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Automatic or semiautomatic data collection approaches on a transmission electron microscope (TEM) for
Single Particle Analysis, capable of acquiring large datasets composed of only high quality images, are of
great importance to obtain 3D density maps with the highest resolution possible. Typically, this task is
performed by an experienced microscopist, who manually decides to keep or discard images according
to subjective criteria. Therefore, this methodology is slow, intensive in human work and subjective. In
this work, we propose a method to automatically or semiautomatically perform this image selection task.
The approach is based on some simple, fast and effective image quality descriptors, which can be com-
puted during acquisition, to characterize foil-hole and data images. The proposed approach has been used
to evaluate the quality of different datasets consisting of foil-hole and data images obtained with a FEI
Titan Krios electron microscope. The results show that the proposed method is very effective evaluating
the quality of foil-hole and data images, as well as predicting the quality of the data images from the foil-
hole images.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Transmission Electron Microscopy applied to the three-
dimensional (3D) characterization of vitrified biological specimens,
a field referred to as cryo-EM, is experiencing a profound revolu-
tion. First, individual electrons can be counted directly by new
Direct Electron Detectors (DEDs) that allow fast acquisition of
movies instead of images, and better sensitivity than older CCD
detectors. Additionally, great efforts have been made in electron
microscope automation and throughput due to software which,
after a short setup time, automates image acquisition for hours
or even days. Combined, these new capabilities open the venue
to a much larger data processing capabilities than currently possi-
ble making feasible high throughput data collection and processing
(HTDCP). However, for HTDCP to be really possible, much intelli-
gence has still to be incorporated into the microscope image acqui-
sition software. Currently, there are different software high
throughput data collection solutions which allow various degrees
of automation and robustness in the electron microscope. These
software solutions are developed to emulate some of the decisions
and actions of a highly trained microscopist in collecting data from
vitreous ice specimen. In the following, we review the basic char-
acteristics of some of these solutions.

One of the earliest high throughput data collection solutions
was Leginon (Carragher et al., 2000; Potter et al., 2001; Suloway
et al., 2005). Leginon is a multi-scale imaging system to automati-
cally acquire large numbers of images from transmission electron
microscopes. EPU is the automated Single Particle Analysis (SPA)
acquisition application from FEI Company, which similarly enables
automated collection of large numbers of vitrified particles from
pre-selected areas on a grid. The main steps of these automated
SPA acquisition software packages are:

(a) First, an array of very low magnification images is acquired
to obtain a so-called atlas of the entire grid. This atlas is used
to select appropriate grid square targets, manually or by a
semiautomatic process and according to an intensity-based
criterion.

(b) After this, an image of each pre-selected grid square is
obtained at higher magnification and a set of appropriate
foil-holes are selected manually or semiautomatically.

(c) The imaging system is then magnified (adjusting automati-
cally imaging parameters as defocus and astigmatism) and
centered for each selected foil-hole, obtaining a new image
of it. According to the ice quality, the imaged foil-holes
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within the grid square can be then selected manually or
semiautomatically using some image feature metrics, such
as intensity mean and standard deviation. In the semiauto-
matic mode the definition of proper values for these feature
metrics have to be determined previously by the user from
high quality foil-hole images.

(d) High magnification images (data images) are automatically
acquired from the previously selected foil-holes according
to an acquisition template. In Leginon, the quality of these
data images is determined from their power spectrum in
order to remove micrographs affected by drift, among other
problems. It is important to mention that the acquisition of
the final data images takes a considerable amount of time
because of processes such as autofocus and microscope
stage stabilization, among others.

A scheme of this acquisition process is summarized in Fig. 1,
where the different magnified images (a–d) refer directly to steps
(a-d) previously outlined. EPU has shown to be useful in different
works (Bai et al., 2013; Meyerson et al., 2014). Other solutions
aimed at automated image collection for cryo-EM are JADAS, the
JEOL Automated Data Acquisition System (Zhang et al., 2009),
TOM (Nickell et al., 2005), which is an open MATLAB toolbox for
the automated data acquisition in electron tomography, Auto3-
DEM (Yan et al., 2007) that is more specialized for acquiring images
of viruses, SerialEM (Mastronade, 2005) a widely used data collec-
tion software for cryo-electron tomography applications, UCSF
Tomography (Zheng et al., 2006) or SAM (Shi et al., 2008).

