

UNIVERSITY CEU - SAN PABLO

POLYTECHNIC SCHOOL

BIOMEDICAL ENGINEERING DEGREE

BACHELOR THESIS

Development of a classification neural
network for the detection of

relationships between biomedical
entities

Author: Raquel Vázquez Reza
Supervisor: Carlos Oscar Sorzano Sánchez

July 2022

UNIVERSIDAD SAN PABLO-CEU

ESCUELA POLITÉCNICA SUPERIOR
División de Ingeniería

Datos del alumno

NOMBRE:

Datos del Trabajo

TÍTULO DEL PROYECTO:

Tribunal calificador

PRESIDENTE:

FDO.:

SECRETARIO:

FDO.:

VOCAL:

FDO.:

Reunido este tribunal el ______/______/______, acuerda otorgar al Trabajo Fin de Grado

presentado por Don_______________________________la calificación de _________________.

ACKNOWLEDGMENTS

Al CEU San Pablo y a sus docentes, por acompañarme a lo largo de esta etapa,

mostrándose siempre disponibles para ayudarme en mi formación, por su esfuerzo y

dedicación hacia los alumnos.

A mi circulo afectivo, amigos y familia, por el apoyo moral y la confianza

depositada en mí, sobre todo a mis padres, por el esfuerzo que han mostrado siempre

por ofrecerme la mejor educación.

Y a todos los que colaboran en el avance de nuevas soluciones médicas, con el

fin de poner a disposición de los sanitarios el mejor equipamiento, ofreciendo a los

pacientes seguridad, confianza y calidad.

Development of a classification neural network for the detection of relationships between

biomedical entities

 i

ABSTRACT

COpenMed is a website created for the structuring of medical knowledge. This

website was created to facilitate people's access to medical information. According to

the United Nations, more than half of the world's population does not have access to

essential health services but more than 60% of the population has access to the Internet.

COpenMed is not a diagnostic website, it aims to guide and provide information about

symptoms and diseases. The purpose of this Bachelor thesis is to generate, with the use

of Python language, a classification neural network to identify if there is a relationship

between two biomedical entities registered in the web database. The pre-training of the

neural network has been carried out with BERT, for the training of the neural network

PyTorch has been chosen. Data on diseases and symptoms were extracted directly from

the COpenMed database. For the evaluation of the results, the confusion matrix

technique was used. The generated network obtained a 95% and 55% of sensitivity and

specificity respectively detecting strong relations between entities.

Development of a classification neural network for the detection of relationships between

biomedical entities

 ii

Development of a classification neural network for the detection of relationships between

biomedical entities

 iii

RESUMEN

COpenMed es una página web creada para la estructuración del conocimiento

médico. Esta web fue generada con el fin de facilitar el acceso a las personas a

información médica. Según las Naciones Unidas, más de la mitad de la población

mundial no tiene acceso a servicios de salud esenciales (pero más del 60% de la

población tiene acceso a Internet). COpenMed no es una web diagnosticadora, pretende

orientar y facilitar información acerca de síntomas y enfermedades. El propósito de este

proyecto es generar, con el uso de lenguaje Python, una red neuronal de clasificación

que permita identificar si existe relación entre dos entidades registradas en la base de

datos de la web. El preentreno de la red neuronal se ha llevado a cabo con BERT, para

el entreno de la red neuronal se ha escogido PyTorch. Los datos sobre las enfermedades

y síntomas se han extraído directamente de la base de datos de COpenMed. Para la

evaluación de los resultados se ha usado la técnica de matriz de confusión. La red

generada ha obtenido un 95% y 55% de sensibilidad y especificidad respectivamente

detectando relaciones fuertes entre entidades.

