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We present a Shack–Hartmann (SH) centroid detection algorithm capable to measure in presence of
strong noise, background illumination and spot modulating signals, which are typical limiting factors
of traditional centroid detection algorithms. The proposed method is based on performing a normaliza-
tion of the SH pattern using the spiral phase transform method and Fourier filtering. The spot centroids
are then obtained using global thresholding and weighted average methods. We have tested the algo-
rithmwith simulations and experimental data obtaining satisfactory results. A complete MATLAB pack-
age that can reproduce all the results can be downloaded from [http://goo.gl/o2JhD]. © 2012 Optical
Society of America
OCIS codes: 100.0100, 120.5050.

1. Introduction

A Shack–Hartmann (SH) wavefront sensor consists
on a two-dimensional (2D) microlens array focusing
on a CCD camera. The measuring principle of a SH
sensor is based on determining the local slopes of an
incoming wavefront (W) that is sampled by the mi-
crolens array. Each microlens focuses the incident
rays into its focal plane where a CCD sensor is placed
capturing the spot map, called Hartmann spot
diagram. From a high quality reference beam, the
displacements �Δx;Δy� between corresponding cen-
troids of the distorted and reference beams are cal-
culated. Deviation of corresponding spot centroids
gives information about the local slopes of the

wavefront error (ΔW) [1], that is the difference be-
tween the distorted and the reference wavefronts.
The 2D field of partial derivatives of the wavefront
error is given by [1],
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where, ΔW is the wavefront error, f is the distance
between the microlens and CCD plane, i, j denotes
the ith and jth microlens and �Δx;Δy� are the displa-
cements between the corresponding distorted and
reference spot centroids. We can integrate the wave-
front error using the wavefront slope distribution
obtained in expression (1), by a zonal or modal recon-
struction [2]. We can see from (1) that a crucial step
to accurately reconstruct the wavefront error is the
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precise determination of the spot centroids. The ac-
curacy of the centroid detection process is affected by
many factors, such as noise (photon noise, detector
readout noise), presence of background illumination
and spot modulating signals, and sampling and trun-
cation errors, among other problems. The location of
the centroid is normally determined calculating the
spot center of mass. This method is fast, especially
for small numbers of pixels per SH spot, and it is ex-
tensively used. However the results obtained from
this technique are not accurate in Hartmann pat-
terns affected by noise, background illumination
and spot modulating signals. In the past, several ap-
proaches have been proposed to accurately obtain the
Hartmann centroids in adverse situations such as
the weighted centre of gravity (WCOG) [3], the itera-
tively weighted centroiding [4] andmatched filter ap-
proaches [5]. In [3] the authors use the centre of
gravity method with Gaussian weighting to reduce
the influence of pixels situated far from the subaper-
ture center. The Gaussian functions are focused in
the pixels corresponding to the center of the subaper-
tures and the full width at half-maximum (FWHM) is
predetermined and fixed. This method works very
well in noisy SH patterns but it is limited to cases
whereΔx andΔy are small because of the static char-
acter of the Gaussian weighting functions [4]. There-
fore, this technique is not appropriate if we are
interested in measuring high dynamic range wave-
fronts. In [4] it is presented an iterative method that
improves [3] bymaking the Gaussian FWHMand the
centroid location to be adjusted iteratively. This
iterative process allows the algorithm to obtain accu-
rately the centroids in cases where the distorted
wavefront is affected by large aberrations, and then
the distorted Hartmann spots are not close to the
reference ones. These methods can obtain accurate
results in presence of noise, but they are not appro-
priate in cases where the Hartmann pattern is
affected by background illumination and spot modu-
lation signals [6]. The matched filter algorithms ob-
tain the shifts that maximize the cross correlation
of a reference spot subimage with the problem
Hartmann pattern [5,6]. These methods can be used
in cases where background light appears but the ac-
curacy is affected by the spot size. For small spots, we
can obtain sharp correlation peaks, but on the other
hand, in this situation we can obtain false positives
when the SH pattern is affected by noise. In the case
of having big spots, we will reduce the probability of
obtaining false positives in presence of noise, but on
the other hand, we will obtain wide correlation peaks
so the accuracy will be limited. Additionally, these
methods are not adequate in cases where a varying
spot modulation or contrast signal appear. In these
cases, the magnitude of the correlation peaks varies
along the Hartmann pattern.

In this work, we present a centroid detection algo-
rithm capable of measuring in presence of strong
noise, background illumination and spot modulating
signals in a fast and accurate way. The proposed

method is based on the subtraction of the background
and the equalization of the modulation signals using
the spiral phase transform (SPT) method [7] and
Fourier filtering. As a result, we obtain a Hartmann
pattern where all the spots have the same maximum
intensity, which corresponds to one in arbitrary units
(a.u.). Using this preprocessed Hartmann pattern,
the spot centroids are obtained using global thresh-
olding and weighted average methods.

In Section 2 we present the proposed method.
Section 3 includes some simulations and in Section 4
we show the experimental results. Finally, in
Section 5 the conclusions are drawn.

