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a b s t r a c t

Three-dimensional reconstruction of biological specimens using electron microscopy by single particle
methodologies requires the identification and extraction of the imaged particles from the acquired micro-
graphs. Automatic and semiautomatic particle selection approaches can localize these particles, minimiz-
ing the user interaction, but at the cost of selecting a non-negligible number of incorrect particles, which
can corrupt the final three-dimensional reconstruction. In this work, we present a novel particle quality
assessment and sorting method that can separate most erroneously picked particles from correct ones.
The proposed method is based on multivariate statistical analysis of a particle set that has been picked
previously using any automatic or manual approach. The new method uses different sets of particle
descriptors, which are morphology-based, histogram-based and signal to noise analysis based. We have
tested our proposed algorithm with experimental data obtaining very satisfactory results. The algorithm
is freely available as a part of the Xmipp 3.0 package [http://xmipp.cnb.csic.es].

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Single particle analysis (SPA) techniques based on transmission
electron microscopy (TEM) can obtain three-dimensional (3D)
reconstructions of biological complexes near atomic resolution
(Zhang and Zhou, 2011). However, this high resolution studies re-
quire acquiring tens of thousands of projection images. The typical
particle selection or picking approach consists in locating the two-
dimensional (2D) projections of the biological structure under
study within the captured electron micrographs. This process
may be cumbersome, laborious and time consuming, especially if
done manually, and represents a major bottleneck for SPA of large
datasets. However, the success of the reconstruction crucially de-
pends on the number and the quality of the 2D picked particles.
In order to develop high-throughput methods that minimize the
user iteration in the different processing steps, a number of differ-
ent automatic and semiautomatic particle picking approaches have
been proposed. Automatic particle picking techniques (Chen and
Grigorieff, 2007; Adiga et al., 2004; Huang and Penczek, 2004; Ku-
mar et al., 2004; Ogura and Sato, 2005; Plaisier et al., 2004; Rath
and Frank, 2004; Roseman, 2004; Singh et al., 2004; Wong et al.,
2004) consist in image processing algorithms capable to detect
and boxing out the particle projections without the need of any
user interaction. These methods are usually fast and provide a
large number of particles; however, they may have accuracy and
robustness problems, providing a relatively large set of incorrect
and erroneously picked particles (false positives). These false pos-
itives typically range, depending on the picking algorithm, from
fractions of 10% to more than 25% (Zhu et al., 2004). Therefore,
after the picking process, it is always required to perform a subse-
quent manual curation (screening) approach to reject false posi-
tives. In turn, semiautomatic picking approaches require the user
to provide an initial set of particles, which are manually picked.
From this training set, the algorithms learn the kind of objects to
be detected and boxed from the micrographs (Arbeláez et al.,
2011; Hall and Patwardhan, 2004; Mallick et al., 2004; Ogura
and Sato, 2004; Plaisier et al., 2004; Short, 2004; Sorzano et al.,
2009; Volkmann, 2004). These methods are halfway between man-
ual and automatic methodologies but they also require a posterior
manual particle screening process.

Incorrectly picked particles typically appear because the sample
presents some degree of heterogeneity and/or the existence of
overlapping or degraded particles in the dataset. Additionally,
some of the picked particles usually are strongly affected by noise
or may even contain only noise. Finally, the presence of image arti-
facts such as ice, dust and contaminations, can corrupt the detected
particles. In all of these cases, these picked particles represent false
positives and must be discarded. Fig. 1 shows an example of typical
cases of correctly and incorrectly picked particles. In Fig. 1(a), we
see a correctly picked particle (true positive) of Bovine papillomavi-
rus (Wolf et al., 2010). In turn, Fig. 1(b), (c) and (d) show examples
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Fig.1. Example of three kinds of typical automatic or semiautomatic particle picking problems; (a) correctly picked particle (true positive) of Bovine papillomavirus, two
overlapping particles (b), only noise image (c) and particle affected by an artifact (d).
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of two overlapping particles, an only noise image and a particle af-
fected by an artifact, respectively.

Post-picking methodologies, based on processing the output of
automatic and/or semiautomatic particle picking methods, have
been previously proposed to separate particle images from non-
particle ones (Norousi et al., 2013; Sorzano et al., 2004). Since these
two strategies are conceptually close to our newly proposed ap-
proach, we will describe them in some depth in the following. In
(Norousi et al., 2013), a supervised discriminative post-picking ap-
proach based on characteristic features calculated from the boxed
out images is presented. This method requires the user to provide a
training dataset from the previously picked particles. The classifi-
cation is based on the extraction of distinct features, such as: radi-
ally weighted average intensity, phase symmetry and dark dot
dispersion. First, the radially weighted average intensity is calcu-
lated as a weighted sum of the pixel intensities. The weighting is
inversely proportional to the pixel’s Euclidean distance from the
image center. Note that this descriptor does not obtain reliable val-
ues in cases where the particle centroid is not placed exactly at the
image center. In these cases, the particles will be incorrectly con-
sidered as false positives. Additionally, the phase symmetry is
computed from a set of 2D wavelets that extracts local frequency
information (Kovesi, 1997). In (Norousi et al., 2013), it is claimed
that non-particle images will have larger locally symmetric areas,
but this consideration may not be general. Finally, the dark dot dis-
persion descriptor consists in convolving the image with a 2D sym-
metric Gaussian kernel and binarizing the resultant image using
the 0.95 intensity quartile. The authors establish that the average
distance between the dark detected regions is larger in particle
images than in non-particle images. Observe that the good perfor-
mance of this descriptor depends strongly on the signal-to-noise
ratio (SNR) of the images. Additionally, in (Sorzano et al., 2004) it
is presented a post-picking particle sorting method to determine
the quality of the input boxed images and identifying erroneous
particles. This method uses as descriptors both the radial average
intensity and the image histogram. Note that as mentioned before,
the radial average descriptor presents problems in cases where the
particle centroid is not placed in the image center.