All these acquisition systems concentrate on automatic instru-
ment control allowing obtaining large numbers of images from
transmission electron microscopes with minimal human interac-
tion. However, obtaining only (or mostly) high quality images is
still an open problem. As a consequence, the quantity of bad qual-
ity images collected when the microscope is commanded in auto-
matic mode is potentially large, limiting the throughput and
requiring a posterior image screening task. It is in this context in
which this work is formulated, aiming at developing new image
processing algorithms that could allow a more intelligent selection
Fig. 1. Scheme of the acquisition process from the very low magnification Atlas
image (a) to the high magnification data image (d).
of sets of good images during automatic acquisition, with minimal
user intervention and preferably only during setup phase. To this
end, we aim at significantly increasing our current capacity to
detect high quality regions from low magnification images (foil-
hole images), so that data collection at high magnification (data
images) will be focused only on the highest quality areas, maximiz-
ing the throughput of the instrument and the final quality of the
so-obtained biological information, at the same time assuring a
faster data collection. In Fig. 2 we show a data flow diagram of
the new acquisition methodology with the novel steps indicated
in red. Acquisition time reduction is achieved by the ‘‘Skip” branch.
Data quality improvement is achieved thanks to both assess steps.
2. Proposed method

The proposed method is based on defining a set of image quality
descriptors to characterize foil-hole as well as data images. Our
objective is the detection of bad quality images affected by well-
known image quality deteriorating effects such as problems inside
the foil-hole, like the presence of inhomogeneous ice, contamina-
tions, empty images without macromolecular particles, completely
Fig. 2. Scheme of the data flow diagram of the new acquisition methodology with
the novel steps indicated in red.
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empty holes without ice, or the presence of a too thin or thick ice
layer. After defining a set of fast and adequate image descriptors,
our approach can work in two different ways. The first way is a
semiautomatic process, where a short number (typically around
10 or 20) of manually supervised calibration images allow a classi-
fication approach to learn what high or low image quality means.
After this learning process, the system is able to predict the good-
ness or badness of all acquired images. In the second way, the
approach runs in a totally automated and unsupervised fashion.
In Fig. 3, we show examples of typical problems in foil-hole as well
as data images. Note that in this figure the high resolution images
(data images) are obtained at the center of the corresponding foil-
hole images. In the first column of Fig. 3 we show a good quality
foil-hole, as well as data images. On the other hand, in the second,
third and fourth columns of Fig. 3, we show bad quality images
affected by the absence of particles, too thin ice layer, inhomoge-
neous ice and presence of contaminants, respectively. In the next
section we present our proposed image quality descriptors to char-
acterize foil-holes images and data images.

2.1. Foil-hole image quality descriptors

To characterize foil-hole images, the first step consists of the
localization of the foil-hole in order to compute the quality
descriptors only within this region. The image analysis algorithms
for automatic localization of foil holes are already built in auto-
mated data collection systems like EPU, Leginon, SerialEM, JANDAS
or UCSF Tomography as this process is crucial for accurate target-
ing of the final data image acquisitions. On the pixels that are
inside the foil-hole, the following image quality descriptors are
computed:

1) Histogram based indicators: for ice thickness characteriza-
tion and contaminant detection.

2) Local homogeneity ice descriptors: for ice homogeneity
characterization.

3) Autocorrelation descriptors: for accurate ice contaminants
detection.

2.1.1. Histogram based descriptors
The histogram of gray values provides effective information to

classify foil-hole images as high or low quality. First, note that
the histogram of the ice background noise follows a Gaussian dis-
tribution (Sorzano et al., 2004). Therefore, the intensity histogram
Fig. 3. Typical examples of foil-hole (first row of images) and data images (second row of
shown. Additionally, in the second, third and fourth columns we show cases of bad qualit
existence of contaminants, respectively.
should have a significantly different shape when the imaged foil-
holes have good ice compare to the situation when the ice is too
thin or affected by contaminants. In order to quantify these differ-
ences, we have fitted the obtained histograms to Gaussian distribu-
tions, obtaining as parameters the mean, the standard deviation,
and the fitting error. In Fig. 4 we show a diagram of the process.
First, the foil-hole is detected and a square image is cropped from
the foil-hole, which is indicated in Fig. 4 with a red square. On this
subimage the intensity histogram is obtained and fitted to a Gaus-
sian distribution, which corresponds to the red curve in Fig. 4. In
Fig. 5(a), (b), (c) and (d) we show the resultant histogram-based
descriptors for the foil-hole images shown in Fig. 3. As can be seen
from Fig. 5, the proposed descriptors are sensitive to typical image
deteriorating effects.