Development of a classification neural network for the detection of relationships between

biomedical entities

 iv

Development of a classification neural network for the detection of relationships between

biomedical entities

 v

INDEX

1 INTRODUCTION ... 1

1.1 MOTIVATION ... ERROR! BOOKMARK NOT DEFINED.

1.2 COPENMED .. 3

1.3 SOFTWARE ... 3

 1.3.1 Anaconda………………………………………………………………………………………………3

 1.3.2 Google Colab…………………………………………………………………………………….……4

 1.3.3 BERT……………………………………………………………………………………………………4

 1.3.4 PyTorch…..………………………………………………………………………………..................5

1.4 PHASES AND STRUCTURE OF THE MEMORIE .. 6

2 ARTIFICIAL NEURAL NETWORKS ... 7

2.1 INTRODUCTION ... 7

2.2 COMPONENTS AND BIOLOGICAL COMPARISONS ... 8

2.3 INSIDE CHARACTERISTICS .. 10

 2.3.1 BERT …..………………………………………………………………………………………..……11

 2.3.2 PyTorch……..…………………………………………………………………………………..……14

3 MATERIALS AND METHODS ... 17

3.1 INPUT FILES BERT PRE-TRAINING OBTENTION .. 17

3.2 BERT PRE-TRAINING IMPLEMENTATION ... 20

3.3 INPUT FILES PYTORCH OBTENTION .. 23

3.4 PYTORCH TRAINING IMPLEMENTATION ... 24

4 RESULTS .. 28

5 DISCUSSION .. 32

6 CONCLUSIONS .. 33

7 REFERENCES .. 34

Development of a classification neural network for the detection of relationships between

biomedical entities

 vi

FIGURE INDEX

FIGURE 1 GOOGLE TREND DETECTION OF SEARCHS 2020-2022. LEFT PICTURE “SYMPTHOMS”. RIGHT

PICTURE “DISEASE” .. 1

FIGURE 2 GOOGLE TREND DETECTION OF SEARCHS 2020-2022. “COUGH” ERROR! BOOKMARK NOT

DEFINED.

FIGURE 3 NEURON ANATOMY .. 7

FIGURE 4 NEURAL SIGNAL TRANSMISION ... 8

FIGURE 5 NEURAL NETWORK SCHEME ... 9

FIGURE 6 ARTIFICIAL AND BIOLOGICAL NEURON COMPONENTS .. 10

FIGURE 7 BACK PROPAGATION NETWORK ... 11

FIGURE 8 SOFTMAX ACTIVATION FUNCTION………….…………………………………………………....13

FIGURE 9 CROSS-ENTROPY FUNCTION……………………….…………………………………………….13

FIGURE 10 DISTANCE BETWEEN LEFT AND RIGHT VALUES ... 13

FIGURE 11 PYTORCH NEURAL NETWORK SCHEME ... 14

FIGURE 12 ACTIVATION FUNCTION .. 15

FIGURE 13 SIGMOID FUNCTION .. 15

FIGURE 14 BCE LOSS FUNCTION .. 15

FIGURE 15 ADAM OPTIMIZER. LEFT SIDE OF THE EQUATION EQUALS TO MOMENTUM. RIGHT SIDE OF THE

EQUATION EQUALS TO ROOT MEAN SQUARE PROPAGATION .. 16

FIGURE 16 TRAINING COST VS PERFORMACE OF OPTIMIZERS GRAPH .. 16

FIGURE 17 DIRECTED STAR NETWORK OF THE ENTITY BRITTLE NAILS. ... 17

FIGURE 18 DIRECTED STAR NETWORK OF THE ENTITY HYPOTYROIDISM. .. 18

FIGURE 19 GLOBAL NETWORK EXAMPLE. ... 19

FIGURE 20 RANDOM WALK EXAMPLE FROM ENTITIE 9 .. 19

FIGURE 21 CREATE PRE-TRAINING DATA INPUTS ... 21

FIGURE 22 RUN PRE-TRAINING INPUTS .. 22

FIGURE 23 EXTRACT FEATURES INPUTS ... 23

FIGURE 24 NEURAL NETWORK FINAL SCHEME ... 25

FIGURE 25 NEURAL NETWORK STRUCURE DECLARATION ... 25

FIGURE 26 LOSS AND ACCURACY OF THE FIRST 5 EPOCHS .. 27

FIGURE 27 LOSS AND ACCURACY OF THE LAST 5 EPOCHS ... 27

FIGURE 28 CONFUSION MATRIX STRUCTURE .. 28

FIGURE 29 PRECISION FORMULA ... 29

FIGURE 30 ACCURACY, SENSITIVITY AND SPECIFICITY FORMULAS ... 30

FIGURE 31 ACCURACY AND PRECISION COMPARISION .. 30

FIGURE 32 F1-SCORE FORMCULA ... 30

Development of a classification neural network for the detection of relationships between

