detail or searches for the
most efficient configuration of FFT under user-defined constraints.

The rest of the paper is organized as follows. Section 2 shows
performance and memory analysis of the library in respect to the



ANDARE’18, November 2018, Limassol, Cyprus David Střelák and Jiří Filipovič

input signal length and type of the transformation and derives
rules of thumb for efficient settings. In Section 3 we introduce
and evaluate a new tool for automatic determination of the better
setting of the cuFFT library. Finally, Section 4 concludes the paper
and sketches the future work.

2 ANALYSIS
In this section, we empirically analyze the performance andmemory
requirements of the cuFFT. We also compare the measured data to
recommendations from a cuFFTmanual, checking if they are correct
and complete. Finally, we identify rules yielding efficient usage of
the cuFFT. We focus on signal sizes which are sufficient to utilize
GPU parallelism. For shorter signals, batched FFT is required. We
also restrict the measurement to 1D signals, as multi-dimensional
FT can be expressed as a series of 1D FTs.

2.1 Performance
Unlike for FFTW [6], the cuFFT does not have any white paper.
We have therefore consulted the materials available in the cuFFT
documentation [2]. Then we experimentally tested the behavior
of the library to find out whether the description is sufficient to
estimate a ’good’ settings for the library. Bellow is an expected
behavior we have extracted from the documentation:

(1) the cuFFT is highly optimized for input sizes that can be
written in the form 2a × 3b × 5c × 7d (further on referred as
recommended size, input sizes that cannot be written in this
form are referred as discouraged), in general the smaller the
prime factor, the better the performance, i. e., powers of two
are the fastest;

(2) there are also radix-m building blocks for other primes,
whose value is < 128;

(3) restrict the size along each dimension to use fewer distinct
prime factors;

(4) transforms of lower precision have higher performance;
(5) real-valued input or output requires fewer computations

and data than complex values and often have faster time to
solution;

(6) batched transforms have higher performance than single
transforms;

(7) ensure problem size of x dimension is a multiple of 4;
(8) use out-of-place mode, as this scheme uses more efficient

kernels than in-place mode;
(9) in the worst case, the cuFFT Library allocates space for

8*batch*n[0]*..*n[rank-1]1 cufftComplex or cufftDoubleCom-
plex elements;

(10) in some specific cases, the temporary space allocations can
be as low as 1*batch*n[0]*..*n[rank-1] cufftComplex or cufft-
DoubleComplex elements.

In order to check the recommendations, we have tested 9,500
transformations, randomly selecting the following combinations of
the settings for the FFT 2:
• 1D / many plan;

1batch denotes the number of transforms, rank is the number of dimensions of the
input data, n[] is the array of transform dimensions
2the plan defines parameters of FFT, it may be created once and executed repeatedly
with different inputs. For detailed explanation see [2]

PC1 PC2
CPU i7-3820 Xeon E5-2630 v3
RAM 8GB 128GB

GPU
GTX 1070
8GB GDDR5

Tesla K20Xm
6GB GDDR5

GPU GFLOPS
(Boost)

5783 (6463) SP
181 (202) DP

3935 (N/A) SP
1312 (N/A) DP

GPU driver 390.25 390.87
Cuda release 8.0, V8.0.61
Table 1: Configuration of the test machines

Figure 1: Comparison of the performance of multiple trans-
formations

• float / double (half precision is available only on SM_53 and
is restricted to input sizes which are multiples of two only);
• real-complex / complex-complex;
• forward / inverse;
• in / out-of-place;
• different sizes of the input.

For each execution, we have recorded:
• actual size of the plan;
• execution time of the transformation;
• performance in 1k elements / ms;
• number of kernel invocations;

Each transformation was run 10 times and results were averaged
(where applicable).

The results of the FFT transformation represented further in
the paper were executed on PC1 shown in Table 1. We use at least
1M elements of the FFT, as this is the moment when the GPU is
getting fully saturated. The 20M upper limit has been selected to
allow comparison of some more memory demanding transforms.
The result on the machine PC2 is not shown, as they differ only
in relative scale and spread, given by the performance of the GPU.
The observed behaviour is however very similar.

Figure 1 shows the performance of the cuFFT processing 1D
signal, for multiple plans, settings of the plan and input sizes. It
can be observed that major factors affecting the speed of the cal-
culations are single / double precision and whether the size of the
input is recommended, which confirms rules 1 and 4. In some cases,
discouraged input size will slow down the performance more than
using double precision. Indeed, using generalized linear model [12]
(GLM), we obtained p value respective to the ’whether the size
is recommended’ parameter is less than 2 · 10−16 (F value 74,771),
which is less than for the decimal precision parameter (p < 2 · 10−16,
F = 66,968). Some performance penalization of the double precision
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Figure 2: Performance comparision of the C2C and R2R
transforms, various plans and settings, recommended sizes,
SP

Figure 3: Performance comparision of the in-place and out-
of-place C2C transforms, various plans and settings, recom-
mended sizes, SP

Figure 4: Performance comparision of the in-place and out-
of-place R2R transforms, various plans and settings, recom-
mended sizes, SP

transform is expected and documented (rule 4). However, although
FFT is in general bandwidth-bound on GPUs, the slowdown of
double precision FFT is not proportional to bandwidth increase (see
SP / DP performance of GTX 1070 in Table 1).

The following analysis of the observed performance range is done
only on the recommended input sizes using single precision (SP). Fig-
ure 2 shows that the complex-to-complex (C2C) transformations
are mostly slower than real-to-complex and complex-to-real (from
now on referred as R2R), respectively, as hinted by rule 5. This is
confirmed by GLM (F = 3,855, p < 2 · 10−16). However, the C2C
performance is more stable with respect to input size comparing to
R2R, so for certain input sizes, C2C may be preferred.

Figures 3 and 4 show that R2R transformations are strongly
affected by the placeness of the transformation, as opposed to the
C2C. This behavior is not documented.

Figure 5: Performance comparision of the recommended
sizes, out-of-place R2R transforms, 1D/Many plan, SP

Figure 6: Performance comparision of the recommended
sizes (even only), out-of-place R2R transforms, 1D/Many
plan, SP, in respect to number of terms

The high spread performance of the R2R out-of-place transfor-
mation is then caused by the different sizes of the input. As shown
in Figure 5, the input size divisible by 2 yields almost double per-
formance (as hinted by the rule 1 and 7).

The cuFFT documentation proposes to use the sizes that can be
expressed with as few terms as possible to obtain good performance
(rule 3). Figure 6 shows, however, that using fewer terms does
not always lead to better performance. As the cuFFT code is not
publicly available, we have analyzed the library with NVIDIAVisual
Profiler to investigate how the input size affects what is actually
happening in the GPU. The input is processed by a series of kernels,
according to the plan. The signal is decomposed into simpler parts,
and each part is then processed by the optimized kernel that solves
the problem directly. We have found that, compared to rule 3, the
performance is much better correlated to the number of the kernel
invocations being run to solve the transformation, as demonstrated
in Figure 7. As we show later though, there is a relation between the
number of terms, their power and the number of kernel invocations.

2.2 Batched execution
In many cases, it is possible / desirable to process multiple signals in
batch. The 1D plan, in contrast to 2D and 3D plans, is able to process
multiple signals at once. In addition, the cuFFT offers an "universal"
plan able to process (multiple) signals of different dimensionality,
so calledmany plan. In the case of the 1D signal, one can, therefore,
process multiple signals in different fashions:

(1) N invocations of the 1D plan transform
(2) N invocations of the 1D many plan transform
(3) 1 invocation of the batched 1D plan transform
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Figure 7: Performance comparision of the recommended
sizes (even only), out-of-place R2R transforms, 1D/Many
plan, SP, in respect to number of invoked kernels

(4) 1 invocation of the batched 1D many plan transform
First two options will be slower due to additional kernel exe-

cution overhead. Batched execution can maximize the utilization
of the GPU, thus increasing the performance. We have compared
1D and many plans solving the batched execution and found no
difference in performance. As the many plan is more universal (it
can run transform of a single/batched (strided) 1D/2D/3D signal), we
humbly recommend to use it instead of the specialized plans.

2.3 Memory requirements
The memory requirements depend on several factors, namely the
data type (float / double), type of the transform (C2C / R2R), place-
ness (in / out-of-place) and size of the input signal (see rules 9
and 10). As shown in the Figure 8, recommended sizes have almost
always much smaller memory requirements. Results of the GLM
confirm that the relative size of the plan is the same regardless the
plan type (p = 0.998), i. e. 1D /many plan will require the same mem-
ory in respect to the total number of elements processed. Again,
being recommended affects the plan memory size more (F = 72,798)
than the use of double precision (F = 9,977) and different type of
the transform (F = 138.25). This behavior is not documented.

Another important observation is that discouraged sizes require
approx (per 1k elements) 63kB for double precision and 31 kB for
single precision. Recommended sizes can use as little as 7.8 kB for
double precision and 3.9 kB for a single precision. The memory
size penalization multiplier for the discouraged sizes is therefore
around 8.

A closer analysis of the recommended sizes (Figure 9) shows
other interesting, undocumented limitation of the R2R transforms.
If the recommended size is not divisible by two, i. e. a = 0 in the
rule 1, the memory requirements again increase to 31.25 kB for
double and 15.62 kB for a single precision per 1k elements, i. e. they
increase by factor 4.

2.4 Static library analysis
From the documentation, it is not apparent how the factorization
of the input size and number of terms affect the number of kernels
necessary to execute the transformation. To understand its behavior
better, we have also analyzed the content of the static cuFFT library.
The library, among others, contains kernels specialized to perform
FFT of certain sizes. We have identified specialized kernels for
different powers of 2, 3, 5, 7 and kernels for primes smaller than 128,

Figure 8: Comparison of the memory requirements for the
plan for different sizes, multiple plans and settings

Figure 9: Comparison of the memory requirements for the
R2R/C2C plan for recommended sizes,multiple plans and set-
tings

as promised by documentation (rule 1 and 2). In addition, the library
contains several specialized kernels for products of 2, 3, 5 and 7,
e. g. 2× 32 × 5× 7. Transformations of all sizes and dimensions need
to be decomposed to (possibly) multiple calls of these specialized
kernels. In other words, should the size of the input match one of
these kernels, the transformation can be performed faster.

2.5 Rules of thumb
As can be seen from the performed analysis, the rules of thumb for
the cuFFT can be summed as follows:

(1) make sure that input size can be written in the form 2a ×
3b × 5c × 7d , where a , 0

(2) make sure the size of the input can be decomposed to as few
kernel calls as possible

(3) unless necessary, use R2R, float precision, out-of-place ver-
sion of the transform

(4) use batched, many plan transforms (there is no or negligible
performance loss for a single transformation and perfor-
mance boost for batched ones)

In addition to faster execution and minimal memory requirements,
these rules will allow you to use some more advanced features
(multi-GPU execution, callbacks), which are not defined otherwise
(see [2]).

3 cuFFTAdvisor
Even though the rules of thumb from the previous section are rather
straightforward, it might be difficult to follow them in real appli-
cations due to e. g. dependency on an user input. Also, executing
the more efficient FFT implementation may or may not improve
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1 0 -1 -2 -3 sum
count 1978 2928 1659 912 37 7514
% 26.32 38.97 22.08 12.14 0.49 100

Table 2: Statistics of the difference between expected and ac-
tual kernel invocations

the performance when input data are to be padded, as a larger
amount of data needs to be processed. For these reasons, we have
implemented a tool we call cuFFTAdvisor 3, available under MIT
license. This software implements three main use-cases:

(1) benchmark of a specific transform;
(2) fast heuristics to obtain better settings for a specified input;
(3) benchmarking of N results of the heuristics and searching

for the fastest one empirically, i. e. autotuning.
cuFFTAdvisor is able to propose better higher/smaller sizes (with

user-defined constraints of maximal change of the size) of the input
and other settings for the library, in respect to a maximum memory
restriction. For the rectangular 2D or 3D input, a transposition of
the signal might also be tested.

cuFFTAdvisor is a C++ software that can be used as a stand-alone
program or a library that can be called from an existing code, so
the application can properly react on an input of the size unknown
at a design time.

3.1 Implementation
In the following description, we consider that the padding of the
signal is requested. Cropping is also supported by the tool and
the pipeline is similar to padding with exception of the initial size
generation.

For a given input, the tool analyses the input size and generates
padded candidate sizes, which can be expressed as 2a ×3b ×5c ×7d ,
where a , 0, and which are limited by the maximal signal length
or by the nearest pure power of two4. For each size, the tool also
estimates the number of kernel calls necessary to execute the trans-
formation. This number is obtained by recursively decreasing the
power of each prime, thus simulating the execution of one of the
kernels present in the static library. This approach is not the same
as the one used by the cuFFT library (which is not published). How-
ever, it approximates it with reasonable accuracy, as 87% of the
estimations are within ±1 range, as tested on over 7,500 random
transformations (see Table 2). A minimal number of kernel invoca-
tions, i , is obtained from this list of candidate sizes, and those sizes
that need more than i + 2 invocations are discarded.

Using the cross product of possible transformation parameters,
we generate candidate transformations. Should the user restrict
the search space by e. g. specifying that he/she is only interested
in batched float forward transformations, other types are skipped.
Each candidate transformation is then checked for the memory
requirements using the cuFFT API. Only those transformations that
do not exceed memory limitations are considered. Finally, candidate
transformations are sorted using the rules of thumb from Section 2.5,
namely5 SP > DP, R2R > C2C, out-of-place > in-place, batched >
not batched, then by the number of elements, i. e. size of the signal.
3https://github.com/DStrelak/cuFFTAdvisor.git
4expected to have the best performance
5’>’ here means ’is faster’

Only N (user specified) fastest transformations are then pre-
sented to the user. The user can decide to execute the autotuner,
which benchmarks these N transformations on the selected device
and re-sort them by the actual performance.

3.2 Evaluation
To evaluate the cuFFTAdvisor, we have performed following test.
We have randomly generated parameters6 for 2000 1D transfor-
mations, with batch size ranging from 1 to 6 and total number of
elements ranging from 1,000,000 to 20,000,000.

For each transform, we have generated several padded transfor-
mations with the same parameters except the x-size. To mimic the
usage of the cuFFT without cuFFTAdvisor, we have followed the
official documentation and generated recommended sizes using up
to all four terms. Only the closest size from each category has been
used. We have also generated transformations with a recommended
size using cuFFTAdvisor and we have performed the autotuning for
the 20 best results of the heuristics, without any restriction on max-
imal padding size or memory consumption. We have benchmarked
all transformations and for each transform, we have recorded the
same parameters as stated in Section 2.1.

The result of our experiment using GeForce GTX 1070 is given
in Table 3. As it can be seen, padding to any recommended size will
result in an average 5× – 6× speedup over the randomly-generated
input. The fastest average runtime has been observed when two
terms are used, however, this setting may result in a slowdown in
some cases. The cuFFTAdvisor’s heuristics slightly outperforms
naive padding and brings no slowdown in all cases tested. The auto-
tuning clearly brings the highest performance. Considering Tesla
K20, we have obtained similar results: the simple padding results in
6.26× speedup in the best case (using two terms), heuristics results
in 6.24× speedup with no slowdown and smaller memory foot-
print, and autotuning results in 7.14 speedup with 2.62% memory
overhead.

The size of the padding is shown in the Table 4. As expected,
padding to recommended size with a single term results in the
largest memory overhead. Using up to four terms allows the small-
est padding comparable to the one proposed by cuFFTAdvisor’s
heuristics. Autotuning brings bigger padding, of over two percents
on average. Since the recommended sizes will typically result in up
to 8 times smaller memory requirements of the plan, we believe
this is an acceptable result. However, cuFFTAdvisor can also be
instructed to limit maximal padding, should it be critical for the
application.

We have also measured the execution of the cuFFTAdvisor as a
standalone application. Times of the heuristics are ranging from
0.5 to 1 second and is independent on the input size and type of
the transform. The timing of autotuning is presented in Figure 10.
Autotuning is, of course, more time demanding, and fully dependent
on the type and size of the tested transformation. The observed
dropdowns are close to pure powers of two, which have the best
performance, and therefore limit the size of the search space.

To measure if the time spent on autotuning is justifiable, we
have also compared the time of the original transformation and the

6X size, batch size, float / double, real / complex, forward / inverse, in / out-of-placeness,
1D / many plan
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1 term 2 terms 3 terms 4 terms 1-4 terms heuristics autotuned
count 2000 1927 1963 1972 2000 2000 2000
mean 5.05 5.94 5.84 5.61 5.90 6.03 6.94
std 1.70 1.80 1.71 1.68 1.67 1.68 1.81
min 0.54 0.93 0.82 0.80 1.00 1.00 1.01
25% 3.79 4.59 4.57 4.21 4.64 4.73 5.46
50% 4.73 5.49 5.43 5.36 5.51 5.69 6.68
75% 5.98 7.25 7.11 6.84 7.22 7.39 8.22
max 11.65 12.65 14.42 12.16 14.42 14.42 13.77

Table 3: Speedup obtained by increasing size of the transfor-
mation on GTX 1070. Column "1-4 terms" contains perfor-
mance for the nearest recommended size with any number
of terms.

1 term 2 terms 3 terms 4 terms 1-4 terms heuristics autotuned
count 2000 1927 1963 1972 2000 2000 2000
mean 27.00 1.34 0.43 0.50 0.20 0.23 2.28
std 26.25 1.18 0.38 0.41 0.15 0.18 1.70
min 0.01 0.00 0.00 0.00 0.00 0.00 0.00
25% 7.42 0.40 0.14 0.19 0.07 0.08 0.92
50% 16.39 0.98 0.30 0.40 0.18 0.20 1.88
75% 39.13 1.92 0.63 0.69 0.29 0.31 3.38
max 99.91 5.48 2.23 3.68 1.09 1.09 9.97

Table 4: Percentual increase of number of elements of the
transformation on GTX 1070

Figure 10: Execution time of the cuFFTAdvisor application,
autotune mode, GTX 1070

executions, 1070 executions, K20
count 2000
mean 284.98 296.15
std 1892.34 427.67
min 17.29 23.80
25% 142.61 202.65
50% 200.50 264.48
75% 298.39 320.48
max 84391.90 17349.82

Table 5: Necessary executions to justify autotuning

one proposed by autotuning together with autotuning overhead.
As shown in the Table 5, the time of the autotuning is compensated
after less than 320 executions of the padded transformation in at
least 75% of the cases on both GPUs. The result of the autotuning
can be stored locally or even hard-coded for a given combination
of an input, plan type and device, thus making the autotuning
overhead worth in a long-term.

