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ABSTRACT

Motivation: Structural information of macromolecular complexes pro-

vides key insights into the way they carry out their biological functions.

The reconstruction process leading to the final 3D map requires an

approximate initial model. Generation of an initial model is still an open

and challenging problem in single-particle analysis.

Results: We present a fast and efficient approach to obtain a reliable,

low-resolution estimation of the 3D structure of a macromolecule,

without any a priori knowledge, addressing the well-known issue of

initial volume estimation in the field of single-particle analysis. The

input of the algorithm is a set of class average images obtained

from individual projections of a biological object at random and un-

known orientations by transmission electron microscopy micrographs.

The proposed method is based on an initial non-lineal dimensionality

reduction approach, which allows to automatically selecting represen-

tative small sets of class average images capturing the most of the

structural information of the particle under study. These reduced sets

are then used to generate volumes from random orientation assign-

ments. The best volume is determined from these guesses using a

random sample consensus (RANSAC) approach. We have tested our

proposed algorithm, which we will term 3D-RANSAC, with simulated

and experimental data, obtaining satisfactory results under the low

signal-to-noise conditions typical of cryo-electron microscopy.

Availability: The algorithm is freely available as part of the Xmipp 3.1

package [http://xmipp.cnb.csic.es].

Contact: jvargas@cnb.csic.es

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Single-Particle Analysis (SPA) techniques can obtain 3D maps of

biological complexes at near-atomic resolution by combining

tens of thousands of projection images obtained with a

transmission electron microscopy (TEM) (Frank, 1996; Zhang

and Zhou, 2011). In general, the reconstruction process leading

to the final 3D map requires the use of an approximate initial

model. The fully automatic and efficient determination of this

initial volume, either for symmetric or asymmetric structures, is

still an open and challenging problem in SPA, as indicated by the

existence of an ample literature on this matter.
Many previous attempts to the ‘initial model problem’ have

been reported. On the one hand, in the Random Conical Tilt and

orthogonal tilt methods (Leschziner and Nogales, 2006;

Radermacher et al., 1987), the alignment problem is simplified

by acquiring micrographs as tilt pairs, or by using multiple dif-

ferent tilts with known tilt angles. On the other hand, we observe

a large variety of methods based on common lines (Cast �on et al.,

1999; Crowther et al., 1970; Elmlund and Elmlund, 2012;

Elmlund et al., 2008, 2010; Liu et al., 2007; Ogura and Sato,

2006; Penczek and Zhu, 1996; van Heel, 1987; Thuman-

Commike and Chiu, 1997) that, in principle, they allow for an

initial model estimation without tilting of the specimen.

Computer-generated shapes (Baker and Cheng, 1996; Bilbao-

Castro et al., 2004; Ludtke et al., 2004), or reconstructions

from one image of a particle assuming a certain symmetry

(Cantele et al., 2003; Cast �on et al., 1999), have also been used

to define initial volumes. Another line of research is based on the

introduction of a ‘random model’ strategy based on first assign-

ing random orientations to class averages (Harauz and van Heel,

1985; van Heel, 1984). In this latter case, an initial 3D recon-

struction is obtained from these random angular assignments,

which is finally refined by a projection matching strategy.

Following this approach, Sanz-Garcia et al., 2010 presented a

random-model method that allows ab initio generation of start-

ing models from raw experimental images. Several initial models

were generated, assigning initially a random orientation to each

imaged particle. Recently, Elmlund et al., 2013, have presented a

method based on a probabilistic initial 3D model generation

procedure, which uses projection images instead of class aver-

ages. Furthermore, in Lyumkis et al. (2013), it presented

OptiMod, a method that incorporates multiple automated

algorithms for determining orientations using common-lines

methodologies and, at the same time, provides criteria for scor-

ing their results. This approach generates multiple maps using

algorithm-specific randomization.
The ‘initial model problem’ is still, and in spite of the multiple

algorithms so far proposed, widely accepted as a real issue in

SPA (Taylor and Glaeser, 2008, Voss et al., 2010), with methods

demanding no trivial choices of input parameters and being com-

putationally expensive. Indeed, in the way of defining high-

throughput approaches in 3D-EM, we really need fast, simple

and accurate methods, which are, indeed, the motivation of this*To whom correspondence should be addressed.
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work. In this way, we will describe in detail 3D-RANSAC, pre-
senting its good performance on a wide range of specimens, using

the same parameters for all cases (making the case of ‘simpli-
city’), and obtaining final results in a matter of minutes on a

typical laptop computer. Our proposed approach consists in a

novel random modelling strategy based on an initial
dimensionality-reduction method together with the RANSAC

algorithm, which makes this approach efficient from a compu-

tational point of view. The method can be used to produce low-
resolution initial volumes of symmetric or asymmetric biological

complexes.

