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In this work we present a fast and automated algorithm for estimating the contrast transfer function
(CTF) of a transmission electron microscope. The approach is very suitable for High Throughput work
because: (a) it does not require any initial defocus estimation, (b) it is almost an order of magnitude faster
than existing approaches, (c) it opens the way to well-defined extensions to the estimation of higher
order aberrations, at the same time that provides defocus and astigmatism estimations comparable in
accuracy to well established methods, such as Xmipp and CTFFIND3 approaches. The new algorithm is
based on obtaining the wrapped modulating phase of the power spectra density pattern by the use of
a quadrature filter. This phase is further unwrapped in order to obtain the continuous and smooth abso-
lute phase map; then a Zernike polynomial fitting is performed and the defocus and astigmatism param-
eters are determined. While the method does not require an initial estimation of the defocus parameters
or any non-linear optimization procedure, these approaches can be used if further refinement is desired.
Results of the CTF estimation method are presented for standard negative stained images, cryo-electron
microscopy images in the absence of carbon support, as well as micrographs with only ice. Additionally,
we have also tested the proposed method with micrographs acquired from tilted and untilted samples,
obtaining good results. The algorithm is freely available as a part of the Xmipp package [http://
xmipp.cnb.csic.es].

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In transmission electron microscopy (TEM), a beam of electrons
is transmitted through a specimen, magnified and focused onto a
recording device, such as a CCD camera or a film. Because of the
high resolution that can be achieved by TEMs, they are extensively
used in structural biology to determine the structure of macromo-
lecular complexes (van Heel et al., 2000; Frank, 2002; Henderson,
2004). However, an electron microscope, as any imaging device,
distorts the ideal projections, modulating amplitudes and phases
of the recorded electrons. Therefore, a critical step in the process-
ing and analysis of EM images involves the estimation and correc-
tion of the distortions introduced by the TEM, which can be
modeled in Fourier space by a linear transfer function known as
the contrast transfer function (CTF).

Typically, the CTF is described analytically using a parametric
form that takes into account defocus, astigmatism and spherical
aberrations. These contrast transfer functions are estimated from
the power spectrum density (PSD) that, in turn, is usually obtained
ll rights reserved.
by periodogram averaging (Avila-Sakar et al., 1994; Fernández
et al., 1997) or parametric methods such as AR or ARMA
(Velázquez-Muriel et al., 2003). In the past, different methods have
been proposed to model and estimate the CTF using the PSD
(Ludtke et al., 1999; Huang et al., 2003; Mindell and Grigorieff,
2003; Sander et al., 2003; Velázquez-Muriel et al., 2003; Mallick
et al., 2005; Sorzano et al., 2007; Vulović et al., 2012). Typically,
these methods try to fit the experimental CTF to an assumed para-
metric model (Ludtke et al., 1999; Huang et al., 2003; Mindell and
Grigorieff, 2003; Sander et al., 2003; Velázquez-Muriel et al., 2003;
Mallick et al., 2005; Sorzano et al., 2007). The fitting procedure
consists in an iterative adjustment, where the discrepancy be-
tween simulated and experimental background-subtracted PSDs
is minimized by a non-linear optimization that is dependent, for
proper convergence, of the initial estimation. The fitting is either
performed semiautomatically, with a graphical user interface
(Ludtke et al., 1999), or automatically (Huang et al., 2003; Mindell
and Grigorieff, 2003; Sander et al., 2003; Velázquez-Muriel et al.,
2003; Mallick et al., 2005; Sorzano et al., 2007). There is a trade-
off between the time required for the user to interact with the
micrograph in a semiautomatic approach, and the larger process-
ing time normally required by an automatic method. It is true that
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modern microscopes can provide an estimation of the average
defocus inside a range of about ±500 Å, but unless the work is per-
formed under an integrated data management and data analysis
framework, the user has to manually introduce these estimations
one by one into the defocus estimation software. Note that this is
an awkward and sensitive to errors process, especially if a large
number of micrographs is going to be processed. Even more, there
are cases in which an initial defocus estimation may be difficult to
provide, as in the case of accurately retrieving the CTF parameters
for small areas of a tilted micrograph. The examples above illus-
trate that there are clear situations in which a method which does
not require an initial estimation is desirable. For completeness, it
should be mentioned that, recently, Vulović et al. (2012) intro-
duced a new approach that is not using an iterative non-linear
optimization procedure. However, the application of this approach
to more general cases than the ones presented in (Vulović et al.,
2012) is still missing.

In this work, we present a novel approach to estimate the defo-
cus and astigmatism parameters of a given micrograph. Our moti-
vation is to help in the automation of the accurate processing of
large quantities of data, including the individual treatment of mul-
tiple subareas of a micrograph. In this way, we present an approach
that: (a) does not require any initial defocus estimation or even a
parametric CTF model, (b) is almost an order of magnitude faster
than existing approaches, (c) opens the way to well-defined exten-
sions to the estimation of higher order aberrations, at the same
time that provides a defocus and astigmatism estimations compa-
rable in accuracy to well established existing methods such as
Xmipp and CTFFIND3. Note that the estimation of higher order
aberrations, as coma, is an important and open problem in single
particle analysis. In (Glaeser et al., 2011), it is presented a deep
analysis of the coma aberration influence in high-resolution
Cryo-EM. As shown in (Glaeser et al., 2011), coma must be taken
into consideration for resolutions lower than 8 Å, for typical TEMs
and using accelerating voltages of 300 keV (indeed for 4 Å, it may
cause the phases to be essentially random). Observe that for
200 keV, the resolution from which coma must be not neglected
is of 18 Å. The method presented in this work is non-parametric
and does not require a non-linear iterative optimization procedure,
which makes it very fast. Moreover, even in combination with a
posterior refinement method based on an iterative optimization, it
is faster than currently available approaches. The proposed approach
considers the CTF as a fringe pattern whose two-dimensional
phase is modulated by a sine function and contains the information
about the microscope aberrations. In order to estimate the
phase map, we use a quadrature filter based on the Spiral Phase
Transform (SPHT) (Larkin et al., 2001). This linear transformation
approximately converts the sine of the phase map—the CTF sig-
nal—to the cosine of the phase map, which corresponds to the
CTF quadrature signal. The wrapped phase map can be directly
obtained from the arctangent of both signals in each pixel. This
recovered wrapped phase map is limited to the range
ð�p=2; p=2� rad. We unwrap this limited range phase and compute
the absolute phase, that is not limited to a specific range. This abso-
lute phase gives us the microscope aberrations, without assuming
any parametric model in the CTF estimation process, where all
aberrations and not only defocus, astigmatism and spherical aber-
rations, are contained. Finally, we fit the recovered absolute phase
using Zernike polynomials and we obtain the third order Seidel
aberrations, that include defocus and astigmatism. The estimated
parameters can be further refined by any of the existing optimiza-
tion-based methods, if desired.