biomedical entities

 vii

Development of a classification neural network for the detection of relationships between

biomedical entities

 viii

TABLE INDEX

TABLE 1 CONFUSION MATRX LEVEL 1 ... 29

TABLE 2 CONFUSION MATRIX LEVEL 0.5 .. 29

TABLE 3 PRECISION, RECALL, F1-SCORE AND ACCURACY OBTAINED, LEVEL 1 ERROR! BOOKMARK NOT

DEFINED.1

TABLE 4 PRECISION, RECALL, F1-SCORE AND ACCURACY OBTAINED, LEVEL 0,5 . ERROR! BOOKMARK NOT

DEFINED.1

Development of a classification neural network for the detection of relationships between

biomedical entities

 ix

Development of a classification neural network for the detection of relationships between

biomedical entities

 1

1 INTRODUCTION

1.1 Motivation

The Universal Declaration of Human Rights [1] states that: "Everyone has the

right to a standard of living adequate for the health and well-being of himself and of his

family...". The current world situation is far from this right, according to World Health

Organisation (WHO) [2]: "Half the world lacks access to essential health services...".

This means that 50% of the population does not have access to regular health

consultations. In contrast, according to the International Telecommunication Union

(ITU) [3], which is the United Nations specialised agency for information and

communication technologies (ICT), more than 60% of the population has access to the

internet.

Health has always been a topic of interest within society. In recent years, due to

the COVID-19 pandemic, also called coronavirus, the volume of searches on health

issues, symptoms and diseases has increased. Google trend [4], a free and open access

tool provided by Google, which allows us to compare the search popularity of various

words or phrases, classifies "symptoms" as a "very recurrent" search in different regions

worldwide and the word "disease" as a "recurrent" search (see Figure 1).

Figure 1. Google trend detection of searchs 2020-2022. Left picture

“symptoms”, Right “disease”.

If we enter "cough", one of the symptoms of different respiratory diseases, the

search volume expands to many more regions worldwide (see Figure 2).

Development of a classification neural network for the detection of relationships between

biomedical entities

 2

Figure 2. Google trend detection of searchs 2020-2022.”Cough”.

People are interested in knowing the causes of changes in their health, which is

why it is essential to provide health information in an appropriate way. CopenMed is an

open content website for structuring medical knowledge [5], which aims to offer a web

search engine that provides medical information in a correct way, understanding the

common language used by users.

Today the amount of information available on diseases, symptoms, causes and

treatments in the entire medical field is enormous, far more extensive than a human

brain can assimilate. Deep learning techniques are a type of machine learning, artificial

intelligence (AI), whose aim is to efficiently automate the process of creating analytical

models, allowing to identify and decide as a human brain would do but handling a much

larger volume of data. These techniques are composed of artificial neural networks [6],

which, as their name suggests, aim to mimic the functioning of neural networks in living

organisms. This technique will be explained in depth in section 2.

This Bachelor thesis focuses on the development of a classification neural

network, created using Python language, which aims to identify the relationships

between different symptoms and diseases, registered in COpenMed [5]. BERT [7] and

PyTorch [8] have been chosen for the development of the neural network. Anaconda [9]

and Google Colab [10] have been used as working environments.

Development of a classification neural network for the detection of relationships between

biomedical entities

 3

1.2 COpenMed

COpenMed [5], as previously mentioned, is an open content website for

structuring medical knowledge. One can think of this website as a kind of Wikipedia. Is

not intended to replace the doctor, nor is it a diagnostic website. The aim of this website

is to bring structured health information to everyone.