4 CONCLUSIONS AND FUTUREWORK
We have presented the results of a comprehensive analysis of the
cuFFT library for 1D transformations. We have identified the major

factors affecting the performance and memory requirements of the
library and proposed a set of rules for efficient execution of the
transformation. We have also presented a new software, cuFFT-
Advisor, which can be used to determine an well-performing set
of parameters for given transformation and thus easily speeding
number of applications using the cuFFT library.

In the future, we would like to analyze the behavior of the 2D
/ 3D version, possibly deepen the analysis of the stride from [10]
and add power consumption analysis. We would also like to verify
our observation on other generations of GPU, and compare them
with CUDA version 9.2, which is reported to be up to 1.5x faster
than version 8.0. The heuristics should also be improved to better
predict the behavior of the cuFFT library. Last but not least, similar
analysis might be performend on other (FFT) libraries.
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a b s t r a c t

In recent years, the heterogeneity of both commodity and supercomputers hardware has increased
sharply. Accelerators, such as GPUs or Intel Xeon Phi co-processors, are often key to improving speed
and energy efficiency of highly-parallel codes. However, due to the complexity of heterogeneous
architectures, optimization of codes for a certain type of architecture as well as porting codes
across different architectures, while maintaining a comparable level of performance, can be extremely
challenging. Addressing the challenges associated with performance optimization and performance
portability, autotuning has gained a lot of interest. Autotuning of performance-relevant source-code
parameters allows to automatically tune applications without hard coding optimizations and thus
helps with keeping the performance portable. In this paper, we introduce a benchmark set of ten
autotunable kernels for important computational problems implemented in OpenCL or CUDA. Using our
Kernel Tuning Toolkit, we show that with autotuning most of the kernels reach near-peak performance
on various GPUs and outperform baseline implementations on CPUs and Xeon Phis. Our evaluation
also demonstrates that autotuning is key to performance portability. In addition to offline tuning, we
also introduce dynamic autotuning of code optimization parameters during application runtime. With
dynamic tuning, the Kernel Tuning Toolkit enables applications to re-tune performance-critical kernels
at runtime whenever needed, for example, when input data changes. Although it is generally believed
that autotuning spaces tend to be too large to be searched during application runtime, we show that
it is not necessarily the case when tuning spaces are designed rationally. Many of our kernels reach
near peak-performance with moderately sized tuning spaces that can be searched at runtime with
acceptable overhead. Finally we demonstrate, how dynamic performance tuning can be integrated
into a real-world application from cryo-electron microscopy domain.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the acceleration of complex computations
using hardware accelerators have become much more common.
Currently, there are many devices developed by multiple vendors
which differ in hardware architecture, performance, and other
attributes. In order to support application development for these
devices, several APIs such as OpenCL (Open Computing Language)
or CUDA (Compute Unified Device Architecture) were designed.
A code written in those APIs is functionally portable: it can be

∗ Corresponding author at: Institute of Computer Science, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic.
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(J. Ol’ha), 422536@mail.muni.cz (R. Trembecký), siegfried.benkner@univie.ac.at
(S. Benkner), fila@mail.muni.cz (J. Filipovič).

executed on various devices while producing the same result.
However, performance portability is often limited due to the
different hardware characteristics of these devices. For example,
an OpenCL code which was optimized for a GPU may perform
poorly on a CPU and vice versa. The performance portability
issues may even exist among different generations of devices
developed by the same vendor [1]. Moreover, code performance
may be sensitive to input size, structure, or application settings,
so a code optimized for some input may run sub-optimally when
the input is changed [2,3].

A costly solution to this problem is to manually optimize code
for each utilized device and possibly also for multiple sizes or
structures of the input. An alternative solution is a technique
called autotuning. Autotuning allows optimizing the application’s
tuning parameters (properties influencing the application perfor-
mance) in order to perform the execution more efficiently. It is

https://doi.org/10.1016/j.future.2020.02.069
0167-739X/© 2020 Elsevier B.V. All rights reserved.
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a general technique with a broad range of applications, which
includes areas such as network protocols, compilers, and database
systems. We focus on autotuning of code optimization parame-
ters, which allows changing the application at the level of its
source code: from low-level optimizations such as loop-tiling or
unrolling to more aggressive changes such as modification of data
layout or even using a different algorithm.

In this paper, we introduce the Kernel Tuning Toolkit (KTT),
which focuses on autotuning of codes written in OpenCL or CUDA.
With KTT, tuning parameters change the source code in a way
defined by a programmer via preprocessor macros. Thus, tuning
parameters may affect virtually any property of the source code,
making autotuning very powerful. KTT targets expert program-
mers, as potential code optimizations have to be implemented
explicitly, requiring detailed knowledge of hardware architec-
tures.

Autotuning can be performed offline,1 i. e., before the execu-
tion of a tuned code. Offline tuning is easier to implement but
does not allow an application to re-tune when its environment
changes. Online autotuning allows the application to tune itself
during runtime by means of changing some runtime parame-
ters. With dynamic autotuning, the application can even build
the space of different variants during runtime, i. e., it is able to
compile tuned kernels during the tuning process. Although sev-
eral code parameters autotuning frameworks for heterogeneous
computing have been introduced [5–8], they are intended to be
used in a standalone tuning tool, supporting offline autotuning
only. On the other hand, KTT can be integrated into application
code and supports also dynamic tuning.

A tighter integration into applications has been recently iden-
tified as one of the main challenges in autotuning [4]. Kernel
Tuning Toolkit was designed to simplify the integration process.
It acts as an intermediate layer between the application and
OpenCL or CUDA API. Therefore, the application source code has
to be adapted to incorporate KTT calls. However, once integrated,
the application can transparently switch between execution and
tuning of the kernels. For example, the application can re-tune
itself if it is executed on new hardware, or start its execution
with already optimized tuning parameters, and automatically
start re-tuning during runtime when the input changes.

Using KTT, we have developed a benchmark set comprising ten
autotuned codes. We have executed the benchmark set on multi-
ple hardware devices, including GPUs from NVIDIA and AMD, CPU
and the Xeon Phi. We prove that our autotuned implementations
are efficient enough — they often reach performance close to
the theoretical peak of the hardware or at least outperform the
baseline (i. e., not autotuned) implementations significantly. We
also show that autotuning is required to ensure performance
portability of the codes.

The search for efficient tuning configurations may be challeng-
ing due to the discrete and non-linear nature of tuning spaces [4].
Therefore, large tuning spaces are usually impossible to explore
during application runtime. However, if tuning spaces a are cre-
ated rationally (i. e., by an expert programmer), their exploration
may be feasible even at runtime. Expert programmers have to
understand the effect of tuning parameters and set reasonable
boundaries to their values. For example, setting the acceptable
sizes of work-groups to multiples of 32, as it is suitable for
vectorization on CPUs and Xeon Phis and efficient on GPUs exe-
cuting work-items in warps. We show in this paper that rationally
constructed tuning spaces can be moderately-sized (thousands of
configurations or less) and still contain enough good configura-
tions required for performance portability. Such tuning spaces
can be searched during application runtime without too high

1 We adopt the nomenclature from [4].

overhead. To prove the applicability of KTT in real applications,
we demonstrate dynamic autotuning in a CUDA-accelerated 3D
Fourier Reconstruction in Xmipp [3].

The paper makes the following major contributions:

• Development of dynamic autotuning techniques in the Kernel
Tuning Toolkit. KTT introduces a high-level API for kernels
and data manipulation, which can be easily used and inte-
grated into applications. It allows switching transparently
between autotuning and executing tuned kernels. KTT is
open-source,2 fully documented, and contains many exam-
ples of its usage.
• Introduction of a benchmark set of autotuned kernels. We

have conducted a benchmark set, including multiple ker-
nels relevant for HPC, spanning across multiple application
domains such as image processing, linear algebra, compu-
tational chemistry, and differential equations. We demon-
strate that autotuning of optimization parameters improves
the performance portability of the benchmark set across a
range of different heterogeneous architectures significantly.
We also show that rationally constructed tuning spaces can
be searched fast enough to allow dynamic tuning in many
cases.
• Demonstration of dynamic tuning with a real-word applica-

tion. We show that dynamic autotuning can be used in a
real-world application, such as a 3D Fourier Reconstruction.
Dynamic autotuning is also demonstrated on an applica-
tion performing batched matrix multiplication with varying
matrix sizes. We experimentally evaluate the speed of tun-
ing space search convergence as well as dynamic tuning
overhead on these examples.

The rest of the paper is organized as follows. In Section 2, we
introduce related work and compare it with our work. The main
design decisions and concepts of KTT are described in Section 3.
Section 4 introduces a set of ten autotunable benchmarks and
evaluates their efficiency and performance portability. Dynamic
autotuning is evaluated in Section 5. We conclude and sketch
future work in Section 6.

2. Related work

In this section, we compare our work to state-of-the art meth-
ods in autotuning in three areas: tuning targets (which properties
are tuned), tuning time (when tuning is performed) and search
strategies (how the tuning space is searched and evaluated).

Autotuning covers a broad range of empirically tuned pa-
rameters related to application performance, such as compiler
parameters, or the runtime environment [9,10]. Some autotuners
do not required to modify the application source code, for ex-
ample, compiler flags tuners [11] or MPI tuner [12]. Other tuners
may change application source code in order to test different code
optimization variants. We focus on the autotuners altering the
code of applications in the rest of this section as they are directly
related to our tuner.

Autotuning is already successfully deployed in some high-
performance libraries for conventional CPUs, such as ATLAS [13]
(linear algebra) or FFTW [14] (signal processing). Libraries for
accelerators are also often improved by autotuning [15–18]. How-
ever, those libraries use autotuners specially designed for them.
Here, we are interested in generic autotuners. Frameworks for
skeletons or DSLs also use autotuning to search for the best
combination of the implementation variants empirically [19–22].

2 https://github.com/Fillo7/KTT.



F. Petrovič, D. Střelák, J. Hozzová et al. / Future Generation Computer Systems 108 (2020) 161–177 163

While they cover a broader range of applications compared to au-
totuned libraries, they are still restricted to a particular problem
domain or a set of skeletons.

Code optimizations autotuners generate multiple functionally-
equivalent variants of the application source code. They may
select one of the predefined variants of a tuned function [23], or
generate and compile implementations according to the values of
the tuning parameters. We distinguish between compiler-based
tuning, where the space of code transformation is generated auto-
matically [24–26] and user-defined code optimization parameters
autotuning [6,7,27,28]. User-defined code optimization parame-
ters tuning requires expert programmers to identify and imple-
ment tuning possibilities in the source code manually (e. g., by
using preprocessor macros). Even though this approach may be
costly in terms of time and expertise of the programmer, it allows
to explore highly diversified variants of the code, which usually
cannot be generated automatically by compilers: the programmer
can change virtually anything, for example, alter algorithms (e. g.,
use merge sort instead of quicksort) or change the data layout in
the memory (e. g., use a structure of arrays instead of an array of
structures).

Our Kernel Tuning Toolkit focuses on tuning of user-defined
code optimization parameters. Most similar to our work are
CLTune [6], AUMA [27], ATF [7,29], and Kernel Tuner [8], which
are problem domain-agnostic autotuners designed for heteroge-
neous computing.

Existing benchmark sets for heterogeneous computing, such
as Parboil [30], SHOC [31], or Polybench/GPU [32] do not support
autotuning of code optimization parameters (only work-group
size can be typically changed without substantial rewriting the
benchmark). To the best of our knowledge, there is no compre-
hensive benchmark set for code optimization parameters tuning
in heterogeneous computing. In [6,7], two benchmarks are used
to evaluate code optimization parameters tuning: GEMM and
2D convolutions. Those benchmarks are also used in our bench-
mark set. Three benchmarks are used in [8] (one of them is the
GEMM introduced in [6]) and in [27]. In our work, a set of ten
benchmarks is introduced.

Some forms of dynamic autotuning are supported by problem-
specific autotuners, such as SpMV tuning [2] or generic auto-
tuners, such as Active Harmony [25]. Autotuners may also sup-
port online autotuning where usually multiple variants of code
are produced in an offline phase and searched during runtime.
Online tuning is easier to implement than dynamic tuning (there
is no runtime compilation), but it is not practical when the num-
ber of possible code variants is high. An examples of an online
tuner is SOCRATES [33,34].

None of the frameworks for code optimizations in heteroge-
neous computing support dynamic tuning natively [6–8,27]. To
implement dynamic tuning with those frameworks, the program-
mer has to add a non-trivial amount of glue code, running the
tuner during application runtime to find a better tuning configu-
ration and then exporting this configuration into the application,
typically by re-compiling OpenCL or CUDA kernels with the JIT
compiler. The OpenTuner [5], another similar tuner, is a more
generic and low-level tool: it allows us to tune virtually any
property of the application, but a higher amount of user effort
has to be invested into the integration of the tuner. OpenTuner
could be used for dynamic autotuning with higher effort than [6–
8,27], since a code responsible for a tuned kernel compilation,
execution, and testing has to be provided as well. On the other
hand, OpenTuner would allow to use results computed by ker-
nels during tuning, which can increase the performance of the
tuned application. To the best of our knowledge, KTT is the first
autotuning framework combining universal code optimization
parameters tuning with native support of dynamic autotuning for
heterogeneous computing.

In this paper, we extend state-of-the-art general-purpose code
optimizations autotuners for heterogeneous computing with dy-
namic tuning. Although the concept of dynamic autotuning is
well-known, it requires an architecture that hides the OpenCL
or CUDA API in order to switch implementation of kernels. In
addition we contribute to the state-of-the-art in autotuning by
introducing a benchmark set of autotunable codes, evaluating the
efficiency and performance portability of the benchmarks, and
assessing how difficult it is to amortize the overheads of dynamic
tuning.

The space of tuning parameters can be very difficult to search:
it is discrete, non-linear, and non-convex. Although a promis-
ing method has been recently published [8], the majority of
papers report that random search is often as efficient or even
more efficient than more sophisticated search methods [6,35,36].
Therefore, it can be difficult to search large tuning spaces contain-
ing hundreds of thousands of configurations or more. Extremely
large tuning spaces, however, result mainly from compiler-based
autotuners such as Lift [26] or naively constructed tuning spaces.
The papers [6,8,35,36] focus on the analysis of tuning space search
methods. However, there has not been much effort invested into
studying the size of tuning spaces using a larger number of
benchmarks which maintain good performance portability across
a wide range of different hardware architectures. In this paper, we
constructed a set of ten benchmarks and show that tuning spaces
are often small enough to be searched dynamically while still
providing performance portability with a near-peak performance.

Machine learning on historical autotuning data can be used
to decrease the number of tuning decisions performed during
program compilation or execution. In [34], a dynamic selection
from a very limited number of code variants is based on a model
created from previous tuning runs. In [37], a single tuning param-
eter can be optimized at compilation time by a neural network
trained in multiple trial runs. Contrary to those papers, we focus
on multi-dimensional tuning spaces.

3. Architecture of the Kernel Tuning Toolkit

In this section, we introduce the main architectural concepts
and the API of the Kernel Tuning Toolkit. We are using the fol-
lowing terminology in the paper. A tuning parameter is a variable
which affects the code in a user-defined way (e. g., determines
loop unroll factor). The tuning space is a cross product of all the
possible values of all tuning parameters. A configuration is a single
point in the tuning space (i. e., assignment of concrete values
to all tuning parameters), which fully determines one possible
implementation variant of the tuned code. The main functionality
of KTT is:

• specification of tuning parameters and constraints of tuning
space;
• compiling and executing the kernel or kernel composition

(multiple kernels and host code with shared tuning param-
eters);
• automatically searching the tuning space;
• managing data transfers automatically (KTT automatically

creates and copies data from/to the accelerator);
• checking the results of the tuned kernel against a reference

implementation computation.

KTT has been designed as a C++ library, which replaces direct
access to the OpenCL or CUDA API. By providing a middle layer
between the application and the OpenCL or CUDA API, KTT is
able to perform autotuning transparently: the kernel execution
and tuning can be performed by the same application code. How-
ever, in order to allow integration into real-world applications,
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Fig. 1. Schematic view of KTT architecture. The dashed line shows components,
which are typically active during dynamic tuning inside the main application
loop.

KTT must support important functionality such as memory man-
agement, kernel configuration, execution, and synchronization
provided by OpenCL or CUDA. Because KTT forms a middle layer
between the application and the CUDA or OpenCL API, it can
modify kernel code at runtime, transparently to the application.
Moreover, this design allows switching between OpenCL and
CUDA easily. When kernel codes for both APIs are provided by
the programmer, the KTT is just initialized with the selected API
and handles all the communication between the application and
OpenCL or CUDA. Because OpenCL and CUDA use a different way
to configure the parallelism of the kernel,3 KTT can automatically
translate parallelism configuration for the selected API. The KTT
API has been derived from the CLTune project [6], so it is very
similar to CLTune when we use it for offline tuning. Addition-
ally, KTT API allows for tuning compositions of multiple kernels,
tuning of how kernels are called from host code [28], and novel
features for dynamic tuning.

The architecture of KTT and its connection to the autotuned
application is sketched in Fig. 1. The application creates ker-
nels and defines tuning parameters and their acceptable val-
ues (with possible constraints passed as lambda functions), and
passes them to KTT, where the tuning space is built. Then, it con-
nects input and output buffers to the kernels and starts the tuning
process. KTT uses a searcher to search the tuning space and to
select a configuration to be executed. In current implementation,
random search, simulated annealing and Markov-chain Monte
Carlo searchers are available. Then, it compiles the kernel(s) ac-
cording to the selected configuration, executes and benchmarks
it. If dynamic tuning is active, the results of the tuned kernel(s)
can be immediately used by the application. The results can
be validated against a reference implementation by KTT. The
execution of kernel(s) is benchmarked and the performance re-
sults are stored in KTT, allowing the searcher to navigate the
search process and the application to query for, e. g., the fastest
configuration.

3 OpenCL’s NDRange describes global parallelism, whereas CUDA blocks and
threads define different layers of parallelism.

3.1. Kernel tuning

The simplest scenario is tuning of a single kernel. In this case,
the following steps have to be done in a tunable code:

• initialize the tuner;
• create handlers for kernel arguments;
• create the kernel handler;
• assign input/output arguments to the kernel;
• define tuning parameters, their acceptable values, and con-

straints;
• start tuning.

The tuner executes and benchmarks different tuning configu-
rations and searches for the one, which results in the shortest
kernel runtime.