The paper is organized as follows. In next section we present the
theoretical basis of our method. In Section 3, we check the pro-
posed approach with simulated and experimental PSDs and, final-
ly, conclusions are drawn.
2. Theoretical foundations

In this section we: (1) introduce the image formation model
based on the contrast transfer theory, in particular we describe
the Contract Transfer Function (CTF) and its relationship to the
power spectrum density (PSD), and (2) explain the proposed meth-
od to recover the CTF parameters.

2.1. Image formation model

We assume that the image formation model of an electron
microscope is given by (Velázquez-Muriel et al., 2003; Sorzano
et al., 2007)

pexpðrÞ ¼ hðrÞ � ðpidealðrÞ þ pnbðrÞÞ þ pnaðrÞ ð1Þ

where r ¼ ½x; y� corresponds to the spatial coordinates, pideal is the
ideal projection of the three-dimensional object being imaged, h is
the Point Spread Function (PSF) of the microscope, � denotes the
convolution operation and, finally, pnb and pna represent noise terms
added before and after the convolution with the PSF. The corre-
sponding PSD, using the image formation model presented in
Expression (1), is calculated assuming that the energy of the noise
before CTF is white and dominant over the energy of the imaged ob-
ject. We refer to (Sorzano et al., 2007) to discuss this approxima-
tion). The mathematical expression of this PSD is given by

PSDðRÞ ¼ r2
nbjHðRÞj

2 þ PSDnaðRÞ ð2Þ

with, R ¼ ½Rx; Ry� the spatial frequency coordinates, r2
nb a real num-

ber representing the noise power before CTF, HðRÞ the CTF that cor-
responds to the Fourier Transform of the general PSF, hðRÞ,
presented in Eq. (1). Finally, PSDnaðRÞ refers to the PSD of the noise
after CTF. The CTF of an electron microscope is given by the follow-
ing expression (Ludtke et al., 1999; Huang et al., 2003; Mindell and
Grigorieff, 2003; Sander et al., 2003; Velázquez-Muriel et al., 2003;
Mallick et al., 2005; Sorzano et al., 2007; Vulović et al., 2012)

HðRÞ ¼ EðRÞ AðRÞ cosðvðRÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2ðRÞ

q
sinðvðRÞÞ

� �
ð3Þ

where EðRÞ is a damping envelope and AðRÞ corresponds to the frac-
tion of electrons being scattered at each frequency—amplitude con-
trast. Note that AðRÞ is usually considered as a constant and
therefore, AðRÞ ffi A0. Taking into account the following trigonomet-
ric equality (MobileReference, 2009)

a cosðxÞ þ b sinðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
sinðxþ dÞ

d ¼ arctanða=bÞ þ
0 b P 0
p b < 0

� ð4Þ

where a, b, x and d are generic real numbers, we can rewrite Eq. (3)
as

HðRÞ ¼ EðRÞ sinðvðRÞ þuÞ

u ¼ arctan A0ffiffiffiffiffiffiffiffi
1�A2

0

p
� �

þ p
ð5Þ

Note that Eqs. (3) and (5) are identical expressions written in
different forms. We can see that the CTF is characterized by a con-
trast or amplitude modulating term EðRÞ, a modulating phasevðRÞ,
that contains the microscope aberrations, and a phase-shift u, that
typically is small. Note that we normally measure the PSD and not
the CTF, and the relationship between both is given in Expression
(2). If we perform background suppression and mean subtraction
to the PSD map, using for example the enhancing method pre-
sented in (Jonic et al., 2007), we have

PSDmðRÞ ¼ r2
nbE2ðRÞ 1=2� sin2ðvðRÞ þuÞ

� �
ð6Þ
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where PSDmðRÞ stands for the enhanced experimentally measured
PSD.

2.2. Fast method for defocus and astigmatism estimation

We have divided this section into three subsections. In the first
one, we introduce the quadrature operator based on the Spiral
Phase Transform and the process to obtain a discontinuous
wrapped phase. Then, we explain how to unwrap this phase in or-
der to determine the smooth absolute phase. Finally, we show the
process to compute the defocus and astigmatism parameters from
the absolute phase by a Zernike polynomial fitting.

2.2.1. Quadrature operator and wrapped phase determination
Our objective in this subsection is to obtain the discontinuous

wrapped phase and the contrast term from Expression (6). In
Appendix A, we introduce a formal mathematical description of
the wrapping operator. Intuitively, this operator transforms a con-
tinuous and smooth phase, with a dynamic range larger than 2p
rad, into a discontinuous phase with a limited dynamic range
inside the range ð�p=2; p=2� rad. Observe that Eq. (6) can be
rewritten taking into account the trigonometric identity sin2

vðRÞ þuð Þ ¼ 1� cosð2vðRÞ þ 2uÞ½ �=2 as

PSDmðRÞ ¼ r2
nbE2ðRÞ cosð2vðRÞ þ 2uÞ ð7Þ

In general, a Quadrature operator transforms a trigonometric
expression, as the one shown in Eq. (7), shifting the phase by
p=2 rad (Larkin et al., 2001). Therefore, if we apply a Quadrature
operator to Eq. (7), we obtain

Q ½PSDm� ¼ r2
nbE2ðRÞ sinð2vðRÞ þ 2uÞ ð8Þ

where Q ½�� is the Quadrature operator. Observe that if we compute
the quadrature signal shown in Eq. (8), we can determine the
wrapped modulating phase and the contrast term from Expressions
(7) and (8) as

W½2vðRÞ þ 2u� ¼ arctan Q ½PSDm �
PSDm

� �
r2

nbE2ðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q ½PSDm�ð Þ2 þ ðPSDmÞ2

q ð9Þ

Note that the contrast term, or envelope map, r2
nbE2ðRÞ, can be

used as a quality map in order to obtain a processing mask, avoid-
ing points with low signal to noise ration as

ROIðRÞ ¼ r2
nbE2ðRÞ

MAX r2
nbE2ðRÞ

h i > m ð10Þ

with ROIðRÞ the processing mask, MAX½�� an operator providing the
maximum value of the map and m is a real number of about 0.1. It
should be mentioned that the phase returned by an arctangent
function in Eq. (9) will be wrapped if the dynamic range of this
phase exceeds the range ð�p=2; p=2� rad, simply because of the
limited range of the arctangent function.