Building on the large body of experience in the field, which has
been briefly presented in previous paragraphs, we present in this
work a new approach to particle quality sorting that outperforms
previous approaches while being computationally efficient. The
main objective of this work is to detect outliers (incorrectly picked
particles) from a previously picked dataset and not to be very accu-
rate in the fine assessment of correctly picked particles. The input
of the algorithm is a previously picked particle dataset that can be
affected by outliers and may be coming from any manual, semiau-
tomatic or automatic particle picking method. The unique require-
ment of our new approach is that there is a majority of correctly
picked particles in the dataset. For each of the provided particles,
several different types of descriptors are obtained, that are mor-
phology, histogram and noise-based. Morphology descriptors
encode information about the shape of the particles. Histogram
descriptors give statistical intensity information of the particle
images. Finally, noise-related descriptors allow for the separation
of noise-only images from those containing signal and noise. For
each particle and type of descriptor we compose a vector and, con-
sequently, we will have three vectors per particle. Stacking the vec-
tors of the same descriptor class and of all particles, we compose
three descriptor matrices. Using a principal component analysis
(PCA) dimensionality reduction approach (Roweis, 1998), we
obtain an error score (z-score) for each particle taking into account
the descriptor matrices. Furthermore, we study the statistical dis-
tribution of our proposed z-score under a set of simple hypothesis,
reaching the conclusion that z-score values around 3 should be
appropriated, specially when performing the sorting in a fully
automatic, parameter-less, high throughput way. Low values of
this z-score mean high reliability of the particle under study. Note
that a reliable z-score measure is of high importance as it can be
used to discriminate between true positive and false positive par-
ticles. Additionally, this reliable particle measure can also be uti-
lized as a weighting parameter of the different projections in
further processing steps, as for example the three-dimensional
density reconstruction, although we have not exploited this issue
in the present work.

The paper is organized as follows. In next section, we present
the particle quality assessment and sorting method. In Section 3,
we show some experimental data results and, finally, the discus-
sion and conclusions are given.
2. Methods

In this section, we present the proposed approach to obtain the
morphology, noise-based and histogram descriptors, as well as, the
method to compute the particle score from them.
2.1. Morphology descriptors

The morphology descriptors obtain image features that enable
discrimination of incorrect particlesbased on their general mor-
phology/shape while eliminating overlapping particles. A good
example of the kind of incorrectly picked particles that these mor-
phology descriptors will remove can be seen in Fig. 1. Note that the
shape of the particles shown in Fig. 1(b) and (d) is very different
from the particle shape shown in Fig. 1(a). Therefore, in these
cases, the morphology descriptors will provide valuable informa-
tion to differentiate between these correctly and incorrectly se-
lected particles. In this work, we use two different sets of
morphology descriptors. The first one is based on an image nor-
malization process using the spiral phase transform (SPT) method
(Larkin et al., 2001) and Fourier filtering. The second one is derived
from the particle autocorrelation map, which is sensitive to the
particle shape, at the same time that it is shift invariant.
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The intensity of any image can be arbitrarily modeled without
lost of generality as

Iðx; yÞ ¼ Aðx; yÞ þ Bðx; yÞ cos½Uðx; yÞ� þ gðx; yÞ ð1Þ

where A ¼ Aðx; yÞ is the background signal, B ¼ Bðx; yÞ is the contrast
or amplitude term, g ¼ gðx; yÞ is the additive noise and U ¼ Uðx; yÞ
is a phase map that encodes the shape or morphology of the imaged
object. In SPA, the size of the boxed particles is usually small and,
therefore, we can assume the background signal to be approxi-
mately constant. From Expression (1) we may define ~I as

~I ¼ FT�1½H � FT½I�� ffi ~B cos½U� ð2Þ

with ~I ¼ ~Iðx; yÞ being the normalized and low-pass filtered image,
~B ¼ ~Bðx; yÞ the contrast or amplitude signal after the Fourier filter-
ing, FT½�� the Fourier Transform operator and H an isotropic low-
pass frequency filter defined as

HðRÞ ¼ exp½�R2=2r2� R–0
0 R ¼ 0

(
ð3Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þx2
y

q
, with xx and xy the normalized frequency

components in the Fourier space and r corresponding to the filter
standard deviation. Note that in our case, we are only interested in
the global shape of the particles and not in their high resolution de-
tails. Additionally, observe that only one particle is presented in each
correctly picked image. Therefore, we can perform a strong low-pass
filtering to detect the global shape of the particle with typical values
of r around 0.1 px�1. Finally, note from Eq. (2), that the background
suppressed and filtered particle ~I can be factorized in two terms. On
one hand, the contrast or amplitude term, ~B, that can be interpreted
as a quality map (Ströbel, 1996). On the other, the phase or shape
term, cos½U�, that gives information about the shape of the particle
(Kovesi, 1997, 2002). Note that the dynamic range of this term
(shape term) is limited to [�1, 1] in arbitrary units (a.u) and, there-
fore, this map is of great importance to detect and segment the par-
ticle shape. In order to clarify this point, in Fig. 2 we show a pattern
as given in Eq. (2) and its corresponding ~B and cos½U� terms. As can be
seen from Fig. 2(c), the phase term gives information about the pat-
tern shape, in this case a simple pattern of white squares on a black
background. In order to construct the amplitude and contrast maps,
we use the spiral phase transform (Larkin et al., 2001).