2.1.2. Local homogeneity ice descriptors
The presence of non homogenous ice within the foil–holes is an

important and difficult to detect case. Usually, the ice layer is thin-
ner in the foil-hole center than at the borders, and an example of
this problem is shown in the third column of Fig. 3. In order to
detect non homogenous ice within the foil–holes, we propose cus-
tom descriptors based on obtaining the intensity median l(r) and
intensity dynamic range n(r) between the 10th and 90th per-
centiles along rings with different radii r, given by

lðrÞ ¼ p50½IðrÞ�
nðrÞ ¼ p90½IðrÞ� � p10½IðrÞ�

ð1Þ

Therefore, for each foil-hole image we obtain two curves with
information of the intensity median and dynamic range at different
radius. From these curves we compute as descriptors the mean,
dynamic range and standard deviation. In Fig. 6 we show a diagram
of how these curves are computed. As can be seed from Fig. 6, for
each foil-hole image a set of binary circular masks with different
radii are defined and within these masks we compute the intensity
median and dynamic range.

2.1.3. Autocorrelation descriptors
We also propose to use autocorrelation-based descriptors to

accurately detect the presence of ice contaminants within the
foil-hole as shown in the fourth column of Fig. 3. In these cases,
the autocorrelation peak should be higher and wider than when
there are no contaminants, because of the presence of a stronger
spatial coherence in these images. Therefore, to quantify these spa-
tial coherence differences we obtain as descriptors the mean and
images). In the first column, good quality foil-hole images as well as data images are
y images affected by absence of particles, too thin ice layer, inhomogeneous ice and



Fig. 4. Diagram of the process to compute the gray value histogram-based quality parameters from the foil-hole images. First, on the left hand side, the foil-hole is detected
and a square image is cropped from the foil-hole, indicated with a red square. On this subimage, central column, the intensity histogram is obtained and fitted to a Gaussian
distribution, which corresponds to the curve on the right hand side.

Fig. 5. Resulting histograms and histogram-based descriptors for the foil-hole images shown in Fig. 1 and labelled as (a), (b), (c) and (d).

Fig. 6. Diagram of the process of obtaining the local homogeneity ice descriptors. A set of binary circular masks are defined in the foil-hole images with different radii and
within these masks, the median and the dynamic range are determined. The mask is indicated by a red disk in the Figure.
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the standard deviation of the autocorrelation map calculated over
the cropped square image.

2.2. Data image quality descriptors

In order to characterize the high resolution data images, we use
all the same descriptors outlined above plus an additional new
descriptor which proved not to be feasible on the foil-hole images,
aiming at detecting data images with non-homogeneous particle
distributions as shown in Fig. 3(c).

2.2.1. Particle density-based descriptors
In order to detect non homogeneous particle distributions, first

the data images are band-pass filtered using an approximate esti-
mation of the particle size in order to enhance the low resolution
particle signal. After this, the enhanced image is divided into 9
regions of similar size and the histogram of each region as well
as of the whole image is computed. All these histograms are nor-
malized by their total number of counts, and then, if the particle
distribution within a data image is homogeneous, these curves
must be approximately the same. In order to quantify this ‘‘particle
homogeneity”, we subtract the different normalized region his-
tograms from the normalized whole image histogram, obtaining
the standard deviation of these differences. Obviously, a small
standard deviation is an indicator of a homogenous particle
distribution.

2.3. Classification

Once the different image quality descriptors have been
obtained, the next step consists in classifying the data according
to its quality. We propose two ways of performing this task: super-
vised and automatic. On one hand, in the supervised mode, a small
set of data previously labelled by an experienced user either as
high or low quality is used to teach the classifier what high or
low quality means. We have used a decision tree classifier
(Breiman et al., 1984), which defines simple rules from the super-
vised data to predict responses to data. On the other hand, in the
automatic mode, the classification is performed in a blind manner
without any supervision. Here a z-score index is assigned to each
image based on the PCA method to detect outliers based on simi-
larity analysis. In this case, it is assumed that the number of out-
liers are smaller compared with the number of inliers in the
dataset (Filzmoser, 2005; Vargas et al., 2013).