A proper Quadrature operator is the Spiral Phase Transform
(SPHT) (Larkin et al., 2001), converting a cosine signal into its
quasi-quadrature signal, which is mathematically defined as
(Larkin et al., 2001)

SPHT½�� ¼ FT�1 x̂þ iŷffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ ŷ2

p
 !

FT½��
" #

ð11Þ

where SPHT½�� is the Spiral Phase Transform operator, ðx̂; ŷÞ are the
transformed spatial coordinates, FT and FT�1 means 2D Fourier
Transform and 2D Inverse Fourier Transform and i ¼

ffiffiffiffiffiffiffi
�1
p

. Observe
that the SPHT introduced in Eq. (11) corresponds to a 2D Hilbert
transform (Larkin et al., 2001). If we now apply the Spiral Phase
Transform operator to PSDm as presented in Eq. (7), we obtain
(Larkin et al., 2001)

SPHT½PSDmðRÞ� ¼ i expðiDðRÞÞr2
nbEðRÞ2 sinð2vðRÞ þ 2uÞ ð12Þ

Observe that SPHT½PSDmðRÞ� corresponds to Q ½PSDm� multiplied
by an additional phase given by i expðiDðRÞÞ. In Eq. (12), DðRÞ is
normally referred as the phase direction map, and corresponds to
the subtended angle of the phase gradient vector with respect to
the Rx-axis. In our case, where the phase is mainly composed by
defocus aberration, we can calculate the direction map by (see
Appendices B and C, for further information)

DðRÞ ffi arctan
Ry

Rx

� �
ð13Þ

The quadrature signal of PSDm is given from Expression (8) and
(12) by

Q ½PSDmðRÞ� ¼ r2
nbE2ðRÞ sinð2vðRÞ þ 2uÞ

¼ �i expð�iDðRÞÞSPHT PSDmðRÞ½ � ð14Þ

Using the quadrature signal of PSDm, shown in Eq. (14), and the
PSDm, we obtain the wrapped phase and the contrast term from Eq.
(9).

2.2.2. Phase unwrapping process
Phase unwrapping is an important image-processing technique

that has been applied in many fields such as magnetic resonance
imaging (MRI), synthetic aperture radar interferometry (InSAR),
and optical interferometry. Many accurate methods for phase
unwrapping have been proposed in the literature (Goldstein et
al., 1988; Ghihlia and Romero, 1994; Flynn, 1997; Navarro et al.,
2012). Typically, the output of many processes is not the desired
absolute phase but a wrapped phase that corresponds to the abso-
lute phase modulo 2p, i.e.

W 2vðRÞ þ 2u½ � ¼ 2vðRÞ þ 2u� 2pk ð15Þ

where k is an integer. The aim of the phase unwrapping process is to
obtain the absolute phase 2vðRÞ þ 2u through the wrapped phase
W 2vðRÞ þ 2u½ �. Obviously, the problem is ill conditioned, as multi-
ple values of the absolute phase can be obtained by one wrapped
phase with different ks. Therefore, phase unwrapping is an inverse
problem with no unique solution. To find a unique solution addi-
tional constrains are needed. In this way, almost all phase unwrap-
ping methods imposes continuity in the absolute phase and,
furthermore, assume that the absolute value of the absolute phase
difference between adjacent pixels is less than p.

In this work, we have used the method presented in (Navarro
et al., 2012), that corresponds to a fast unwrapping two-dimensional
algorithm based on a linear recursive filter. This recursive filter
can be seen as composed by two terms: a predictor, that is an
estimation based on previously unwrapped values, and a corrector,
that takes into account wrapped input data to correct the current
estimation. This method is robust to noise because its smoothing
capabilities (Navarro et al., 2012). Therefore, using this unwrapping
approach we can compute the absolute phase map, that it is given
by

2vðRÞ þ 2u ¼W 2vðRÞ þ 2u½ � þ 2pk ð16Þ

where W 2vðRÞ þ 2u½ � has been obtained from Eq. (9) and the ks
from the unwrapping process.

2.2.3. Zernike fitting. Determination of the defocus and astigmatism
parameters

Once we have computed the absolute phase map, we can per-
form a Zernike polynomials fitting. The Zernike polynomials corre-
spond to a complete polynomial basis that is orthonormal in the



Table 2
Third-order Seidel aberrations coefficients obtained from Zernike polynomials
coefficients.

Piston Z0 � Z3 þ Z8

Tilt
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ1 � 2Z6Þ2 þ ðZ2 � 2Z7Þ2

q
cos h� arctan ððZ2�2Z7ÞÞ

ðZ1�2Z6Þ

� �h i
Defocus r22ðZ3 � 6Z8Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

4 þ Z2
5

q
Astigmatism �2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

4 þ Z2
5

q
cos2 a� 1

2 arctan Z5
Z4

� �h i
Coma 3r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

6 þ Z2
7

q
cos a� arctan Z7

Z6

� �h i
Spherical 6r4Z8
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unit disk (Wyant and Creath, 1992). These polynomials are exten-
sively used in optics, especially in the interpretation of optical test
results, because they have the same form as the types of aberra-
tions often observed in optical systems (Wyant and Creath,
1992). In Table 1, we give the mathematical expressions and names
of the first nine Zernike polynomials. Taking into account that the
Zernike polynomials are a complete polynomial basis, the absolute
phase can be expressed as a linear combination of these polynomi-
als as

2vðRÞ þ 2u ¼
X

j

ZjZPoljðRÞ ð17Þ

where Zj are the different Zernike coefficients, whose values are ob-
tained fitting the absolute phase with the Zernike polynomials. In
Appendix D, we give the mathematical expressions of the Zernike
polynomials ZPoljðRÞ. Observe that we can obtain the Zernike coef-
ficients directly from Eq. (17) by a simple linear least-squares as

q ¼ M � Z ð18Þ

where q is a column vector of size NxNy � 1, with Nx and Ny the
number of columns and rows of the absolute phase image, whose
elements are taken columnwise from 2vðRÞ þ 2u. Additionally, Z
is a column vector of dimension N composed by the Zernike coeffi-
cients that corresponds to the number of Zernike polynomials used.
Finally, M is a matrix of size NxNy � N, where the nth column is ta-
ken columnwise from the nth Zernike polynomial. The Zernike poly-
nomials can be directly obtained by

Z ¼ Mþq ð19Þ

with Mþ the Moore–Penrose pseudoinverse of M that is given by
Mþ ¼ ðMT MÞ�1MT .