The spiral phase transform (SPT) mathematical operator corre-
sponds to (Larkin et al., 2001)

SPT½�� ¼ FT�1 xx þ ixyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þx2
y

q
0
B@

1
CAFT½��

2
64

3
75 ð4Þ

If we apply the SPT operator to the ~I signal given in Expression
(2), we obtain the quasi-quadrature respective signal of ~I (Larkin
et al., 2001), given by
Fig.2. Example pattern (a) and its correspon
SPT½~I� ¼ i exp½iD�~B sin½U� ð5Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

and D ¼ Dðx; yÞ is the direction phase map, that is
defined as the angle formed by the phase gradient with respect to
the x-axis and can be obtained as

D ¼ arctan
ryU
rxU

� �
ð6Þ

Note that U ¼ Uðx; yÞ is an unknown quantity and then, it is not
possible to obtain the direction map from Expression (6). Instead of
D, we can compute the orientation map as

h ¼ arctan
ry

~I

rx
~I

" #
¼ �D ð7Þ

Observe that h and D have the same magnitude but possible dif-
ferent local signs. We can rewrite Eq. (5) using Eq. (7) as

SPT½~I� ¼ i exp½�ih�~B sin½U� ð8Þ

Note that in Eq. (8) appears a sign ambiguity in h. We can obtain
the phase U from Eq. (2) and (8) as

U ¼ � arctan
�i exp½�ih�SPT½~I�

~I

" #
ð9Þ

Observe that Eq. (9) is affected also by the sign ambiguity prob-
lem. However, the phase or shape term, that corresponds to the co-
sine of this phase, is not affected by the sign ambiguity because the
cosine is an even mathematical function. The shape term is given,
therefore, by

cos½U� ¼ cos arctan½
�i exp �ih�SPT½~I

h i
~I

2
4

3
5� ð10Þ

The modulating signal ~B can be obtained as

~B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos arctan

�i exp½�ih�SPT½~I�
~I

" #" # !2

þ~I2

vuut ð11Þ

In order to obtain the first set of morphology descriptors, we
segment the global shape of the particle, binarizing and labeling
the shape term, cos½U� and capturing the region with largest area.
Note that the labeling is a morphological operation for identifying
each object in a binary image, which consists on marking each con-
nected components in a 2D binary image with different integer
numbers. Additionally, binarizing is performed directly by
cos½U� > 0. We fit an ellipse to the obtained binarized region and
we compute the morphology descriptors, which are (1) the Euclid-
ean distance between the region centroid and the image center, (2)
the major and (3) minor axis of a fitted ellipse and the (4) area of
this segmented region. These descriptors encode the information
ding amplitude (b) and phase (c) terms.
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about the shape of the detected object. Obviously, the shape of a
particle that overlaps with another particle, or of a projection of
a different biological object, will be very different in general.
Therefore, the fitted ellipse, as well as the other morphological
descriptors, will be very different also. In Fig. 3, we present an
example of this process showing the different obtained maps.
Fig. 3(a) shows a previously picked particle and the obtained shape
term (b). In Figs. 3(c) and (d) we show the computed binarized map
from the shape term and the corresponding labeled map. Finally,
Figs. 3(e) and (f) show the captured region with largest area and
the obtained morphology descriptors. From Fig. 3(f), we can see
that an incorrectly picked particle, with its shape significantly dif-
ferent from the one of a correctly picked one, will present morphol-
ogy descriptors notably different from those of the latter ones. This
case typically appears when two particles overlap, but also occurs
when the picking algorithm detect something that it is not a parti-
cle, or a projection of a different biological object. For each particle,
we compose a 4 � 1 vector ðvm1Þ formed by the morphology
descriptors presented before.

The other set of morphology descriptors used by our procedure
are acquired from the autocorrelation map of the different particle
images. Note that the autocorrelation depends on the particle
shape and, additionally, is shift invariant; therefore this map can
be used without problems in cases where the particle centroids
are not placed exactly in the image center. We then define this sec-
ond set of morphological descriptors as the radial average of each
particle along a number of equi-spaced radii. This number has typ-
ically a value of 100, but for very large or very small particles this
number must be modified. In this way, we obtain a 100 � 1 vector
ðvm2Þ:

2.2. Noise-based descriptors

Noise-based descriptors obtain image features that enable
discriminating between correctly picked particles and very noisy
Fig.3. Different processing steps required to compute the morphology descriptors based
the obtained shape term, (c) and (d) show the computed binarized map from the shape te
with largest area and the obtained morphology descriptors.
particles or images without particle corresponding to only noise
projections. In this work, we propose to use the eigenvalue distribu-
tion of the image covariance matrix as a noise-based descriptor. The
image of a particle affected by additive noise can be described by

I ¼ Ip þ In ð12Þ

where Ip and In are the particle image and a random matrix with
independent identically distributed entries with zero mean and var-
iance r, respectively. The covariance matrix is given as

C ¼ IT I ¼ ðIp þ InÞTðIp þ InÞ ð13Þ

Let start first with the case in which we have a very noisy image,
then Ip << In. In this case, we can consider that C ffi Cn ¼ IT

nIn and
the empirical eigenvalues distribution of C ffi Cn converges to a
non-random distribution function when N !1, with N the image
size, whose density is given by (Müller, 2004)