3. Experimental results

In order to check the proposed approach, we have developed
multiple tests using different samples with different number of
images, which are shown in Table 1. All the images were acquired
Table 1
Results on different datasets used in the experimental results section. Each dataset corres
images (second column). In the third column the percentage of low quality images estimat
the forth and fifth columns we present the accuracy results obtained when the foil-hole an
images, respectively. The sixth and last column presents the classification accuracy when th
images. Note that the complete dataset was used to train the classifier.

Dataset Num % Bad

b-Gal 43 (DI)81% (FHI)81%
41 (DI)32% (FHI)34%
156 (DI)5% (FHI)6%

GroEL 128 (DI)21% (FHI)27%
105 (DI)32% (FHI)27%

KLH 140 (DI)1% (FHI)3%
Hemoglobin 204 (DI)12% (FHI)11%
without beam induced movement correction, as the image quality
descriptors are computed on uncorrected average images due to
the computational cost associated to frame-alignment during
acquisition, and because these descriptors do not require high-
resolution images, as the features we are interested in are clearly
visible at low resolution.

3.1. First experiment: supervised training with all images

First, we supervised manually all the foil-hole and data images
(denoted in Table 1 as FHI and DI, respectively) obtained by the
EPU software, obtaining the resultant percentage of bad quality
images for both cases. In all the cases the supervision process
was performed by the same experienced user, who defined high
and low quality images. As can be seen from Table 1, these per-
centages are in some cases very high, mainly because of too thin
ice layers and the existence of contaminants. Second, we trained
the classifier with all the available data, subsequently determin-
ing for each image if it was of high or low quality. Note that using
the complete dataset for training the classifier and then using it
again to classify the images does not represent a normal work-
flow of analysis. However, this test is intended to check that
the quality image descriptors can retrieve enough information
to classify diverse data in a consistent manner, and furthermore
to detect consistency between FHI and DI images. In this favour-
able case, the differences between the predicted and manually
determined quality were very low in all cases. These differences
are shown in Table 1 as ErrorFHI and ErrorDI, representing the
percentage of data and foil-hole images for which the classifier
obtains a different quality value than the experienced user. Addi-
tionally, another interesting check that we did was to determine
the data image quality from the foil-hole quality descriptors using
the classifier. These results are shown in the last column of
Table 1, which shows (in percentage) very small differences
between the determined quality values with respect to the qual-
ity values obtained manually for the data images. This means that
the quality of the data image can be obtained from the FHI
descriptors.

In Fig. 7 we show the obtained decision trees for the foil-hole (a)
and data images (c) of GroEL sample when the complete dataset
was used for training. Observe that the vector x is composed by
the different image quality descriptors presented in Section 2.
The decision trees are formed by simple rules that classify the data
from their quality image indicators. The decision trees are con-
structed from the training set and the corresponding feature vec-
tors. From our experiments, we have checked that these rules are
changed when we modify the training set without a significant
modification in the classification error. This means that probably
our image quality descriptors provide redundant information for
our classification process. However, observe that this set of image
ponds to a different sample (first column) and is composed by a different number of
ed manually (DI means data image and FHI means foil-hole image) is shown, while in
d data images descriptors are used to determine the quality of the foil-hole and data
e quality of foil-hole images is used to predict the quality of their corresponding data