2 METHODS

2.1 Class average images

First, a set of class average images are obtained from the particle dataset

using any image classification algorithm [in this article, we will use CL2D

(Sorzano et al., 2010), included in the Xmipp 3.1 package]. Observe that

the classification process is required in any usual SPA processing work-

flow and is not a special requirement of the proposed approach. Electron

microscopy datasets commonly contain more than one different struc-

tures, as projections of different conformations of a given molecule, or

projections of different molecules in the specimen preparation. These

class images are then the input of the new proposed method and, typic-

ally, �20–50 class images are sufficient. There is nothing in the algorithm

that precludes using experimental projections instead of classes. However,

we find that using a sufficient number of class average images has several

practical advantages, such as (i) increasing the signal-to-noise ratio of

the input images, (ii) introducing a desired smoothing (a ‘de facto’ regu-

larization) in the landscape of solutions and (iii) reducing the total

processing time. Of course, we note that we are only interested in a

low-resolution initial model.

2.2 Random model generation strategy

Our random model generation strategy is based on the following eight

steps:

(1) The class averages are low-pass filtered, and their size is reduced

according to user parameters (basically, the desired resolution in

the initial model).

(2) The local tangent space alignment (LTSA) non-linear dimension-

ality reduction approach (Zhang and Hongyuan, 2005) is applied

to automatically select a random, smaller and appropriate (in

the sense that contains the most of the structural information

of the biological complex under study) subset of class images.

This approach non-linearly projects the class averages onto a

lower-dimensional space [in our case, two-dimensional (2D)],

where the projections of the structure at similar orientations

appear close. LTSA method is essentially a local principal compo-

nent analysis (PCA) approach that can efficiently ‘learn’ about

non-linear manifolds by taking into account that non-linear mani-

folds can be considered to be locally linear in small neighborhoods.

Observe that PCA cannot deal with non-linear manifolds, as it is a

linear method, and the 2D projection of a 3D structure is, intrin-

sically, a non-linear process (Giannakis et al, 2012). Additionally,

we note that the computer time required for LTSA and PCA are

comparable, making LTSA clearly the method of choice for this

task. As an example, in Figure 1, we show a projection of a set

of image class averages into a 2D space. As can be seen from

Figure 1, and as intuitively expected, similar projections of the

biological object appear close in the 2D space, whereas different

ones appear far apart. We can now use this 2D space to select a

smaller image dataset containing the most of the structural infor-

mation, and then assign random orientations to these images. To

automatically select a representative image set, the 2D map is par-

titioned by a 2D regular grid of dimensions (with typically n=9),

and only one image class average is randomly selected each time

from any of the grid squares. In Figure 1, we show an example of a

smaller image dataset with a red square, and the 2D regular grid

appears in gray color. Therefore, n class images are randomly

selected in this way. Obviously, there is a trade-off with respect

to the number of images composing this reduced dataset. As the

number of images gets smaller, the processing time of subsequent

steps is reduced and, additionally, the probability of assigning cor-

rect angles by random assignment is higher. However, if this

number is too small, we can lose important structural information.

In our algorithm, this number (n) is an input parameter and nor-

mally ranges between 4 and 9, with 9 being the ‘default’ value (all

results presented in this article have been obtained with n=9).

(3) A 3D reconstruction is performed from the smaller image subset

(n=9) by random angular assignment. The reconstruction algo-

rithm takes advantage of symmetry information when available.