In many real-world applications, some tuning parameters are
shared between multiple kernels (e. g., the memory layout of
some intermediate data). KTT framework allows sharing tuning
parameters among kernels by using kernel compositions. More-
over, a portion of a computation can be performed on the host
(e. g., a tuning parameter may determine how many times a ker-
nel is executed or if a host code performs some pre-computation).
KTT uses the tuning manipulator when tuning parameters influ-
ence the host code. The tuning manipulator class enables users
to customize a portion of the framework’s code that is responsi-
ble for kernel execution and buffer management, and optionally
can perform some part of the computation directly in the C++
host code. The tuning manipulator must implement a method
launchComputation, which can execute multiple kernels, perform
computations in C++, and transfer data between host and device.
Tuning manipulators and kernel compositions allow to use tuning
parameters, which cannot be implemented when kernels are
tuned separately: for example, it is possible to change a format
of the intermediate data exchanged between multiple kernels.

3.2. Offline and dynamic tuning

KTT supports different types of autotuning depending on the
time when tuning is performed and on the level of integration:

• Offline autotuning is performed prior to the execution of an
application, usually by an extra utility. Offline tuning does
not require integration of the autotuner into the application.
The tuning utility can search for tuning parameters of the
computationally most demanding application kernels and
then exports values of those parameters to the build sys-
tem. The disadvantage is that the tuning process cannot be
easily repeated inside the application, i. e., during application
runtime.
• Dynamic autotuning is performed during application run-

time. When tuning parameters change application source
code, it must be modified according to the actual values of
the tuning parameters and recompiled. The application can
execute autotuning at any time, e. g., when it is executed
on a new hardware device or when a performance-relevant
characteristic of the processed data changes.4 Dynamic tun-
ing can be performed in a blocking manner (the tuner tests
several tuning configurations and selects the best one; the
results of kernel executions are not passed to the appli-
cation during tuning) or non-blocking manner (the result
of each tested kernel variant is immediately used by the
application). With blocking autotuning, KTT automatically
replicates input and output arrays, so there is no side effect

4 With the current version of KTT, the decision about when to tune is always
made by the application.



F. Petrovič, D. Střelák, J. Hozzová et al. / Future Generation Computer Systems 108 (2020) 161–177 165

caused by kernel results on the application. Non-blocking
tuning is more suitable for interactive applications or com-
plex parallel workloads with many dependent tasks, where
a slow response of some component may be critical to the
overall performance.

The Kernel Tuning Toolkit can be integrated into applica-
tion code so that the application code manages memory objects
and executes kernels via the KTT API instead of directly using
OpenCL or CUDA. In such a case, the application decides if KTT
changes values of the tuning parameters and recompiles ker-
nels (tuning mode) or if KTT just executes the kernels (running
mode). Furthermore, the kernels’ result can be used by the ap-
plication even during the tuning process (a non-blocking tuning
described above), which improves application performance, es-
pecially when the tuning overhead is low (i. e. kernels runtime
dominates compilation runtime).

3.2.1. Code example
Let us assume we have two kernels, foo(a) and bar(b). The

kernel foo produces a 2D array, which is used as an input for
kernel bar: b = foo(a); c = bar(b);. Let us further assume
a tuning parameter B_TRANS, which determines if b is stored
transposed. Clearly, the value of B_TRANS must be the same
for both foo and bar, so the kernels must be tuned together.
Thus, we create a kernel composition with a tuning manipulator
calling both kernels. The tuning manipulator is shown in Listing
1. The class inherited from tuning manipulator must override the
method launchComputation, which is responsible for execut-
ing the two kernels via KTT in our example, but it could also
implement computation in C++ or call KTT functions for data
movement or synchronization.
1 class TunableFoobar : public ktt : : TuningManipulator {
2 public :
3 TunableFoobar ( kt t : : KernelId foo , . . . ) :
4 / / a s s ign kerne l s and input / output
5 / / to i n t e rna l s t r u c tu r e s
6 {}
7 void launchComputation ( const ktt : : KernelId )
8 override {
9 / / tuning parameters can be queried here

10 runKernel ( foo ) ;
11 runKernel ( bar ) ;
12 }
13 private :
14 ktt : : KernelId foo ;
15 . . .
16 } ;

Listing 1: Tuning manipulator

The code setting up KTT is sketched in Listing 2. It initializes
the tuner at line 2, creates kernels (lines 5–8), their arguments
(lines 11–12), and constructs a composition of the kernels (lines
16–22). The composition is created with a tuning manipulator
implemented in a class TunableFoobar (see Listing 1). The
kernels are created with an initial configuration of NDRange and
work-group size (lines 3–4), but this configuration can be altered
in two ways: by defining the relation of NDRange/group size and
some tuning parameter (using a pre-defined or lambda function),
or directly in launchComputation method by any user code.
1 / / I n i t i a l i z e tuner and kerne l s foo , bar
2 ktt : : Tuner tuner ( platformIndex , deviceIndex ) ;
3 const ktt : : DimensionVector ndRange ( inputSize ) ;
4 const ktt : : DimensionVector workGroup(128);
5 kt t : : KernelId foo = tuner . addKernelFromFile (
6 kernelF i le , " foo " , ndRange , workGroup ) ;
7 kt t : : KernelId bar = tuner . addKernelFromFile (
8 kernelF i le , " bar " , ndRange , workGroup ) ;
9

10 / / Creat ion of kerne l arguments a , b , c
11 ktt : : ArgumentId a = tuner−>addArgumentVector ( srcA ,
12 ktt : : ArgumentAccessType : : ReadOnly ) ;

13 . . .
14
15 / / Creat ion of composit ion and s e t t i n g o f arguments
16 ktt : : KernelId compositionId = tuner . addComposition (
17 " foobar " , std : : vector <kt t : : KernelId >{ foo , bar } ,
18 std : :make_unique<TunableFoobar >( foo , bar , a , b , c ) ) ;
19 tuner . setCompositionKernelArguments ( compositionId ,
20 foo , std : : vector < s ize_t >{a , b } ) ;
21 tuner . setCompositionKernelArguments ( compositionId ,
22 bar , std : : vector < s ize_t >{b , c } ) ;
23
24 / / Addi t ion o f tuning va r i ab l e s
25 tuner . addParameter ( compositionId , "B_TRANS" , {0 , 1 } ) ;

Listing 2: Tuning initialization

After the setup, we can perform kernel tuning. Here, we
demonstrate non-blocking dynamic autotuning, which is per-
formed in the main application loop as sketched in Listing 3. In
our simple example, we use the variable tuningOn to specify
whether dynamic tuning is performed (it can be set by some
user-defined function to true for a fixed number of iterations,
or until some predefined performance is reached). The execution
of a composition calling foo and bar can be achieved by two
methods: runKernel or tuneKernelByStep. The runKernel
executes the composition and stores result in variable c. The
execution is performed with a tuning configuration defined by
the programmer; usually, the fastest configuration is used. The
second method, tuneKernelByStep, also performs the compu-
tation and stores results in c, but with a new values of the tuning
parameters (selected by KTT using the selected search method). If
the tuning space has already been explored, the method tuneK-
ernelByStep executes the configuration, which results in the
fastest computation (so it behaves like runKernel executed with
the best configuration). If the application is exploring only a
subset of the tuning space, it can query the fastest known config-
uration via the getBestComputationResult method. The rest
of the application does not need to be aware whether tuning is
performed: the result c is obtained in any case.
1 while ( application_run ) {
2 . .
3 i f ( tuningOn )
4 tuner . tuneKernelByStep ( compositionId , { c } ) ;
5 else {
6 kt t : : ComputationResult best =
7 tuner−>getBestComputationResult ( compositionId ) ;
8 tuner . runKernel ( compositionId ,
9 best . getConfiguration ( ) , { c } ) ;

10 }
11 / / c i s computed here
12 . . .
13 }

Listing 3: Main loop performing computation

3.3. Independent queues and non-blocking calls

Accelerated codes often employ task-level parallelism to over-
lap computation on a host, computation on a device, and data
movements between the host and the device. Moreover, simul-
taneous kernel execution may improve the performance of in-
dependent kernels when some kernels do not fully utilize the
device. Task-level parallelism is realized via non-blocking kernel
calls, asynchronous copy and also via multiple queues (OpenCL)
or streams (CUDA).

In order to reach high performance when integrated into an
application, KTT must support this functionality for the tuned
kernels. Thus, it is possible to use queues (when using CUDA,
KTT queues are implemented as CUDA streams) and non-blocking
calls with KTT. However, during the tuning of the kernel, con-
current kernel execution or non-blocking execution may bias
benchmarking (e. g., with concurrent kernel execution, the host
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code can execute another kernel at the device where the tuned
kernel is running, so the measured runtime of the tuned kernel
increases). The bias in benchmarking could result in a wrong
selection of the best tuning parameter values. Therefore, there are
two types of task-level parallelism implemented in KTT:

• intra-manipulator parallelism allows simultaneous kernel ex-
ecution and overlapping computations and memory copy
inside a launchComputation method of a tuning manip-
ulator;
• global parallelism also allows simultaneous kernel execution

and non-blocking kernel calls at the level of the applica-
tion code, so the host code can call runKernel in non-
blocking mode, allowing to overlap execution of multiple
manipulators, or host and device computation.

During the tuning process, global parallelism is not allowed,
so only one tuning configuration is executed at a time. Therefore,
benchmarking is not biased by executing another code on a com-
puting device or in a CPU thread where KTT is running. However,
tuning manipulators may still use intra-manipulator parallelism,
so it is still possible to, e. g., execute multiple independent kernels
in parallel, or overlap kernel execution with the data copy or the
CPU code.

When the tuning process ends, KTT also allows the global
parallelism so that kernels or composition calls can be overlapped
with another device or host code. Note that the result of the
kernel or composition is downloaded to the host memory by
default, which enforces synchronization. However, the user can
create persistent arguments, which are not copied to the host by
KTT unless the application explicitly calls the proper KTT copy
method.

3.4. Limitations

Recall that KTT forms an intermediate layer between a tuned
application and the OpenCL or CUDA API. Therefore, it has to
implement the interface to operate those APIs. The current imple-
mentation of KTT does not support all the features of CUDA and
OpenCL. Due to the lack of OpenCL 2.0 implementation for NVIDIA
GPUs, the OpenCL support is limited to OpenCL 1.2 with KTT. Also,
some features of CUDA are not supported: texture, surface, and
constant memory and cooperative grids. We believe that there
is no fundamental problem to support those features in a future
version of KTT.

The new features of CUDA and OpenCL, which require changes
in kernel code only, do not require any explicit support in KTT,
as KTT methods replace only the host API (for example, new
warp-level synchronization or warp-matrix operations executed
on new CUDA tensor cores can be used with KTT without any
explicit support).

In its current implementation, a single instance of KTT works
with a single computing device. To use multiple devices (e. g.,
in multi-GPU machine), the programmer has to create multiple
instances of KTT and partition the tuning space manually. It also
implies that there is no explicit support for tuning which device
is to be used for which particular kernel.

4. Autotuning benchmarks

In this section, we introduce a set of ten tunable benchmarks.
Each benchmark contains a C++ code, which prepares data and
performs tuning with KTT, and OpenCL or CUDA code of tunable
kernels. We briefly introduce their implementation and evaluate
the benefits of autotuning by measuring their efficiency and as-
sessing their performance portability. All benchmarks have been
tuned for and evaluated on seven different hardware devices as
listed in Table 1.

Table 1
Devices used in our benchmarks. Arithmetic performance (SP perf.) is measured
in single-precision GFlops, memory bandwidth (BW) is measured in GB/s.
Device Architecture SP perf. BW

2× Xeon E5–2650 Sandy Bridge 512 102
Xeon Phi 5110P Knights corner 2,022 320
Tesla K20 Kepler 3,524 208
GeForce GTX 750 Maxwell 1,044 80
GeForce GTX 1070 Pascal 5,783 256
Radeon RX Vega 56 GCN 5 8,286 410
GeForce RTX 2080Ti Turing 11,750 616

4.1. Tuning parameters

With tuning of code optimization parameters, the tuning pa-
rameters can encode virtually any change of the source code.
While many benchmarks contain tuning parameters performing
the same type of optimization, their implementation may differ
from case to case. In this section, we describe the common opti-
mizations parameters implemented in most of the benchmarks.

4.1.1. Work-group size
On GPUs, the size of work-group allows balancing the amount

of reachable parallelism (i. e., amount of work-items which can
run simultaneously) and allocated resources (e. g., private and
local memory consumption). In general, smaller work-groups (to
some extent) allow to allocate of more resources and reduce local
barrier overhead. On the other hand, small work-groups may
decrease memory locality when some type of memory blocking
is used. Very small work-groups may also decrease reachable
parallelism due to creation of under-populated warps or due
to the limited amount of work-groups which can be placed on
GPU simultaneously. On CPUs, work-items are processed in a
vectorized loop and thus the work-group size mainly influences
the amount of consumed registers and memory locality.

The optimization of work-group size (or block size in CUDA)
is a common optimization method, which may be easily im-
plemented without re-compilation of the kernel code. However,
most of the integer arithmetic required for array indexing uses
the work-group size. Consequently, when the work-group size
is encoded by a tuning parameter, indexing arithmetics can be
optimized during compilation.

4.1.2. Work-item coarsening
Work-item coarsening (or thread coarsening in CUDA) is a

well-known technique [38,39], optimizing the amount of work
per work-item. On GPUs, adding more work per work-item im-
proves private memory locality and instruction-level parallelism.
On the other hand, it also increases the number of used registers,
so that the reachable parallelism can be reduced. Work-item
coarsening is similar to the loop unrolling on CPUs, as each work-
item (i. e., iteration of the generated vectorized loop) performs
more computations.

4.1.3. Caching in local memory
Local memory (called shared memory in CUDA) is GPU-specific

hardware, which allows work-items from the same work-group
to share data. It is often used as an explicit cache, where data
loaded from global memory are further processed (or where data
are collected before they are moved to the global memory). Local
memory is faster than global memory and usually also faster
than global memory cache. On the other hand, explicit caching
may be challenging with more complex memory access patterns.
Therefore, it may or may not be efficient to cache data in local
memory.
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On CPUs, there is no special hardware for local memory — data
allocated in the local memory are placed in a buffer in the global
memory. Therefore, there is no reason to use it for improving the
speed of the code, but it can be still used to share data between
work-items.

4.1.4. Caching in private memory
Private memory (or registers in CUDA) is the fastest memory

available for both GPUs and CPUs. Explicit caching in private
memory speeds-up access to the data. However, it may also lead
to registers spilling on both GPU and CPU architectures.

4.1.5. Tile size
Memory tiling is a common technique to improve spatial or

temporal locality. It is usable for direct global memory access (a
tile is stored in the cache by the hardware), or explicit caching in
local or private memory. The tile size may or may not be equal
to the work-group size (e. g., work-items can process multiple
data elements, so the tile size is an integer multiple of work-
group size). Bigger tiles ensure better cache locality as long as
cache capacity is not exceeded. However, with explicit caching on
GPUs, bigger tiles can reduce reachable parallelism by increasing
resources consumption.

4.1.6. Loop unrolling
Loop unrolling is a general technique, which allows increas-

ing instruction-level parallelism, reducing branching and simpli-
fying array indexing by common subexpression elimination. It
increases the performance of loops if there are enough registers
available.

4.1.7. Padding local memory
GPU local memory consists of multiple banks (usually 32),

which should be accessed in parallel to reach the highest per-
formance. If different data from the same bank are read, a bank
conflict occurs and the access into this bank is serialized, resulting
in performance degradation. Padding arrays in local memory can
prevent bank conflicts in some situations. For example, parallel
read of a column of a 32 × 32 matrix in local memory results in
a 32-way bank conflict. However, when the matrix is stored as
33 × 32 array, there is no conflict in accessing columns.

4.1.8. Explicit vectorization
The code performed by work-items can be written in a vec-

torized form. Such a case is similar to loop unrolling with slightly
modified effect. With GPUs, it is easier for the compiler to gen-
erate faster vector instructions for memory access (both global
and local). With CPUs, the OpenCL compiler by default performs
de-vectorization and vectorization, but it can be hinted to directly
translate vectorized code into vector instructions, which can help
if implicit vectorization is not efficient enough. On the other hand,
explicit vectorization often increases register usage on GPUs. It
may also increase the amount of workload per work-group, which
increases registers pressure in case local barriers are called within
the kernel.

4.2. Benchmark set implementation

Here, we introduce the implementation of the benchmark set
used in this paper. As the development of autotuning benchmarks
is quite a time consuming task (the tuning parameters have
to be identified in the code, and their effect has to be imple-
mented), we have composed a benchmark set from already avail-
able kernels, kernels developed by our group in several projects,

and kernels developed as autotuned variants of previously avail-
able non-autotuned kernels. The benchmarks set covers impor-
tant computational problems spanning across multiple applica-
tion domains: image processing (3D Fourier Reconstruction and
2D Convolution), linear algebra (BiCG, GEMM, GEMM Batched,
Matrix transpose, and Reduction), computational chemistry (Di-
rect Coulomb Summation) and differential equation solvers (N-
body and Hotspot). Most of the benchmarks use tuning parame-
ters for performing the optimizations introduced in Section 4.1.
Table 2 shows which optimizations are implemented by which
particular benchmark. Benchmarks which have been published
previously are described briefly here, whereas the unpublished
benchmarks are introduced in greater detail. Multiple bench-
marks also implement special optimizations not listed in the
table — in such case, the optimizations are mentioned in the
benchmark description in this section.

The benchmark set is publicly available. Except for 3D Fourier
Reconstruction, all benchmarks are bundled with the Kernel Tun-
ing Toolkit as examples of its usage.5 The autotuned version of
3D Fourier Reconstruction is currently not integrated into the
production version of Xmipp, but it can be downloaded from
Github.6

4.2.1. BiCG
BiCG is a kernel used in the biconjugate gradient method. It

computes

q = Ap s = AT r (1)

where A is a matrix and p, q, r, s are vectors. We have adopted
the implementation from PolyBench/GPU [32] and implemented
kernel fusion and cache tiling similarly to our previous work [21].
In addition to the parameters listed in Table 2, we have created
tuning parameters changing the following properties of the code:

• whether BiCG is computed by the fused kernel (loading
matrix A only once), or by two separate kernels computing
Ap and AT r;
• the amount of work per work-group (it can iterate over mul-

tiple tiles, improving memory locality of output vectors);
• how the reduction of resulting vectors is performed (can be

reduced in local memory or global memory);
• how reduction is implemented (using atomic operations, or

finishing reduction in a separate kernel).

The implementation uses the tuning manipulator, as tuning pa-
rameters change the execution of kernels (e. g., when atomics
are not used, an extra kernel is needed to finish computation of
vectors q, s).

