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Abstract In this work, we present suitable phase accu-

racy indicators, which are obtained from the first three

obtained eigenvalues of the principal component analysis

(PCA) demodulation algorithm. These indicators can be

used in the measuring process to determine a blind phase

goodness assessment, without the need of using any ground

truth phase information. Therefore, it is possible to perform

further actions if required, as obtaining more interfero-

grams or repeat the measure. Additionally, we present

simulated and experimental results that support our math-

ematical analysis and conclusions. A complete MATLAB

software package reproducing any result and figure shown

in this work is provided in (http://goo.gl/fy5EC).

1 Introduction

Optical metrology may use optical interferometers [1] to

measure with high accuracy a wide range of physical

quantities as depth, strain analysis, temperature gradients

and surface deformation. These physical quantities are

determined studying the wavefront deformation when a

beam of light passes through, or reflects in the sample of

interest. Among wavefront reconstruction techniques based

on automated interferogram analysis methods, temporal

phase-shifting interferometry (TPI) is accepted as the most

precise and accurate one [1]. TPI is an optical metrology

technique for measuring the modulating phase of interfer-

ograms, using a controlled phase change or piston term

between successive interferograms [1]. Other phase-

shifting algorithms allow the determination of the modu-

lating phase without the need of any prior knowledge about

phase-shifts (asynchronous detection) [2, 3]. These asyn-

chronous methodologies [2, 3] are usually iterative and

require an initial guess to start the minimization process,

typically by a least-squares minimization. As these meth-

ods are based on a minimization process, they require high

computational load and processing time. Additionally,

these methods require the background and contrast terms to

be approximately spatially constant, and the number of

interferograms has to be high enough to assure the solution

convergence toward the global minimum, independently of

the starting guess used.

Recently, a new asynchronous phase-shifting demodu-

lation method based on the principal component analysis

(PCA) algorithm, that can extract the phase distribution

from unknown randomly phase-shifted interferograms, has

been proposed [4, 5]. Different variants and applications

have appeared since its publication [6–12]. The PCA

demodulation approach is very fast—approximately two

orders of magnitude faster than the advanced iterative

algorithm (AIA) [2]—as it is not iterative, and it does not

require performing a nonlinear optimization. Additionally,

the PCA method does not need the background illumina-

tion and contrast to be spatially constant.

The different proposed phase-shifting demodulation

algorithms (synchronous or asynchronous) cannot deter-

mine the accuracy of the obtained phase without the use of

a reference or ground truth phase. Therefore, in practical

experiments, we typically do not know how accurate our

determined phase is. Note that this is an important issue as

the experimental determination of the modulating phase is

always affected by external disturbances. On one hand,

synchronous methodologies, which acquire the interfero-

grams with known phase-shifts between successive
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interferograms [1], can present a detuning error in the

obtained phase [13, 14]. This is because the ‘‘known’’

phase-shifts may have some mismatch with respect to the

actual ones, caused typically by the phase-shifter. On the

other hand, asynchronous methods usually require phase-

shifts to be well distributed in the [0, 2p] (rad) range. If

phase-shifts are randomly distributed in the [0, 2p] range,

typically it will be necessary to use a large number of

interferograms to meet this requirement. The problem here

is the lack of quantitative information about the required

number of interferograms to obtain an accurate phase

measure. Note that in some cases, with appropriate phase-

shifts, five interferograms are sufficient. However, in other

cases, it is required to use a much larger interferogram set.

Additionally, the modulating phase obtained by any syn-

chronous or asynchronous approach is always affected by

the presence of noise in the acquired interferograms and by

other external disturbances. Therefore, quantitative infor-

mation about the accuracy of the retrieved phase is of great

importance in practical applications. Note that if the

obtained phase accuracy indicator is not acceptable, it is

possible to further define automated actions as repeating

the measure or acquiring additional interferograms.