Reconstruction is made by interpolation in Fourier space. For each

experimental image, the Fourier Transform is computed and

placed in the corresponding plane in the 3D space as well as in

all planes related by symmetry. This random 3D model is then

projected at regular angular intervals determined by the angular

step-size, which is an input parameter with a default value of 7�.

Each initial class average is now compared with the projections of

the 3D random model, and the best assignment is determined

looking for the largest correlation coefficient.

(4) Steps 2–3 are repeated N times producing N different 3D random

models. Therefore, N is also an input parameter of the method, but

in the Supplementary Material, we present a statistical derivation

for an informed selection ofN. In this way, we set the default value

of N to 380, as in this way, we know that the probability of ob-

taining a still better 3D model by increasing N is50.01. This value

of N=380 has been used in all the examples presented in this

article.

(5) For each generated randommodel, we define its inliers as the initial

class average images that have a large enough correlation coeffi-

cient with respect to the reprojections of the random 3D map.

Fig. 1. Projection of a set of unsorted image class averages of a certain

MCM467 complex into a 2D space using the LTSA dimensionality

reduction approach. In this figure, x and y are the axis of the feature

space learned from the input
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We will refer to these ‘good’ initial classes as ‘inliers’, and we say

that they support this 3D model. The rest of the initial classes are

referred to as ‘outliers’. The practical way in which this selection is

done is by establishing a threshold in the correlation coefficient

obtained as the percentile p of all obtained correlations, with p

typically between 75 and 80%. We define the score of each

random 3D map as the sum of the correlations of its inliers. In

steps 2–5, we are using Random Sample Consensus (RANSAC)

approach (Fischler and Bolles, 1981) to capture ‘correct’ models.

RANSAC is an iterative method to estimate a model (in this case a

3D map) from a set of observed data that contains a large amount

of outliers. RANSAC approach consists in the following steps: (i)

Randomly selecting a subset of the dataset. (ii) Fitting a model to

the selected subset. (iii) Determining a score to each model, typic-

ally the number of outliers/inliers. (iv) Repeating steps 1–3 for a

prescribed number of iterations. A basic assumption is that the

data consist of inliers, data that can be explained by the model,

though they may be subject to noise, and outliers, that are data

that do not fit the model. The outliers may come, e.g. from extreme

values of the noise, from erroneous measurements or incorrect

hypotheses about the interpretation of data, for instance, wrongly

assigned Euler angles. RANSAC also assumes that, given a (usu-

ally small) set of inliers, there exists a procedure that can estimate

the model that optimally explains or fits this data. Additionally,

this algorithm is probabilistic and non-deterministic, in the sense,

that it produces always good results with a certain probability if the

number of inliers is larger than the number of outliers, with this

probability increasing as more iterations are allowed (Fischler and

Bolles, 1981). Our RANSAC approach is performed using the fol-

lowing combination of steps: (i) Automatic selection of a small

number of class averages following a dimensionality reduction ap-

proach. (ii) Random assignment of angles to each of the selected

class averages and computation of a 3D model using them. (iii)

Calculation of a score for each model as the sum of inliers correl-

ation. (iv) Repeat steps 1–3 for a prescribed number of iterations.

In the Supplementary Material, we show that with the number of

RANSAC iterations 4380, the probability of finding a better

model is50.01.

(6) The k random 3D models (k � 5–10) with largest number of inliers

(largest score) are selected and new 3D reconstructions are ob-

tained using as input classes only the inliers.

(7) The previous k 3D random models are now refined against all

initial classes through a model refining strategy. In this article,

we have used a projection matching approach (de la Rosa-Trev�ın

et al., 2013), using typically 10 iterations for refinement. However,

other approaches can be used as well, such as the recent method of

Elmlund et al., 2013. Observe that we refine the best K models

independently through projection matching to add more robust-

ness to our approach. As the previous angular assignment is

random, refining K models improves the probability of getting at

least some good structures at the end.

(8) The resulting k volumes are scored taking into account the sum of

the inliers correlation coefficients. Finally, the model with highest

score is automatically selected.

In Figure 2, we show a diagram of the different processing steps.

3 RESULTS

In this section, we provide results obtained with simulated and

experimental data that show the effectiveness of the proposed

method.