PCðkÞ ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffi
kmax�k
p

k ; k 2 ð0; kmaxÞ
0 elsewhere

(
ð14Þ

with

kmax ¼ 4r ð15Þ

and the eigenvalues are given by direct integration of PCðkÞ as

k ¼
Z x

0

1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax � x
p

x
; x < kmax ð16Þ

On the other hand, we can consider the case where the noise is
almost negligible. In this situation, we have that I ffi Ip and, there-
fore, C ffi Cp ¼ IT

pIp. The eigenvalues distribution of this image
covariance matrix is characterized by a small set of large eigen-
values that describes all the information contained in the image
and the rest of values equal to zero (Basu et al., 2010; Vargas
et al., 2013). Note that for a square image of size N � N; the number
of degrees of freedom corresponds to N2. However, for particle
on the phase term segmentation, where (a) shows a previously picked particle, (b) is
rm and the corresponding labeled map. Finally, (e) and (f) show the captured region
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images in particular, and natural pictures in general, the pixel val-
ues are not independent and can be correlated far away from their
location. Therefore, the number of actual degrees of freedom is
strongly reduced and all the information can be coded in a small
set of large eigenvalues. Finally, we must address the case where
Ip ffi In. In this situation the particle and noise images have similar
power and the eigenvalue distribution is dominated for small val-
ues of the eigenvalues by the noise term, while for large values by
the particle signal.

The actual eigenvalue distribution of C can be obtained by the
singular value decomposition (SVD) factorization algorithm. The
SVD algorithm consists in a unique factorization of a matrix of
the form,

C ¼ UDVT ð17Þ

where C is a real symmetric matrix, U and VT are orthogonal matri-
ces and D is a diagonal matrix. The entries of D are non-zero only on
the diagonal, and are known as the singular values of C. In our case,
these values are real and positive valued as C is a symmetric matrix.
Additionally, for symmetric matrices, eigenvalues and singular val-
ues are identical. Therefore, we can obtain the eigenvalues of C from
the diagonal of the D matrix computed by the SVD decomposition.
In Fig. 4, we show a particle projection (a), an only-noise image ex-
tracted from the same micrograph and with the same noise vari-
ance than the particle projection (b), and a plot of the respective
eigenvalues distribution, where the solid black line corresponds to
the particle projection while the dashed curve refers to the only
noise image (c). Observe that at low eigenvalue index, the eigen-
values of the particle projection and those of the only-noise image
are very similar. However, the eigenvalues are significantly differ-
ent for large eigenvalue index. We use this idea to define a noise-re-
lated descriptor, and we compose for each previously picked
particle a 20 � 1 vector ðvnÞ formed by the first twenty largest
eigenvalues in magnitude.
2.3. Histogram descriptors

Histogram descriptors obtain image features that enable dis-
crimination of incorrect particles affected by image artifacts caused
by ice variations, dust and contaminations, among other factors. To
this end, we calculate the histogram of the imaged particles and
measure the percentiles—i.e., the values of the intensity below
which a certain percent of observations fall—10%, 20%, 30%, 40%,
50%, 60%, 70%, 80 and 90%. With these percentiles, we compose a
9 � 1 vector ðvhÞ for each boxed out particle. In Fig. 5, we show a
Fig.4. Particle (a), only-noise image (b) and corresponding eigenvalue distribution (c), w
refers to the only noise image.
particle projection that can be considered good (a) and a particle
projection distorted by artifacts (b). Additionally, we also show
the respective image histograms. As can be seen from Fig. 5, the
histograms are significantly different.

2.4. Z-Score evaluation

Using the previously introduced descriptors, we may define a z-
score index that will be the base of our particle screening algorithm.
To obtain the z-score index for every particle, we firstobtain the aver-
age feature vectors, �vm1, �vm2, �vn and �vh, and we compute from them
the zero mean feature vectors, that for the ith element are given by

ð~vm1Þi ¼ ðvm1Þi � �vm1

ð~vm2Þi ¼ ðvm2Þi � �vm2

ð~vnÞi ¼ ðvnÞi � �vn

ð~vhÞi ¼ ðvhÞi � �vh

ð18Þ

We stack these zero mean feature vectors into four descriptor
matrices named morphology1, morphology2, noise and histogram
matrices, which have dimensions of 4 � Np, 100 � Np 20 � Np
and 9 � Np respectively, with Np the number of initially picked
particles. These matrices are given by

Mm1 ¼ ½ð~vm1Þ1; ð~vm1Þ2; :::; ð~vm1ÞNp
�

Mm2 ¼ ½ð~vm2Þ1; ð~vm2Þ2; :::; ð~vm2ÞNp
�

Mn ¼ ½ð~vnÞ1; ð~vnÞ2; :::; ð~vnÞNp
�

Mh ¼ ½ð~vhÞ1; ð~vhÞ2; :::; ð~vhÞNp
�

ð19Þ

where ð�Þi denotes the ith particle. For each matrix, we obtain a prin-
cipal component analysis (PCA) basis composed by two vectors. PCA
is a widely used dimensionality reduction technique in data analysis
(Gonzalez and Woods, 2007) that involves a mathematical proce-
dure, which transforms a number of possibly correlated vectors into
a smaller number of uncorrelated ones called the principal compo-
nents. We have used an efficient algorithm in terms of space and time
to retrieve the PCA basis from large collections of data, which is the
case we are interested in (Roweis, 1998). We project the different
zero mean feature vectors to their corresponding PCA basis and we
obtain, therefore, the vectors components in these PCA bases as