The third-order wavefront aberration coefficients, most com-
monly known as Seidel aberrations, can be obtained directly from
the Zernike polynomials coefficients. Seidel aberrations appear in
any image formation system when the paraxial approximation is
not sufficient for an accurate description of the system. The parax-
ial approximation establishes that sinð/Þ ffi / in the refraction law,
with / the refraction angle. This approximation considers that
lenses are perfect and/or the refraction angle is very small. If we in-
clude quadratic and cubic terms in the refraction law, then third-
order aberrations appear, resulting from imperfections in real
lenses. The five Seidel aberrations are: spherical aberration, coma,
astigmatism, curvature of field and distortion (Born and Wolf,
1975). Observe that the defocus does not appear as a Seidel aber-
ration. This is because Seidel aberrations only care about distor-
tions caused by imperfections in the lenses and/or large
refraction angles. On the other hand, defocus only depends on
the position of the observation plane, so a perfect imaging system
with perfectly parallel incoming rays with respect to the optical
axis will have defocus if the imaging plane is not in focus. In
Table 1
Mathematical expressions and names of the first nine Zernike polynomials. The
indexes n, m, j, correspond to the way to refer the Zernike polynomials and are
discussed in Appendix D.

Coefficient Name n m j Polynomial

Z0 Piston 0 0 0 1
Z1 x-tilt 1 1 1 r cos a
Z2 y-tilt 1 1 2 r sin a
Z3 Defocus 1 0 3 2r2 � 1
Z4 x-astig. & defocus 2 2 4 r2 cosð2aÞ
Z5 y-astig. & defocus 2 1 5 r2 sinð2aÞ
Z6 x-coma & tilt 2 1 6 ð3r2 � 2Þr cosðaÞ
Z7 y-coma & tilt 2 1 7 ð3r2 � 2Þr sinðaÞ
Z8 Spherical & defocus 2 0 8 6r4 � 6r2 þ 1
electron microscopy, we care especially about defocus, spherical
and astigmatism aberrations. First order wavefront properties
and third-order aberrations coefficients can be obtained from Zer-
nike polynomials coefficients. Using the first nine Zernike terms, Z0

to Z8 shown in Table 1, the relationships are given in Table 2. Note
that defocus has the sign chosen to minimize the magnitude of the
coefficient, and astigmatism uses the sign opposite to the one cho-
sen for defocus. For angle calculations in Table 2, note that if the
denominators are less than 0, then the angles correspond to the an-
gle value plus p rad (Wyant and Creath, 1992).

The phase value v introduced in Expression (5) is given, for a
typical electron microscope, as

vðRÞ ¼ pkre �Df ðRÞjRj2 þ Cs jRj4k2
re

2

� �
Df ðRÞ ¼ ðDfavg þ Dfdiff cosð2ða� a0ÞÞÞ
Dfavg ¼ DfuþDfv

2 ; Dfdiff ¼ Dfu�Dfv
2

ð20Þ

with, kre the wavelength of electrons in the microscope, Cs the
spherical aberration of the microscope lens and a0 is the astigma-
tism angle. If we sum the defocus, astigmatism and spherical Seidel
aberrations given in Table 2, we have that

vðRÞ ¼ �1
2
fT2

s jRj
2 2ðZ3 � 6Z8Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

4 þ Z2
5

q
cosð2ða� ~aÞÞ

� 	

þ 6jRj4T4
s Z8g ð21Þ

where Ts is the sampling rate. Comparing Expression (20) and (21)
we can obtain the CTF parameters as

Dfavg ¼ T2
s ðZ3�6Z8Þ

pkre

Dfdiff ¼
T2

s

ffiffiffiffiffiffiffiffiffiffi
Z2

4þZ2
5

p
pkre

Cs ¼ 3T4
s Z8

pk3
re

ð22Þ

and the astigmatism angle is given by

a0 ¼
~a þ sign in Eq: ð21Þ
~aþ p � sign in Eq: ð21Þ

� 

ð23Þ

Note that the initial estimation of the CTF parameters can be
further refined by any of the CTF estimation methods based on a
non-linear optimization. In this work, we have used the method
presented in (Sorzano et al., 2007) for further refinement. In
Fig. 1, we show a diagram where we summarize the different pro-
cessing steps.

3. Results

The new algorithm has been implemented in the Xmipp pack-
age (http://xmipp.cnb.csic.es, Sorzano et al., 2004). In order to
check for the accuracy of the proposed method, the first level of
testing has involved image simulations. Upon successful evalua-
tion, several experimental datasets have been processed, including
cryo-electron microscopy images in the absence of carbon support,

http://xmipp.cnb.csic.es


Fig.1. Diagram that shows the different processing steps used by the proposed CTF estimation method.
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tilted and untilted standard negative stained images as well as
micrographs containing only ice.

3.1. Simulations

In order to show the performance of the proposed method, we
have tested it using a set of simulated micrographs from which we
have obtained the PSDs. In the simulations, we have compared the
results obtained by the method presented in this study—FASTDEF
method—with the results obtained by CTFFIND3 (Mindell and
Grigorieff, 2003) and Xmipp (Sorzano et al., 2007) approaches.
Additionally, we also show the results obtained when we refine
the results retrieved by the FASTDEF method with the optimization
method presented in (Sorzano et al., 2007). This method will be de-
noted as FASTDEF + Xmipp approach. The comparison between the
different CTF estimating techniques is made in terms of accuracy
and processing speed. In order to quantify the accuracy of the dif-
ferent results, we compute the Euclidean distance between the
true and estimated Dfu and Dfv parameters. We have used five sim-
ulated micrographs using Xmipp package of size 1024 � 1024 px
with a pixel size of 3.6 Å per pixel. No particle was present in the
simulated micrographs. In this numerical experiment we know ex-
actly the underlying PSD and, therefore, we can obtain the accuracy
of the estimated PSDs comparing them with the ground truth val-
ues. Note that Xmipp, FASTDEF and CTFFIND3 obtain the PSD from
the micrographs in the same way, by periodogram averaging using
averaging windows of 256 � 256 px. In Fig. 2, we show the simu-
lated PSDs used to test the different algorithms. As can be seen
from Fig. 2, we use a heterogeneous group, with some PSDs with
small and large defocus values and with or without astigmatism.
For the PSD shown in Fig. 2(a), we present in Fig. 3, its obtained
wrapped phase (a), the unwrapped phase (b), the fitted phase by
Zernike polynomials (c) and the cosine of the fitted phase by Zer-
nike polynomials (d). As can be seen from Fig. 3, the wrapped
phase (Fig. 3(a)) has a set of discontinuities that disappear in the
unwrapped phase map. Additionally, the Zernike fitting reduces
possible image artifacts that can appear in the phase map. In
Fig. 4, we represent the obtained values for the first eight Zernike



Fig.2. The five simulated PSDs used in the simulation section.