3.1 Simulations

In the first simulation, we used the structure of the

Bacteriorhodopsin as a phantom (PDB entry: 1BRD,

Henderson et al., 1990) that is projected at 200 unknown and

random orientations. The projections are affected by a Gaussian

noise with a signal-to-noise ratio (SNR) of 0.1. The size of the

images is 100� 100px and the sampling rate is 1 Å/px. Note that,

in this case, we did not obtain class averages and we use our

proposed method directly with the noisy projections to show its

robustness.
In Figure 3, we present 7 of the 200 noisy projections used,

together with the phantom (left) and best obtained initial (right)

3D maps at three different orientations. The initial volume was

obtained with the following parameters, N=380, n=9,

P=0.77 and k=10. We used an angular sampling rate for

retroprojection of 7�. The projections were low-pass filtered to

a resolution of 5 Å. The required processing time for obtaining

the k=10 volumes is of 35min with a 2.5GHz laptop and using

two processors.
To quantize the resolution of the obtained initial volumes, we

have obtained the Fourier Shell Correlation (FSC) curves using

the PDB volume as reference. The resolution at FSC=0.5 and

FSC=0.143 are 4.6 and 4.5 Å, respectively (Fig. 4), that

is consistent with the previously performed low-pass filtering,

and shows that using perfectly aligned projections in pres-

ence of moderate noise, the proposed method can retrieve

high-resolution models. This situation is not usual in experimen-

tal cases. However, with this simulation, we want to show that

there is no theoretical restriction that limits the proposed method

in high-resolution analysis.

Fig. 2. Diagram of the different processing steps the input
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3.2 Experimental results

3.2.1 Case 1: Bovine Papillomavirus The first case consists of

images of Bovine Papillomavirus (BPV) (Wolf et al., 2010) kindly

made accessible by Drs Wolf and Grigorieff. The dataset consists

of 49 micrographs of an approximate size of 10 000� 10000

pixels. The sampling rate is 1.237 Å/pixel, the microscope voltage

300kV and the magnification� 56 588. A total of 5317 particles

of size 120� 120px were identified using the method presented in

(Abrishami et al., 2013), from which 32 classes were determined

using CL2D (Sorzano et al., 2010). These classes were low-pass

filtered to a resolution of 5 Å. In Figure 5, we show eight experi-

mental projections (a) and the 32 obtained classes (b). The par-

ameters used to obtain the initial volume by the proposed

method are the same ones as in the case presented before. In

Figure 5c, we show the best 3D-RANSAC map at three different

orientations. The processing time for obtaining the k=10 vol-

umes is of �20min, with the same computer as before using two

processors. Observe that the processing time of CL2D is of

330min, and then the total time CL2D+3D-RANSAC is of

350min.

3.2.2 Case 2: Eukaryotic ribosome Moreover, we have also per-

formed an asymmetric reconstruction using�5000 cryo-EM pro-

jections of an eukaryotic ribosome, obtained from the EMDB

test image data (http://www.ebi.ac.uk/pdbe/emdb/test_data.

html) and originally used in the work of Scheres et al. (2007).

The images have a size of 130� 130px. We initially obtained 16

class average images using CL2D, which were then low-pass

filtered to a resolution of 25 Å. We obtained the 3D-RANSAC

map with the same parameters as in the cases before. In Figure 6,

we show eight initial experimental projections of the ribosome (a)

and the low-pass filtered class averages (b). Finally, in Figure 6c,

we also show the 3D reconstruction using PRIME (Elmlund

et al., 2013) and one obtained using 3D-RANSAC at three

different orientations. The FSC curves between the PRIME

and the 3D-RANSAC maps at FSC=0.5 and FSC=0.143

are 19 and 12 Å, respectively, which means that both structures

are similar, as visually suggested already in Figure 6c, certainly

enough for any of them to be used as a low-resolution initial

3D map. However, the processing time for obtaining the

3D-RANSAC map with the same parameters and the same

laptop computer than in previous cases is only 50min. The pro-

cessing time of CL2D is of 435min, and then, the total time

Fig. 3. Seven projections of Bacteriorhodopsin (PDB entry: 1BRD,

Henderson et al., 1990) phantom map with SNR of 0.1 are shown at

top of the figure. The phantom 3D map at three different orientations is

presented on the left-hand side, whereas the best obtained volume, using

the proposed approach, is on the right-hand side

Fig. 5. Eight experimental projections of the BPV (a), 32 classes obtained

using CL2D (b) and the best initial volume obtained by the proposed

method at three different orientations (c)