This website is operated by volunteers and trainees who add contributions to

the structuring of the content. Currently, the website has about 10,000 entities and

relationships. Each entity is equivalent to a symptom, disease, treatment, or cause.

Within the database, the relationships that exist between these entities are established.

The objectives of this website are twofold: to facilitate people's access to

medical information using a more commonly used language, but without losing the

technical and scientific rigor, and to facilitate the access of machines to this information

to build automatic medical "reasoners" that, from the symptoms, can find the most

probable causes that provoke them.

This report aims to contribute to the objectives of the creation of this website,

building a neural network of classification that is able to identify the relationships

between the different entities. This network will contribute to the development of the

web search engine that will be generated for the website.

1.3 Software

1.3.1 Anaconda

Anaconda [9] is the world’s most popular open-source Python distribution

platform. This open-source software has been choosing because is intuitive, allowing

easy installation of packages. The packages are securely hosted and regularly updated.

The software has been installed for use under the SO of Windows and allows the use of

various packages used in Machine Learning techniques (e.g. TensorFlow, torch...).

Spyder [11] is a powerful scientific Python development environment pre-

installed in Anaconda. It includes editing, interactive testing, debugging, and

introspection features. During this Bachelor thesis the 5.0.1 version has been used.

Development of a classification neural network for the detection of relationships between

biomedical entities

 4

Python is a programming language that prioritises code readability. Versions

3.9 and 3.7 have been used. Python code is readable and consistent furthermore the

libraries provided by Python are diverse, containing many data science and

mathematics-oriented libraries. One of the most prominent libraries for developing

Deep Learning techniques and provided by Python is TensorFlow [12], which is an

open-source library developed by Google, used to build and train neural networks.

1.3.2 Google Colab

Google Colab [10] is a Google tool known as "Colaboratory", this tool allows

programming, running and sharing code, using the Python language, within Google

Drive. Colab can be thought of as a JupiterNotebooks notebook stored in Google Drive,

this notebook is connected to a "runtime" in the Colaboratory cloud so it allows to run

Python code without prior installation. During execution, Colab offers a specific amount

of RAM and Hard Disk space, if this space is exceeded the code stops executing. The

code can be shared via Google Drive or Github. Google Colab notebooks are stored in

the same format as Jupiter notebooks "ipybn". This programme has been selected as a

method for developing and executing code, because it is particularly suitable for

machine learning tasks. Google Colab provides free access to GPUs, is always ready to

use and requires no installation of libraries, which makes it easier and faster to run code.

1.3.3 BERT

To improve the classification performance of the neural network, a pre-training

of the network has been developed. Neural networks are composed of different layers,

in each of which there are a different number of neurons. The neurons in the network

have a numerical weight, which modifies the received input, which must be numerical.

At the beginning of the training of a neural network [6], the weights

accompanying the neurons are usually initialised randomly, these weights will be

adjusted by mathematical functions until an optimal output is obtained.

A BERT [7] pre-training stage allows the weights of the network to be easily

adjusted when the network is trying to obtain an answer from the language expressed by

humans. BERT pre-training finds a good set of vector representation weights to

Development of a classification neural network for the detection of relationships between

biomedical entities

 5

compress the input data and usually achieves better network classification performance

because it provides a numerical representation of the expressed sentence that can be

processed by the neural network.

BERT [7], Bidirectional Encoder Representations from Transformers, is an AI-

based system. The system was developed to assist Google Search in natural language

understanding (NLP) tasks. In this way, Google can better understand the language

commonly used by people. COpenMed [5] aims to bring medical information closer to

the user by using a more common language, so the objectives that BERT fulfils are in

line with what is desired on this website.

BERT is bidirectional, as its name suggests, because it analyses the sentence in

two directions. This task is carried out using a novel technique called masked LM

(MLM). It analyses the words before and after a keyword. This property allows it to

deeply understand the context of phrases. It prioritises search intent over keywords.