4.2.2. 2D convolution
The 2D convolution example using 7 × 7 filter is adopted7

from the CLTune project [6]. The special tuning parameters de-
termine the way of handling shared boundaries of tiles.

4.2.3. Direct Coulomb summation
The direct Coulomb summation precomputes the 3D spatial

grid of electric charge around a molecule, used, e. g., in molecular
docking [40]. We have introduced the autotuned implementation
in [28]. Here, we evaluate a 3D version of the published algorithm.
The algorithm tunes, besides those mentioned in Table 2, the
following parameters:

5 https://github.com/Fillo7/KTT/examples.
6 https://github.com/I2PC/scipion/tree/jd_reconstructFourier_KTT.
7 Our code uses the same kernel and tuning space, but the application is

modified to use KTT API.
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Table 2
Common optimizations tuned by benchmarks. Tile size is marked when it can be configured differently than work-group size.
The abbreviations used in the names of the columns are as follows: ‘‘WG’’ is work-group, ‘‘LM’’ is local memory, ‘‘PM’’ is private
memory.
Benchmark WG size Coarsening LM caching PM caching Tile size Unrolling LM padding Vectorization

BiCG � � � � �
2D convolution � � � � � � � �
Coulomb 3D � � � �
GEMM � � � � � �
GEMM batched � � � � � � �
Hotspot � � � � �
Matrix transpose � � � � � �
N-body � � � � � �
Reduction � � �
Fourier � � � �

• whether input atoms are stored in global or in constant
memory;
• whether input atoms are stored as a structure of arrays or

as an array of structures.

4.2.4. GEMM
The generalized matrix–matrix multiply (GEMM) is a standard

part of BLAS [41]. Its performance is critical for many applications.
We have adopted an example from the CLTune project [6] with
a complex tuning space containing 241,600 configurations. The
large tuning space is mainly caused by applying optimizations
listed in Table 2 in multiple dimensions. Moreover, tuning param-
eters are provided for switching between continuous and strided
access to the input matrices.

4.2.5. GEMM batched
Regular BLAS implementations are optimized for large data

vectors and matrices. However, some applications, such as deep
learning [42], multifrontal solvers for sparse linear systems [43]
or Finite Elements Method [44] require executing many instances
of BLAS routines operating on very small matrices. Therefore,
batched operations (i. e., grouping many BLAS calls that process
small matrices together into a single call) are being developed to
exploit contemporary highly-parallel hardware.

It has been shown that autotuning enables reaching near-
peak performance for batched GEMM using very small matrices
(up to 32 × 32 elements) [45]. The implementation of batched
GEMM has to be altered for different sizes of matrices [45]. We
have implemented the batched GEMM kernel from scratch. It is
optimized for very small matrices similarly to [45], but also for
highly rectangular small matrices. Note that for small matrices,
GEMM is memory-bound (it does not expose high flop-to-word
ratio). Therefore, optimization strategies are different than for
GEMM optimized for larger matrices, resulting in a significantly
smaller tuning space. Since our GEMM Batched benchmark is
optimized for small matrices only, for bigger matrices, the original
GEMM benchmark should be used.

Our implementation uses highly-configurable parallelism. For
output matrix of size m × n, a work-group of size m × y × z is
created, where y, z are tuning parameters. Parameter y defines
work-item coarsening: it determines the number of work-items
in the y-dimension which process one instance of matrix multi-
plication and hence the number of elements processed by each
work-item. Parameter z determines the number of matrix multi-
plication instances computed by a work-group. Caching in local
memory is also implemented for the output matrix: it can be
written into global memory directly, or multiple matrices can
be arranged in local memory and written together (improves
memory coalescing).

4.2.6. Hotspot
The Hotspot kernel, used for calculating a heat distribution on

a 2D surface, is based on a kernel from the Rodinia benchmark
suite [46]. It implements a 2D finite differences method, which
can exploit temporal locality (as it is executed iteratively). We
have implemented tuning parameters listed in Table 2, and pa-
rameter allowing to tune the number of steps performed in a
kernel call (balances temporal locality against redundant compu-
tation).

4.2.7. Matrix transpose
We have implemented autotuning for a tiled matrix transposi-

tion sample from NVIDIA CUDA SDK 10.0. The tuning parameters
additional to those defined in Table 2 are as follows:

• transposition of work-items (work-items in a warp may
read rows and store columns, or read columns and store
rows);
• explicit prefetching into the cache.

4.2.8. N-body
The computation of gravitational forces between n bodies in

space is based on the code sample from NVIDIA CUDA SDK 9.0. It
computes a gravitational force between all pairs of bodies, and
thus is a very compute-intensive benchmark. We have added
the tuning parameters allowing tuning of how input bodies are
stored (array of structure or structure of arrays) and also the
optimizations defined in Table 2.

4.2.9. Reduction
The reduction benchmark computes the sum of all elements

in an input vector. We have used the autotuned implementation
from our previous work [28]. There are two special optimizations
affected by tuning parameters and not listed in Table 2:

• whether the reduction is performed with at most one global
barrier only by a fixed number of work-items, or iteratively
by multiple kernels scaling with the size of the reduced
vector;
• whether, with the fixed number of work-items, the final

reduction is performed by extra kernel invocation, or by
utilizing atomic operations.

4.2.10. 3D Fourier reconstruction
One of the computationally demanding steps in the image re-

construction pipeline in cryo-electron microscopy is a 3D Fourier
reconstruction [47]: the process when 2D samples of arbitrary
orientation are inserted into the 3D volume. We have used the
autotuned implementation introduced in our previous work [3].
This implementation can be tuned for specific hardware and also
for specific samples resolution. In contrast to other benchmarks,
3D Fourier Reconstruction is implemented in CUDA and therefore
can be evaluated on NVIDIA GPUs only.
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Table 3
A list of the benchmarks and the size and dimensionality (i. e., the number of
tuning parameters) of their tuning spaces.
Benchmark Dimensions Configurations

BiCG 11 5,122
Convolution 10 5,248
Coulomb 3D 8 1,260
GEMM 15 241,600
GEMM batched 11 424
Hotspot 6 480
Transpose 9 10,752
N-body 8 9,408
Reduction 5 175
Fourier 6 360

The tuning space allows several optimizations not listed in
Table 2:

• atomic writing into output volume (allows to process mul-
tiple 2D samples in parallel);
• precomputation or on-the-fly computation of interpolation

weights;
• how are work-items mapped to data inside tiles of input 2D

samples (optimizing cache locality).

4.2.11. Summary
Our benchmarks use a variety of tuning parameters, some of

them common for multiple benchmarks, some of them specific
for a given computational problem. The size and dimensionality
of tuning spaces are summarized in Table 3. Note that the number
of tuning parameters can be higher than the number of tuned op-
timizations described in this section, because some optimizations
are implemented by multiple tuning parameters (e. g., if opti-
mizations are applied to multiple buffers or multiple dimensions
independently). Several benchmarks have been executed with a
smaller tuning space on Radeon Vega56 because the AMD ROCm
driver has been crashing with some tuning configurations (mainly
using vectors of size 16 and higher loop unrolling factors). Those
benchmarks are Direct Coulomb Summation, GEMM, and N-Body.

The tuning spaces of benchmarks have been defined dur-
ing their development. We have not performed any a posterior
adjustment of the tuning spaces based on the experimental eval-
uation (e. g., removing poorly-performing configurations). There-
fore, we are able to evaluate the difficulty of searching tuning
space without bias caused by experimental knowledge of well-
or poor-performing configurations.

4.3. Efficiency of benchmarks

If we want to study autotuning spaces (especially concerning
how hard it is to search them), we should first prove that those
spaces allow us to generate a code with high performance. Here,
we demonstrate that our benchmarks either reach performance
close enough to theoretical boundaries of the hardware or at least
outperform the baseline8 implementation significantly. We do
not evaluate 2D Convolution here: it does not perform at peak
performance, but it reaches state-of-the-art performance [6], so
it can be considered efficient. We also exclude 3D Fourier Re-
construction — it is a memory latency-bound code, making the-
oretical performance boundaries difficult to evaluate. However,
it has been shown that the autotuned implementation of our
gather-based 3D Fourier Reconstruction significantly outperforms
state-of-the-art scatter-based approach [3].

8 The implementation we used as a basis for our benchmark, e. g., the
Rodinia’s Hotspot.

We define the efficiency of a benchmark as the relative per-
formance of the benchmark with respect to the relevant hard-
ware performance boundaries (memory or arithmetic through-
put). More precisely, we use:

efficiency = 100 ·max(
MEMops
time

MEMpeak
,

ALUops
time

ALUpeak
) (2)

where time is the runtime of computation, MEMpeak and ALUpeak
is peak memory and arithmetic throughput of the hardware.9 The
MEMops and ALUops are the number of memory or arithmetic
operations which are essential to solve the task. In other words,
we count the number of operations required to solve the problem,
not the number of operations required to execute the algorithm
(such as array indexing, communication or computations dupli-
cated among work-items). For example, BiCG benchmark is a
memory-bound code, which essentially needs to read the input
matrix A once. Therefore, even if the unfused implementation
reads it twice, the number of operations is computed as the
size of the input matrix in bytes divided by the runtime of the
implementation. The formulas for computing ALUflops or MEMops
of the benchmarks are given in Table 4.

For all benchmarks, we have measured the performance with
sufficiently large data as to fully utilize the GPUs. For Batched
GEMM, small matrices of size 16 × 16 have been used.

The efficiency of tuned implementations is given in Table 5.
The performance of Hotspot benchmark is not close to the the-
oretical peak, so we measure the speedup over Rodinia imple-
mentation. The number of steps per kernel invocation is ex-
posed to the user as a parameter in Rodinia’s implementation
of Hotspot. To have a fair comparison, we have searched for
the best-performing number of steps manually, testing the same
values which have been tested by KTT in the autotuned version.
As we can see, the performance on GPUs is very good in gen-
eral. We can reach a performance close to the theoretical peak
(75% or more) in most cases for all architectures except Kepler
(Tesla K20), which is less efficient than other architectures in all
benchmarks. The performance on dual-CPU (Xeon E5-2650) and
MIC (Xeon Phi 5110P) is often far from the theoretical peak. The
development of OpenCL compiler seems to be not of high priority
for CPU-based systems (for example Xeon Phi is not supported in
Intel OpenCL from 2015), so this result is not surprising.

Note that the performance of Coulomb 3D and N-body bench-
marks has been computed differently for GeForce GTX 2080Ti:
the Touring architecture seems to perform transcendental func-
tions in parallel to FP32 instructions. Therefore, we have ex-
cluded the reciprocal square root from the computation of over-
all floating-point operations, using formulas 5ak3 and 19n2 for
Coulomb 3D and N-body, respectively (see Table 4). Otherwise,
the performance would be overestimated.

4.4. Performance portability

In this section, we evaluate the performance portability of
benchmarks without re-tuning them – i. e., how benchmarks per-
form if they are executed on a different device than they are
tuned for. This evaluation has been performed as follows. We
have tuned all benchmarks for all devices d. Then, for each bench-
mark tuned for device di, we have measured its performance on
devices dj, j ̸= i. The performance is computed as a percentage of
the maximal reachable performance for the device: 100 perf (dj)

perf (di)
.

9 Only half the memory bandwidth has been considered for dual Intel Xeon
E5-2650 because OpenCL provides no mechanism to optimize for NUMA in the
dual-socket system (pinning memory buffers and work-groups to NUMA nodes
is not possible). Therefore the full system bandwidth is not available.
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Table 4
Number of operations performed by different benchmarks. The column ‘‘bound.’’ distinguishes between memory-
bound codes (operations in ‘‘ops.’’ column refer to transferred bytes) and compute-bound codes (operations in ‘‘ops.’’
column refer to flops).
Benchmark bound. ops. Note

BiCG mem 4a2 a: width and height of the input matrix
Coulomb 3D comp 6ak3 a: number of atoms, k: number of grid points per dimension
GEMM comp 2a3 a: width and height of all matrices
GEMM batched mem 12na2 a: width and height of all matrices, n: number of matrices
Hotspot mem 4ia2 a: width and height of the input matrix, i: number of iterations
Transpose mem 8a2 a: width and height of all matrices
N-body comp 20n2 n: number of bodies
Reduction mem 4n n: size of input vector

Table 5
Performance of benchmarks autotuned for various hardware devices. The per-
formance relative to the theoretical peak of devices (see Table 4) is shown for
all benchmarks except for Hotspot, which is compared to the baseline Rodinia
implementation.
Benchmark 2080Ti 1070 750 K20 Vega56 E5–2650 5110P

BiCG 88.3% 84.7% 81.7% 50.4% 75.6% 46.0% 6.45%
Coulomb 3D 91.8% 91.4% 84.3% 43.2% 65.3% 74.2% 22.2%
GEMM 79.8% 80.6% 91.1% 51.3% 96.3% 37.5% 19.7%
GEMM batched 86.8% 81.4% 90.0% 49.6% 86.0% 27.7% 20.9%
Transpose 87.1% 80.2% 86.3% 64.2% 86.1% 62.5% 10.0%
N-body 89.7% 86.6% 87.7% 40.6% 82.2% 77.7% 29.9%
Reduction 68.7% 87.5% 89.4% 64.1% 71.6% 33.9% 10.1%

Hotspot 1.35× 1.94× 2.06× 1.4× 2.88× 1.2× 12.8×

Let us compute the performance portability between GeForce
GTX 750 and GeForce RTX 2080Ti as an example. When BiCG
benchmark is tuned for GeForce GTX 750, it reaches 65GB/s,
when tuned for GeForce RTX 2080Ti, it reaches 544GB/s. When
the code tuned for GeForce RTX 2080Ti is executed on GeForce
GTX 750, it reaches 54.6GB/s, so the performance portability is
84%. When the code tuned for GeForce GTX 750 is executed on
GeForce 2080Ti, it reaches performance 381GB/s, so the perfor-
mance portability is 70%.

Due to vast number of combinations, we compact the results
in Table 6 in the following way: we show the average with
standard deviation and worst-case performances (i) across GPU
architectures, (ii) when GPU code is executed on CPU-derived
architecture (CPU and MIC) and (iii) when CPU or MIC code is
executed on GPU architecture.

The table clearly demonstrates that the performance is not
portable in general. Although the average performance portability
is not bad among GPUs, the worst-cases are showing that for
some benchmarks, there are combinations of GPUs with very bad
performance portability, suggesting the autotuning should be re-
executed for different architectures. This is in line with related
work, such as [1–3]. The performance portability is much worse
in the case when the benchmarks are tuned for a CPU or MIC and
executed on a GPU and vice versa. The poor portability between
GPUs and CPU or MIC emphasizes the important role of tuning
— although our benchmarks cannot reach peak performance on
CPU or MIC, their performance is much higher than in case when
the GPU-tuned code is simply executed on a CPU or MIC.

This experiment also reveals a serious limitation of functional
portability with OpenCL. OpenCL guarantees the functional porta-
bility of the code if it can be executed on a device. When a
kernel uses more hardware resources (e. g., number of registers
per work-item) than is available on the device, it cannot be exe-
cuted. It seems that this is the case of finely-tuned kernels, which
often use as many resources as possible. When such kernels are
executed on a device with a lower amount of resources, they fail.
As it is shown in Table 6, this can happen when a code tuned for
CPU, MIC, or GPU is executed on a different GPU.

5. Dynamic autotuning

In this section, we experimentally evaluate dynamic autotun-
ing for two applications: batched GEMM and 3D Fourier recon-
struction. Moreover, we analytically determine the potential of
dynamic autotuning for the rest of the benchmarks.

5.1. Methodology

Recall that with dynamic autotuning, the tuning space is ex-
plored at runtime during application execution. Therefore, the
implementation variants are compiled and benchmarked during
application run-time, resulting in four sources of overhead:

• compilation of OpenCL or CUDA kernels (each explored tun-
ing configuration needs to be compiled by the JIT compiler);
• execution of slower kernels (slower kernels prolong tuning

time even in non-blocking autotuning when their results are
used for computation);
• enforced global synchronization between tuning runs (dur-

ing autotuning, execution of the tuning manipulators is not
overlapped, see Section 3.3);
• testing kernel output (this step is optional).

These overheads are relevant during the tuning phase only (i. e.,
when new configurations are searched). However, when a suffi-
cient number of tuned kernel invocations is performed after the
tuning, the overhead becomes negligible. Here, we want to know
how long the dynamically-tuned code has to run to amortize
the tuning overhead under a certain value. Or, alternatively, if
dynamic autotuning reaches better performance than a code that
has been offline-tuned for a different device or input data.

Note that the overhead of the KTT API (mainly the execution
of manipulator in function runKernel) is negligible during the
execution of the tuned code.