Fig.3. Wrapped phase (a), unwrapped phase (b), fitted phase by Zernike polynomials (c) and cosine of the fitted phase by Zernike polynomials (d) obtained from the PSD
shown in Fig. 2(a).

Fig.4. Obtained values of the first eight Zernike coefficients for the simulated PSD shown in Fig. 2(a).

Table 3
Ground truth CTF parameters and results obtained by FASTDEF (Df ð1Þ), FASTDEF + Xmipp (Df ð2Þ), Xmipp (Df ð3Þ) and CTFFIND3 (Df ð4Þ) in Angstrom units, when the simulated PSDs
shown in Fig. 2 are processed.

Dfu; th Dfv; th Df ð1Þu Df ð1Þv Df ð2Þu Df ð2Þv Df ð3Þu Df ð3Þv Df ð4Þu Df ð4Þv

Fig. 3(a) 30000 10000 27810 10047 29881 9909 29883 9907 29973 9893
Fig. 3(b) 10000 10000 10481 10456 9977 9971 9956 9967 9773 9795
Fig. 3(c) 25000 20000 24747 20115 25015 19941 25033 19940 24871 20048
Fig. 3(d) 30000 30000 28141 27809 29897 29887 29897 29886 29810 29851
Fig. 3(e) 30000 10000 29906 9976 29874 9903 29879 9905 29960 9845
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coefficients, where the largest Zernike coefficients correspond to Z3

and Z4 coefficients, which, according to Table 1, correspond to
defocus and x-astigmatism & defocus aberrations. Additionally,
we can see from Fig. 4 that the Zernike fitting provides us addi-
tional information about important higher order microscope aber-
rations, such as coma (that corresponds to Z6 and Z7 values in
Fig. 4) which are not accessible using typical parametric methods,
such as Xmipp or CTFFIND3. In Table 3 we present the ground truth



Table 4
Relative errors obtained by FASTDEF (eð1Þr ), FASTDEF + Xmipp (eð2Þr ), Xmipp (eð3Þr ) and
CTFFIND3 (eð4Þr ) in Angstrom units, when are processed the simulated PSDs shown in
Fig. 2.

eð1Þr (%) eð2Þr (%) eð3Þr (%) eð4Þr (%)

Fig. 3(a) 6.9 0.47 0.47 0.35
Fig. 3(b) 4.7 0.26 0.39 2.16
Fig. 3(c) 0.87 0.19 0.21 0.43
Fig. 3(d) 6.8 0.36 0.36 0.57
Fig. 3(e) 0.31 0.50 0.49 0.51

Fig.6. Enhanced experimental and fitted PSDs using the FASTDEF method for two
micro graphs of the BPV dataset (a), (b) and two micrographs of the CL dataset (c),
(d).
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CTF parameters and the results obtained by the different methods.
In order to compare the different results, we present in Table 4 the
relative errors obtained by the different approaches. Additionally,
The processing times required to process the five PSDs on a
2.4 GHz laptop are 75, 171, 855 and 1030 s for FASTDEF, FAST-
DEF + Xmipp (refined FASTDEF results), Xmipp, and CTFFIND3,
respectively. These processing times have been obtained using a
defocus search range of [0.5, 10] lm for both the Xmipp and CTF-
FIND3 methods. Finally, in Fig. 5, we show the ground-truth and
estimated PSDs for the five images shown in Fig. 2 when using
the FASTDEF method. As can be seen from Fig. 5, there is a good
agreement between the simulated and retrieved Thon rings in all
cases.

From the results presented above, we can see that both FAST-
DEF and FASTDEF + Xmipp are quite fast ways to obtain the CTF
parameters. Indeed, compared to Xmipp and CTFFIND3, FASTDEF
is 14 and 11 times faster, while FASTDEF + Xmipp is 7.8 and 8.0
times faster, respectively, always for similarly accurate results.

3.2. Experimental results

We have also tested the proposed method with experimental
PSDs. Three datasets of experimental images, represented as BPV,
CL and P53, are used. In the first case, the specimen was deposited
on holey grids and cryo-preserved. The images correspond, there-
fore, to typical cryo-microscopy images with no carbon support.
The second case corresponds to negative staining performed with
0.75% uranyl formiate, over glow discharged Quantifoil Formvar/
Carbon grids. Finally, in the third case, negative staining was per-
formed with uranyl formiate in carbon sandwich technique over
Quantifoil grids. The dataset BPV (Wolf et al., 2010) consists of
images of Bovine Papillomavirus and have a sampling rate of
1.237 Å per pixel and the micrographs have a size of
9216 � 9441 px. On the other hand, the CL dataset contains images
of Escherichia Coli DNA Polymerase III clamp loader with a notice-
able astigmatism, that were digitized with a pixel size of 3.5 Å. The
E. coli Gama(370)4-Psi-Chi, is a 197 kDa complex, composed by
four copies of a truncated form of the protein Gamma (residues
1–370), one unit of Psi and one unit of Chi. In this case, the micro-
graph size is 3212 � 2539 px. The P53 dataset consists in a deletion
Fig.5. Simulated and obtained PSDs fo
mutant of human p53, lacking its 33 C-terminal residues (NTC,
p531-360) and with four stabilizing mutations in the core domain
(M133L/V203A/N239Y/N268D) (Melero et al., 2011). Images are
recorded in a 4k � 4k CCD camera at a magnification of a
64305� corresponding to a 2.1 Å pixel size.

