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a b s t r a c t

This paper presents a generalization of the Principal Component Analysis (PCA) demodulation method.

The accuracy of the traditional method is limited by the number of fringes in the interferograms and it

cannot be used when there are one or less interferometric fringes. The Advanced Iterative Algorithm

(AIA) is robust in this case, but it suffers when the modulation and/or the background illumination

maps are spatially dependant. Additionally, this method requires a starting guess. The results and the

performance of the algorithm depend on this starting point. In this paper, we present a generalization

of the PCA method that relaxes the PCA and AIA limitations combining both methods. We have applied

the proposed method to simulated and experimental interferograms obtaining satisfactory results. A

complete MATLAB software package is provided.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Interferometry is a powerful tool that is used in numerous
industrial, research and development applications. These include
measuring the quality of a variety of manufactured items such as
hard disks, drives and magnetic recording heaps, laser and optics for
CD and DVD drives, cameras, laser printers, machined parts and
components for fiber-optic systems among others [1]. The primary
reason interferometry is so useful is because of its non-contact and
non-destructive nature and also because it provides very high
accuracy and precision – within the nanometer or even amstrong
range —. Phase–Shifting Interferometry (PSI) is the most used inter-
ferometry technique in optical metrology for measuring the modulat-
ing phase of interferograms [2]. In PSI, a sequence of Nfringe patterns
is obtained and demodulated using different approaches as synchro-
nous or asynchronous phase detection methodologies [2–6]. Typi-
cally, these interferograms are acquired with known phase-shifts
between successive interferograms so that the acquisition is syn-
chronous [2–4]. This ‘‘known’’ temporal carrier may have some mis-
match with respect to the actual carrier and therefore, it will appear
as a detuning error in the obtained phase [3–4]. However, there exist
synchronous techniques that tolerate some degree of detuning [3].

Another class of phase-shifting algorithms, named self-calibrating,
allow asynchronous interferogram detection without prior knowl-
edge about the different phase-steps between interferograms [5–6].
All these methods are iterative and require an initial guess to start
the minimization process, usually by a least-squares minimization.

The main drawback of these techniques is that they require the
background illumination or DC term and contrast to be spatially
constant. On the other hand, as these methods are based on a
minimization process, they require a high computational power and
processing time. Additionally, the number of interferograms has to
be a high enough to assure the solution convergence toward the
global minimum, independently of the starting guess used.

A new kind of phase-shifting demodulation method has been
recently proposed [7–8]. This method is based on the use of the
Principal Component Analysis (PCA) algorithm to demodulate a
phase-shifting interferogram sequence. The algorithm is very fast,
approximately two orders of magnitude faster than [6]. It is not
iterative and does not require an initial guess of the phase-steps;
indeed, this approach does not require obtaining the phase-steps
that can be randomly distributed to retrieve the modulating phase.
Additionally, it does not need the background illumination and
contrast to be spatially constant. This approach requires the follow-
ing approximations to obtain a trustworthy modulating phase;
first, there has to be more than one fringe in the interferograms.
Secondly, the temporal average over the interferograms sequence
should be a good estimation of the background term. Finally, the
different phase-shifts must be well distributed in the [0, 2p]interval
range. Among these requirements, the first one, that will be denoted
by us as the number of fringes limitation, is the most problematic as
it is a limitation about the kind of interferograms that can be
demodulated using this method. The interferograms that come
from very flat modulating phases must not be processed using this
approach. Additionally, the second and third limitations are common
to all kind of temporal demodulation approaches.

In this work, we propose a generalization of the PCA demodulation
method that overcomes the called, number of fringes limitation. The
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proposed method is based on three steps. First we use the PCA
demodulating method to obtain a very fast initial estimation of the
modulating phase and to compute a new set of phase-shifting
interferograms that are free from DC component and noise. Secondly,
we obtain from the computed modulating phase and the new
interferogram set, the different phase-steps between interferograms.
Finally, we use the previously acquired modulating phase, and phase-
steps as an initial guess of a least-squares based minimization
approach [6] to obtain an accurate modulating phase. Note that the
proposed method is free from the PCA number of fringes limitation.
Additionally, as the PCA method will filter out efficiently the DC
component and noise it will provide a good initial guess of the
modulation term, modulating phase and phase-steps; the proposed
method does not require the DC and contrast terms to be spatially
constant or the number of interferograms to be high. Typically three
or four interferograms will be enough. Finally, observe that often the
PCA method provides an accurate phase map so typically only one or
two iterations will be necessary to converge to the global minimum
so the proposed method is not demanding from a computational
point of view.