In this work, we present a deep mathematical error

analysis of the principal component analysis (PCA)

demodulation algorithm [4, 5]. This analysis allows us to

define suitable phase accuracy indicators for the PCA

demodulation algorithm and a retrieved phase goodness

criterion. These indicators can be used in practical appli-

cations to determine a blind estimate of the phase good-

ness, without the need of using any ground truth phase

information, and to perform further actions if required.

In Sect. 2, we present the error analysis of the PCA

method and we define the phase accuracy indicators and a

phase goodness criterion. Section 3 includes some simu-

lations and in Sect. 4, we show the experimental results.

Finally, in Sect. 5, conclusions are drawn.

2 Theoretical foundations

In phase-shifting interferometry, an interferogram

sequence of N samples can be described using the fol-

lowing expression

In ¼ aþ b cos Uþ dn½ � þ gn n ¼ 1;N½ � ð1Þ

where In x; yð Þ is the nth phase-shifted interferogram, with

size Nx 9 Ny, a = a(x, y) is the background component,

b = b(x, y) is the modulation or contrast term, U = U(x,

y) is the modulating phase map, dn are the phase-steps, that

in our case can be randomly distributed in the [0, 2p] (rad)

range, and gn = gn(x, y) is the noise term that usually has a

Gaussian distribution with zero mean. Note that the spatial

dependence has been omitted for the sake of clarity.

Expression (1) can be rewritten as

In ¼ aþ b cos U½ � cos dn½ � � sin dn½ � sin U½ �ð Þ þ gn: ð2Þ

From Eq. (2) and grouping terms, we obtain

In ¼ aþ a1nIc þ a2nIs þ gn ð3Þ

where a1n = cos [dn], a2n = -sin [dn] and Ic = b cos [U],

Is = b sin [U] correspond to the quadrature signals with

size Nx 9 Ny. From the set of phase-shifted interferograms,

the background can be estimated by a temporal average as

a ffi
XN

n¼1

In

,
N ð4Þ

and we may define the background free interferogram as

~In ¼ In � a ¼ a1nI1 þ a2nI2 þ gn ð5Þ

Expression (5) shows that a background filtered interferogram

set can be expressed as a linear combination of two signals and

a noise term. Using Eq. (5), we can express the whole set of

measurements as

~I ¼ QKþ N ð6Þ

with

K ¼ a1; a2½ �T ð7Þ

and

Q ¼ q1; q2½ � ð8Þ

where N is the noise matrix of size NxNy 9 N, where the

nth column is taken columnwise from gn; K is a

2 9 N matrix, where a1 and a2 are column vectors of size

N 9 1 and [�]T denotes the transposing operation. Note that

the nth element of a1 and a2 corresponds to a1n and a2n,

respectively. Q is a matrix of size NxNy 9 2 formed by the

quadrature components, q1 and q2, that are column vectors

with size NxNy whose elements are taken columnwise from

Ic and Is respectively. Finally, ~I is a matrix with size

NxNy 9 N where the nth column is taken columnwise from
~In.

The covariance matrix C of ~I is given by C ¼ ~IT ~I and

using Eq. (6) corresponds to

C ¼ KTQT QKþ KT QT N þ NT QKþ NT N ð9Þ

Observe that matrices KT QT
� �

N and NT QKð Þ are

significantly smaller than KT QT QK and NTN in a

Frobenius norm sense as they correspond to the product of

two uncorrelated matrices. Therefore, we can approximate

Eq. (9) as

C ffi KTQT QKþ NT N ð10Þ

Observe that KKT corresponds to
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KKT ¼ a1k k2 a1; a2h i
a1; a2h i a2k k2

� �
ð11Þ

with �k k and �; �h i the norm and inner product operators

given by a1k k2¼
PN

n¼1 cos2 dnð Þ, a2k k2¼
PN

n¼1 sin2 dnð Þ
and a1; a2h i ¼

PN
n¼1 cos dnð Þ sin dnð Þ. In general, the two

columns of K are not orthogonal and KKT is not diagonal.