5.2. Batched GEMM

In the previous section, we have introduced an autotuned
kernel for batched multiplication of very small matrices. This
kernel is tuned for fixed sizes of matrices, e. g., we have used
matrices of size 16 × 16 for experiments in Section 4. However,
the space of the possible matrix sizes is large. The GEMM kernel
performs C = A · B, where A is an i × j matrix, B a k × i matrix,
and C a k × j matrix. Considering small matrices of sizes up to
32 in each dimension i, j, k, we get 32,768 combinations of the
sizes. Consider an application or library, which does not know
the sizes of multiplied matrices before it is executed. It would
be impractical to offline tune the application or library for all
possible sizes, so dynamic tuning, performed at runtime once the
matrix size is fixed, is of high practical value.
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Table 6
Relative performance of benchmarks ported across GPU architectures, from CPU/MIC to GPU and from GPU to CPU/MIC, without re-tuning. Avg±stdev denotes the
average and standard deviation of the relative performance, worst shows the worst-case performance, and failed shows the number of cases when some configuration
cannot be executed on a device. 3D Fourier Reconstruction has been executed on samples of 128 × 128 pixels on NVIDIA GPUs except for K20.
Benchmark GPU→GPU GPU→CPU/MIC CPU/MIC→GPU

avg±stdev Worst Failed avg±stdev Worst Failed avg±stdev Worst Failed

BiCG 89.0%±12.3% 57% 1 44.1%±17% 28% 0 38.8%±29.5% 11% 0
Convolution 79.4%±14.9% 55% 3 56.9%±18.5% 33% 0 10.0%±3.6% 6% 1
Coulomb 3D 95.8%±6.5% 67% 0 84.8%±2.7% 81% 0 23.3%±16.9% 3% 2
GEMM 83.6%±16.4% 31% 0 18.6%±18.5% 1% 0 22.3%±6.6% 13% 2
GEMM batched 85.4%±17% 37% 0 68.2%±13.2% 39% 0 76.7%±22.2% 46% 1
Hotspot 80.3%±17.5% 46% 3 70.3%±15.6% 44% 0 65.1%±8.9% 59% 6
Transpose 85.0%±21.9% 8% 3 51.0%±27.1% 11% 0 34.7%±14.7% 14% 0
N-body 78.8%±24.2% 2% 3 45.9%±30.1% 0% 0 25.7%±15.6% 6% 2
Reduction 88.4%±24% 12% 3 53.1%±17.4% 26% 0 68.3%±23.8% 37% 1
Fourier 74.5%±30% 31% 0 N/A N/A N/A N/A N/A N/A

5.2.1. Implementation
We have prepared an experiment, which simulates a real ap-

plication changing the matrix size from time to time. Our testing
application10 executed the tunable implementation of batched
GEMM introduced in Section 4.2.5, but it periodically changes the
size of matrices and performs dynamic tuning. More precisely,
the application computes batched GEMM in a loop and randomly
changes sizes i, j, k ∈ [2, 32] every 30 s. The application does not
save the results of dynamic autotuning, so every time the new
sizes are used, the autotuning starts from scratch. The batch size
has been selected so that matrices occupy approximately 900MB
of memory (so enough parallelism is also exploited with very
small matrices). When the size of matrices is changed, the dy-
namic tuning using random search starts and is performed until
(i) a configuration reaching 75% of the peak memory bandwidth
is found, or (ii) 20 configurations have been explored. The first
rule allows the application to stop tuning when a configuration
resulting in a sufficient performance is reached (we call such a
configuration as well-performing configuration). The purpose of
the second rule is to stop tuning when a configuration performing
close to the theoretical peak cannot be easily found (or does not
exist at all). After the tuning is stopped, the computation with the
fastest tuning configuration continues until the sizes of matrices
are changed again. With an application changing matrices sizes
less often, the tuning time could be prolonged. We have measured
the performance without tuning overhead (showing whether effi-
cient kernels can be found under limited tuning budget) and with
tuning overhead (showing the real performance of the dynami-
cally tuned application). The time required for initialization and
copying of newly created matrices was not benchmarked.

5.2.2. Evaluation
We have run the experiments for 3000 s (i. e. 100 changes of

matrix sizes) with all devices used in this paper. The matrix sizes
have been selected randomly, but the same sizes are used for all
devices. We have also performed offline tuning with exhaustive
search for those sizes to obtain performance of the fastest config-
uration at each device. The performance with and without tuning
overhead is computed as the relative performance of the fastest
configuration found by the offline tuning. The results averaged
over all matrix sizes are shown in Table 7. The code executing on
dual Xeon E5-2650, Xeon Phi 5110P and Tesla K20, is compiled on
Xeon E5-2650, which has quite poor single-core performance and
therefore requires a longer time for compilation. The prolonged
compilation time does not limit performance on CPU and MIC
significantly, because average kernels’ runtime is high and there-
fore, the compilation does not induce significant overhead. On

10 https://github.com/Fillo7/KTT/blob/master/examples/gemm_batch/demo.
cpp.

Table 7
Dynamically tuned Batched GEMM on different computational devices. The
second column (Maximum) shows the average performance of the fastest
configurations (average for all tested matrix sizes). The third column (Restricted)
shows averaged relative performance (relative to the maximum) of configu-
rations reachable with dynamic tuning under limited tuning budget (at most
20 configurations explored). Finally, the fourth column (Incl. overhead) shows
the averaged relative performance of dynamically tuned code, including tuning
overhead.
Device Maximum Restricted Incl. overhead

E5–2650 24.5 GB/s 88.6% 82.9%
5110P 22.9 GB/s 82.1% 72.1%
K20 91.2 GB/s 92.7% 61.3%
GTX 750 63.0 GB/s 91.4% 87.8%
GTX 1070 205.7 GB/s 97.2% 94.3%
Vega 56 308.5 GB/s 86.2% 74.4%
2080Ti 523.4 GB/s 92.6% 85.3%

the other hand, the compilation overhead is quite noticeable with
Tesla K20. The batched GEMM kernel performs in general very
well (i. e., it is close to the theoretical peak) on GPUs except for
Tesla K20. Its performance with overhead is also quite close to the
peak kernel performance (85% or better) in case of GeForce GTX
750, GeForce GTX 1070 and GeForce RTX 2080Ti, using Core i7-
8700 for compilation. A bigger gap between the performance of
the fastest kernels discovered during the tuning and performance
with overhead can be seen with Radeon RTX Vega 56 (running
in a system with Ryzen 7 1700). The main reason is the higher
number of poorly performing configurations and, therefore, more
tuning steps required to find a well-performing configuration
(i. e., the configuration within 75% of peak memory bandwidth,
which leads to finalization of the tuning).

For better illustration of tuning performance, the first 300 s of
the benchmark execution is shown for well-performing GeForce
GTX 1070 in Fig. 2 and for Tesla K20, which suffers from tuning
overhead, in Fig. 3. Naturally, the performance including tuning
overhead drops, when a new matrix size is used and increases in
time as tuning overhead is amortized. It can be seen that GeForce
GTX 1070, coupled with the modern processor Core i7-8700, is
capable of amortizing tuning overhead in a very short time —
after 30 s of execution, performance with tuning overhead is close
to peak kernel performance. Even if multiple configurations are
searched before a well-performing one is found (see performance
between 270 and 300 s for GeForce GTX 1070 in Fig. 2), the
performance with tuning overhead is close to the performance
of the best kernel found during the autotuning. On the other
hand, Tesla K20 cannot reach high performance for many matrix
sizes. This also means that more configurations are searched
during the autotuning process. The system with K20 uses an
older Xeon E5-2650, which also prolongs kernel compilation time.
Therefore, the overhead of the tuning process is significant and
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Fig. 2. Performance of dynamically tuned batched GEMM on GeForce GTX1070
+ Core i7-8700. The sizes of matrices are changed every 30 s. Performance of
actually executed kernels is depicted as dots, whereas lines show performance
including overhead. The maximal performance reachable via offline tuning with
exhaustive search is shown as horizontal red lines. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. Performance of dynamically tuned batched GEMM on Tesla K20 + Xeon
E5-2650. The sizes of matrices are changed every 30 s. Performance of actually
executed kernels is depicted as dots, whereas lines show performance including
overhead. The maximal performance reachable via offline tuning with exhaustive
search is shown as horizontal red lines. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

would need more kernel invocations to amortize. Tesla K20 is also
not able to reach high performance under limited tuning budget
(see the difference between kernel performance and performance
reachable by offline tuning between 210 s and 240 s, or between
270 s and 300 s for example).

5.3. 3D Fourier reconstruction in Xmipp

We have introduced the CUDA-based GPU acceleration of the
3D Fourier reconstruction in [3], where KTT has been integrated
into the 3D Fourier reconstruction for offline tuning and the
values of the tuning parameters for various hardware have been
manually exported into the production code. The implementation
requires autotuning to maintain performance portability across
GPUs (see Table 6). Because we were unable to install Xmipp on

Table 8
Performance portability of 3D Fourier reconstruction with 128 × 128 samples.
The rows represent GPUs used for offline tuning; the columns represent GPUs
used for execution. The percentage shows how performance differs compared
to the code using the best combination of tuning parameters (for example, the
code tuned for GeForce GTX 1070 and executed on GeForce GTX 750 runs at
only 31% of the speed of the code both tuned and executed on GeForce GTX
750).

2080Ti 1070 750 680

2080Ti 100% 99% 31% 49%
1070 99% 100% 31% 50%
750 43% 67% 100% 94%
680 60% 72% 71% 100%

Table 9
Performance portability on GeForce GTX1070. The rows represent samples
resolution used for offline tuning, the columns represent samples resolution
used for execution. The percentage shows relative performance compared to
the code autotuned for the used resolution.

128 × 128 91 × 91 64 × 64 50 × 50 32 × 32

128 × 128 100% 100% 77% 70% 32%
91 × 91 100% 100% 76% 68% 33%
64 × 64 94% 94% 100% 91% 67%
50 × 50 79% 78% 98% 100% 86%
32 × 32 65% 67% 80% 92% 100%

a system with Tesla K20, we have run the benchmark also on
GeForce GTX 680 to get more comprehensive results.

Detailed performance portability across hardware devices is
in Table 8. The size of the samples inserted into a 3D domain
influence the selection of optimal tuning parameters. The tuning
has to be repeated for samples of different sizes. Otherwise,
suboptimal performance is obtained, as can be seen in Table 9.

5.3.1. Implementation
The pseudocode of the reconstruction is shown in Algorithm 1.

The output volumes G (Fourier transform of the volume) and W
(weights for the 3D voxels) are initialized at the beginning of the
computation. In the loop body (lines 4–6), the samples are added
into the 3D volume. More precisely, the samples are packed
into buffers of a predefined size, and their Fourier transform is
computed on a CPU (line 4), copied into GPU memory (line 5)
and then tuned GPU kernel is executed to insert the samples into
volumes G,W (line 6). The whole algorithm is discussed in detail
in [3].

ALGORITHM 1: 3D reconstruction
Input: s
Output: G,W

1 zero-initialize output volumes G,W in GPU memory;
2 initialize buffer of image’s Fourier Transform sf in GPU memory;
3 foreach s ∈ S do
4 sf ← FFT (s) on CPU;
5 upload sf to GPU;
6 insert projections of sf into G,W ;
7 end
8 download G,W to CPU memory;
9 apply weights W to G and perform inverse transform of G;

We use the non-blocking dynamic autotuning, which performs
both tuning and computation at the same time. Therefore, all
input and output data have to be managed by KTT during the
whole program execution. In the loop in line 3, the data are
prepared on CPU, then a KTT method tuneKernelByStep, which
launches one step of dynamic tuning, is executed. The method
selects a new combination of the tuning parameters and executes
a tuning manipulator. The tuning manipulator implements lines 5



F. Petrovič, D. Střelák, J. Hozzová et al. / Future Generation Computer Systems 108 (2020) 161–177 173

Table 10
The relative performance of dynamically-tuned 3D Fourier reconstruction. The
best runtime is measured with ōrāculum, i. e., the fastest kernel is selected
immediately, and no tuning is performed. The relative performance of tuning
with searching 50 configurations and with searching the entire tuning space is
measured as a percentage of the best runtime. Results for ‘‘tuning 50’’ are shown
as an average and standard deviation, whereas other results are shown as an
average only (their performance is very stable across multiple executions).

Best runtime Tuning 50 Tuning full

2080Ti 1 m 40 s 88% ± 3% 54%
1070 5 m 49 s 96% ± 2% 79%
750 16 m 59 s 92% ± 4% 72%
680 15 m 12 s 94% ± 2% 75%

and 6 of the algorithm. It first copies buffer sf into GPU memory
and then executes a kernel, which inserts samples from sf into
volumes G,W . The CPU code is multithreaded, allowing to over-
lap computation of FFTs with kernel execution. The manipulator
uses CUDA streams, so when tuning is finished (and therefore
global parallelism is allowed, see Section 3.3) copying buffers
may be executed in parallel with kernel execution and even
multiple kernels may be executed in parallel (especially when
processing small samples). There is a tuning parameter changing
whether atomic writes to output volume in global memory are
allowed (see Section 4.2.10). Depending on the tuning parameter
value, the tuning manipulator method executes kernel iteratively
for each projection (atomic writes are disabled), or just once
(processing all samples in buffer sf in one kernel call).

5.3.2. Evaluation
We have designed an experiment demonstrating the usabil-

ity of dynamic autotuning with the 3D Fourier reconstruction.
We have used a real-world setup, performing reconstruction of
the Brome Mosaic Virus [48] (EMPIAR entry 10010), processing
1,826,160 samples in resolution 156 × 156. GPU kernels are pro-
cessing 1500 samples at once [3]; therefore, about 1280 kernels
are executed to solve the reconstruction (the actual number can
be slightly higher due to a small percentage of void samples).
All experiments with different GPUs have been performed on a
desktop machine with Intel Core i7-8700.

In our experiment, the tuning is performed at the beginning of
the computation, when both used hardware and sample size are
known. The performance of the dynamically tuned code is com-
pared to the performance of code with ōrāculum (i. e., when the
optimal tuning configuration obtained by the offline tuning using
exhaustive search is known at the beginning of the computation).
We have measured dynamically tuned code in two settings. First,
we let KTT perform 50 search steps with random search and then
continue with the fastest kernel explored. Second, we perform
the exhaustive search and continue with the optimal configura-
tion. As the random search was used, the experiment has been
repeated 100 times. Results of this experiment are shown in
Table 10. As we can see, the performance penalty of dynamic
tuning is smaller than the performance penalty we get for a
code that was tuned offline for a different hardware device (see
Table 8) or different input size (see Table 9). The performance
obtained with dynamic tuning ranges between 88% and 96% of
the performance of code with ōrāculum when 50 configurations
are searched, whereas the code mistuned for different GPU can
perform at 31% of ōrāculum in the worst case (see Table 8) and
the code tuned for different input size can perform at 32% of
ōrāculum in the worst case (see Table 9).

We further analyze the overhead of dynamic autotuning. Ob-
viously, the more executions of the kernel (in our case, the more
samples used to reconstruct the 3D volume), the less overhead
of dynamic autotuning. Therefore, for more complicated recon-
structions, the performance of dynamically tuned code is closer

to the code using the ōrāculum, whereas trivial reconstruction
may suffer from dynamic tuning overhead. Adding more work
per kernel (in our case using larger samples) decreases relative
overhead of the compilation, but not the overhead caused by the
execution of slower kernels and synchronization.

In our experiment, the JIT compiler runs for 45.5 s when the
full tuning space is searched. It introduces significant overhead
in the experiment with GeForce RTX 2080Ti, as the GPU is very
fast —- the whole reconstruction with ōrāculum is finished in
1min 40 s. With all GPUs, some slowdown is caused by executing
slow kernels. The performance of average kernel is at 45% of the
fastest kernel for RTX 2080Ti, 69% for GeForce GTX 1070, 46% for
GeForce GTX 750 and 52% for GeForce GTX 680. The good average
performance on GeForce GTX 1070 improves the high relative
speed of dynamic tuning with 50 explored configurations.

We have also measured the overhead of enforced global syn-
chronization. Recall that in such case, the tuning manipulator
copies input samples to the GPU and executes GPU kernels with-
out the overlay with another manipulator instance. The overhead
is small for 3D Fourier reconstruction: for kernels executed with
enforced global synchronization, it is 7% for GeForce RTX 2080Ti
and GeForce GTX 1070, and 5% for GeForce GTX 750 and GeForce
GTX 680. The global synchronization is enforced when kernels
are tuned, but is not needed when tuning is finished. Thus, in
our setup, out of the total 1280 kernel executions, only those 50
launched by the tuning manipulator were slowed down.

To conclude, even if the reconstruction program runs in min-
utes only, dynamic tuning is able to reach better performance
than offline tuning in the case offline tuning was performed for
different hardware, or different input size.

5.4. Dynamic tuning of the benchmark set

The suitability for dynamic tuning for all benchmark can be
estimated analytically. We can compare the performance of the
best kernel with the average performance of all kernels produced
by the tuning space, which allows us to compute the overhead
caused by executing slower kernels. We cannot evaluate the rela-
tive overhead of kernel compilation, as it depends on application
workload (large kernel input prolongs kernel runtime, whereas
compilation time remains the same). We also cannot consider the
overhead caused by the enforced global synchronization during
tuning as it is highly application-dependent if overlapping of ma-
nipulators can be leveraged. The performance penalty of enforced
synchronization, as well as kernels compilation, is similar for all
tuning variants, whereas the performance penalty of slow kernels
can be much higher (some tuning variants can produce orders of
magnitude slower kernels). Therefore, we consider the overhead
of very slow kernels as the most significant one.

In the following we show how to estimate the number n
of kernel invocations required in order to amortize the tuning
overhead such that the performance of n kernel invocations in-
cluding the dynamic tuning overhead is a certain fraction of
the performance we would have achieved by executing the ap-
plication using a well-performing kernel n times. We define a
well-performing configuration as a configuration producing a
kernel with a performance with which we are satisfied. Note that
the well-performing configuration can be easily determined with
some benchmarks (e. g., when defined as a percentage of relevant
hardware theoretical peak), but it can be also virtually impossi-
ble to identify a well-performing configuration until the whole
tuning space is searched (e. g., when defined as a configuration
reaching a certain fraction of the best configuration performance).
In this section, we use a well-performing configuration as a
theoretical concept, which is used to determine the number of
steps needed to amortize overhead of dynamic tuning.
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Let the application with ōrāculum be such an application
where a well-performing configuration is known at the beginning
of its execution (e. g., obtained by previously performed offline
tuning). Let the required performance of the dynamically tuned
application relative to the performance of the application with
ōrāculum be rp (so rp = 1.0 means that the dynamically tuned
application runs at the same speed as the application that uses
some well-performing kernel found during offline tuning). Let
the number of tuning steps be s, the average runtime of kernels
within the tuning space be tavg and the runtime of the well-
performing kernel be twell. Then, an average11 value of rp is
computed as:

rp =
s · tavg + (n− s) · twell

n · twell
(3)

The average number of kernel invocations n required to reach
relative performance rp can be estimated as:

n =
rp · s · ( tavgtwell

− 1)

1− rp
(4)

For example, if the average kernel has runtime tavg = 10ms,
the well-performing kernel has runtime twell = 5ms, we perform
s = 100 tuning steps and we want to reach relative performance
rp = 0.9 (i. e., dynamic autotuning reach 90% of the performance
of an application with ōrāculum), we need to perform 900 kernel
invocations (including those used for tuning).

The real amortization of dynamic autotuning depends on the
number of tuning steps required to find a well-performing kernel.
When random search is used, the number of required tuning
steps can be computed as follows. Let r be the ratio of well-
performing configurations in the tuning space and p be the re-
quired probability of finding a well-performing configuration. The
number of tuning steps s, which leads to reaching the well-
performing configuration with probability p, can be computed as

s = log1−r (1− p) (5)

For example, if the ratio of well-performing configurations is
r = 0.01, then we need to explore 230 configurations in order to
reach a well-performing configuration with probability p = 0.9.

Using Eqs. (4) and (5), we can compute the number of kernel
invocations needed to hide overhead caused by executing slow
kernels during dynamic tuning. We have set up the following
experiment. We define a well-performing configuration as a con-
figuration, which leads to at least 95% of the best configuration
performance. Using data gathered from the offline tuning of our
benchmark set with exhaustive search, we have computed the
number of tuning steps required to find a well-performing con-
figuration with probability 0.9 (using Eq. (5)). Then, we have
computed the number of kernel executions required to decrease
dynamic tuning overhead under 10% (i. e. to obtain at least 90%
of the performance we would have with ōrāculum). The results
are given in Table 11.