Pm1 ¼ ½ðpm1Þ1; ðpm1Þ2; :::; ðpm1ÞNp
�

Pm2 ¼ ½ðpm2Þ1; ðpm2Þ2; :::; ðpm2ÞNp
�

Pn ¼ ½ðpnÞ1; ðpnÞ2; :::; ðpnÞNp
�

Ph ¼ ½ðphÞ1; ðphÞ2; :::; ðphÞNp
�

ð20Þ
here the solid black line corresponds to the particle image while the dashed curve



Fig.5. Particle image (a), corresponding intensity histogram distribution (b), particle image affected by an artifact (c) and corresponding intensity histogram distribution (d).
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where ðpm1Þi, ðpm2Þi, ðpnÞi and ðphÞi are the projection of the ith par-
ticle zero-mean feature vectors into the PCA bases computed from
Mm1, Mm2, Mn and Mh, respectively. Note that the dimension of
the different projection vectors is the number of principal compo-
nents used, that in our case are two for every case. We can now ob-
tain a measure of similarity for the different particles using the
Mahalanobis distance (Filzmoser, 2005). For each of the projection
vectors, we compute the respective covariance matrices for the ith
particle as, ðCkÞi ¼ ðpkÞiðpkÞ

T
i ; k ¼ fm1;m2;n; hg and, we estimate

the covariance matrix of each of the projection sets as

~Cm1 ¼ ð1=NpÞ
XNp

i¼1

ðCm1Þi

~Cm2 ¼ ð1=NpÞ
XNp

i¼1

ðCm2Þi

~Cn ¼ ð1=NpÞ
XNp

i¼1

ðCnÞi

~Ch ¼ ð1=NpÞ
XNp

i¼1

ðChÞi

ð21Þ
Finally, the different particle Mahalanobis distances, which are
interpreted as an error index or z-score, are given by

ðZm1Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm1Þ

T
i
~C�1

m1ðpm1Þi
q

ðZm2Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm2Þ

T
i
~C�1

m2ðpm2Þi
q

ðZnÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpnÞ

T
i
~C�1

n ðpnÞi
q

ðZhÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðphÞ

T
i
~C�1

h ðphÞi
q

ð22Þ

Finally, we can combine these distances in a unique z-score taking
their infinity norm as

ðZÞi ¼ kðZm1Þi; ðZm2Þi; ðZnÞi; ðZhÞik1 ð23Þ

If the original projections ðpÞ are normally distributed, then the
square of the Mahalanobis distance approximately follow a v2 dis-
tribution with degrees of freedom equal to the dimension of the
projection vectors (Krzanowski, 2000), which is two in our case.
Therefore, we can consider that an outlier has a z-score of
ðZÞi P 3 (if the data is normally distributed, then only 1.1% of the
population is identified as outlier).
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2.5. Particle screening

Based on the z-score index introduced before, we propose a par-
ticle screening approach. The particle screening process, that con-
sists of separating the correct particles (true positives) from the
false ones (false positives or outliers), can be done in a fully auto-
matic, semi-supervised or in an iterative way.

2.5.1. Automatic
The fully automatic process consists in selecting a cut-off or

threshold value and to reject any particle having a z-score larger
than this quantity. Usually, it is recommended to select a threshold
value about 3 that, as explained before, means that we consider
that an outlier has a probability associated with its Mahalanobis
distance of 0.01 or less, assuming that the projections are normally
distributed. Note that in this mode there is no user iteration during
the screening procedure allowing for high-throughput processing.
However, the main drawback of this method is that some correctly
picked particles may also be rejected (false negatives).

2.5.2. Semi-supervised
In this case, a cut-off or threshold value, typically of 2.5 or low-

er, is selected and all the particles having a z-score larger than this
quantity are first disabled. However, these initially disabled parti-
cles are presented to the user in order to be supervised. Therefore,
particles that have been erroneously rejected can be enabled again.
In order to help the user in this process, we have developed a
friendly graphical interface in Xmipp, in which the different parti-
cles are sorted according to their z-score value. Therefore, the user
only has to evaluate the last particles, with largest z-score, that
have been initially disabled. Note that the main advantage of this
procedure is that the user only has to screen a very reduced num-
ber of particles and not the whole dataset. This limited supervising
process makes this task less cumbersome and time consuming and,
at the same time, reduces the probability of performing mistakes in
the manual screening process. In Fig. 6 we show two different GUIs
used in Xmipp to perform the screening process. In Fig. 6(a) we
show a gallery of particles used in the semi-supervised particle
screening process. In this example, the dataset is composed of
231 previously picked particles and the user only has to verify
the validity of the last 24, that are marked in Fig. 6 with a red cross.
Additionally, in Fig. 6(b) we show another GUI to perform the
screening process where the micrographs with the detected parti-
cles are presented. Note that the box around the particles is shown
with different colors according to their z-score value. The particles
with highest z-scores, which are marked with red color squares,
can be disabled directly using this graphical tool.