2. Theoretical foundations

In PSI, an interferogram sequence can be described using the
following expression:

Inðx, yÞ ¼ a ðx, yÞþb ðx, yÞcos½Fðx, yÞþdn� ð1Þ

where a(x, y) is the background illumination or DC component,
b(x, y) and F(x, y) are the modulation and phase maps, and dn are
the phase-steps. Expression (1) can be rewritten as,

Inðx, yÞ ¼ aðx, yÞþbðx, yÞðcos½ðx, yÞ�cos½dn��sin½dn�sin½Fx, yÞ�Þ ð2Þ

From Expression (2) and grouping terms we obtain,

In ¼ aþanIcþbnIs ð3Þ

where an ¼ cos½dn�, bn ¼�sin½dn�, Ic ¼ b cos½F�, Is ¼ b sin½F� and the
spatial dependence has been omitted for the sake of clarity. From
a set of interferograms the DC component can be estimated by a
temporal average as,

an ¼
XN

n ¼ 1

Inffia ð4Þ

where the super-index n denotes that the magnitude is estimated,
Expression (3) can be rewritten as:

~In ¼ In�a¼ anIcþbIs ð5Þ

From Expression (5), it can be seen that any DC filtered
interferogram can always be expressed as a linear combination
of two signals. Therefore, a phase-shifted interferogram sequence
belongs to a two-dimensional vector subspace.

If there is more than one fringe in the interferograms, we have

/Ic , IsS¼
XNx

x ¼ 1

XNy

y ¼ 1

Icðx, yÞIsðx,yÞffi0 ð6Þ

where Nx and Ny correspond to the number of pixels in the x and y

image axis and /Ic, IsS denotes the inner product between Ic and
Is. In this case Ic and Is signals are nearly in quadrature and, at the
same time, form an quasi-orthogonal interferogram basis. This
important result shows that, if Expression (6) is fulfilled, then
demodulating and orthogonalizing are equivalent processes. On
the other hand, if Expression (6) is not met, still any interferogram
of the sequence can be expressed as a linear combination of two
orthogonal signals. These orthogonal signals form an interfero-
gram basis but they are not quadrature in general so they do not
correspond to the sine and cosine of the modulating phase.

2.1. Principal Component Analysis Method

PCA is a technique from statistics for reducing an image or data
set [9]. It involves a mathematical procedure that transforms a
number of possibly correlated images into the smallest number of
uncorrelated images called the principal components. The principal
components are linear combinations of the original variables and
are the single best subspace of a given dimension in least-square
sense. The different principal components are always orthogonal so
they always form an orthogonal basis. In practice, the PCA algo-
rithm is based on three steps. Suppose that we have N images of
size Nx�Ny. This image set can be expressed in a matrix form as,

X¼ ½x1, x2,. . ., xN�
T ð7Þ

where xn is a column vector with size Nx�Ny whose elements are
taken columnwise from the nth image. In expression (7), [ � ]T

denotes the transposing operation and X has N rows and Nx�Ny

Columns. From X we can obtain ~X that is equals to X without
background or DC component, and it is given as,

~X ¼ ½ ~x1, ~x2,. . ., ~xN �
T ð8Þ

where ~xn ¼ xn�a, and a is the background or DC term that can be
obtained as a temporal average of the images as shown in (4). The
first step of the PCA algorithm consist in obtaining the covariance
matrix C from ~X as

C¼ ~X ~XT
ð9Þ

Note that C corresponds to an inner product matrix and it has the
following form:

C¼

/ ~x1, ~x1S / ~x1, ~x2S . . . / ~x1, ~xNS

/ ~x2, ~x1S / ~x2, ~x2S . . . / ~x2, ~xNS

. . . . . . . . . . . .