2. Proposed Method

The intensity of a Hartmann spot diagram can be
modelled as,

I�x; y� � A�x; y� � B�x; y� cos�Φ�x; y�� � η�x; y�; (2)

where A is the background illumination term, B is
the spot modulating signal,Φ is the spot modulating
phase and η is the noise. The background light typi-
cally appears because the presence of scattered light
as in the aberrometry eye studies, where near infra-
red light is commonly used. Additionally, the inten-
sity of light beams is commonly not uniform along
the aperture; as an example, typically the beam is
more intense in points near the beam center than
in border points. This effect makes that the spots
in a Hartmann pattern usually are affected by a spot
modulating or contrast signal (B). If we subtract the
background and noise in expression (2) using an iso-
tropic band-pass filter, we have that,

~I � B cos�Φ� � FT−1�H · FT�I��; (3)

where, FT�·� and FT−1�·� denotes the 2D Fourier trans-
form and the 2D inverse Fourier transform, respec-
tively. For the sake of clarity, we have omitted the
spatial dependence, and H is an isotropic band-pass
frequency filter which is defined as,

H � exp�−�R − R0�2=2σ2�; (4)

where, R �
�������������������
R2

x � R2
y

q
with Rx and Ry are the fre-

quency components in the Fourier space, R0 and σ
correspond to a rough estimation of the spot fre-
quency and spot frequency standard deviation. In
Ref. [7] it is introduced the SPT algorithm and it
is shown that this operator transforms a signal into
its quasi-quadrature signal as,

SPT�~I� � i exp�iD�B sin�Φ�; (5)

where, D is the direction map and SPT�·� is the SPT
operator that mathematically corresponds to [7],
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Observe from expressions (5) and (6) that the SPT
operator, given in expression (6), transforms ~I �
B cos�Φ�, into its quasi-quadrature signal that corre-
sponds to −i exp�−iD�B sin�Φ� [7]. Obviously, in order
to obtain the quadrature signal of ~I, that is B sin�Φ�,
it is necessary to compute the direction map D. The
direction map, defined as the angle that forms the
phase gradient with respect to the x-axis, can be ob-
tained from,

D � arctan�∇yΦ=∇xΦ�: (7)

The phase Φ is an unknown quantity and therefore,
it is not possible to determine the direction map from
(7). Instead of D, we can obtain the orientation
map as,

θ � arctan�∇y
~I=∇x

~I�: (8)

Observe that θ and D are related by the following
expression

D � θ� α; α �
�
0
π
; (9)

and then,

exp�iD� � � exp�iθ�: (10)

We can see from Expressions (9) and (10) that
exp�iD� and exp�iθ� have the same magnitude but
possibly different local signs [8].

From expressions (3), (6) and (7) we have that the
quadrature signal of ~I is given by,

Q�~I� � B sin�Φ� � −i exp�−iD�SPT�~I�; (11)

where Q�·� corresponds to the quadrature operator.
We can obtain the quasi-quadrature operator, that
will be affected by local sign ambiguity [8] as

Q̂�~I� � −i exp�−iθ�SPT�~I�: (12)

From Expressions (3) and (12), we can obtain the
modulating phase Φ at every pixel, and affected by
the local sign ambiguity as,

Φ�x; y� � � arctan
�
Q̂�~I�x; y��
~I�x; y�

�
: (13)

We compute the normalized version of I, that cor-
responds to A � 0 and B � 1 at every pixel position
in Expression (1) as,

In � cos�Φ�x; y�� � cos
�
arctan

�
Q̂�~I�
~I

��
: (14)

Note that the cosine is an even function so it will not
be affected by the local sign ambiguity in exp�iθ�. The
modulating signal ~B after applying the band-pass fil-
ter H is given by,

~B �
����������������������
Q̂�~I�2 � ~I2

q
: (15)

Once obtained In, we can easily segment the pattern
with a global threshold typically around an intensity
value of 0.2 (a.u.). Finally, each spot centroid is ex-
tracted by a weighted average using as weights the
spots intensity in In and the modulating signal ~B,
that can be interpreted as a quality map [9], as,

xc �
X
x;y

xIn ~B
.X

x;y

In ~B

yc �
X
x;y

yIn ~B
.X

x;y

In ~B: (16)