Note that because KKT is a real and symmetric matrix, it

can always be diagonalized as KKT ¼ PT
KDKPK, where DK

and PK are 2 9 2 diagonal and orthogonal matrices,

respectively. We can transform K and generate a new

matrix K̂ that verifies K̂K̂T ¼ I as

K̂ ¼ D
�1=2
K PKK: ð12Þ

The diagonal elements of DK are real and can be

analytically calculated to be

k� ¼
a1k k2þ a2k k2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1k k2� a2k k2

� �2

þ4 a1; a2h i2
r

2

ð13Þ

with

DK ¼
kþ 0

0 k�

� �
ð14Þ

and PK is given by

PK ¼

kþ� a1k k2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1;a2h i2þ kþ� a1k k2ð Þ2

q a1;a2h iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1;a2h i2þ k�� a2k k2ð Þ2

q

a1;a2h iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1;a2h i2þ kþ� a1k k2ð Þ2

q k�� a2k k2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1;a2h i2þ k�� a2k k2ð Þ2

q

0

BBBB@

1

CCCCA

ð15Þ

Observe that if the phase-sifts dn are equally distributed in

the [0, 2p] (rad) range, KKT is diagonal as a1k k2¼ a2k k2

and a1; a2h i ¼ 0. In this case, DK is diagonal and PK is the

2 9 2 identity matrix.

Additionally, QT Q corresponds to

QTQ ¼ q1k k2
q1; q2h i

q2; q1h i q2k k2

� �

¼
X

x;y

cos2 Uð Þ cos Uð Þ sin Uð Þ
sin Uð Þ cos Uð Þ sin2 Uð Þ

� �
ð16Þ

If there is more than one fringe in the resultant

interferograms, we can approximate QT Q as

QTQ ¼ DQ ffi j
1 0

0 1

� �
ð17Þ

with j ¼
P

x;y cos2 Uð Þ ffi
P

x;y sin2 Uð Þ. Using Eqs. (10),

(12) and (17), we have

C ffi K̂TD
1=2
K PKDQPT

KD
1=2
K K̂þ NT N ð18Þ

Note that as DQ is approximately diagonal, with its

diagonal elements almost equal to each other, it

commutes with any matrix. Taking into account that PK

verifies that PT
KPK ¼ PKPT

K ¼ I, as it is an orthogonal

matrix, we can rewrite Eq. (18) as

C ffi K̂T DKDQ þ DNð ÞK̂ ð19Þ

where we have taken into account that NTN ffi DN , with DN

a diagonal N 9 N matrix with all its diagonal elements

approximately equal, and equal to the noise variance.

Observe that in Eq. (18), we have increased the dimensions

of DKDQ from 2 9 2 to N 9 N adding zeros. Therefore,

DKDQ only has values different than zero in the first and

second diagonal elements. Additionally, we have also

increased the dimensions of K̂ from 2� N to N 9 N

adding conveniently orthonormal rows with respect to the

first and second row of K̂. Taking into account that

C ¼ ~IT ~I, and using Eqs. (10) and (12), we obtain the

relationship between the background subtracted intensity

matrix, ~I, and the quadrature components in presence of

noise as

~I ffi Q PT
KD

1=2
K K̂

� �
þ N ¼ QPT

K

� �
D

1=2
K K̂þ N ð20Þ

PCA is a technique from statistics for reducing an image

or dataset that transforms a number of possibly correlated

images into the smallest number of uncorrelated images

called the principal components. PCA is based on the

search of orthogonal directions explaining as much

variability of the data as possible. The first step of the

PCA demodulation algorithm [4–6] consists of obtaining

the covariance matrix C of the background subtracted

dataset, as C ¼ ~IT ~I. Note that because C is real and

symmetric, it is always possible to diagonalize this matrix

as

C ¼ AT DA ð21Þ

where A and D are orthogonal and diagonal matrices,

respectively, both with size N 9 N (it is assumed that the

eigenvalues in D are sorted in descendent order). Observe

that this factorization is unique if all eigenvalues are

distinct. If the multiplicity of any of the eigenvalues is

larger than one, then the factorization is unique up to a

permutation of the corresponding columns of A. The

principal components of the interferogram set, which

correspond to images containing the highest variance in

the data, are given by

Y ¼ ~IAT

~I ¼ YA
ð22Þ
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where Y is a matrix of size NxNy 9 N and its column vectors

(principal components) yn are orthogonal and uncorrelated.