Table 11 demonstrates that dynamic tuning is feasible even for
short program executions (with thousands or tens of thousands
of kernel calls) with multiple benchmarks, such as BiCG, Direct
Coulomb Summation, Batched GEMM, Hotspot, Transpose, N-
body, Reduction and 3D Fourier Reconstruction. Longer execution
is needed for 2D Convolution and GEMM benchmarks. This test
also shows some interesting differences between the hardware
devices used in the test. For example, autotuning of OpenCL
code for a CPU is similarly demanding as for GPUs with many

11 Here, rp is computed for the average situation with s tuning steps and
random search. Obviously, the tuning time may be different from s · tavg in
particular executions.

benchmarks, whereas it is much harder on the MIC (Xeon Phi) in
multiple cases. There are also some benchmarks where different
hardware performs highly differently. For example, with Batched
GEMM on GeForce GTX 1070, 304 configurations out of 424 are
within 95% of the optimum and the average kernel performance is
at 95% of the optimum, so it is very easy to find a well-performing
kernel and to amortize tuning overhead. With GeForce 750, only
40 configurations produce well-performing kernels, and the aver-
age kernel performance is within 62% of the best one, so tuning
is harder than for GeForce GTX 1070. With Xeon E5-2650, only
three tuning configurations result in a well-performing Batched
GEMM kernel, and the average kernel performance is at 51%
of the best kernel, so searching a well-performing kernel and
amortizing the tuning overhead is significantly harder on the CPU.
Interesting differences between GPU and CPU/MIC can be seen in
3D Coulomb Summation benchmark, where tuning for GPUs is
harder. Not only is the number of well-performing kernels differ-
ent (e. g., 110 for Xeon E5-2650 and 28 for GeForce GTX 1070), but
a more significant difference is the average performance — it is
much lower for all GPUs (e. g., 5% of the best one on GeForce GTX
1070 vs. 57% on Xeon E5-2650). The poor average speed on GPU is
caused by huge register spilling when high unrolling of the inner
loop is used. Although it would be easy to remove these slow-
performing configurations from the tuning space, we decided to
keep the space as it was designed when the benchmark was
developed instead of adding a posteriori information for tuning.

6. Conclusion and future work

In this paper, we have introduced the Kernel Tuning Toolkit –
an advanced autotuning framework for OpenCL and CUDA appli-
cations. Using KTT allows expert programmers to configure appli-
cations for offline tuning and dynamic tuning based on arbitrary
user-defined code optimization parameters. We have also devel-
oped a set of ten benchmarks covering important HPC applica-
tion areas and demonstrated that autotuning with KTT allows to
produce highly efficient implementations (often close to the the-
oretical peak of the hardware) of these benchmarks for different
hardware architectures including CPUs, Xeon Phi co-processors
and GPUs. In our experimental evaluations we also demonstrate
that autotuning for different architectures is key for performance
portability. Moreover, we have shown that rationally-designed
tuning spaces are often small enough to be searched during
application runtime, making dynamic tuning feasible for a subset
of the considered benchmarks. We have demonstrated with two
different applications that dynamic tuning outperforms offline
tuned implementations quickly if some performance-relevant as-
pects, such as the size of data structures, change. Moreover, we
have shown that our framework can be integrated into pro-
duction software, supporting multi-threading, overlapping execu-
tion of host and device code with memory copies, and utilizing
simultaneous kernel execution.

In future work, we would like to focus on the further develop-
ment and integration of advanced search strategies. We believe
that it is possible to accelerate dynamic tuning by gathering
properties of the tuning space from previous tuning runs, e. g.,
determine the relative impact of tuning parameters on perfor-
mance by analyzing of profiling data. Using more efficient search
methods would make dynamic autotuning feasible also for larger
tuning spaces with a small number of well-performing configu-
rations. Another line of research will focus on advanced dynamic
strategies that can detect when the performance of an applica-
tion degrades and that can then automatically trigger dynamic
re-tuning of the code.

Another planned improvement targets the generation of tun-
ing spaces. Currently, KTT first generates the whole tuning space
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Table 11
The number of kernel invocations required to hide overhead of slow kernels execution. The goal is to find a kernel within 95% of
the optimum with 90% probability and decrease tuning overhead under 10% of the runtime. Benchmarks on Radeon RX Vega56
marked with * are running with smaller tuning space due to ROCm instability.
Benchmark 2080Ti 1070 750 K20 Vega56 E5–2650 5110P

BiCG 10,383 9,425 33.090 43,552 42,499 32,338 516,783
2D convolution 265,297 98,966 197,550 165,783 99,087 7,211 3,435
Coulomb 3D 17,305 16,346 4911 5,289 117* 150 631
GEMM 20,309 151,564 764,485 205,122 18,782* 384,309 3,106,384
GEMM batched 2 2 110 214 440 2,341 1,214
Hotspot 4,314 4,467 3309 5,635 1489* 3,926 7,346
Transpose 9,398 347 2998 1,347 140,177 5,129 60,688
N-body 7,539 33,553 2531 20,694 554* 2,472 1,669,559
Reduction 646 78 40 218 2198 1,650 19,425
3D fourier 2,239 830 3123 N/A N/A N/A N/A

and then prunes it based on the constraints given. We plan to
speed-up tuning space generation similarly as it has been done
in the ATF framework [7].

Furthermore, we plan to investigate the possibilities of con-
necting KTT with a compiler-based approach. By introducing a
DSL for optimizations, the programmer would need to only im-
plement advanced optimizations (such as changing memory lay-
out or the algorithm), whereas simpler optimizations (such as
vectorization or loop blocking) would be generated automatically
by the compiler.

The vast amount of autotuning results, especially when cou-
pled with profiling counters, can be used by the community to
compare behavior and efficiency of different HW architectures,
study effects of different code optimizations, or to develop new
search strategies. Therefore, we plan to set up a public database
containing tuning results with profiling counters and update this
database with any new hardware or benchmark available.

Last but not least, KTT has been designed to be independent
of the concrete API used for accelerated kernels (e. g., OpenCL or
CUDA). It is, therefore, possible to add broader support for APIs,
for example, Vulcan support would extend potential applications
of KTT towards computer graphics. With non-blocking dynamic
tuning, it would be possible to alter shaders at runtime without
significant drop of frame rate.
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Abstract

Modern computers are typically heterogeneous devices – besides
the standard central processing unit (CPU), they commonly
include an accelerator such as a graphics processing unit (GPU).
However, exploiting the full potential of such computers is
challenging, especially when complex workloads, consisting of
multiple computationally demanding tasks, are to be processed.
This paper proposes a framework called Umpalumpa, which aims to
manage complex workloads on heterogeneous computers. Umpalumpa
combines three aspects that ease programming and optimize code
performance. Firstly, it implements data-centric design, where data
are described by their physical properties (e. g., location in memory,
size) and logical properties (e. g., dimensionality, shape, padding).
Secondly, Umpalumpa utilizes task-based parallelism to schedule tasks
on heterogeneous nodes. Thirdly, tasks can be dynamically autotuned
on a source code level according to the hardware where the task is
executed and the processed data. Altogether, Umpalumpa allows for
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2 Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes

the implementation of a complex workload, which is automatically
executed on CPUs and accelerators, and which allows autotuning to
maximize the performance with the given hardware and data input.
Umpalumpa focuses on image processing workloads, but the concept
is generic and can be extended to different types of workloads.
We demonstrate the usability of the proposed framework on
two previously accelerated applications from cryogenic electron
microscopy: 3D Fourier reconstruction and Movie alignment. We
show that, compared to the original implementations, Umpalumpa
reduces the complexity and improves the maintainability of the
main applications’ loops while improving performance through
automatic memory management and autotuning of the GPU kernels.

Keywords: image processing, task-based systems, auto-tuning, data-aware
architecture, CUDA

1 Introduction

Heterogeneous computers have become standard in commodity computers,
clouds, or supercomputers in recent years. The heterogeneity pushed the
performance of computers much farther than it is possible with conventional
multicores at the cost of higher programming complexity.

To shorten the processing time at the level of a specific program, not only
is it crucial to perform a particular algorithm fast, but we also need to have
an optimized infrastructure to perform and chain many different algorithms
efficiently and correctly. Multiple technologies can be used to achieve these
goals.

First, autotuning frameworks aim to change performance-related
parameters to improve the source code’s speed [1]. There are numerous
autotuned libraries, which contain versions of the algorithms tuned for
particular hardware. However, those libraries often solve only a specific
problem and cannot be used for all computations we need to perform.
Moreover, most of them are autotuned in an offline fashion, so they cannot
automatically adapt to new unseen hardware or input that was not used for
autotuning. This can be solved by dynamic autotuning.

Second, the problem of scheduling on distributed, heterogeneous systems
can be solved by task-based parallelism. With task-based parallelism, the
program is defined as a set of individual tasks that can be executed in parallel
on various hardware resources [2], as long as they respect the execution
order defined by their data dependencies. The tasks are scheduled to different
processors available in the system, and the task-based framework automatically
handles data movement between memory spaces. Additionally, a task can have
multiple implementations intended for different hardware (e. g., a CPU im-
plementation and a GPU implementation) – the task-based system chooses
the appropriate implementation based on where the task is scheduled to run.
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While some task-based systems target CPU-based systems [3], most target
heterogeneous computing [4–6].

This paper proposes a framework called Umpalumpa, which connects
source code autotuning and task-based parallelism. More precisely, we tune
tasks in CUDA by Kernel Tuning Toolkit (KTT) [7] and use StarPU [4] to
schedule tasks across heterogeneous nodes and manage data movement. KTT
allows to tune tasks dynamically: they can be re-compiled during program
execution, so the application can dynamically adapt to used hardware and
data. However, KTT was initially designed for explicit use: the programmer
manipulates buffers, decides when to execute kernels, etc. We extended KTT
to allow interoperability with StarPU. StarPU is then responsible for data
allocation, transfer and distribution, and executing tasks on a heterogeneous
node. StarPU is then responsible for data allocation, transfer and distribution,
and executing tasks on a heterogeneous node. In other words, Umpalumpa
serves as an intermediate layer that logically separates KTT and StarPU and
ensures that autotuning can be performed correctly and efficiently at different
hardware and that the results of the autotuning are correctly propagated
between identical GPUs.

Although task-based runtime systems and autotuning frameworks offload
a lot of programming complexity from programmer to the framework, the
programming using such a system can still be highly error-prone. Tasks in
complex workflows often change data structures (semantics, type, or size).
Moreover, when autotuning is used, the data structures can be changed
dynamically to optimize performance. Therefore, it is beneficial to ensure that
tasks get data in the expected form or modify them.

Umpalumpa is designed to work with gray-scale image data. These typically
1D to 3D data structures can have various properties, such as resolution or
whether they are in the Fourier space. In the latter case, additional information
might be necessary, for example, whether the data represent only the non-
redundant half of the Fourier space. On top of that, for performance reasons,
images are often batched to enable higher parallelism or cropped/padded to
improve the speed of Fourier transform [8]. All those properties need to be
correctly interpreted by the tasks to produce expected results.

To record the data state, Umpalumpa collects two types of descriptors.
First, a physical descriptor describes the physical content of data: the size of
the allocated block of memory, location, type, etc. Second, logical descriptor
describes the semantics of the data: whether they are in real or Fourier space,
their resolution, padding, etc. The data is distributed in the system together
with its descriptors. This architecture allows to (i) automatically detect an
error when a task is executed on unsupported data, (ii) automatic adjust of
data to the supported form (e. g., remove padding), and (iii) autotune at the
level of a workload (for example, deciding whether to compute FFT faster in
one task at the cost of removing padding at another task).

We demonstrate the usability of Umpalumpa on two applications from
Cryogenic Electron Microscopy (cryo-EM) suite Xmipp [9].
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FlexAlign [10] is a GPU accelerated program for aligning images produced
by the microscope. The image series typically exceeds the memory size of the
GPU accelerator, making the memory handling rather complex. By employing
Umpalumpa, FlexAlign’s main loop is significantly simplified, and multiple
GPUs and CPUs can be utilized with a single codebase.

3D Fourier reconstruction [11] is another program from the Xmipp suite.
It reconstructs 3D volume from 2D projections obtained from an electron
microscope. In the main loop, 3D Fourier reconstruction performs Fourier
transformations of the projections and adds them in defined orientation into
a 3D voxel array, using a bell-shaped interpolation kernel. The performance
of this program is highly dependent on hardware and input [7]. Moreover,
depending on input data, either FFT or projection into a voxel array can be
a bottleneck. When 3D Fourier reconstruction is integrated into Umpalumpa,
the system can automatically balance workload between CPU and GPU and
re-tune GPU kernels when needed.

The main contributions of this paper are as follows:

� we demonstrate a novel connection of task-based runtime system and source-
code level dynamic autotuning;

� the presented framework improves code efficiency and also eases
programming of image processing workloads;

� we demonstrate framework usability on two real-world use cases from the
cryo-EM domain.

The rest of the paper is organized as follows. First, we present related
work. Section 3 describes the design of the proposed framework, including
the integration of the StarPU and KTT frameworks. Section 4 describes
applications used for evaluation of the framework and a comparison of their
original and Umpalumpa implementation. Section 5 lists several open research
questions that this paper left unanswered. The paper ends with a conclusion
and future work.

2 Related Work

Autotuning can be enabled by tools such as OpenTuner [12] or
HyperMapper [13]. However, those tools mainly provide advanced search
of tuning space, whereas their integration into application code is left
to the programmer. Autotuning frameworks allow tuning of the code
more straightforwardly at the cost of less generic implementation. Several
autotuning frameworks focus on heterogeneous computing, allowing offline
tuning before program execution [14, 15], or even dynamic tuning when the
program is running [7, 16]. Those autotuning frameworks can be used to
change source code according to given hardware and input, which significantly
improves performance portability. Our previous work showed that it is
possible to reach near-peak performance on various GPU architectures with
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a single autotunable codebase [7]. As for the autotuning of the image-
related framework, there are many previous works. [17] proposed optimization
strategies based on automatic thread scheduling and data/task partitioning
of multiple stencils. The proposed interface allowed for tiling, traversal, and
fusion of multiple operations on relatively big images. Unlike Umpalumpa,
they created multiple tasks to process a single image in parallel, and while
Umpalumpa’s task size is flexible, it would be typically more coarse-grained
and used to process multiple images simultaneously. Umpalumpa also does
not support task fusion, as it is not focusing only on stencils. Stencils were
also the main focus in e. g. [18]. They proposed that the programmer defines
a stencil and a high-level strategy to execute it. Autotuning would then try to
find the best combination of parallelism, loop unrolling factor, tile size, and
other parameters to optimize the execution. In Umpalumpa, a highly-skilled
programmer is expected to provide the low-level code with placeholders that
modify it (such as unroll factor or vector data types), and KTT is then trying
to find the best combination of valid values for those placeholders. In this
sense, KTT’s autotuning approach is more similar to [19] and [20]but [19] also
targets only stencils, and their work does not incluce task-based parallelism.
[20] showed high-level directive-based programming language with autotuning
of loop permutations, loop unrolling, tiling, and specific loop parallelization
defined via pragmas, but KTT allows for more rich expression power through
code recompilation and thus allows to change virtually any property of the
code.

To solve the problem of distributing our computations across a set of
heterogeneous hardware resources, we have decided to use the task-based
programming model and take advantage of a pre-existing task-based runtime
system to handle parallel execution and data transfers. Seeing as the task-
based abstraction has been used for decades [21], a variety of systems have been
developed to tackle the problem of defining tasks and executing them efficiently
– from languages and language extensions such as Cilk [22] and OpenMP
(starting with version 3.0) [23], to standalone libraries such as DuctTeip [24],
HPX [5], Legion [25], Dandelion [26] or PaRSEC [27]. For our purposes, we
have chosen StarPU [28], a reasonably mature open-source task programming
library with its own runtime system and scheduling algorithms. StarPU
supports heterogeneous computing by allowing for multiple implementations
of a single task written for different processing units. As an external library,
it should mesh well with other parts of Umpalumpa, such as the autotuning
framework KTT, without too much need for complicated integration. In
addition, StarPU is open source, has extensive documentation, and contains
its own performance analysis tools – all of these are important features that
can help identify potential problems with integration into our framework.

Finally, there are multiple software packages for cryo-EM, like Warp [29],
Relion [30], or cryoSPARC [31] besides XMIPP. While all named (and many
others) provide GPU versions of the programs specialized for specific tasks,
only some provide the equivalent CPU version. To the best of our knowledge,
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none of them uses autotuning or heterogeneous computing in the manner we
present in this paper.

3 Umpalumpa

In this chapter, we introduce our new framework Umpalumpa. We present
requirements, design decisions, and current capabilities of this framework.

3.1 Requirements

Based on our requirements and experience, we came up with the following
characteristics that the framework should have:

� framework should be designed for image processing, i. e., the main work unit
is 1D to 3D data, which is the most typical case for cryo-EM;

� framework should allow for data description consisting of two independent
information - the HW-related one, i. e., how and where are data located, and
the content-related one, i. e., what is stored and which properties data has;

� framework should provide algorithm transparency - the same algorithm
might have multiple implementations targeting different hardware and
different data content;

� framework should integrate an autotuning framework to allow for offline and
dynamic (runtime) autotuning;

� framework should be compatible with a task-based system, such as StarPU,
to automatically utilize available resources on the machine.

We also envisioned the framework used by two groups of programmers,
a situation relatively common in the applied research community, where
computer scientists focused on HPC collaborate with domain experts. Expert
programmers with high technical skills would be the authors of the Algorithms
and Strategies (see Section 3.2.2). The other group would then consist of non-
expert programmers, who chain Algorithms into the final program. While the
framework should not limit expressing power for the first group (especially
regarding implemented optimizations and types of Algorithms), it should offer
simplicity and ease of use for the latter group.

3.2 Data-centric design

Object-Oriented Programming (OOP) is typically used to process data such
as images. The positive side of the OOP is that the object knows what is
stored in it, provides an interface to manipulate the data, and hides details of
their storage. The negative side is that methods and other classes interacting
with it cannot use or rely on any information about the low-level data storage,
which limits optimizations. On the other end of the spectra, raw data storage
(e. g., an array of floats) allows for full low-level optimizations, but we might
lose the information about the content of the data.

In our framework, we aimed to solve this situation using Payloads.
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3.2.1 Payloads

The Payload consists of a Logical Descriptor (LD), which says ’what is in the
data’, and a Physical Descriptor (PD), which says ’how is data represented in
the memory’.