ErrorDI ErrorFHI FHI? DI

0% 2% 0%
0% 3% 3%
0% 1% 1%
0% 1% 0%
1% 5% 0%
0% 2% 0%
1% 3% 2%



Fig. 7. Obtained decision trees for the foil-hole (a) and data images (c) of GroEL sample when the complete dataset was used for training. In these decision trees 0 and 1
corresponds to high and low quality images respectively. The feature vector x is composed by the following descriptors: x1, x2 and x3 corresponds to the mean, standard
deviation and fitting error of the fitted Gaussian distribution (introduced in Section 2.1.1); x4, x5 and x6 refers to the median, dynamic range and standard derivation of l(r)
signal and x7, x8 and x9 are the median, dynamic range and standard derivation of n(r) (introduced in Section 2.1.2); x10, x11 corresponds to the mean and standard
derivation of the autocorrelation map (introduced in Section 2.1.3), and finally for the data images x12 is the standard deviation of the differences between the region
histograms and the normalized whole image histogram (introduced in Section 2.2.1). In addition (b), (d) and (e) correspond to failed and successful low and high quality FHI
detections. Moreover, (f), (g) and (h) correspond to failed and successful low and high quality DI detections.
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quality descriptors is inexpensive in terms of computing time and
the classification precision is directly related with the richness of
the information provided. Therefore, there is not any reason to
try to reduce this set.
3.2. Second experiment: supervised training with 10 images

In the second experiment, the previous analysis was repeated,
but this time only ten images from each dataset were used for
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training, which were selected manually as being representative of
each of the datasets. The obtained results are shown in Table 2.
Obviously, in this case the prediction accuracy of the classifier is
worse than in the previous case, but still the success rate is quite
high, especially when the quality of the data image is predicted
from the foil-hole quality descriptors. Additionally, we tested the
behaviour of the proposed approach when the ten images used
for training the classifier were selected randomly instead of being
manually selected. For this purpose, we picked randomly ten foil-
hole and data images from each dataset to train the classifiers,
and then, the quality of all the foil-hole and data images were pre-
dicted, respectively. The obtained prediction accuracy results for
the b-Gal (a–c), GroEL (d–f) and KLH (g–i) are shown in Fig. 8,
where we performed these experiments 500 times, i.e. we obtained
the prediction accuracy 500 times for each case, selecting 10 train-
ing images randomly. In the case of the b-Gal and GroEL sets the
prediction accuracy was using all the images (the different datasets
shown in Tables 1–3 were merged). As can be seen from Fig. 8, in
that case in which the 10 training images are representative, pro-
viding good ensemble information to the classifier, the obtained
accuracy results are good, and in most of the cases below 10%.
On the other hand, if the 10 randomly selected training images
are not representative of the dataset –for instance, when they are
all very similar–, the classifier can not extract significant informa-
tion from them and, therefore, the obtained accuracy is not good.

3.3. Third experiment: automatic training

We also tested on the same data set our proposed approach in a
blind automatic mode, obtaining the results shown in Table 3. As
can be seen from Table 3, we have not reported results for the first
case of the b-Gal. In this case, the number of bad quality images is
so high that it has not sense to use a method based on outlier’s
detection as in this case the outliers are indeed the good quality
images. In this table we also report the percentage of false negative
detection by the automatic classification approach (images that are
classified as low quality when they are good quality). These per-
centages are presented in Table 3 by the numbers within the
parenthesis in columns four, five and six. As can be seen from
Table 3, the accuracy results provided by the classifiers are worse
than in the cases shown before. However, there is still a significant
improvement with respect to the accuracy reported without any
quality classification process, which is shown in the second column
of Table 3. Additionally, observe that most of the quality classifica-
tion errors are due to the presence of false negatives, which on one
hand reduces the number of good quality images, but on the other,
it reinforces that those images being classified are indeed of good
quality.

3.4. Fourth experiment: 3D reconstruction evaluation

Finally, we studied the effect of using our proposed approach on
a 3D reconstruction when the data is pruned and not pruned
according to their estimated quality value. The case we focused
Table 2
As Table 1, but using only ten images to train the classifiers.