The principal component analysis demodulation approach

[4–6] reconstructs the modulating phase from the first and

second principal components (y1 and y2), that corresponds to

the highest eigenvalues, as

U ¼ arctan Is=Icð Þ ¼ � arctan y2=y1ð Þ ð23Þ

Note that the PCA demodulation algorithm also obtains the

diagonal D matrix that contains the different eigenvalues.

Taking into account that the matrix factorizations shown in

Eqs. (19) and (21) are unique up to possible interchanges in

some columns of A and K̂, we can state that A and

D correspond to K̂T and DKDQ þ DN respectively, up to

possible interchanges in some columns. Additionally, from

Eqs. (20) and (22), we have that the first two principal

components are related to the actual quadrature

components as

yi ¼ ~IK̂T ¼ QPT
K

� �
D

1=2
K þ NK̂T

� �

i
; i ¼ 1; 2

yi ¼ NK̂T
� �

i
; i 2 3;N½ �

ð24Þ

where �ð Þi refers to the ith column. Observe that PT
K is in

general an unknown 2 9 2 orthogonal matrix, if we have

no information about phase-shifts and its only effect is an

unknown phase-shift, or piston term, of h rad in the

obtained modulating phase, which is irrelevant. We can

mathematically show this point performing the following

transformation to Q

Q̂ ¼ QPT
K ð25Þ

In the following, we make use of the fact that PT
K is a 2 9 2

orthogonal matrix and, consequently, it can be written as

PT
K ¼

cos h sin h
� sin h cos h

� �
. After this transformation,

Eq. (24) is rewritten as

yi ¼ ~IK̂T ¼ Q̂D
1=2
K þ NK̂T

� �

i
; i ¼ 1; 2 ð26Þ

The first and second columns of Q, that corresponds to

q1 ¼ b cos Uð Þ and q2 ¼ b sin Uð Þ, after the rotation

corresponds to q̂1 ¼ cos hð Þq1 þ sin hð Þq2 ¼ b cos Uþ hð Þ
and q̂2 ¼ cos hð Þq1 � sin hð Þq2 ¼ b sin Uþ hð Þ. Therefore,

the only effect of PT
K is an unknown phase-shift of h rad in

the modulating phase U and, without loss of generality, we

can assume that h = 0 rad and PT
K corresponds to the

2 9 2 identity matrix. If we suppose that the noise is

smaller than the signal, we can write from Eqs. (23) and

(24)