In Fig. 6, we show the enhanced experimental PSD and the fitted
theoretical PSD using the FASTDEF method for two micrographs,
one from the BPV and CL groups, although the method was suc-
cessfully applied to all the micrographs in the datasets. We use
the method presented in (Jonic et al., 2007) for enhancing the PSDs.
Note that for both datasets, FASTDEF, Xmipp and CTFFIND3 obtain
the PSD from the micrographs by periodogram averaging using
averaging windows of 256 � 256 px. In order to estimate the CTF
parameters, we only need to provide to the proposed algorithm
the enhanced experimental PSD estimated by periodogram averag-
ing, the microscope voltage and the micrograph sampling rate. The
BPV dataset is composed of 49 micrographs of good quality, while
the CL one has 24 micrographs with large astigmatism. The data
from BPV was acquired using a FEI Tecnai F30 electron microscope
(300 kV) with nominal magnification of 59000�. The spherical
aberration is 2.26 in mm. On the other hand, the data from the
CL dataset was obtained from a JEOL JEM-1011 electron micro-
r the five images shown in Fig. 2.
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scope (100 kV) with nominal magnification of 60000�. The spher-
ical aberration is 5.6 mm. In Fig. 7, we show a plot of the obtained
defocus results for the BPV and CL datasets when we use the FAST-
DEF (dashed line with brown squares), FASTDEF + Xmipp (solid
black line with dark circles), Xmipp (solid black line with white cir-
cles) and CTFFIND3 (dotted black line with bright circles) methods.
For comparison purposes, we show in Fig. 8 the difference between
the defocuses obtained by each method and the average defocus
values, computed using the results from all the approaches (FAST-
DEF, FASTDEF + Xmipp, Xmipp and CTFFIND3) . As can be seen
from Figs. 7 and 8, there is good agreement between the different
defocus results. In order to quantify the accuracy and precision of
the computed defocus results acquired by FASTDEF and FAST-
DEF + Xmipp approaches, we have obtained the mean and standard
deviation (std) between the average defocuses retrieved by these
methods and Xmipp and CTFFIND3 approaches. In Table 5, we
show the obtained results. As can be seen from Table 5, the differ-
ences in the defocus average between the FASTDEF and FAST-
DEF + Xmipp methods with respect to Xmipp and CTFFIND3 are
not significant for the BPV dataset. In the case of the CL dataset,
we see that there is also a good agreement between the results ob-
tained by FASTDEF and FASTDEF + Xmipp with respect to Xmipp
method. Observe that the CTF determination of these micrographs
Fig.7. Defocus results for the different micrographs obtained by the FASTDEF (dashed lin
(solid black line with white circles) and CTFFIND3 (dotted black line with bright circles
is challenging because the large astigmatism and low contrast
Thon rings that have the PSDs of this dataset. The computation
times required to process the two different datasets are 967 s,
2243 s, 11239 s, 8240 s for the BPV and 251 s, 1355 s, 5952 s,
5623 s for the CL dataset when processing using the FASTDEF,
FASTDEF + Xmipp, Xmipp and CTFFIND3 methods, respectively.
Observe that the BPV and CL datasets are composed by 49 and
24 micrographs. In Table 6, we show the mean processing time
and per micrograph and standard deviation for each dataset, when
we process them using the different methods. Note that for the
case of FASTDEF, FASTDEF + Xmipp and Xmipp, the estimation of
the PSD by periodogram averaging takes approximately seven
and two seconds per micrograph for the BPV and CL datasets,
respectively. These times are included in the processing times re-
ported above and have been obtained using a defocus search range
of [0.5, 10] lm for both the Xmipp and CTFFIND3 methods. We use
such a large defocus range because, in our experience, many users
do not always provide an initial accurate estimation of the defocus
average values and they prefer to select a large defocus search
range, especially when they process a large group of micrographs
with different CTFs. Note that in the case of the Xmipp package,
the CTF estimation program uses as default a defocus search range
of [0.5, 10] lm. As can be seen from these results, the FASTDEF and
e with brown squares), FASTDEF + Xmipp (solid black line with dark circles), Xmipp
) methods for the BPV (a), (b) and CL datasets (c), (d).



Fig.8. Difference between the defocus results obtained by the FASTDEF (dashed line with brown squares), FASTDEF + Xmipp (solid black line with dark circles), Xmipp (solid
black line with white circles) and CTFFIND3 (dotted black line with bright circles) methods and the average defocus values computed using the results from all the
approaches, for the BPV (a), (b) and CL datasets (c), (d).

Table 5
Mean and standard deviation obtained between the average defocuses retrieved by
the FASTDEF and FASTDEF + Xmipp methods and Xmipp and CTFFIND3 approaches,
for the BPV and CL datasets.

Xmipp (Å) CTFFIND3 (Å)

Mean Std Mean Std

BPV
FASTDEF 32 42 �8.0 53
FASTDEF + Xmipp 28 27 �12 46
CL
FASTDEF �180 250 �490 322
FASTDEF + Xmipp �7.0 190 �420 221

Table 6
Processing times per micrograph and standard deviations obtained when we process
the BPV and CL datasets using the FASTDEF and FASTDEF + Xmipp, Xmipp and
CTFFIND3 methods.

Time (s) Std (s)

BPV
FASTDEF 20 1.2
FASTDEF + Xmipp 46 6.8
Xmipp 229 70
CTFFIND3 168 42
CL
FASTDEF 11 2.1
FASTDEF + Xmipp 56 21
Xmipp 248 34
CTFFIND3 234 3.6

Table 7
Computation times obtained when it is processed one micrograph of the BPV dataset
for different periodogram averaging window sizes and using FASTDEF, FAST-
DEF + Xmipp, Xmipp and CTFFIND3 methods.

Size (px)

200 250 300 350 400

FASTDEF (s) 15 18 22 23 25
FASTDEF + Xmipp (s) 26 39 43 58 66
Xmipp (s) 134 165 206 302 726
CTFFIND3 (s) 126 223 400 580 785
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FASTDEF + Xmipp methods are approximately ten and five times
faster than the CTFFIND3 and Xmipp methods, respectively, and
have similar accuracy than these approaches. We have also studied
the dependency of the different methods with respect to the peri-
odogram averaging window size. We have obtained, for one micro-
graph of the BPV dataset, the CTF parameters for different
averaging window sizes. The results are presented in Table 7. As
can be seen from Table 7, the processing time scales approximately
linearly with respect to the averaging window size for the FASTDEF
and FASTDEF + Xmipp methods. Note, that this is not true for the
Xmipp and CTFFIND3 approaches. Additionally, the standard devi-
ation of the mean defocus values for the averaging window sizes
shown in Table 7 are 272, 6, 28 and 20 Å when we process using
FASTDEF, FASTDEF + Xmipp, Xmipp and CTFFIND3 methods.