3. Simulations

In order to show the effectiveness of the proposed
method, we have performed some simulations. We
have compared the results obtained by the proposed
method (SPT) with the results acquired by the
WCOG [3] and iterative weighted centre of gravity
(IWCOG) [4] approaches. In Figs. 1(a), we show a
simulated Hartmann pattern affected by noise, back-
ground and modulation signals. The noise is Gaus-
sian and additive with a signal-to-noise-ratio (SNR)
of 6.25%. The Hartmann diagram has size of 300 ×
300 px and contains 400 spots. The background
and modulation signals correspond to A � x=5 · 103
and B � exp�−0.9�x2 � y2�=2 · 104� both in (a.u.).
The wavefront error (ΔW) and its derivatives in
the x and y axis are shown in Fig. 2(a), 2(b) and 2(c)
respectively. Observe that the dynamic range of the
wavefront error is of 117 (a.u.). In Fig. 1(b) we show
the recovered normalized SH pattern and the
obtained centroids. Finally, in Fig. 1(c) we present
the computed modulation map, ~B, used in the
weighted average. The root-mean-square error (rms)
between the recovered and the ground truth cen-
troids is of 0.31, 0.37, and 0.31 px when are used
the SPT, WCOG, and IWCOG, respectively. Note that
the results acquired by the IWCOG method have
been obtained after four iterations. Additionally, the
respective processing times are 0.8, 2.7 and 19.2 s
when processing with MATLAB and using a
2.67 GHz laptop. In Fig. 3, we show the differences
between the ground truth and obtained centroids
in the x and y axis. As can be seen from Fig. 3, the
centroid error diagrams are centered at pixel (0, 0)
in all cases, so there is no a systematic error in the
different centroid extraction algorithms. As can be
seen from the results above, the proposed algorithm
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retrieves the SH centroids in a faster way than the
WCOG and IWCOG approaches (approximately 3.4
and 24 times faster respectively) but with accuracy
similar to the IWCOG method.

We have also studied the accuracy of the different
algorithms for different noise levels, spot sizes and
wavefront error dynamic ranges. In all cases, we
have used the same background and modulation
terms than in Fig. 1(a). In Fig. 4 we show the ob-
tained results, where the gray line with circles, the
red line with triangles and the blue line with squares
denote the results obtained by SPT, the WCOG and
IWCOG methods, respectively. All the results ac-
quired by the IWCOG method have been obtained
after four iterations. In Figs. 4(a) and 4(d) we analyze

the accuracy of the different methods for different le-
vels of noise and using two different wavefront dy-
namic ranges, since in Figs. 4(b) and 4(c) we study
the influence of the Hartmann spot size and wave-
front dynamic range in the retrieved accuracy. Note
that in Figs. 4(b) and 4(c) we have used a SNR of
1%, in Figs. 4(a) and 4(c) a spot size of 8 px and in
Figs. 4(a) and 4(b) a wavefront dynamic range of
117 (a.u.), as was used in the first simulation. Finally,
in Fig. 4(d) we use a wavefront dynamic range of 176
(a.u.). Note, that the results shown in Figs. 4(a) and
4(d) are obtained using the same parameters except
the wavefront dynamic range. We have repeated this
numerical experiment in order to explain the good
performance of the WCOG method for high levels

Fig. 2. (Color online) (a) Simulated wavefront error (ΔW), (b) its derivatives in the x axis, and (c) y axis, respectively.

Fig. 1. (Color online) (a) Simulated Hartmann pattern affected by noise, background and modulation signals, (b) recovered normalized
SH pattern and the obtained centroids, and (c) computed modulation map ~B.

Fig. 3. Difference between the ground truth and obtained centroids in the x and y axis when it is used with the proposed (a) SPT, (b)
WCOG, and (c) ICOG approaches.
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of noise shown in Fig. 4(a). As can be seen in
Fig. 4(d), this good behavior does not appear when
we increase the wavefront dynamic range. Therefore
the good results presented in Fig. 4(a) for high levels
of noise are because the reference and distorted cen-
troids and very close for the wavefront dynamic
range used in this simulation. Additionally, from
Figs. 4(b) and 4(c) we can see that there is a no sig-
nificant dependence between the accuracy, the spot
size and the wavefront dynamic range when we use
the proposed method, but this is not the case when it
is used the IWCOG and WCOG approaches.

4. Experimental Results

We have also tested the proposed algorithm with an
experimental SH pattern obtained in an aberrome-
try eye study that it is shown in Fig. 5(a). Observe
from Fig. 5(a) that the pattern is affected by back-
ground illumination, spot modulating signals and
strong noise. In Fig. 5(b) we show the recovered nor-
malized SH pattern and the obtained centroids.
Finally, in Fig. 5(c) we show ~B map. The processing
time is of 1.1 s and the SH pattern size of
337 × 334 px.

Fig. 4. (Color online) (a) Root-mean-square error versus noise level, (b) spot size, and (c) wavefront error dynamic ranges for the different
methods.

Fig. 5. (Color online) (a) Real Hartmann pattern, (b) recovered normalized pattern and obtained centroids, and (c) ~B map.
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5. Conclusions

In conclusion, we have presented a straightforward,
accurate and fast SH centroid detection algorithm.
This approach is capable to measure in presence of
strong noise, background illumination and spot mod-
ulating signals; that are the typical limiting factors
of the traditional centroid detection algorithms. The
proposed method is based on the SPT method and
Fourier filtering. We have tested the algorithm with
simulations and experimental data and we have
compared the behavior of the proposed algorithm
with the WCOG approach [3] and the IWCOG meth-
od [4] obtaining satisfactory results where we have
show that the proposed approach is 3.4 and 24 times
faster respectively than the WCOG and IWCOG
methods and more accurate. A complete MATLAB
package that can reproduce all the results can be
downloaded from [10].
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