/ ~xN , ~x1S / ~xN , ~x2S . . . / ~xN , ~xNS

0
BBBB@

1
CCCCA ð10Þ

C matrix corresponds to the projection of each vector xn with
the rest of the vectors. In general these vectors are not orthogonal
and, therefore, C is not diagonal and has elements different of zero
out of its diagonal. Because C is real and symmetric, always it is
possible to find a set of real and nonnegative eigenvalues and its
corresponding eigenvectors. From matrix theory the covariance
matrix can be diagonalized as,

D¼ ACAT
ð11Þ

where A is an orthogonal transformation matrix and D is a
diagonal matrix. This diagonalization process is the second step
of the PCA method and is performed in a practical point of view
by the SVD algorithm. The orthogonal transformation matrix
A rotates the original vector set ~X to a new basis in which the
different vectors are orthogonal between them and are given as,

Y¼ A ~X ð12Þ

where

Y¼ ½y1, y2,. . ., yN �
T ð13Þ

The inner product matrix of this new vector set is given by,

D¼

/y1, y1S /y1, y2S . . . /y1, yNS

/y2, y1S /y2, y2S . . . /y2, yNS

. . . . . . . . . . . .

/yN , y1S /yN , y2S . . . /yN , yNS

0
BBBB@

1
CCCCA ð14Þ

where D is the diagonal matrix shown in (11) and the vectors yn

are orthogonal and uncorrelated and corresponds to the principal
components or eigenvectors of the image set.
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In our case, where the image set is composed by an interfero-
gram sequence that can be decomposed as shown in Expression
(5), we are only concerned about the two first principal compo-
nents with the largest eigenvalues denoted as y1 and y2 [7–8].
These two principal components form an orthogonal basis in
which every interferogram can be projected. Note that y1 and y2

corresponds to Ic and Is signals if there are more than one fringe in
the interferograms as demonstrated in [8]. In this case, the
modulating phase can be obtained from:

Fn
¼ arctan ðy2=y1Þ ð15Þ

2.2. New interferograms set and initial guess for the least-squares

minimization

In the general case, although expression (15) cannot be exact,
we can still obtain a good estimation of the Modulating phase from
it. Additionally, we can use the PCA method to effectively subtract
the DC component as well as noise of the interferograms. In order to
obtain this new and improved interferogram set, we compute the
projection of each interferogram in the orthogonal basis composed
by only the first and second principal components, y1 and y2 as

an
n ¼/In, y1S¼

XNx

x ¼ 1

XNy

y ¼ 1

y1ðx, yÞInðx, yÞ

bn

n ¼/In, y2S¼
XNx

x ¼ 1

XNy

y ¼ 1

y2ðx, yÞInðx, yÞ

ð16Þ

and we reconstruct the denoised and DC free interferograms as

~I
n

n ¼ an

ny1þb
n

ny2 ð17Þ

Additionally, we can obtain the different phase-steps from the
previously computed an

n and bn

n obtained in Expression (16) and
taking into account Expressions.(2) and (3). Effectively, an ¼ cos½dn�

and bn ¼�sin½dn� and therefore,

dn

n ¼ arctan ð�bn

n=a
n

nÞ ð18Þ

Finally, we obtain an estimation of the modulation term as

bn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1

2þy2
2

q
ð19Þ

2.3. Least-squares minimization

The previously estimated magnitudes, Fn, ~I
n

n, dn

n and bn can be
refined by a least-squares minimization method [6] using them as
the initial guess. Expression (5) can be rewritten in order to show
the spatial and temporal dependence of the different terms,

~I in ¼ anðIcÞiþbnðIsÞi ð20Þ

In Expression (20) the sub-index i denotes spatial dependence
and n temporal dependence. Note that (Ic)i corresponds to a one-
dimensional reshape of Ic(x, y). We can write the expression of the
least-squares error Si, accumulated for all the images from
Expressions. (17) and (20) as

Si ¼
XN

n ¼ 1

ðan

i þ
~I
n

in�
~I inÞ

2
¼
XN

n ¼ 1

ðan

i þa
n

nðy1Þiþb
n

nðy2Þi�
~I inÞ

2
ð21Þ

Note, that in Expression (21) we have added the term an that
takes into account a possible small remaining DC term in the
interferograms that only can have spatial dependence. For the
known an

n and bn

n, the least-squares criteria requires that,

@Si=@an

i ¼ 0, @Si=@ðy1Þi ¼ 0, @Si=@ðy2Þi ¼ 0 ð22Þ

Eq. (22) yields

Xi ¼ ½A�
�1Bi ð23Þ

where

½A� ¼

N
XN

n ¼ 1

an

n

XN

n ¼ 1

bn

n

XN

n ¼ 1

an

n

XN

n ¼ 1

ðan

nÞ
2

XN

n ¼ 1

an

nb
n

n

XN

n ¼ 1

bn

n

XN

n ¼ 1

an

nb
n

n

XN

n ¼ 1

ðbn

nÞ
2

2
666666666664

3
777777777775

Xi ¼ an

i ðy1Þi ðy2Þi g

T

Bi ¼
XN

n ¼ 1

~I
n

in

XN

n ¼ 1

~I
n

inan

n

XN

n ¼ 1

~I
n

inb
n

n

( )T

ð24Þ

From Expressions. (23)–(24), we can refine y1, y2 and Fn

through Expression (15). Once we have refined these magnitudes,
we can use them to improve an

n, bn

n. In this case, we assume that
we know y1 and y2, and we want to obtain an

n and bn

n through
least-squares minimization. In this case, the least-squares error
Sn, accumulated for all the pixels corresponds to