Dataset Num % Bad

b-Gal 43 (DI)81% (FHI)81%
41 (DI)32% (FHI)34%
156 (DI)5% (FHI)6%

GroEL 128 (DI)21% (FHI)27%
105 (DI)32% (FHI)27%

KLH 140 (DI)1% (FHI)3%
Hemoglobin 204 (DI)12% (FHI)11%
on was the one in which those data images classified as bad qual-
ity, using as input their corresponding foil-hole images, were not
taken into account in the reconstruction process. To this purpose,
we used a dataset of 389 micrographs of GroEL sample, partially
composed by the images used on Experiments 3.1, 3.2 and 3.3,
and we obtained their CTF using the Ctffind4 method (Rohou and
Grigorieff, 2015). We proceeded by picking 27,347 particles using
the Xmipp semi-automatic particle picking method (Abrishami
et al., 2014), that were classified using Relion (Scheres, 2012) into
200 classes with the goal of removing bad images. From these
selected classes we used RANSAC (Vargas et al., 2014) for the initial
volume determination. Additionally, we run our proposed
approach to classify the low resolution foil-holes images, with
the classifier initially trained using 20 images. We used 20 images
instead of 10 images as before to add some extra robustness to the
classifier before going to 3D reconstruction. In this way only 150
high magnification data images were labelled as good quality,
which is a 38% of the initial 389 micrograph set. From this reduced
data set we select the particles included in the data images labelled
as good quality obtaining 13,245 picked particles, which were all
contained in the largest dataset of 27,347 particles. Our objective
here is to show that the smaller set of 13,245 particles is one of
the subsets with highest quality from the larger set of 27,347 par-
ticles. To show this point we performed 3D reconstructions using
RELION and gold-standard procedure using the smaller set of
13,245 particles classified by the FHI images and ten different sub-
sets of size 13,245 particles randomly picked from the larger set.
The different FSC curves obtained from each 3D reconstruction
by gold-standard are shown in Fig. 9. As can see from Fig. 9, the
results obtained from the smaller set of 13,245 particles classified
as high quality by the FHI images, has the best FSC values and the
highest resolution. Therefore, it can be concluded that using our
proposed approach the amount of high quality data obtained from
the electron microscope can be improved (relaxing subsequent
micrograph screening processes) without compromising the acqui-
sition time and enhancing the throughput. Finally, in Fig. 10 we
show FSC curves obtained from the smaller ‘‘good quality” set of
13,245 particles (red curve) and from the complete set of 27,347
particles (green curve). These curves show that essentially at
high-resolution both reconstructions have the same amount of
information, while the high quality set has 52% fewer particles
than the other. The GroEL data used in the paper was acquired with
a DDD detector (Falcon II) but without beam induced movement
correction. In addition, our sample preparation procedure suffered
from some small conformational continuous heterogeneity in the
sample. These points explain that the resolution achieved is around
7 Å in both cases. Note that this comparison is not fair in the sense
that using our proposed method during data collection we may
have the same number of particles that without using this
approach after similar microscope time. Therefore, the fair compar-
ison would be between reconstructions obtained with similar
number of particles as was done in Fig. 9. In Fig. 2 the main work-
flow of automated acquisition was shown, with the new steps indi-
cated in red. The improved throughput of the data acquisition
ErrorDI ErrorFHI DI? FHI

14% 9% 9%
5% 5% 7%
2% 2% 2%
0% 1% 0%
4% 9% 2%
0% 5% 2%
8% 9% 5%



Fig. 8. Prediction accuracy results for the b-Gal (a–c), GroEL (d–f), KLH (g–i) and Hemoglobin (j–l), where the prediction accuracy was obtained selecting 10 training images
randomly 500 times for each case (cases are ranked left to right in increasing error). For the case of the b-Gal and GroEL the datasets shown in Tables 1–3 were merged.
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process is obtained because after rejecting a foil-hole image, the
next steps are skipped. In the example above, we went from 389
to 150 data images rejecting 127 foil-hole images (33%) from a
total of 278. The acquisition of the entire GroEL dataset with EPU
took 19 h. The steps of moving the stage, centering the hole,
auto-focus, waiting for drift stabilization, and final acquisition on



Table 4
Details about the sample preparation and image acquisition of the different datasets used

Sample b-Gal Gr

Grid Type Quantifoil Qu
Hole size 2.5 lm 2.5
Spacing 4.25 lm 4.2
Vitrification by Vitrobot Vit
TEM FEI Titan Krios FEI
Detector Falcon II Fal
Data image size 4096 � 4096 40
Data image Field-of-view 465 nm 46
Foil hole image field-of view 7.23 um 7.2

Table 3
As Tables 1 and 2, but using the automatic classification approach. The numbers within the parenthesis in columns four, five and six represent the percentage of false negatives
(images that are classified as low quality while they are actually good quality) detected by the automatic classification approach.