U ¼ arctan
q1k

1=2
þ þ NK̂T

� �
1

q2k
1=2
� þ NK̂T

� �
2

 !
ffi arctan a

q1

q2

� �
ð27Þ

with a ¼ kþ=k�ð Þ1=2
. Observe from Eq. (27) that we will

obtain only an accurate phase reconstruction, using the

PCA demodulation algorithm, with at least one fringe in

the interferograms, if a % 1 and the noise term is smaller

than the signal term. This provides us with a method to

quantify the obtained error by the PCA demodulation

method. Using Eqs. (19) and (21), we have that the

eigenvalues computed by the PCA demodulation method

corresponds to D ¼ DKDQ þ DN . Taking into account that

DN is approximately a diagonal N 9 N matrix, with all its

diagonal elements equal to r2, we have that the eigenvalues

given by the PCA demodulation method have the following

mathematical expression,

D11 ¼ jkþ þ r2

D22 ¼ jk� þ r2

Dii ¼ r2 i 2 3; n½ �
ð28Þ

Using Eq. (28), we can define two-phase accuracy

indicators. One of these indicators cps

� �
takes into

account possible phase errors because the phase-shifts are

not well distributed in the [0, 2p] (rad) range and then, i.e.,

we do not have that a % 1 in Eq. (27). The other indicator

(cn) takes into account phase reconstruction errors because

the presence of noise in the interferograms. These

indicators are obtained from the first three eigenvalues by

cps ¼
D11=D22ð Þ � 1

10

� �

cn ¼
D33

D11 þ D22 � 2D33

� � ð29Þ

Note that in Eq. (29), we have defined cps = 0 if

D11 ¼ D22. Finally, we can combine both indicators in

order to define a unique phase error indicator as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
ps þ I2

n

q

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11=D22ð Þ � 1

10

� �2

þ D33

D11 þ D22 � 2D33

� �2
s

ð30Þ

This phase error indicator can be used to define a phase

goodness criterion for the PCA demodulation algorithm. For

instance, we may establish that a retrieved phase is reliable if

c is smaller than a certain threshold. We have seen heuristi-

cally that a good criterion to establish if a retrieved phase is

reliable consists in verifying whether c is smaller than 10 %.

3 Numerical analysis

In order to verify our mathematical analysis, we have

performed some simulations. In the first experiment, we
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use an interferogram set composed by N = 25 fringe pat-

terns with equidistant phase-shifts. The phase-shift of the

nth interferogram corresponds to dn = 2p 9 (n/N) with

n 2 [0, 24]. The interferograms have a size of

800 9 800 px and are noiseless. The modulating phase,

background and modulation signals are Gaussian shaped,

and their mathematical expressions correspond to

aðx; yÞ ¼ 0:5þ 0:3 expð�5ððx� 10Þ2 þ ðy� 15Þ2Þ=105Þ
bðx; yÞ ¼ expð�ðx2 þ y2Þ=105Þ
Uðx; yÞ ¼ 80p expð�ðx2 þ y2Þ=105Þ

ð31Þ

where (x, y) corresponds to pixel coordinates and the origin

of coordinates is placed in the image center. The first two

interferograms of this dataset are shown in Fig. 1. In order

to verify the presented mathematical analysis, the phase

error indicators and the phase goodness criterion presented

above, we have obtained the modulating phase using the

PCA demodulating approach and using different number of

interferograms belonging to the dataset introduced above.

First, we compute the modulating phase using the first ten

phase-shifted interferograms. Next, we obtain the phase

using the first eleven patterns and so on until we use the

N phase-shifted interferograms. In every case, we obtain

the accuracy of the reconstructed phase computing the

root-mean-square (rms) error between the computed phase

and the reference theoretical phase given in Eq. (27).

Additionally, we also calculate for each case cps , cn and c
phase error indicators. Observe that if we compute the

phase using the N = 25 available fringe patterns, it is

verified that a = 1 in Eq. (27) as kþ ¼ k� and

a1k k2¼ a2k k2
, a1; a2h i = 0, in Eq. (11). In this case, the

phase-shifts are exactly equally distributed in the [0, 2p]

(rad) range. However, if we use fewer patterns, it is not

verified that a = 1 and it will appear a phase error. This

error must be larger as fewer patterns are used.