Sn ¼
XNx�Ny

i ¼ 1

ðan

nþ
~I
n

in�
~I inÞ

2
¼
XNx�Ny

i ¼ 1

ðan

nþa
n

nðy1Þiþb
n

nðy2Þi�
~I inÞ

2
ð25Þ

Note, that in Expression (25), we have added the term an that
takes into account a possible small remaining DC term that has
only temporal dependence. For the known y1 and y2 the least-
squares criterion requires that,

@Sn=@an

n ¼ 0, @Sn=@an

n ¼ 0, @Sn=@b
n

n ¼ 0 ð26Þ

Eq. (26) yields,

X0n ¼ ½A
0
��1B0n ð27Þ

where

½A0� ¼

Nx � Ny

XNx�Ny

i ¼ 1

ðy1Þi

XNx�Ny

i ¼ 1

ðy2Þi

XNx�Ny

i ¼ 1

ðy1Þi

XNx�Ny

i ¼ 1

ðy1y1Þi

XNx�Ny

i ¼ 1

ðy1y2Þi

XNx�Ny

i ¼ 1

ðy2Þi

XNx�Ny

i ¼ 1

ðy1y2Þi

XNx�Ny

i ¼ 1

ðy2Þ
2
i

2
6666666666664

3
7777777777775

X0n ¼ an
n an

n bn

n

n oT

B0n ¼
XNx�Ny

i ¼ 1

~I
n

in

XNx�Ny

i ¼ 1

~I
n

inðy1Þi

XNx�Ny

i ¼ 1

~I
n

inðy2Þi

( )T

ð28Þ

From Expressions (27)–(28) we refine an
n and bn

n, and then the
amount of phase-shift can be updated from Expression (18). The
presented algorithm repeats iteratively until the phase-shift
values converge. The convergence criterion is expressed as

max
n

9ðdnk
n �d

nk�1
n Þ9oe ð29Þ

where k represents the number of iteration, and e is the pre-
defined accuracy parameter. Typically a value of 10�2 (rad) is
sufficient.

3. Simulations

In order to show the performance of the proposed method,
we have tested it with two simulations. In the rest of the paper
we will use gPCA to refer to the proposed generalization PCA
demodulation method. Additionally, we will use AIA and PCA to
refer to the Advanced Iterative Algorithm [6] and Principal
Component demodulation methods [7].

In the first experiment, we use an interferogram set composed
by 25 fringe patterns. The interferograms have a size of 340�
340 px. The phase-shifts are randomly distributed in the [0, 2p]
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(rad) range. The noise is additive with a standard normal distribu-
tion, and the signal to noise ratio is of 10%. In Fig. 1, we show the
first four interferograms of the sequence. As can be seen from Fig. 1,
there is less than one fringe in the interferograms so the PCA
demodulation method will not obtain accurate results. In Fig. 2 we
show a profile along row 170 px of the retrieved phases by the
proposed gPCA, PCA, and AIA methods. Additionally we show the
profile of the reference phase. As can be seen from Fig. 2, the gPCA
and AIA phases are very similar to the reference phase. This is not
the case for the PCA retrieved phase. The retrieved root-mean-
square (rms) and peak to valley (pv) errors of the difference
between the reference, and the retrieved phases, the number of
iterations and the processing times are given in Table 1. As can be
seen from Table 1, the gPCA and the AIA have similar accuracy but
the proposed method only requires two iterations to convergence.
Note that the rms of the reference phase is 0.65 (rad) so the
perceptual retrieved errors are 7%, 94% and 15% obtained by the
gPCA, PCA and AIA methods. The processing times are obtained
using a 2.67 GHz laptop and processing with MATLAB. Note that the
fast processing time of the PCA method makes this method a
perfect preprocessing step.