Fig. 4. FSC curve between the Bacteriorhodopsin phantom of the best

initial 3D map obtained (highest score) using the proposed approach
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CL2D+3D-RANSAC is of 485min, whereas PRIME (or vir-

tually any other method so far proposed) requires more than 4

days of computation (5760min) in a laptop setting. To present

the good agreement between the obtained initial volume and the

used class averages, we show in Figure 7, the experimental class

averages (labeled as ‘image’), the corresponding initial 3D map

projection at the same orientation (‘imageRef’) and the normal-

ized cross correlation between both images (‘maxCC’). As can be

seen from Figure 7, there is a good agreement between the class

averages and the corresponding projections.

3.2.3 Case 3: GroEL Additionally, we have used a GroEL
dataset, kindly made available by Dr Ludtke (Ludtke et al.,

2004), composed by 26 micrographs of size 4082� 6278 pixels.

The sampling rate is 2.10 Å/pixel and the microscope voltage is

of 200 kV. From this dataset, we have detected 4123 particles of

size 128� 128, using the method presented in (Abrishami et al.,

2013), and 16 classes were determined using CL2D (Sorzano

et al., 2010). In Figure 8a, we show the obtained 16 classes and

the best volume (b) recovered by 3D-RANSAC map using de-

fault parameters, as before. In this case, the required processing

time is �5min with the same computer as before. The processing

time of CL2D is of 318min, and then, the total time

CL2D+3D-RANSAC is of 324min. The FSC curves between

the phantom EMDB (EMDB code 1081, Ludtke et al., 2004) and

the 3D-RANSAC map at FSC=0.5 and FSC=0.143 are 10.2

and 9.7 Å, respectively, which means that both structures are

similar. To further show the good agreement between the ob-

tained initial volume and the used class averages, we present in

Figure 9, the experimental class averages in the first row labeled

as ‘image’, the corresponding initial volume projections at the

same orientation in the second row (‘imageRef’) and the normal-

ized cross correlation between both images in the third row

(‘maxCC’). As can be seen from Figure 9, there is a good agree-

ment between the class averages and the corresponding

projections.

3.2.4 Case 4: MCM467 Finally, for the sake of completeness,
we show the behavior when dealing with small complexes in the

Fig. 7. Experimental class averages (image) of the asymmetric eukaryotic

ribosome particles, corresponding initial volume projection at the same

orientations (imageRef) and normalized cross correlation between both

images (maxCC)

Fig. 6. Eight experimental projections of the eukaryotic ribosome (a), 16

class average images low-pass filtered (b) and 3D map obtained by

PRIME approach (left) together with our best obtained initial volume

(right) (with highest score) at four different orientations (c)

Fig. 8. Sixteen experimental class average images obtained using CL2D

of GroEL experimental projections (a) and the best volume recovered by

the proposed method at three different orientations (b)
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order of a half million daltons using negative staining. This is an

internally acquired dataset, corresponding to a certain MCM467

complex. The microscope is a JEOL JEM-1230, and the accel-

erating voltage is 100 kV. The nominal magnification is �40 000

and the sampling rate 2.28 Å/pixel. We have obtained �6000

particles from 200 micrographs, using the method presented in

(Abrishami et al., 2013). From the picked particles, we obtained

128 class averages using CL2D (Sorzano et al., 2010), which are

manually curated to a smaller homogeneous dataset of 20 class

averages.
In Figure 10a, we show the obtained class averages, after

the curation process. As in the cases shown before, we have

used the same input parameters for the determination of the

3D-RANSAC map. In this case, the required processing time

is of 6min with the same computer as before. The processing

time of CL2D is of 720min, and then, the total time

CL2D+3D-RANSAC is of 726min. In Figure 10b we show

the 3D-RANSAC map at different orientations.
As in the case before, to show the good agreement between the

obtained initial volume and the used class averages, we present in

Figure 11, the class averages, the corresponding projection of the

initial volume at the same orientation and the normalized cross

correlation between both images. As can be seen from Figure 11,

there is a good agreement between the class averages and the

corresponding projections.