2.5.3. Iterative
We let the users run an additional processing option that can be

used in an automatic or semi-supervised way. In both cases (auto-
matic or semi-supervised) the particle screening process runs iter-
atively, being the output of eachiteration (cured particles), the
input of the next one. This process is repeated until there is no
any particle with a z-score larger than the selected cut-off or
threshold. This procedure has a statistical advantage since, in each
iteration, the covariance matrix needed by PCA is less affected by
outliers. Indeed, this approach is at the core of many robust statis-
tical procedures.
3. Results

We have used the data available at the 3DEM Benchmark site
(http://i2pc.cnb.csic.es/3dembencmark), that provides a robust
computational infrastructure designed to support developers in
the benchmarking process of their algorithms. Two different data-
sets are available in the web site for downloading and processing.
One corresponds to the classical Keyhole Limpet Hemocyanin
(KLH) particles, while the second one is new, internally acquired,
and corresponds to micrographs of Human adenovirus type 2
(Ad2 ts1) samples. The accuracy assessment is performed automat-
ically by the website, comparing the developer reported particles
coordinates with respect to ground-truth coordinates, which have
been previously picked up manually. This comparison is made in
terms of some figures of merit that are precision, recall and F-mea-
sure rates (Langlois and Frank, 2011) that are given by

P ¼ TP
TPþFP

R ¼ TP
FNþTP

F ¼ 2 P�R
PþR

ð24Þ

where, TP, FN, FP, P, R, and F mean true positive, false negative, false
positive, precision rate, recall rate and F-measure respectively. The
precision rate establishes the probability of detecting true positive
particles with respect to the total number of picked particles (true
and false) by the particle picking algorithm. The recall rate deter-
mines the probability of detecting true particles with respect to
the total number of good particles presented in the micrographs. Fi-
nally, the F-measure is a harmonic mean that accounts for both the
precision and recall rates.

3.1. Keyhole Limpet Hemocyanin particles (KLH)

The first set of micrographs is comprised by cryo images of Key-
hole Limpet Hemocyanin particles (KLH) recorded on a charge-cou-
pled device (CCD) at 120 kV (Zhu et al., 2003). This dataset was
used in the particle selection bakeoff (Zhu et al., 2004) and is com-
posed by approximately 1000 particles that were manually se-
lected by Mouche (one of the participants), composing the
reference set. In this work, we have used the same reference set
as ground truth to obtain our results (figures of merit). Our pro-
posed particle sorting approach operates on a set of particles pre-
viously picked by any automatic or manual procedure. For the sake
of simplicity, in this work we have used the output of the Xmipp
picking particle approach (Abrishami et al., 2013), which is one
of the currently best performing methods. We consider two situa-
tions. In the first case, the previous particle picking algorithm
(Abrishami et al., 2013) is run under conditions in which the pick-
ing of particles is very restrictive, detecting a small number of par-
ticles (747) and acquiring a large number of false negatives while a
small number of false positives. In the second situation, the picking
algorithm obtains a large number of particles (1219), with a small
number of false negatives while a large number of false positives.
In both cases, the number of particles is too small for any practical
structural studies, but this reduced size allows performing detailed
comparisons with manual procedures (Zhu et al., 2004). The size of
each picked image is always of 250 � 250 px. The proposed particle
sorting approach is now used on these two sets of the KLH data.

3.1.1. First case
In the first case, we have 747 previously picked particles, as ex-

plained before. In Fig. 7 we show the obtained figures of merit for
different z-scores thresholds, where red, blue and black lines corre-
spond to the precision, recall and F-measure rates, respectively.
The green lines are the percentage of particles taken into account
(not disabled) in the automatic case (Fig. 7(a) and (d)), and the per-
centage of particles supervised in the semi-supervised case
(Fig. 7(c) and (f)). Additionally, in Fig. 7 we show colored bands
that correspond to confidence bands. These bands are generated
obtaining, on one hand, the different figures of merit from the par-
ticle picking algorithm without any particle screening process, and

http://i2pc.cnb.csic.es/3dembencmark


Fig.6. Graphical user interfaces used in Xmipp to perform the screening process using a z-score threshold. Gallery of images with initially discarded particles marked with a
red cross (a). Color representation of the z-score assigned to each particle in a processed micrograph (b). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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on the other hand, supervising manually every particle in the data-
set after the particle picking task (fully-supervised). We have rep-
resented the precision and recall confident bands with red and blue
colors. On the other hand, the F-measure confidence band is de-
fined by the region between the two dashed black lines. When
we supervise manually every particle (fully-supervised) we obtain
precision, recall and F-measure rates of 92.56%, 49.77% and 64.73%,
respectively. On the other hand, the results obtained from the par-
ticle picking task without any screening process correspond to pre-
cision, recall and F-measure of 84.70%, 51.70% and 64.21%,
respectively. Note that these bands are the same in all the plots
of Fig. 7.



Fig.7. Figures of merit where red, blue and black lines correspond to the precision, recall and F-measure rates, respectively, and obtained in the first case of the KLH dataset.
The precision and recall confident bands appear with red and blue colors. Additionally, the F-measure confidence band is defined by the region between the two dashed black
lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In the automatic case (Fig. 7(a)), we see that when a small z-
score threshold of 2 is used, we obtain a precision rate close to
the fully-supervised case that corresponds to 91.02% and we dis-
able the 23.96% of the particles. Observe that in this situation,
the recall value is low (42.07%) compared with the fully-supervised
result (49.77%) because a large number of true positive particles
are also discarded. On the other hand, in this case, for large z-
scores the obtained figures of merit tend to the results obtained
by the particle picking algorithm without screening process. The
plots corresponding to the recall and F-measure are approximately
planar for z-scores larger than 3. Observe that for a z-score thresh-
old equals to 3, we obtain good results with a precision, recall and
F-measure of 88.54%, 50.37% and 64.21%, respectively. Addition-
ally, 93.30% of the particles are not disabled in this case.