The defocus average parameter can be considered as the dis-
tance between the sample and the focal plane of the objective lens
(Mindell and Grigorieff, 2003). Therefore, tilt information can be
obtained from the local defocus variation along a micrograph. In
this way, we can divide an image in multiple subimages and calcu-
late for each one of them its CTF parameters. Note that, in this case,
the defocus estimation provided by the microscope is not accurate
because it consists on an average of a locally varying magnitude.



Table 8
Fitted plane parameters by the locally retrieved defocus average values using
FASTDEF, FASTDEF + Xmipp, Xmipp and CTFFIND3 methods for the tilted and untilted
micrographs of P53 dataset.

Untilted1 � 103 (Å) Tilted1 � 103 (Å)

FASTDEF (�3.63x � 5.19y)�10�5 + 8.03 (�1.26x � 6.83y)�10�4 + 9.72
FASTDEF + Xmipp (�3.72x � 4.93y)�10�5 + 8.03 (�1.27x � 6.74y)�10�4 + 9.71
Xmipp (�4.18x � 5.23y)�10�5 + 8.24 (�1.12x � 6.29y)�10�4 + 9.67
CTFFIND3 (�4.09x � 4.65y)�10�5 + 8.28 (�1.26x � 6.29y)�10�4 + 9.75

Untilted2 � 103 (Å) Tilted2 � 103 (Å)

FASTDEF (�6.32x � 7.35y)�10�5 + 8.70 (�1.32x � 6.60y)�10�4 + 11.2
FASTDEF + Xmipp (�5.71x � 6.49y)�10�5 + 8.67 (�1.41x � 6.49y)�10�4 + 11.1
Xmipp (�3.66x � 3.85y)�10�5 + 8.63 (�1.32x � 6.25y)�10�4 + 11.1
CTFFIND3 (�3.35x � 4.37y)�10�5 + 8.72 (�1.26x � 6.21y)�10�4 + 11.2

Table 9
Processing times obtained by each micrograph of the P53 dataset when the different
64 submicrographs are processed locally by the different methods.

Untilted1 (s) Tilted1 (s)

FASTDEF 832 720
FASTDEF + Xmipp 1226 1102
Xmipp 6220 6012
CTFFIND3 18013 18240

Untilted2 (s) Tilted2 (s)

FASTDEF 867 751
FASTDEF + Xmipp 1899 1763
Xmipp 6422 5699
CTFFIND3 18211 17995
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We have also obtained the CTF parameters of four micrographs ta-
ken in tilt pairs at tilt angles of 0� and 45� under low-dose condi-
tions in a JEOL JEM-2200FS electron microscope and using the
P53 dataset. Note that in this dataset, Xmipp, FASTDEF and CTF-
FIND3 methods obtain the local PSDs without periodogram averag-
ing and using individual images of size 256 � 256 px. In Table 8 we
show the plane parameters that best fit the locally retrieved defo-
cus average values using the different methods. As can be seen
from Table 8, there is a good agreement between the different
plane fittings. Additionally, in Table 9 we show the processing
times obtained when the different 64 submicrographs are pro-
cessed by the different methods. As can be appreciated from Table
9, the FASTDEF and FASTDEF + Xmipp methods are significantly
faster than the Xmipp and CTFFIND3 approaches. The processing
times per micrograph are 12 ± 1 s, 23 ± 6 s, 95 ± 5 s and 283 ± 2 s,
when we use FASTDEF and FASTDEF + Xmipp, Xmipp and CTF-
FIND3 methods, respectively. Note that these processing times
have been obtained using a defocus search range of [0.5, 10] lm
for both the Xmipp and CTFFIND3 methods, as in all the cases pre-
sented before.
Fig.9. Enhanced experimental and fitted PSDs using the FASTDEF
Finally, encouraged by the previous results, we have made a test
using defocus series of three cryo-electron micrographs of Micro-
pore� water alone on the cryo-EM grid. In this case the images
where obtained with a JEOL 2100F electron microscope with an
acceleration voltage of 200 kV, a spherical aberration of 0.5 mm,
and a magnification of 50000�. Fig. 9 shows the enhanced experi-
mental PSDs and the obtained PSDs using the FASTDEF + Xmipp
method for the three micrographs. As can be seen from Fig. 9,
the proposed method can recover the CTF parameters in these
conditions.

4. Conclusions

In this work, we have presented a novel parameter-free ap-
proach to recover the CTF parameters (defocus and astigmatism)
of a micrograph in a fast way without the need of non-linear opti-
mization procedures and/or initial defocus estimations. Therefore,
the proposed method is very suitable for High Throughput work.
The obtained CTF parameters can be further refined by a posterior
optimization, if desired. The proposed method is based on a fully
non-parametric estimation approach as our method does not need
any previous assumption about the CTF model. Additionally, it
opens the way to well-defined extensions to the estimation of
higher order aberrations. This approach considers the CTF as a
fringe pattern where a two-dimensional phase, that contains the
desired information about the microscope aberrations, is modu-
lated by a sine function. Therefore, the objective phase can be ob-
tained by a quadrature filter. We have tested the proposed method
using simulated and experimental PSDs and we have compared the
results with the results obtained by Xmipp and CTFFIND3 methods.
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Appendix A

The wrapping operator W½�� transforms a continuous and
smooth phase U, with a dynamic range larger than 2p rad, into a
discontinuous phase with a limited dynamic range inside the range
ð�p=2; p=2� rad as
+ Xmipp method for micrographs with only ice (a), (b), (c).



Fig.10. (Color online) Simulated enhanced PSD where the envelope function is equals to one in every pixel and corresponding gradient vectors (a), phase map 2vðRÞ and
corresponding gradient vectors (b), orientation hðRÞ (c) and phase direction DðRÞ (d) maps.
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W½UðRÞ� ¼ UðRÞ � 2 p m ðA1Þ

with m an integer number corresponding to

m ¼ INT
UðRÞ
2p

� 	
ðA2Þ

and INT½�� is a function that maps a real number to the largest pre-
vious integer. Therefore, INT½x� is the largest integer not greater
than x, being x an arbitrary real number.