This system has been used as a pre-training method for the classification neural

network developed during this Bachelor thesis. The BERT code has been modified

using Spyder, Python 3.7, to suit the intended purpose. The code has then been run

using Google Colab to employ the use of GPUs. BERT tools will be explained in

section 2.3.1, BERT implementation will be described in section 3.1.

1.3.4 PyTorch

PyTorch [8] is an open-source library with a great ease of use, it is created to

be flexible. This library has a syntax and application similar to Python, its

documentation is organized and useful for beginners, it is simple to use, the learning

curve for developers is short. It is focused on performing numerical calculations using

tensor programming, this property facilitates its use in deep learning tasks.

 PyTorch employs data parallelism which allows it to distribute the work

among multiple CPU or GPU cores. The use of GPUs accelerates the training of

models. PyTorch has been a key player in the development of relevant artificial

intelligence applications, such as Tesla's Autopilot.

Development of a classification neural network for the detection of relationships between

biomedical entities

 6

These features make PyTorch one of the most affordable options for building

neural networks. This library is included in Anaconda. PyTorch tools will be explained

in section 2.3.2, PyTorch implementation will be described in section 3.2

1.4 Phases and Structure of the memorie

Throughout this report, the process of creating, executing and evaluating the

pre-training and training of the classification neural network will be described.

The paper is divided into the following sections: section 2, describes the

principles of neural networks and the mathematical procedures of Bert and PyTorch,

section 3, describes the database used and the process of creating the pre-training and

training of the neural network, section 4, describes the evaluation tests carried out and

presents the results obtained from the training, section 5, discusses the results, and

section 6, presents conclusions drawn from this Bachelor thesis.

Development of a classification neural network for the detection of relationships between

biomedical entities

 7

2 ARTIFICIAL NEURAL NETWORKS

2.1 Introduction

The brain is an organ of the human body, [13]. It is made up of more than a

billion neurons. Neurons are a type of cell in the nervous system. They work together,

giving us the ability to reason and understand the world.

Biologically [14], a neuron is made up of: The body of the cell, or soma, which

houses the nucleus. Dendrites, which are branches that start from this cell and form a

dense network, and the axon. The axon is a longer fibre, usually about one centimetre

long, which allows connections to be made between different neurons (see Figure 3).

The connection established between neurons is called a synapse. The number of

connections established by a neuron varies from a dozen to a thousand.

Figure 3. Neuron anatomy.

Neurons communicate by means of signals [14]. Signals are propagated by

electrochemical reactions. The synapse, or connection established between neurons,

releases transmitter chemicals that enter through the dendrites, raising the electrical

potential of the cell body (see Figure 4). If the set limit is reached and exceeded, an

electrical impulse, also called an action potential, is sent to the axon. The impulse

diffuses down the branches of the axon, eventually reaching the synapse and releasing

transmitters into the bodies of other neurons. There are two types of synapses,

excitatory, which increase the potential, or inhibitory, which decrease the potential.

Another point to note is the plasticity of synaptic connections. Plasticity is a property

that allows the intensity of connections to be altered over time in response to a

simulated pattern, the brain learns from the experience. These mechanisms are the

foundation of learning in the brain.

Development of a classification neural network for the detection of relationships between

biomedical entities

 8

Figure 4. Neural signal transmision.

People have a great capacity for reasoning. We can perform several operations

simultaneously, we have a very complex, non-linear and parallel information

management system. Our brain, however, has some limitations. Many learning tasks

require a large analysis of a huge amount of data to draw conclusions, our brain has a

limited memory for analysis compared to computers. Computers allow us to store an

enormous amount of data, they also speed up the results, surpassing the human brain in

speed. However, in recognition tasks, the human brain still outperforms the computer.

Brains and computers can resemble. The brain picks up signals from the

environment, processes the information it receives and generates a response from, as

discussed in the previous section, electrical impulses and chemical reactions. Computers

contain microprocessors. Microprocessors treat information in the form of electricity,

process it based on their established programming and generate an output response.

Artificial intelligence systems aim to take advantage of both brain and

computer systems. This is the reason for the creation of neural networks.