In case of using a semi-supervised screening process (Fig. 7(b)),
we have similar results for the precision than in the automatic
case, but the recall is significantly increased and, therefore, also
the F-measure. Observe that in this situation and for z-scores equal
to 2 and 3, we obtain a precision, recall and F-measure of 90.68%,
51.55% and 65.70% and 88.35%, 51.70% and 65.23%, while the num-
ber of particles to be supervised is of 23.8% and 6.5% of the total
(747), respectively. Note that with z-score thresholds of 2.0 and
3.0, and supervising the 23.8% and 14.19% of the particles, we ob-
tain almost the same results than when we supervise every particle
in the dataset. Additionally, observe that in both cases, the F-mea-
sure result is better that the one obtained when every particle of
the dataset is manually supervised (fully-supervised).

Finally, we have also used the iterative processing option (auto-
matic and semi-supervised) and we present the results in Fig. 7(d)
and (e). Observe that, for the iterative case, we obtain similar re-
sults than in the automatic and supervised (Fig. 7(a) and (b)).
The processing time required to perform the sorting and screening
process in this dataset is of 56 s using a 2.4 GHz laptop in all of the
cases presented before.

3.1.2. Second case
In the second experiment of this dataset, we previously picked

1219 particles using the same picking particle approach (Abrish-
ami et al., 2013) than in the case before. As explained before, in this
case, the particle picking algorithm obtains a small number of false
negatives while a large number of false positives. The results ob-
tained by the particle picking process without any particle screen-
ing are 70.27%, 84.75% and 76.83% for precision, recall and F-
measure, respectively. Additionally, the results obtained when
we supervise manually all the particles are 80.82%, 81.18% and
81%, respectively. In Fig. 8, we show the results of the proposed
method for the automatic (a) and supervised (b) cases. Note that,
as before, we have represented the precision and recall confident
bands with red and blue colors, and the F-measure confident band
is defined by the region between the two dashed black lines.



J. Vargas et al. / Journal of Structural Biology 183 (2013) 342–353 351
As can be seen from Fig. 8(a), in the automatic case, we obtain a
precision rate close to the fully-supervised case (80.82%) when we
use small z-score thresholds. However, the recall values are low
because we also disabled a large number of true positive particles.
Observe, that the figures of merit tend to the results obtained by
the particle picking without screening process and the plots corre-
sponding to the recall and F-measure are approximately planar for
z-scores larger than 3, as in the case presented before. The results
obtained for z-scores of 2 and 3 are 80.30%, 62.96%, 70.48% and
74.80%, 80.89% and 77.72% for the precision, recall and F-measure,
respectively. The number of particles disabled for these z-scores
are 33.60% and 7.90%.

In Fig. 8(b) we show the results obtained for the semi-super-
vised case. Observe that for z-scores of 2.0 and 3.0 we obtain
80.51%, 83.25%, 81.86% and 76.73%, 83.55% and 80.0% for precision,
recall and F-measure respectively. In Fig. 8(c) we show the percent-
age of particles that has to be manually supervised. As can be seen
from Fig. 8(c), the percentage of particles to be supervised for z-
scores of 2.0 and 3.0 is of 24% and 9.8% respectively. Therefore,
supervising only a small particle set, we obtain similar results than
when we supervise every particle of the dataset (fully-supervised).
Note that we do not show the results of the iterative processing be-
cause they are similar to the automatic and supervised cases. The
required processing time for this dataset is of 48 s using the same
machine than in the case before.

3.2. Human adenovirus type 2 (Ad2 ts1)

We have also checked our proposed method with another data-
set acquired in our laboratory from a Human adenovirus type 2
(Ad2 ts1) samples, examined in a FEI Tecnai G2 FEG microscope
operating at 200 kV and recorded on a Kodak SO-163 film under
low dose conditions at a nominal magnification of 50,000� and
digitized in a Zeiss Photoscan TD scanner using a step size of
7 lm (1.4 Å in the sample) (Pérez-Berná et al., 2009). One person
has previously selected the particles manually, composing the ref-
erence or ground-truth set that is going to be used to obtain our re-
sults (figures of merit). The obtained particles have dimensions of
Fig.8. Figures of merit, where red, blue and black lines correspond to the precision, rec
dataset. Green lines are the percentage of particles taken into account (enabled) in the a
iterative case (b). Precision and recall confidence bands are represented with red and blu
dashed black lines. (For interpretation of the references to colour in this figure legend, t
600 � 600 px and the dataset is composed of thirty micrographs.
We have performed a fully manual screening process (fully-super-
vised) of this dataset by two different people. The results obtained
by the first person after the fully-supervised process are 87.93%,
84.26% and 86.06% for the precision, recall and F-measure, respec-
tively, and the total number of not disabled particles is of 1492. On
the other hand, the results obtained by the second person are
88.19%, 83.94% and 86.01%, with a number of not disabled particles
of 1483. From these values, we compute the fully-supervised re-
sults by the mean of these values that correspond to 88.06%,
84.10% and 86.03%, respectively. As before, we have used the
Xmipp particle picking method (Abrishami et al., 2013) to deter-
mine particle locations. We have used conditions in which the out-
put of the Xmipp particle picking method—input dataset of our
post-picking sorting approach—is expected to have a relatively
large number of false positives while a small number of false neg-
atives (these conditions correspond simply to using a small train-
ing set of seventy particles from three micrographs). The results
obtained from the particle picking task, without any screening pro-
cess, correspond to precision, recall and F-measure of 77.38%,
85.48% and 81.23%, respectively, and the total number of detected
particles is of 1720. In Fig. 9 we show the results obtained by our
proposed method using the automatic (a) and semi-supervised
(b) methods. Additionally, in Fig. 9(c) we show the percentage of
particles that have to be manually screened by the semi-super-
vised approach.