Appendix B

The phase direction map, DðRÞ corresponds to the subtended
angle of the phase gradient vector with respect to the Rx-axis

DðRÞ ¼ arctan
rRyvðRÞ
rRxvðRÞ

� �
ðB1Þ

where rRx and rRy corresponds to the derivatives along the Rx and
Ry axes respectively. Obviously, we cannot obtain directly the phase
direction map as the phase is indeed the quantity we want to re-
trieve. Instead of obtaining the direction map DðRÞ, we can compute
the orientation map that corresponds to

hðRÞ ¼ arctan
rRy PSDm

rRx PSDm

� �
ðB2Þ

with ~rPSDmðRÞ ¼ �2r2
nbE2ðRÞ sinð2vðRÞ þ 2uÞ~rvðRÞ, where we

have considered that the envelope function EðRÞ is a low frequency
signal. Observe that the arctangent function distinguishes between
diametrically opposite directions. If in Eq. (B2) the numerator and
denominator have both positive sign, the resultant angle will be
in the first quadrant. However, if they have both negative sign the
angle will be in the fourth quadrant. Therefore, the relationship be-
tween the direction DðRÞ and orientation hðRÞ maps is given by

DðRÞ ¼
hðRÞ sinð2vðRÞ þ 2/Þ < 0
hðRÞ þ p sinð2vðRÞ þ 2/Þ > 0

� 

ðB3Þ

We can solve this ambiguity problem and compute the phase
direction map regularizing the orientation map imposing continu-
ity (Villa et al., 2005). The method presented in (Villa et al., 2005)
can obtain the direction from the orientation map in very complex
fringe patterns. In order to clarify these concepts, we show in
Fig. 10(a) set of images. Fig. 10(a) shows a simulated PSD after per-
forming background suppression and mean subtraction whose
mathematical expression is given in Expression (7). For simplicity,
in Fig. 10(a) r2

nbE2ðRÞ is equal to one in every pixel. We overlay the
corresponding gradient vectors rPSDmðRÞ at some points.
Fig. 10(b) shows the absolute phase map, 2vðRÞ þ 2u, and its cor-
responding gradient vectors, rð2vðRÞÞ at different pixels. Addi-
tionally, in Fig. 10(c) and (d) we show the respective orientation
hðRÞ and direction DðRÞ maps. As can be seen from Fig. 10, there
is an ambiguity between hðRÞ and DðRÞ in some points caused by
the sign changes introduced by the sine term in Eq. (B3).

Appendix C

In this section, we give a mathematical justification of Eq. (14).
Note that if we assume that the CTF is not affected by astigmatism,
the modulating phase is given by
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vðRÞ ¼ pkre �Dfavg R2
x þ R2

y

� �
þ

Cs R2
x þ R2

y

� �2
k2

re

2

0
B@

1
CA ðC1Þ

and the gradient components of vðRÞ are

rRxvðRÞ ¼ 2pkreRx �Dfavg þ Cs R2
x þ R2

y

� �
k2

re

� �
rRyvðRÞ ¼ 2pkreRy �Dfavg þ CsðR2

x þ R2
yÞk

2
re

� � ðC2Þ

The direction phase map, defined in Eq. (11), corresponds to

DðRÞ ¼ arctan
rRyvðRÞ
rRxvðRÞ

� �
¼ arctan

Ry

Rx

� �
ðC3Þ

The direction phase map can be obtained by Eq. (A.3) if the
astigmatism is small compared with the defocus or spherical aber-
ration components. Note that the error obtained in the modulating
phase due to this approximation is quadratic with respect to the
error in the determination of D. Suppose that we compute the
phase direction from Eq. (A.3) in the presence of astigmatism so
we obtain

~DðRÞ ¼ DðRÞ þ dðRÞ ðC4Þ

where DðRÞ and ~DðRÞ are the actual and computed phase direction
maps and dðRÞ 2 ½�p=2; p=2Þ (rad), is the error that is typically
small because defocus is usually the dominant component of the
modulating phase and then dðRÞ << 1. The quasi-quadrature signal
of the PSDm is given from Expression (15)

~Q PSDmðRÞ½ � ¼ �i exp �iðDðRÞ þ dðRÞÞð ÞSPHT PSDmðRÞ½ � ðC5Þ

that can be rewritten in terms of the actual quadrature signal as

~Q PSDmðRÞ½ � ¼ Re expð�iðdðRÞÞÞQ PSDmðRÞ½ �½ � ðC6Þ

and

~Q PSDmðRÞ½ � ¼ cosðdðRÞÞQ PSDmðRÞ½ � ðC7Þ

where Re½�� is the real part. If dðRÞ << 1 we can approximate

~Q PSDmðRÞ½ � ¼ 1þ d2ðRÞ
� �

Q PSDmðRÞ½ � ðC8Þ

And finally the modulating phase given by Eq. (16)

W 2vðRÞ þ 2u½ � ¼ arctan
1þ d2ðRÞ
� �

Q PSDmðRÞ½ �
PSDmðRÞ

 !
ðC9Þ

where it can be seen as mentioned before that the error is quadratic
in d2ðRÞ.

Appendix D

In this section we introduce the mathematical description of the
Zernike polynomials. There are even and odd Zernike polynomials.
The even ones are defined as

ZPolm
n r; að Þ ¼ Rm

n ðrÞ cos mað Þ ðD1Þ

and the odd ones are given by

ZPolm
n r; að Þ ¼ Rm

n ðrÞ sin mað Þ ðD2Þ

with, r and a the radial and angular polar coordinates, m and n non
negative integers such that n P m, h the azimuthal angle and r the
radial coordinate with 0 6 r 6 1. The radial polynomials Rm

n are
defined as

Rm
n ðrÞ ¼

Xðn�mÞ=2

k¼0

ð�1Þkðn� kÞ!
k!ððnþmÞ=2� kÞ!ððn�mÞ=2� kÞ! rn�2k ðD3Þ
Typically, it is more convenient to use a Zernike representation
that uses a single index instead of two. A conventional mapping
of the two indices n and m to a single index j has been introduced
by Noll (Noll, 1976) and consists in the following rule; even
Zernike –with azimuthal part given by cosðmaÞ and shown in
Eq. (D1) –obtain even indices j, the odd ones obtain odd indices j
and within a given n, lower values of m obtain lower j.
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