In the second experiment, we use an interferogram set com-
posed by 20 fringe patterns. The noise is additive with a standard
normal distribution, the SNR is of 20% and the phase-shifts are
randomly distributed in the [0, 2p] (rad) range. In Fig. 3, we show

the first four interferograms of the sequence. As can be seen from
Fig. 3, the interferograms are affected by a high spatially varying
DC term. In Fig. 4 we show the reference theoretical phase map
(a) and the phases obtained by the proposed gPCA (b), the PCA
(c) and the AIA (d) methods. As can be seen from Fig. 4, the phase
map obtained by the AIA is not accurate and has a large detuning
error that can be observed from the grey-level distortion that
appears in the recovered wrapped phase. The rms and pv errors,
the processing times and the number of iterations are given in .
From Table 2 we can observe that with only one iteration the
gPCA method obtains the best accuracy results.

Fig. 1. First four interferograms used in the first simulation.

Fig. 2. Profile along row 170 px of the retrieved phases by the proposed Generalized PCA (gPCA), PCA, and AIA methods obtained in the first simulation.

Fig. 3. First four interferograms used in the second simulation.

Table 1
Retrieved root-mean-square errors (rms), peak to valley (pv) errors, number of

iterations and processing times obtained in the first simulation by the proposed

gPCA, PCA and AIA methods.

gPCA PCA AIA

rms (rad) 0.05 0.60 0.10

pv (rad) 0.34 2.1 0.44

# iterations 2 – 50

Time (s) 4.7 0.35 106
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4. Experimental results

We have also applied the proposed algorithm to real interfero-
grams. We have compared the retrieved phase from six phase-shifted
interferograms using the proposed gPCA, the PCA and the AIA
methods. In order to compare the different retrieved phases, we have
obtained a reference phase map from a larger interferogram set
composed by 20 interferograms and using the PCA method [6]. In
Fig. 5 we show the first four used interferograms. Observe from Fig. 5
that we have used a processing mask to subtract the outer region
where there are no interferometric fringes. In Fig. 6 we show the
reference phase obtained by the PCA algorithm using 20 interfero-
grams (a) and the obtained phases by the proposed gPCA (b), the PCA
(c) and the AIA (d) methods using 6 patterns. The rms and pv errors,

the processing times and the number of iterations necessary to
converge are presented in Table 3. From Table 3 we can see that in
this case, the proposed method has accuracy similar to the rest of
approaches and it only requires one iteration.

5. Conclusions

We have proposed a generalization of the PCA demodulation
method that overcomes the number of fringes limitation of this
method. Additionally, the proposed method does not require the DC
term and contrast to be spatially constant, high computational power
and/or processing time. Additionally, the number of interferograms
needs not be high to assure the solution convergence toward the
global minimum, independently of the starting point used. So the
proposed method is unaffected by the typical limitations of the self-
calibrating demodulation methods. The presented approach is based
on obtaining a very fast and accurate initial guess of the modulating
phase using the PCA demodulation method. Then, this initial estima-
tion is refined through least-squares minimization. We have tested
the proposed method with simulated and real interferograms. In all
cases, the proposed method presents the highest accuracy when it is
compared with the PCA [7] and AIA [6] demodulating methods. All
the examples of this work can be reproduced running the MATLAB
package that can be found in http://goo.gl/8tQxU.
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Fig. 4. Reference phase map (a), and wrapped phases by the proposed gPCA (b),

PCA (c) and AIA (d) methods obtained in the second simulation.

Table 2
Retrieved root-mean-square errors (rms), peak to valley (pv) errors, number of

iterations and processing times obtained in the second simulation by the proposed

gPCA, PCA and AIA methods.

gPCA PCA AIA

rms (rad) 0.073 0.11 0.65

pv (rad) 0.62 0.63 6.2

# iterations 1 – 50

Time (s) 2.5 0.27 95

Fig. 5. First four interferograms used in the experimental results section.

Fig. 6. Reference phase map (a), and wrapped phases by the proposed gPCA (b),

PCA (c) and AIA (d) methods obtained using real interferograms.

Table 3
Retrieved root-mean-square errors (rms), peak to valley (pv) errors, number of

iterations and processing times obtained in experimental results section by the

proposed gPCA, PCA and AIA methods.

gPCA PCA AIA

rms (rad) 0.56 0.57 0.57

pv (rad) 5.8 5.7 5.8

# iterations 1 – 50

Time (s) 3.6 0.15 140
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