As can be seen from Fig. 9(a), in the automatic case, we obtain
a precision rate larger than the one achieved in the fully-super-
vised case when we use small z-scores, that are 88.47% and
88.07% for z-scores thresholds of 1.8 and 1.9 respectively. The re-
call values for these z-scores are 78.42% and 79.70% that still are
very good results. Additionally, note that for a z-value of 2.4 we
obtain a local maximum in the F-measure curve that corresponds
to 84.97% that is very similar to the result of the fully-supervised
case (86.03%). Finally, observe that the different curves are
approximately planar for z-scores larger than 6 and converge to
the results obtained from the particle picking task without any
screening process.
all and F-measure rates, respectively, and obtained in the second case of the KLH
utomatic case (a) and the percentage of particles supervised in the semi-supervised
e colors. The F-measure confidence band is defined by the region between the two
he reader is referred to the web version of this article.)



Fig.9. Figures of merit, where red, blue and black lines correspond to the precision, recall and F-measure rates, respectively and obtained in the second case of the Human
adenovirus type 2 samples. Green lines are the percentage of particles taken into account (enabled) in the automatic case (a) and the percentage of particles supervised in the
semi-supervised iterative case (b). Precision and recall confidence bands are represented with red and blue colors. The F-measure confidence band is defined by the region
between the two dashed black lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The results of the semi-supervised case (Fig. 9(b)) show that the
precision curve is very similar to the automatic one, but the recall
is approximately planar with values very similar to the one ob-
tained in the fully-supervised case. This causes the F-measure to
be a monotonically decreasing curve. Observe that the F-measure
values for z-scores smaller than 3 are very similar to the one ob-
tained after the fully-supervised screening process. In Fig. 9 (c)
we show the percentage of particles that are needed to be manu-
ally supervised. As can be seen from Fig. 9 (c), for low z-score val-
ues inside the range ½1:8; 2:2� this percentage is defined between
19% and 14%, which corresponds to 232 and 171 particles to be
supervised manually taking into account that the number of parti-
cles is of 1219. The number of particles disabled for these z-scores
are 33.60% and 7.90%. The results obtained for a z-score threshold
of 3 are 82.3, 85.0 and 83.6% for the precision, recall and F-measure
respectively, which are very good results compared with the ones
obtained by the particle picking task, without any screening pro-
cess. In this case, the number of particles to be supervised is of
7.96%. Finally, the processing time required to compute this data-
set composed by 1219 particles with size of 600 � 600 px corre-
sponds to 9 min using a 2.4 GHz laptop.
4. Discussion and conclusions

In this work, we have presented a novel and fast post picking
particle quality assessment and sorting method that can be used
to recognize and discriminate erroneously picked particles from
correctly picked ones. The input of our algorithm is a list of de-
tected particles by any particle picking approach. The algorithm
is based on three different hypotheses: (1) the majority of input
particles have a low resolution ‘‘common shape’’ so that those in-
put images that do not conform with this ‘‘common shape’’ can
be labeled as incorrectly picked particles, (2) ‘‘good particles’’ have
statistical properties not similar to the noise presented in the
micrograph, (3) the histogram of gray levels is also similar for cor-
rectly picked particles. The proposed method is based on defining
different sets ofparticle descriptors, which are morphology-based,
histogram-based and noise-based. All of these descriptors are shift
and rotational invariant. The proposed approach is very user
friendly and intuitive, since for the calculation of the z-score of
each particle, the user does not need to specify any parameter,
being the process totally automatic. Furthermore, we have studied
the statistical distribution of our z-score, reaching the conclusion
that under a set of simple hypothesis a z-score of 3 (or around 3)
may be used as a good automatic threshold, and then, the method
can be used in a fully automatic manner from the initial input of
particles. We have shown in the results section that the selection
of a z-score threshold of 3 have provided good results in different
cases. Attending to this z-score value we can reject incorrect de-
tected particles using fully-automatic, semi-supervised or iterative
approaches. We have tested our proposed approach using two
datasets composed by micrographs of Keyhole Limpet Hemocyanin
(KLH) particles and of Human adenovirus type 2 (Ad2 ts1) samples
in different situations. In order to validate our results, we have
used the 3DEM Benchmark site (http://i2pc.cnb.csic.es/3dembenc-
mark), that provides a robust computational infrastructure capable
of supporting automatic benchmarking of the particle picking task,
among others. Results obtained by our method have been com-
pared with the ones computed after a fully-supervised process
and without any screening procedure. These results show that after
our proposed automatic curation process, the obtained precision
rate is close to the one retrieved after a fully-supervised case when
using low z-scores. However, the recall rate is low in this situation.
Consequently, this curation process is especially well suited for
cases where we have available a large set of particles and it is
not problematic to lose a small percentage of correct ones. Note
that this percentage is usually around 10%. In cases where we have
obtained a small set of particles and we need to use all the avail-
able correct particles, it is better to use our proposed semi-super-
vised approach. Note that in Xmipp we have developed friendly
graphical user interfaces to perform this supervision procedure.
In this work, the presented results after performing the proposed
semi-supervised approach show that the obtained precision for
different z-score values is approximately similar to the one in the
automatic case. However, the recall results are similar to the one
obtained from the particle picking process, without any a posteri-
ori screening process, which is the best one. Note that the percent-
age of particles that has to be supervised is around 10–20% for z-
scores between 2 and 3. This limited supervising process makes

http://i2pc.cnb.csic.es/3dembencmark
http://i2pc.cnb.csic.es/3dembencmark
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this task less awkward and time consuming and, at the same time,
reduces the probability of performing mistakes in the manual
screening process.
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