In other words, PD tells us information about the block of memory, while
LD tells us high-level information on how the data can be treated.

So far, we store this information at the level of PD:

� void *ptr;

which points to the beginning of the memory block
� size_t bytes;

how big block is allocated
� DataType type;

what type is stored
� ManagedBy manager;

who is responsible for data management
� void *handle;

handle used by the Manager (optional)
� bool pinned;

true if memory has been pinned in RAM

The DataType stores the data type in the form of byte size and a hash code
of the type. This allows us to keep PD type agnostic, thus keeping the code
simpler with no need for templates, yet we do not lose any information. The
Manager tells us who is responsible for the data, for example, that the block is
managed via CUDA’s unified memory or StarPU. The Handle is then a special
attribute that the manager can use if needed. Other fields are self-descriptive.

The Logical Descriptor tells what the content of the data is. There are
multiple different LDs, each with its specific attributes. For example, the
FourierDescriptor holds the following information regarding data which either
already is in the Fourier space or that could be converted into it:

� Size size;

size in the Spacial domain
� Size frequencyDomainSize;
� std::optional<FourierSpaceDescriptor> fsd;

The Fourier Space Descriptor holds info on additional properties of the
data which is already in the Fourier Space:

� bool isShifted;

zero-frequency components have been shifted to the center;
� bool isNormalized;
� bool hasSymmetry;

false if only the non-redundant half is stored;
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Figure 1: UML of the Payload, the Logical Descriptor and the Physical
Descriptor

To represent various data objects, we then use the template<typename
T>Payload, where T is the type of the Logical Descriptor. PD is a constant
field of the Payload, see Figure 1.

3.2.2 Algorithm

An Algorithm is responsible for performing a specific operation. In this
subsection, we use the Extrema Search algorithm as an example (i. e., the
algorithm that searches for the highest or the lowest value within an image).

In our design, each Algorithm has four main methods:

� Init(), which provides the Algorithm with information on what exact
operation is to be performed (e. g., search for maxima in a radial window
from the center). The Algorithm can use that information to:

– preallocate necessary resources, and
– run basic checks on the data and requested operation, for example, to

check that the inscribed search radius is within the data size. Should this
check fail, Algorithm will not be initialized

� Execute(), which actually performs the operation specified during the Init()
on passed Payloads. Execute can be asynchronous;

� Cleanup(), which releases all resources obtained by the Algorithm during
the Init() call;

� Synchronize(), which waits till all Execute() calls made on this instance
finish.

The input and the output data are passed to the Algorithm via Payloads.
To simplify the interface, Payloads are passed in the form of the Payload
Wrapper, i. e., a tuple of multiple Payloads of potentially different Logical
Descriptor types.

To Execute() the Algorithm, it seems that one input and one output
Payload Wrapper parameter is sufficient at the moment. This might change
with the future versions of the framework, as more specialized operations will
be added.

Additional requirements for executing the operation, such as the extrema
type and search window specification, are passed Settings during the Init()
call. Shall the requirements of the search change, a new Init() call is required.
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Figure 2: UML of the Algorithm with different Strategies

Since work performed by the Algorithm is typically non-trivial, each
Algorithm can use multiple Strategies, see Figure 2. For example, the Extrema
Search algorithm might have one Strategy optimized for searching in the entire
data, and another optimized for searching in a specific window.

This allows us to easily add or modify the Algorithm’s functionality without
affecting other Strategies.

Each Strategy is expected to use one or more kernels — typically short,
highly optimized pieces of code performing a specific operation, e. g., searching
for the maxima. Since we can do many checks beforehand, these kernels
can stay clutter-free, which increases the chances of automatic compile-time
optimizations, such as automatic vectorization.

It can also lead to higher code reusability, as e. g., reduction kernel can be
used for reduction and extrema search1.

The support of the heterogeneous machines is done at the level of the
Algorithm by inheriting the common interface. Currently, we provide single-
threaded CPU and single-device CUDA implementation of all Algorithms
present in the framework. Additional accelerators might be added by simply
adding a new Algorithm implementation.

While we rely on the compile-time optimizations of the CPU code, we use
the Kernel Tuning Toolkit (KTT) [7] to optimize the CUDA kernels. The KTT
allows us to transparently autotune the code both offline or dynamically, i. e.,
during the execution, which in turn allows us to react to changing runtime
conditions, such as different data sizes or new hardware. More details on how
we deal with it are in Section 3.4.

3.3 StarPU Integration

To add a layer of abstraction between the programmer and various complex
hardware interactions, we have decided to make our framework compatible
with an existing task-based system that could be in charge of computation
scheduling and data transfers. While several frameworks could fill this role, we
have chosen StarPU [28], a task programming library developed at Inria, for
reasons outlined in Section 2. Unlike CUDA, StarPU is an optional but highly
recommended dependency.

1they differ in the reduction operator only - summation for reduction, and greater-than for
maxima search
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StarPU can execute different work on heterogeneous nodes while
automatically taking care of the memory transfers and data consistency [4].
Using StarPU’s terminology, a Codelet executes a Task on a specific Worker.
Data handles manage raw data used by Codelet, and an Interface defines
data layout. In default settings, StarPU provides one CPU worker for each
accelerator and then one CPU worker for each physical core of the machine.

Support of StarPU in Umpalumpa is relatively straightforward.
Umpalumpa’s Payloads, specifically the Physical Descriptors, map to StarPU’s
Interface. We store the Data handle in the respective attribute of the PD and
set StarPU as a Manager. StarPU internally handles all data based on their
interfaces and replicates, transfers, and keeps track of the data consistency
between different memory nodes.

An instance of the StarPU Algorithm uses available CPU / CUDA im-
plementation of the same Algorithm. During the Init() call, it forwards the
Payload Wrappers and Settings to device-specific Algorithms, and it keeps
track of those which initialized, i. e., those able to perform the requested
operation.

A vector of initialized Algorithms is used during the Execute() call
when uninitialized workers are masked and not used by StarPU (therefore,
Umpalumpa supports Algorithms that do not have implementations for all
devices available at the heterogeneous node). We also ’wrap’ Payloads into
StarPU’s Interface, set read/write access to them and submit the task.

StarPU, based on the data dependency of the task and the scheduling
policy, transfers or copies necessary memory blocks to a concrete worker and
executes the task on it by calling specified Codelet. With Logical Descriptors,
which are passed as Codelet arguments, we can recover Umpalumpa’s
Payloads by ’unwrapping’ the data interfaces back to Physical Descriptors and
forwarding them to the underlying Algorithm, which was already initialized
on this worker.

In conclusion, this combination of StarPU and Umpalumpa allows us to
automatically and easily span the computation across heterogeneous nodes,
provided that we have a specific implementation for each type of worker
without the hassle of memory maintenance. Only compatible Umpalumpa
Algorithms are used at each moment, ensuring the performed operation’s
consistency and correctness.

3.4 Autotuning integration

Autotuning is expected to improve the performance of particular Strategies.
As the Strategies executing Umpalumpa Algorithms are distributed across
heterogeneous nodes via StarPU, we need to ensure interoperability between
StarPU and autotuning framework. Moreover, we want to implement dynamic
autotuning (i. e., autotuning capable of recompiling tuned code during program
runtime) to adapt Strategies to the given hardware and data during application
runtime. We have chosen KTT for this job, as it supports dynamic autotuning
for accelerators [7].
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In this Section, we describe how we integrated KTT autotuning into
Umpalumpa. Although dynamic autotuning is already supported in KTT, we
solved three issues.

� KTT is initially designed to handle structures of the computing API
(context, data buffers, etc.) on its own. It also handles data movement and
synchronization. To connect it with StarPU, we need to extend KTT API to
accept computing API structures, data management, and synchronization
from external code.

� StarPU schedules compute tasks (i. e. specific Strategies through their
Algorithms) over the heterogeneous node, which can contain multiple
(possibly different) GPUs, and multiple tasks can be scheduled to run
concurrently on one GPU. Therefore, Umpalumpa needs to manage
autotuning separately for different devices and isolate tuning runs to
measure kernel times correctly.

� When autotuning is already done, and the program is executed on similar
data, we want to load and use tuning results from the previous program
runs.

On top of all this, we want autotuning integration into Umpalumpa to
be as seamless and automatic as possible for non-expert programmers while
keeping the power of the underlying autotuning framework in the hands of
expert programmers.

3.4.1 Supporting interoperability in KTT

KTT provides the ability to define tuning parameters and constraints for
CUDA kernel functions. It creates a space of tuning configurations based on
different combinations of the parameter values and then searches this space to
find the best performing configuration. It also handles low-level functionality
such as compilation and launching of CUDA kernel functions. KTT was
initially designed to be used only to create standalone programs focused on
tuning specific kernels. In order to integrate KTT into Umpalumpa, several
upgrades and changes to its public API and functionality were made:

� By default, when a new KTT tuner is created, it initializes its own internal
CUDA structures, such as context computes streams and buffers. However,
an option to initialize the tuner with custom structures was added due to
the required interoperability between KTT, StarPU, and Umpalumpa. This
enables a usage scenario where StarPU structures are passed into KTT
during tuner initialization. They remain under StarPU management while
KTT references and uses them when required.

� All kernel function runs and buffer data transfers within KTT are
synchronized during tuning. This is necessary to obtain accurate tuning
data such as kernel execution times. However, Umpalumpa combines kernel
tuning with kernel running, so there is a need to enable asynchronous kernel
launches and buffer transfers after the tuning phase is completed. KTT
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API was extended with methods to support a seamless transition from
synchronous tuning to asynchronous computation. Explicit synchronization
during the computation phase can be performed via streams or events.

� Internal KTT structures such as kernels, kernel definitions, arguments, and
configuration data originally had their lifetimes tied to the tuner. However,
due to how Umpalumpa operates, removing these structures on the fly to
save memory is required. The KTT API was extended to make it possible
to remove kernels, arguments, and user-provided compute queues from the
tuner. When removing a kernel, all of its associated data, such as generated
configurations and parameters, are also removed.

The features mentioned above are implemented in KTT 2.1 and are freely
available2.

3.4.2 Managing KTT instances

We have to implement a system that will allow us to respond to the scheduled
task distribution dynamically. One instance of a KTT tuner cannot access
multiple GPUs. Therefore, we dynamically assign one KTT instance to
each available GPU. A class KTTProvider is responsible for this KTT-GPU
mapping. When an Algorithm needs to access a KTT, it asks KTTProvider for
it, and KTTProvider returns the appropriate KTTHelper instance depending
on what GPU the Algorithm will be run on (i. e., in the case of StarPU, it can
be decided based on the worker id). This means that wherever the task will
be scheduled to run, there will always be a KTT instance ready to tune the
kernels for that specific GPU.

KTTHelper gives the Algorithm direct access to the specific KTT instance
and provides various utility methods, such as KTT locking. Locking of the
KTT instance is essential in the multithreaded environment because KTT is
not thread-safe on its own.

If we perform tuning (i. e., we need to benchmark runtime of a new
configuration of the tuned Strategy), we need to ensure that GPU is not used
by other Strategies, as it would affect performance measurements. Whenever
a Strategy needs to be tuned, we lock the access to the KTT for the whole
execution of all kernels executed by the tuned Strategy so that no other kernel
can start on this particular GPU. Once the tuning execution finishes, we unlock
the KTT, and other Algorithms can again be scheduled to run concurrently
on the GPU. Our approach requires all the Algorithms that run on a GPU
to inherit from the KTT* classes even though they might not utilize KTT.
One such example is the Fourier Transformation Algorithm in the Umpalumpa
framework, which executes cuFFT in its GPU implementation.

3.4.3 Storing, loading, and reusing tuning results

The goal of autotuning is to seek efficient implementation with respect to
used hardware and input. However, the previously tuned implementation

2https://github.com/HiPerCoRe/KTT/releases/tag/v2.1
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efficiency can drop when hardware or input changes, and we need to repeat
tuning. Although it is trivial with changing hardware (we tune kernels for each
hardware device separately), the situation is more complicated for changing
input. When the input is changed, three situations can appear:

� the input content changes, but the amount of arithmetic and memory
operations required to perform the tuned Strategy remains the same
(assuming that the implementation is not data-content sensitive);

� the number of operations required to perform the tuned Strategy changes,
but the efficiency of kernels is not affected;

� the input is changed so drastically that the implementation, which was
efficient for previous input, becomes less efficient.

Consider finding the maxima of an image as an example. In the first case, we
process different images of the same resolution. The code path of the maxima
searcher is the same (it depends just on image size, not on data content).
We can therefore use the previously tuned kernel to find maxima efficiently.
Moreover, if we are currently performing autotuning, we can profile a new
implementation on these data and compare its runtime with previously tested
implementations. In the second case, we process images of slightly different
sizes. We cannot mix the runtime of maxima computation with previously
measured runtimes, so we need to exclude such computation from autotuning.
However, we can still use previously tuned Strategies to process the images of
the new size. In the third case, the image size is changed significantly (e. g.,
the image is much smaller, so we need to improve strong scaling on GPU).
Here, we cannot even ensure that Strategy tuned for too different images can
efficiently compute maxima of images of the new size, and we need to re-execute
autotuning.

To solve the issue of storing and reusing the tuning results, we introduced
Strategy Groups (SG). It is a group of Strategies where all the Strategies which
belong to the same SG can use the same tuned configuration without losing a
significant amount of performance. Each SG has a leader Strategy that dictates
what Strategies belong to the SG. In order to decide what Strategies end up in
the same SG, we defined two relationships: equality and similarity. We compare
a Strategy to an SG’s leader. In the case of equality, the Strategy is included
to the SG as equal to the leader, which means that it can be tuned, and its
tuning results will be considered when constructing the best configuration. In
case of similarity, the Strategy is included to the SG only as similar to the
leader, which means that it cannot be used during tuning, but it can use the
SG’s best-known configuration to run. If a Strategy is neither equal nor similar
to any of the existing leaders, it creates a new SG where it becomes a leader.

Equality and similarity are only considered for Strategies of the same type.
The tuning results are stored by serializing the entire SG with its leader. When
tuning results are loaded, we fully reconstruct the serialized SGs with their
leader to reuse tuning results or add new ones.
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Figure 3: UML of the TunableStrategy’s inheritance tree.

There are many use cases where equality and similarity play an essential
role in tuning. In the current implementation, it is up to the programmer
to define equality and similarity. Properly defining these relationships among
users’ Strategies may significantly reduce the amount of tuning one needs to
do to obtain a highly performant configuration for each Strategy.

3.4.4 Seamless integration

To tackle the automation challenge, we opted to utilize multi-inheritance (see
Figure 3). An Algorithm that wants to leverage KTT should inherit from
specialized base classes KTTAlgorithm and KTTStrategy. These classes give
the Algorithm and Strategies access to the KTT instance and also automate
many actions necessary for correct functionality, such as deciding when to tune,
reusing tuned configurations, saving and loading tuning results, or locking
GPUs for tuning. Overall, when adding a new Strategy, the expert programmer
only needs to implement the Strategy’s specialized Init and Execute methods,
define equality and similarity of the Strategy, and implement actual auto-
tunable kernel.

In addition to various data checks, Init method serves as a place to prepare
the KTT, namely, set up what kernels will be used, what template parameters
they will have, set up tuning parameters, tuning space searcher, tuning space
constraints, etc. Apart from running the kernel, Execute method also needs
to finish KTT preparations by connecting input and output data buffers with
the KTT arguments so that KTT can pass correct arguments when it runs the
kernel.

4 Applications

In this section, we present and test the capabilities of the Umpalumpa
framework by implementing core functionalities of two programs from the cryo-
EM. We compare ease of development and performance as the main criteria.
We present the StarPU version of the programs, i. e., a version which uses
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StarPU for task distribution and data management. However, the same base
class defining each program can be reused to get a pure single-threaded CPU
and a pure single-GPU CUDA version of the program3. This dramatically
simplifies the development, as most of the code is reused.

4.1 Cryogenic electron microscopy

One of the fields benefiting from High-Performance Computing is cryo-EM, a
technique for determining molecular structure used in structural biology.

The main idea behind cryo-EM is that hundreds of thousands of samples of
a specimen are rapidly frozen in a random orientation, and the electron beam
records their projection. These projections then can be processed to create a
3D model of the original sample at near-atomic resolution [32].

A typical session at the microscope side produces terabytes of data
which takes days to process [33]. The processing involves many steps, and,
typically, many specialized programs perform operations on different file
formats representing 2D and 3D data. Specialized frameworks like Scipion [34]
are typically used to keep track of the processing and to unify different
independent software packages.

4.2 FlexAlign

FlexAlign is an open-source cryo-EM program provided via the Xmipp software
package we helped to develop [9]. It is used for so-called movie alignment.

In a nutshell, it tries to find a rigid global (and optionally a flexible local)
alignment of frames (i. e., of a movie) produced by the electron microscope.
It does so by estimating an apparent shift rij for each pair of frames fi and
fj (where j > i) by exploiting the cross-correlation theorem. More precisely,
for each pair of frames, FlexAlign converts each frame to the Fourier domain
(FD), computes their correlation by multiplying them, transforms them back
from the FD, and then looks for the location of the maxima in the resulting
correlation function.

FlexAlign is an example of a program that is primarily memory limited
—for optimal performance on GPU, it requires a lot of memory and
executes global memory-bound kernels. With high-end GPUs, it is PCI-e-
bound. Otherwise, it is global memory bandwidth-bound. More details on the
implementation and results of the FlexAlign in Xmipp can be found in [10].

The core of the FlexAlign program uses the following algorithms:

1. forward FFT, which converts an image to Fourier domain;
2. modified cropping algorithm, which in addition to crop also normalizes the

data in FD and shifts low frequencies to the center of the image so that
after inverse FFT the center of the correlation function is in the middle of
the data. The cropping has two reasons:

3derived classes need to provide memory allocators and concrete implementations of the base
Algorithms to be used
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� decreasing the number of pixels decreases time necessary for the FFT, as
well as memory transfers and memory space;

� suppressing the noise, as cropping in the FD is equivalent to removing
high frequencies from the image

3. correlation algorithm, which multiplies images;
4. inverse FFT algorithm, which produces the correlation function;
5. extrema finder algorithm, which looks for the sub-pixel position of the

correlation maxima.

4.2.1 Implementation in Umpalumpa

The pseudocode of the main loop of the Umpalumpa’s version of FlexAlign is
shown in Alg. 1.

Algorithm 1 FlexAlign pseudocode, Umpalumpa version.