2.2 Components and biological comparisons

The following section explains the components of artificial neural networks

and their similarities to the biological ones they are inspired by.

Development of a classification neural network for the detection of relationships between

biomedical entities

 9

The key element of a biological neural network is the neuron, likewise, the key

element of an artificial neural network is the "node", also called neuron. The nodes are

linked by connections and are organized in layers. We can classify the layers as:

external layers and hidden layers. The external layers can be of two types, input layers

and output layers. Input layers are composed of nodes that are connected to an external

environment; they receive external stimuli. Output layers, give response to the system.

The hidden layers are composed of nodes that establish connections with other nodes,

they have no contact with the outside. Each node, as biological neurons, can receive “n”

inputs since they can stablish different connections (see Figure 5).

Figure 5. Neural Nework Scheme.

Each connection established between nodes has assigned a numerical weight,

“wij”. This is the main long-term memory resource. In the previous section, it has been

argued that neurons can have either inhibitory or excitatory power, artificial neurons can

also have this power. If the weight "wij" has a positive value, it indicates that the

relationship between neurons, as in biological neurons, is excitatory, this means that if

neuron “i” is activated, neuron “j” will receive a signal that will tend to activate it. If, on

the contrary, the weight "wij" has a negative value, the relationship between neurons

will be inhibitory, if neuron “i” is activated, it will send a signal that will deactivate

neuron "j". The learning that the neural network performs during its training is done by

updating these weights. This property is similar to the plasticity shown by the brain

when learning new things, commented in section 2.1.

Development of a classification neural network for the detection of relationships between

biomedical entities

 10

The "wij" weights measure the intensity of interaction between the nodes that

are connected. At node "i", the sum of the “n” inputs "xj", weighted with the weights

"wij", generates the total input or "post-synaptic potential" of node "i". The activation

function “f” is the one that will designate the output "yi" of the node, to this function is

applied the difference between the "postsynaptic potential" and the threshold “ϴi”. If

the threshold is exceeded, a connection with the next neuron is established (see Figure

6).

Figure 6. Artificial and biological neuron components.

Biologically, it is generally accepted that the information stored in the brain is

more related to the synaptic values of the connections between neurons than to the

neurons themselves. Knowledge is found in the synapses. Likewise, in artificial neural

networks, knowledge is found in the "wij" weights. Every learning process involves a

certain number of changes in these connections.

2.3 Inside Characteristics

This section will describe the configuration characteristics an the mathematical

inside of the neural network developed during this Bachelor thesis.

Neural networks are composed, as mentioned in previous sections, of layers

containing nodes. The nodes establish connections between them. The connectivity

between the nodes of a network is related to the way in which the outputs of neurons are

channeled to become inputs to other neurons. There are two types of connectivities

forward and backward. Forward propagation fed the input data in the forward direction

Development of a classification neural network for the detection of relationships between

biomedical entities

 11

through the network. Backward propagation allows cycles and connections with

previous levels (see Figure 7). PyTorch [8] and BERT [7] make use of both, after

performing forward propagation, they perform backward propagation to update the

weights.

Figure 7. Back propagation network.

There are different types of learning, supervised and unsupervised learning.

BERT use an unsupervised learning, the data introduced is not labelled. The type of

learning used during the training part, developed using PyTorch, is supervised learning.

This learning makes use of labels, where the machine is provided with a set of labeled

data so that it knows how to draw conclusions and classify from these labels. This

learning method has been used because the existing relationships between entities are

available.

A binary classifier has been used for the application of this learning. Binary

classifiers distinguish between two categories, "related" 1 or "unrelated" 0. This

classifier will make use of linear and non-linear functions.

The size of the network must be chosen carefully for the network to be optimal.

A network size that is too large will present generalization problems when entries are

introduced that he has not previously seen. A network size that is too small will not be

able to represent the desired function. This problem makes it necessary to be careful

with the size of the network you choose. Following sections will explain more in detail

the logistics inside BERT and the neural network developed using PyTorch.