4 DISCUSION AND CONCLUSION

Obtaining a reliable low-resolution initial map is a well-known

current challenging problem in single particle electron micros-
copy. This statement can easily be supported considering the

large number of recent publications about this topic (Elmlund

and Elmlund, 2012; Elmlund et al., 2013; Lyumkis et al., 2013;

Voss et al., 2010). Existing current approaches are mainly based

on common lines (Cast�on et al., 1999; Crowther et al., 1970;

Elmlund and Elmlund, 2012; Elmlund et al., 2010; Thuman-

Commike and Chiu, 1997) or random model generation

(Harauz and van Heel, 1985; Sanz-Garcia et al., 2010; van

Heel, 1984). However, in general, these methods are not

easy to use, in term of the selection of input parameters, and
are computing intensive. Naturally, the combination of a

non-easy choice of input parameters together with long execution

times complicates their practical use, requiring expert processing.

Aware of these problems, we have set our aim at developing

a simple-to-use method for which default parameters work

well in most cases, at the same time as when the required

computing time is minimized to minutes on a standard laptop

Fig. 9. Experimental class average images of the GroEL particles

(image), corresponding initial volume projection at the same orientations

(imageRef) and normalized cross correlation between both images

(maxCC)

Fig. 11. Experimental class averages of the MCM467 complex (image),

corresponding initial volume projection at the same orientations

(imageRef) and normalized cross correlation between both images

(maxCC)

Fig. 10. Twenty obtained classes from experimental projections of

MCM467 complex using CL2D approach (a) and three different orien-

tations of the best initial volume obtained by the proposed method (b)
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computer. Naturally, most methods can be trapped into local

minima, and 3D-RANSAC is not an exception, but in this

case, the landscape of solutions is particularly smooth, the use

of RANSAC algorithm and, additionally, its short execution

time reduce considerably this risk and also open the venue to

future developments involving close-to-global optimization

techniques for particularly challenging problems. Finally, we

have developed 3D-RANSAC for the case of homogenous

image populations, and at this stage this may be considered a

limitation of the method. Observe that the input of the algorithm

are homogeneous class average images, and therefore, the prob-

lem of separating structurally heterogeneous image sets into

homogeneous classes has to be already solved in the previous

classification approach. The extension of 3D-RANSAC to the

non-homogenous case will be considered in future works, requir-

ing a far from trivial extension of many concepts behind

RANSAC.

In this article, we have presented a fast and efficient approach

to obtain a reliable low-resolution initial volume from sets of

macromolecular projection images without a priori information.

The proposed method, instead of trying to explore the entire

space of projection orientations, a task that is computationally

intractable even for a few hundred images, uses a novel random

modeling strategy based on an initial non-linear dimensionality

reduction and RANSAC algorithm, which makes this approach

efficient from a computational point of view. Observe that the

probability of assigning the correct orientation to one projection

corresponds to a standard uniform distribution. As the process

of assigning the orientation to projections is statistically inde-

pendent, the probability of giving correctly the angles to n par-

ticles corresponds to pn (with P the probability to assign correctly

the orientation to one projection). Therefore, if the number of

images is high, this probability is low. Therefore, to increase this

probability, we have used smaller sets of images (of typically nine

projections) but at the same time capturing most of the structural

information of the volume (note that this process is accomplished

by the dimensionality reduction approach). 3D-RANSAC is a

two-step survival algorithm. In the first step, a large number of

models are generated (�380) but only the best k survive, which

are the ones with the highest number of inliers (largest score).

After this first selection process, these k models are refined again

using all the initial classes by a projection matching approach,

and at the end of this second selection step they are ranked again

so that there is only one winner. We have tested our proposed

method with synthetic (Bacteriorhodopsin) and experimental

data (BPV, Eukaryotic Ribosome, GroEL and MCM467). In

all cases, we have obtained fast and satisfactory results. The

algorithm is freely available as a part of the Xmipp 3.1 package

(de la Rosa-Trev�ın et al., 2013).
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