Input F, batch

1: frame payloads⇐ {}
2: for j = 0; j < size(F ); j+ = batch do
3: frame payloads← create payload(batch)
4: end for
5: frames fd← {}
6: shifts← {}
7: for j = 0; j < size(F ); j+ = batch do
8: frame← load frame(j, batch, frame payloads)
9: frame fd← convert to fd(frame)

10: frames fd← crop(frame fd)
11: for i = 0; i ≤ j; i+ = batch do
12: correlation← correlate(frames fd[i], frames fd[j])
13: corr func← convert from fd(correlation)
14: shifts← find max(corr func)
15: end for
16: end for
17: for all shift ∈ shifts do
18: // extract shift from the Payload
19: end for

As can be seen, the main loop is divided into three main parts. In the first
for loop (line 2) we generate Payloads which will hold our image data. This
for loop is extracted from the main loop, as the Payloads can be reused in
case multiple movies are being processed. Then the main loop follows, where
all images are processed in batch (line 7). In the last for loop (line 17), shifts
are extracted from the Payloads. This loop is outside of the main loop, as it
is used as a synchronization point. Like this, the StarPU version can benefit
from having multiple tasks queued and thus saturate the machine.
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Notice that the number of iterations of the main loop is linear w.r.t. number
of frames of the movie, while the number of iterations of the inner loop is
quadratic w.r.t. the number of frames.

Algorithm 2 Method which converts batch of frames to the Fourier domain

Input frames

1: in payload← Payload(FourierDescriptor(frames), frames.pd)
2: out payload← {
3: ld = FourierDescriptor(frames,FourierSpaceDescriptor())
4: pd = create pd(ld)
5: return Payload(ld, pd)
6: }
7: in← PayloadWrapper(in payload)
8: out← PayloadWrapper(out payload)
9: alg ← get fft alg()

10: if alg is not initialized then
11: settings← Settings(out of place, forward)
12: alg.init(out, in, settings)
13: end if
14: alg.execute(out, in)
15: return out payload

Algorithm 2 shows a pseudocode of the convert to fd() method. Other
methods are principally similar to it, which demonstrates the simplicity of the
proposed approach for non-expert developers and ease of reasoning about the
code and its maintenance.

In the beginning, it creates a new Payload of the Fourier Descriptor-type,
using information from the input frames Payload. Notice that the Physical
Descriptor is reused, as the underlying memory block stays the same. What
does change is how we interpret the data: from ’image data’ in the frames to
’data which will be converted to the Fourier domain’ in the in payload.

The output Payload must be created from scratch, including the Physical
Descriptor. The create pd() method is specific for each target device and
provided by the derived class and uses information from the Logical Descriptor
to allocate a sufficiently big memory block. In the case of the StarPU, we can
use its temporary data, i. e., automatically allocated and managed memory.

In the end, the method initializes the Algorithm (again provided by the
derived class) and executes it. It finishes by returning the resulting Payload,
which is used later in the main loop.

4.2.2 Implementation in Xmipp

The original Xmipp version is a single-GPU CUDA implementation in float
precision, with manual memory management.
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Table 1: HW used for the performance testing.

CPU AMD EPYC 7402 24-Core Processor

GPU 2 × NVIDIA GeForce RTX 3090 (24 GB)

CUDA/driver 11.4 / 470.103.01

RAM 64 GB DDR4 @ 3.2 GHz

The implementation looks similar to the Umpalumpa one, with several
significant differences. To decrease the memory requirements but to keep the
GPU fully saturated, it does the memory management manually and uses
two different batch sizes. The conversion to the Fourier domain is done for
all movie frames in one batch size at a time, and the cropped frames are
transferred back to host (CPU) memory. This allows for bigger batches to
be used during the correlation and inverse FFT computation, as we do not
need to keep the forward FFT plan on the GPU4. The second important
difference is that the centers of the correlation functions are cropped at GPU
and then sent to the CPU side for the maxima localization. We used a more
complicated sub-pixel maxima localization algorithm, which would be hard
to implement and accelerate on GPU. In Umpalumpa, however, we use basic
weighting in a 3 − by − 3 window, which provides very similar results in the
majority of cases. When writing the Xmipp version, Xmipp only provided
a single-threaded, double precision algorithm for the FFT on the CPU. As
FlexAlign was using single precision, processing on heterogeneous nodes was
infeasible and impractical, as the programmer would have to manually balance
the load and deal with the memory transfers5. Last but not least, kernels used
in the Xmipp version were only manually optimized.

As can be seen from the description above, Xmipp’s code is much more
complicated while being much less versatile. This complexity negatively affects
maintainability and increases the requirements on programmers’ technical
knowledge and experience, even if all algorithms have their optimized
implementations and programmers are just expected to chain them in the
application’s main loop.

4.2.3 Performance

Table 2 shows typical sizes of movies used in cryo-EM, which were also used
in [10], using the HW specified in Table 1.

Table 3 shows the wall time of the FlexAlign from Xmipp and Umpalumpa
for different sizes, using a single GPU6, i. e., this is the most similar
configuration to the original Xmipp implementation, and using all CPU and
GPU workers. The program internally runs 10 iterations of the Algorithm 1,

4Plan typically takes 1 − 8× the size of the data itself
5could be partially solved with a combination of CUDA’s Managed memory + prefetch to avoid

page faults
6STARPU NCUDA=1 STARPU NCPU=0
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Table 2: Typical resolution of movies, number of frames and correlations.

Size Correlations

Falcon 4096 × 4096 × 40 780

K2 3838 × 3710 × 40 780

K2 super 7676 × 7420 × 40 780

K3 5760 × 4092 × 30 435

K3 super 11,520 × 8184 × 20 190

Table 3: Runtime of FlexAlign in seconds, single GPU. Speedup is computed
relative to Xmipp implementation.

Xmipp
Umpalumpa,
One GPU worker

Speedup
Umpalumpa,
All workers

Speedup

Falcon 7,5 5,7 133 % 6,5 115 %

K2 6,4 4,7 136 % 5,1 126 %

K2 super 23,3 21,2 110 % 15,1 154 %

K3 7,3 5,7 128 % 6,2 118 %

K3 super 19,6 13,2 148 % 15,0 131 %

i. e. it simulates the processing of 10 movies. The batch size was 5. Instead of
loading frames from HDD, it simply initializes the memory to zero; however,
this does not affect the amount of computation performed.

In case of the single GPU worker, the times of all StarPU schedulers
we tested7 are very similar, exce for the dm* family of schedulers, which
were slower than the rest (22.2s vs. 18.7s on average) for K2 super sizes.
In the application profile, we can see numerous memory (de)allocations via
cudaHostAlloc in the case of the dm* schedulers, which lead to global
synchronization of the GPU. We have reported this behavior to the authors of
StarPU.

Presented time is an average of the dmdar scheduler, as it generally gives
the fastest times (except K2 super, as described above). This scheduler uses
historical performance models to schedule tasks where their termination time
will be minimal, taking into account data transfers and preferring tasks whose
data are already available on the target worker.

Figure 4 shows a comparison of the single iteration of the FlexAlign
(highlighted in green), using a single GPU in Xmipp and Umpalumpa. As can
be seen, most of the computations (blue bars) on the GPU are masked by

7eager, ws, lws, dm, dmda, dmdar



875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

Springer Nature 2021 LATEX template

20 Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes

Figure 4: Profile of the Xmipp’s FlexAling (above) and Umpalumpa’s
FlexAlign (below)

Figure 5: Profile of the Umpalumpa’s FlexAlign, whole machine utilization

the memory transfers (green bars) in the case of Umpalumpa’s version, which
leads to faster processing.

The version using all workers runs on 129 % of the average of the
Xmipp GPU version, which is slower than the single-GPU version. From the
application profile, it seems that StarPU schedulers are not taking correctly
into account the time necessary to transfer data to GPUs. The processing is
done in a way that GPU 2 processes all forward FFT (hence it is waiting
for memory transfers from the host), while GPU 1 is performing the rest of
the computations, as shown in Figure 5 for a single internal iteration of the
program. The green blocks are memory transfers to the GPU, purple blocks are
memory transfers from the GPU, and blue blocks are kernel executions. Ideally,
each GPU would process almost half of the total workload, sharing processed
cropped frames in the Fourier domain, and CPU cores would also process part
of computations. We leave further analysis of suboptimal scheduling in this
case for future work.

Table 4: Performance of Umpalumpa FlexAlign, all CPUs, batch 5 / 1.
Relative performance is computed as a fraction of Umpalumpa execution on a
single GPU.

Wall time (s) Rel. performance

Falcon 27,5 / 12,1 27 % / 62 %

K2 19,2 / 8,6 33 % / 74 %

K2 super 89,7 / 38,0 26 % / 61 %

K3 28,3 / 10,9 26 % / 67 %

K3 super 86,8 / 24,1 23 % / 81 %



921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

Springer Nature 2021 LATEX template

Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes 21

Table 4 shows the wall time of the Umpalumpa FlexAlign in the same
settings as before, but using only CPU workers8. This version runs on 27 %
of the average of the Xmipp GPU version, using 22 CPU workers (the other
two workers are dedicated to GPU and not used by StarPU) and the batch
of 5 frames. When we decrease the bath to 1, we get an average performance
at 69 % of the original GPU-only implementation. This greatly improves the
usability of FlexAlign in the case when users have powerful CPUs available.

4.3 3D Fourier Reconstruction

The Fourier Reconstruction is an open-source cryo-EM program provided via
the Xmipp software package we helped to develop. It is used for retrieving a
3D model of the sample from projections.

In a nutshell, it inserts projections converted to the Fourier domain into a
3D volume under the estimated orientation of their original projection vector.
Each projection can have associated multiple symmetries, depending on the
biological properties of the original sample. As a result, the same projection
might be inserted under multiple orientations. Inverse FT of the volume then
yields the 3D model of the original sample.

The Fourier Reconstruction (FR) is an example of a program that is
primarily latency-bound – it uses a relatively high amount of arithmetic
operations and memory accesses. However, as the memory access is not
perfectly coalesced, the latency of the GPU memory subsystem is the main
limiter of the code performance.

More details on the implementation and results of the Fourier Reconstruc-
tion in Xmipp can be found in [11].

The core of the FR uses the following algorithms:

1. forward FFT, which converts projection to the Fourier domain (FD)
2. modified normalization algorithm, which also shifts low frequencies to the

center of the projection
3. algorithm for insertion of the projection under its estimated orientation into

a 3D voxel array

The most time-consuming is the last algorithm, as it requires many memory
access and computations, mainly when multiple symmetries are defined for
each projection. In the case of the low symmetries, the first two algorithms
might also significantly contribute to the total runtime.

4.3.1 Implementation in Umpalumpa

The pseudocode of the main loop is shown in Algorithm 3.
As can be seen, the main loop is somewhat similar to the one of the

FlexAlign. The Payload representing volume is allocated before the main
loop, as we need it during the whole processing. Then the main loop follows,
where all projections are processed. In addition to loading the image data,

8STARPU NCUDA=0
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Algorithm 3 Fourier Reconstruction pseudocode, Umpalumpa version.

Input projections, batch

1: volume← create volume payload()
2: for i = 0; i < size(projections); i+ = batch do
3: proj payload← create payload(batch)
4: aux payload ← create payload(batch) // holds auxiliary data, e. g.

projection orientation
5: proj ← load projection(i, batch, proj payload)
6: aux← load aux(i, batch, aux payload)
7: proj fd← convert to fd(proj)
8: proj fd← crop(proj fd)
9: insert to volume(proj fd, aux, volume)

10: end for
11: get insert alg().synchronize()

we also generate some auxiliary data for each projection, which holds, e. g.,
its orientation and number of symmetries. Once all projections are queued for
insertion to the volume, we wait for all operations to finish.

Algorithms are also very similar to those used in FlexAlign. The main
difference is the Payloads’ definition and the Settings properties. This
further demonstrates how can Umpalumpa be used to simplify the high-level
development of programs for non-expert programmers.

4.3.2 Implementation in Xmipp

Currently, Xmipp provides three different executables for the Fourier Recon-
struction.

The CPU-only version is the original version we optimized in [11]. This
version uses double precision and is multithreaded, possibly running via MPI.

The single-GPU, multithreaded CUDA version of the program works with
float precision. It allows much faster processing, and by default, it performs
only the last algorithm on GPU, while the first two algorithms are done on
multiple threads on the CPU. The first two algorithms might also be done on
the GPU if doing so was requested by the command line flag. Memory transfers
and thread management is performed manually.

Thirdly, there is an experimental StarPU version of the program [35],
which provides both CPU and GPU versions of all algorithms, but without
autotuning. The StarPU version improved the performance of our GPU version
up to 1.83× in cases when few symmetries were used, as in that case, it
automatically plans more work (i. e.the FFTs) also on the GPU.

The important difference to the Umpalumpa’s StarPU version is that the
data loading is performed in dedicated Codelet, i. e., fully in control of the
StarPU planner and possibly on multiple threads.

The experimental StarPU version of the program already greatly simplified
the code by virtually removing all memory handling and the thread-related
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code. However, it did not encapsulate the boilerplate code necessary for
StarPU, and thus it was still intimidating for less-experienced programmers.

4.3.3 Performance

In our previous work [35], we have demonstrated that using StarPU and task-
based design leads to performance gains in the case of a few symmetries. Here
we demonstrate that combining the task-based approach with autotuning also
improves the performance for a high number of symmetries.

Table 5: Runtime of Fourier Reconstruction in seconds, entire machine.
Speedup is computed relative to Xmipp implementation

Resolution Symmetries Projections Xmipp Umpalumpa Speedup

64 × 64 78 100 000 43,6 6,3 696 %

128 × 128 78 30 000 14,4 7,6 190 %

256 × 256 78 10 000 12,2 11,7 104 %

512 × 512 78 10 000 46,0 39,4 117 %

Table 5 shows the wall time of the Xmipp and Umpalumpa Fourier Recon-
struction for different sizes, using the HW specified in Table 1. The number
of projections has been chosen such that the computation time is sufficiently
long. In cryo-EM, typically, hundreds of thousands of images are processed
iteratively. Instead of loading projections from HDD, it simply initializes the
memory to an increasing sequence of numbers. However, this does not affect
the amount of computation performed by the rest of the program. Presented
time is an average of the dmda scheduler, as it generally gives the fastest times.
This scheduler uses historical performance models to schedule tasks where
their termination time will be minimal, taking into account data transfers.

As we mentioned before, in the case of many symmetries, FFTs and
normalizations are performed primarily on CPU workers, while the insertion
algorithm is executed on GPUs. We can see that the original Xmipp code
has been manually optimized for medium-size projections. Therefore, the most
significant benefit of autotuning is for the small-size projections. The total
runtime of the insertion kernels for the 64 × 78 × 100 000 size, where the
autotuning results in the highest speedup, decreased from 85 273 ms to 8 170
ms.

4.4 Summary

Umpalumpa provides all presented programs in float precision in single-
threaded CPU, single-device CUDA, and multi-CPU/multi-GPU StarPU
implementation. These versions differ only in the Algorithms they use and the
allocators, which improves the code’s maintainability, reusability, and clarity.



1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

Springer Nature 2021 LATEX template

24 Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes

While being shorter to write, programs written in the Umpalumpa offer
better versatility - the StarPU version automatically targets heterogeneous
machines and offers higher performance due to auto-tuning capabilities of the
CUDA code. All that is completely transparent from the point of view of the
main loop.

While, in some cases, the proposed solution leads to significant speedup,
there is still space for improvement. As demonstrated in the case of FlexAlign,
current schedulers provided by StarPU are not optimally using both GPUs.
We are in contact with the authors of StarPU to try to find a better solution
for these cases.

Umpalumpa framework is currently in a closed beta stage, available upon
request.

5 Open Research Questions

Umpalumpa framework manifests that a task-based runtime system can
be combined with per-task autotuning to decrease the computation time.
However, many research questions are still open.

We believe that the proposed design is sufficiently flexible to allow for
optimization at the level of the entire processing pipeline of the program. The
Payloads’ logical descriptors describe data semantics, and Algorithms describe
how data is transformed. We could tune which Strategy is best to perform the
given Algorithm (in the current implementation, the first Strategy fitting to
requirements is selected). Moreover, autotuning could change which operations
are performed in the pipeline. For example, FFT can be computed much faster
on data of specific sizes [8]. Often, it may be possible to pad or crop the data
before they are transformed into the Fourier domain. One tuning decision could
be whether it is better to inject padding into the pipeline, invest extra time into
its execution, and benefit from faster FFT. As Umpalumpa is aware of whether
the Algorithms can work with padded/cropped data, it can automatically make
such decisions.

Regarding task-specific autotuning, we are further investigating whether it
is possible to detect when it is worth re-tuning the kernel. For that, it is crucial
to correctly estimate the current and possible effectiveness of the kernel, as
well as the expected resources needed for re-tuning. We already showed that it
is possible to roughly estimate the number of required tuning iterations from
historical data [36], whereas automatic detection of underperforming kernels
remains an open topic for further research.

Currently, it is the programmer’s responsibility to define the similarity and
equality of Strategies. Having a database, which would compute the distance
of the current Strategy setup (used hardware and input properties), would
allow us to select the tuning configuration from the closest setup, which has
the highest probability of running efficiently. However, it is not clear how to
compute the hardware and input similarity, as it is highly kernel-specific.
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Last but not least, both topics mentioned above will ultimately affect the
scheduling, which needs to take them into account when constructing and
executing the task graph. Ideally, the scheduler would have a prediction of the
required tuning budget and expected performance gain and decide whether,
when, and where to perform autotuning.

6 Conclusion and Future Work

In this paper, we have presented a novel framework Umpalumpa. The
framework combines scheduling and execution of computing tasks in a
heterogeneous environment with autotuning at a source code level. Its data-
centric design allows for the construction of the main loop of applications
agnostic to where and how the algorithms are executed and how the data are
transported. We have shown on two real-world applications that Umpalumpa
increases the flexibility of the code and improves performance portability.
We got up to 1.54× higher performance than the original implementa-
tion of FlexAlign and up to 6.96× speedup for 3D Fourier Reconstruc-
tion. Additionally to the better performance portability, Umpalumpa eases
application development for non-expert programmers, who are interested in
creating workflows of image processing algorithms instead of developing those
algorithms.

In future work, we plan to address the open research questions mentioned
in Section 5. We also plan to improve Umpalumpa’s performance and ease of
use. For example, the API could help programmers define an output wrapper
according to the Algorithm used to produce it, allow merging or splitting of
Payloads, or change the size of batches for different operations.
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Parsec: Exploiting heterogeneity to enhance scalability. Computing in
Science & Engineering 15(6), 36–45 (2013)
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