Dataset Num % Bad ErrorDI ErrorFHI FHI? DI

b-Gal 43 (DI)81% (FHI)81% – – –
41 (DI)32% (FHI)34% 3% (100%) 10% (25%) 7% (34%)
156 (DI)5% (FHI)6% 17% (92%) 33% (87%) 34% (91%)

GroEL 128 (DI)21% (FHI)27% 12% (98%) 10% (100%) 10% (100%)
105 (DI)32% (FHI)27% 11% (75%) 6% (50%) 9% (34%)

KLH 140 (DI)1% (FHI)3% 56% (100%) 59% (100%) 59% (100%)
Hemoglobin 204 (DI)12% (FHI)11% 40% (90%) 41% (91%) 41% (90%)

Fig. 9. The dashed black lines represent FSC curves obtained by gold-standard
procedure computed using 13,242 particles randomly picked from the set of 27,347.
The red curve is the respective FSC curve obtained by the 13,242 particles picked
from the selected high quality set of micrographs.

Fig. 10. FSC curves obtained by gold-standard procedure computed using the
smaller ‘‘good quality” set of 13,245 particles (red curve) and the complete set of
27,347 particles (green curve).
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average took 175 s per foil hole. If a foil hole would be directly
rejected after the first foil hole image acquisition, only the stage
move, a single acquisition, and execution of the image assessment
algorithm would be required, in total taking approximately 10 s.
This means that when the used EPU version would be patched to
skip rejected foil holes, the saved acquisition time is #rejected foil
holes � time saving = 127 * (175 � 10) = 5 Hours and 50 min. For
this dataset the total acquisition time would therefore go down
from 19 to 13 h, a speed up of about 30%. Note that besides a speed
up of acquisition time, the reconstruction time will also go approx-
imately 33% faster, since 33% of the images in the original dataset
don’t need to be processed anymore. Finally in Table 4 we provide
details about the sample preparation and image acquisition of the
different datasets used above in the first, second and third
experiments.
4. Conclusion

Nowadays, automated single particle acquisition software pack-
ages allow a high degree of automation and robustness in the oper-
ation of electron microscopes. These software packages let
managing the microscope in an automated manner for hours and
even days without any human interaction. However, little effort
has been put into the development of automatic or semiautomatic
approaches to acquire only high quality data. Obtaining high
quality sample preparation is a difficult process which should be
optimized probably for each sample (Vinothkumar and
Henderson, 2016). As a consequence not all the obtained foil holes
are indicated to be imaged at high magnification. Typical problems
that compromise the quality of the data images are the absence of
particles in the amorphous ice, presence of inhomogeneous ice
layers or presence of contaminants. All of these problems limit
the quality of the collected data, requiring subsequent data curing
efforts and limiting the amount of high-quality data to be
collected from the electron microscope in a limited period of time.
Nonetheless, obtaining high-quality data is of great importance in
3DEM. Firstly, the resolution of the final reconstruction will be
affected by the quality of the input data. Secondly, microscope
acquisition time is expensive, and therefore, users must obtain as
many good quality data as possible in their restricted period of
acquisition time.
on the Experimental Results section.

oEL KLH Hemoglobin

antifoil Quantifoil Quantifoil
lm 2.5 lm 2.5 lm
5 lm 4.25 lm 4.25 lm
robot Vitrobot Vitrobot
Titan Krios FEI Titan Krios FEI Titan Krios
con II CETA 1 Falcon I
96 � 4096 4096 � 4096 4096 � 4096
5 nm 929 nm 570 nm
3 um 7.50 um 25 um
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In this work, we have proposed a data quality classification
approach based on a set of easy-to-compute and fast image quality
descriptors, which can be calculated on the fly while the micro-
scope is acquiring data. Two procedures have been proposed:
supervised and automatic. The preferred procedure to use depends
on the quality of the sample preparation. First, the automatic pro-
cessing procedure gives more flexibility as no input is required
from the microscopist. However, this approach should be per-
formed only in cases where the number of low quality images is
significantly smaller than the high quality ones. Therefore, this
procedure should be used only with optimally prepared samples.
Observe from Table 3 that the presence of false positives is lower
and almost zero in the datasets with low percentages of low qual-
ity images. Second, the supervised method yields higher success
rate but requires a training procedure that should be performed
once for each collecting session. This process requires around 10
or 20 foil-hole and data images and takes a few minutes. This case
is more useful in cases more affected by low quality images. Our
experimental results show that a significant improvement can be
made using our proposed method, illustrated by a GroEL recon-
struction using approximately 40% less data we obtained at the
end practically the same resolution as a reconstruction with no
data removed.
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