Additionally, observe that in this first experiment, because

the interferograms are noiseless, the only source of phase

error comes because phase-shifts are not well distributed in

the [0, 2p] (rad) range and then, a = 1 in Eq. (27). In

Fig. 2(a), we plot the obtained phase error indicators with

respect to the accuracy of the reconstructed phases, when

different number of interferograms are used. As can be

seen from Fig. 2(a), cn is approximately zero in every case,

as the interferograms used are noiseless. On the other hand,

cps is highly correlated with the rms of the obtained

modulating phase. Observe that the curve that relates cps

with the rms values is nonlinear because the nonlinear

nature of Eq. (28). Additionally, in Fig. 2b, we show a plot

between the obtained phase error indicators and the number

of interferograms used to reconstruct the phase. As can be

seen from Fig. 2b, both magnitudes are related by a smooth

mathematical expression in this case. In Fig. 3, we show

the theoretical reference wrapped phase and the obtained

wrapped phases, when we use the first ten, nineteen and

twenty-five phase-shifted interferograms. Note that in

Fig. 3, we present a zoomed version of the wrapped phases

to show clearly phase details. From Fig. 3b, we see that the

obtained wrapped phase, when the first ten interferograms

are used, clearly presents phase errors. In this case, the

phase error indicator c is equals to 80 % and the rms cor-

responds to 0.46 rad. Additionally, we can see that the

recovered wrapped phase, when we use the twenty-five

phase-shifted interferograms (Fig. 3d), is very similar to

the reference phase (Fig. 3a). In this case, c is equal to

0.08 % and the rms corresponds to 0.0034 rad. Finally,

when we use nineteen interferograms, the obtained phase

presents some errors but it is still reliable. Note that in this

case, c is approximately equal to 9 % and the rms is of

0.19 rad. The obtained processing times are 0.32, 0.93 rad

and 1.4 s, when are used ten, nineteen and twenty-five

phase-shifted interferograms, respectively, with a

2.67 GHz laptop and using MATLAB. Regarding this

Fig. 1 First two interferograms

used in the first simulation
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example, we propose that a phase retrieval is considered as

acceptable if its c index is below 10 %.

In the second experiment, we used ten phase-shifted

interferograms equally distributed in the [0, 2p] (rad) range

but with different levels of noise. The modulating phase,

background and contrast signals are given in Eq. (31), and

the noise is additive and Gaussian with zero mean. We

performed eleven phase reconstructions using the PCA

demodulation approach and adding different levels of noise to

the ten fringe patterns. The patterns have a noise-to-signal

ratio (NSR) that goes from 0 to 100 % and is defined as

NSR ¼ Pn

Ps

ð32Þ

where Pn and Ps are the noise and signal power, respec-

tively. Note that we have used this definition instead the

Fig. 2 Obtained phase error

indicators with respect to the

accuracy of the reconstructed

phases (a) and the number of

interferograms used (b) in the

first simulation

Fig. 3 Zoomed versions of the reference wrapped phase (a) and obtained wrapped phases when are used the first thirteen (b), nineteen (c) and

twenty-five (d) phase-shifted interferograms in radians
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typical signal-to-noise ratio (SNR) to avoid the instabilities

of the SNR for low error levels.

In Fig. 4a, we show a plot of the obtained phase error

indicators with respect to the accuracy of the reconstructed

phases. As can be seen from Fig. 4a, cps is approximately

zero in every case, as the interferograms are equally dis-

tributed in the [0, 2p] range. On the other hand, cn is highly

correlated with respect to the rms of the obtained modu-

lating phase. In Fig. 4b, we show a plot of the obtained

phase errors indicators with respect to the NSR of the

phase-shifted interferograms. As can be seen from Fig. 4b,

in this case, there is a linear relationship between both

magnitudes. Finally, in Fig. 5, we show the theoretical

reference phase and the obtained unwrapped phases, for

NSRs equal to 1, 10 and 81 %. Note that these values

correspond to SNRs of 100, 10 and 1.23 %. The wrapped

phases obtained by the PCA demodulation algorithm are

unwrapped using the method presented in [15, 16] that

corresponds to a fast unwrapping two-dimensional algo-

rithm based on a linear recursive filter. This method is

robust to noise thanks to its smoothing capabilities. As can

be seen from Fig. 5b, the retrieved phase for NSR equals to

1 % is very similar to the reference phase. Note that in this

case, the rms and the phase error indicator correspond to

0.09 (rad) and 0.8 %, respectively. When the NSR corre-

sponds 81 %, the reconstructed phase shown in Fig. 5d is

highly affected by artifacts and is not reliable. In this case,

the rms and the phase error indicator correspond to 0.9

(rad) and 66 %. Finally, in Fig. 5c, we show the retrieved

phase for SNR equals to 10 %. The obtained rms and phase

error indicator (c) correspond to 0.27 (rad) and 7.3 %,

respectively. Observe that this reconstructed phase is inside

the limit of our proposed phase goodness criterion and as

can be seen from Fig. 5c, the unwrapped phase is very

similar to the reference one. The obtained processing times

to compute the results shown in Fig. 5b–d are 0.35, 0.38

and 0.38 s.

4 Experimental results

We have also checked our proposed phase error indicators

with real interferograms. We have obtained a reference

phase map from a large interferogram set composed by

nineteen interferograms with phase-shifts randomly dis-

tributed in the [0, 2p] range and using the PCA method

[4–6]. In Fig. 6, we show the first three interferograms of

this dataset. The images have size of 600 9 800 px. In

order to study the performance of the proposed phase error

indicators, we have obtained the modulating phases when

different numbers of phase-shifting interferograms are

processed. This number goes from five to fifteen. For each

phase reconstruction, we calculate the different phase error

indicators and the rms between the obtained and reference

phases. In Fig. 7, we show the results obtained. In Fig. 7a,

we plot the obtained phase error indicators with respect to

the accuracy of the reconstructed phases, and in Fig. 7b, c,

we show the obtained phase errors indicators and rms with

respect to the number of phase-shifted interferograms used.

As can be seen from Fig. 7a, the recovered phases are

slightly affected by noise and the most significant source of

phase error is due to the use of a set of interferograms with

phase-shifts not well distributed in the [0, 2p] range.

Finally, in Fig. 8, we show the reference phase (a), and the

obtained phases when we use three (b), ten (c) and sev-

enteen (d) interferograms. The phase error indicators and

rms values obtained in these cases are 105, 13, 4 % and

0.60, 0.14 and 0.04 rad, respectively. Observe that the

phase map shown in Fig. 8c presents clear phase errors and

c index is larger than 10 %. In this case, the obtained

processing times to compute the results shown in Fig. 8b–d

are 0.10, 0.15 and 0.29 s, respectively. As can be seen from

the results presented above, the proposed accuracy phase

indicators, computed from the first three obtained eigen-

values of the principal component analysis algorithm, are

very suitable to determine a blind estimate of phase

Fig. 4 Obtained phase error

indicators with respect to the

accuracy of the reconstructed

phases (a) and the signal-to-

noise ratio of the interferograms

used (b) in the second

simulation
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goodness, without the need of using any ground truth phase

information, and perform further actions if the retrieved

phase accuracy is not acceptable.

5 Conclusions

In this work, we have shown a thorough mathematical

error analysis of the principal component analysis

demodulation algorithm. In this analysis, we show that the

possible phase errors are caused because the interfero-

grams have phase-shifts not uniformly distributed in the [0,

2p] range and/or the presence of noise in the fringe pat-

terns. Additionally, we present suitable phase accuracy

indicators, computed from the first three obtained eigen-

values of the principal component analysis demodulation

algorithm. These indicators can be used in the measuring

process to determine a blind indicator of the phase

Fig. 5 Reference unwrapped phase (a) and obtained unwrapped phases when are used interferograms with noise-to-signal ratios of 9 % (b),

36 % (c) and 81 % (d) in radians

Fig. 6 First three real interferograms used in the Sect. 4
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accuracy, without the need of using any ground truth phase

information. If the retrieved accuracy is not acceptable, we

can perform further actions as obtaining additional inter-

ferograms or repeating the experiment. Additionally, we

present simulated and experimental results that support

our mathematical analysis and conclusions. A complete

MATLAB software package where can be reproduced any

result and figure shown in this work is provided in (http://

goo.gl/fy5EC).
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