2.3.1 BERT

BERT [7] is conceptually simple and empirically powerful. It consists of two

steps: pre-training and fine-tuning. During this work we have made only use of the pre-

Development of a classification neural network for the detection of relationships between

biomedical entities

 12

training which will provide us with a numerical representation of the input that will

facilitate the training of the neural network.

During pre-training, the model is trained on unlabeled data, phrases composed

of biomedical entities and relationships, using two unsupervised tasks. Task one,

Masked LM and task two, Next Sentence Predicition (NSP). MLM task mask some

percentage of the input tokens at random, and then predict those masked tokens. The

final hidden vectors corresponding to the mask tokens are fed into an output sofmax

over vocabulary. In this Bachelor thesis we masked over 15% at random. The masked

words will be predicted later with cross entropy loss.

The input of this model must be a sentence. Bert will mask this sentence during

MLM tasks. This technique uses a token vocabulary [15], where we can find: [CLS]

which stands for a special classificaton token and is placed at the beginning of the

sentence. [SEP] that separates sentences and it is placed at the end of sentences. [UNK]

which refers to unkown token, [MASK] which replaces the keywords from which we

will draw context and [PAD] that is used to adjust the sentence to the size you have

specified the input sentences should be, if the sentence is shorter than expected, [PAD]

is added to reach the desired length.

BERT uses Transformer during pre-training for obtaining numerical

representation with which to work mathematically. Transformer is a mechanism capable

of learning the contextual relationships between words. Transformer offers different

mechanisms. BERT uses the Transformer mechanism as an encoder that reads the input

text and converts it into a vector.

Transformer reads the entire sequence of words at once, which is why it is

considered bidirectional, it learns the context of a word based on its entire environment

(left and right). This method uses as input a sequence of tokens, these are converted into

vectors and then processed in the neural network. The output is a sequence of vectors

where each vector correspond to a token.

Transformer as an encoder has two layers: self-attention and feedback. Self-

attention is the method that allows to reformulate the representation of a word, based on

all the other words in the sentence.

Development of a classification neural network for the detection of relationships between

biomedical entities

 13

The Softmax [16] activation function is the activation function of this model.

This function converts a vector of numbers into a vector of probabilities, where the

probabilities of each value are proportional to the relative scale of each value in the

vector (see Figure 8).

Figure 8. Softmax activation function.

Cross-entropy loss [17] is used when adjusting model weights during training.

The aim is to minimize the loss, the smaller the loss the better the model. A perfect

model has a cross-entropy loss of 0. Cross-entropy function is defined as H(P,Q), where

P is the target distribution, and Q is the approximation of the target distribution (see

Figure 9).

Figure 9. Cross-entropy function.

The purpose of the Cross-Entropy is to take the output probabilities (P) and

measure the distance from the truth values (see Figure 10). The error formula, showed

in figure 10, applies the algorithm in such a way that the closer the output is to 1, the

smaller the error, the closer the output is to 0, the higher the error.

Figure 10. Distance between left and right values.

Development of a classification neural network for the detection of relationships between

biomedical entities

 14

NSP task is not used in this pre-training since we are only generaiting one

sentence per entity. This pre-training part is the most expensive part of the computing,

Once the Bert neural network has been trained following the previous steps, we can

obtain the embeddings of each entity, which will be the contextual numerical

representations of each token, that will serve as input for the training of the

classification neural network developed with PyTorch.

2.3.2 PyTorch

PyTorch [18] is a machine learning library that make compatible usability and

speed: it provides an imperative and Pythonic programming style that supports code as a

model, makes debugging easy and is consistent with other popular scientific computing

libraries, while remaining efficient and supporting hardware accelerators such as GPUs.

The PyTorch neural network receives as input a data table that must contain

labels. The labels serve to identify the result of our classification. To avoid overtraining

the neural network, the initial data is divided into test and train. Train refers to the data

that will be used to train the network. Test data is the one not used during training to

avoid overfitting. The PyTorch neural network will process the data in batch mode. This

library follows the following network schema shown in Figure 11:

Figure 11. PyTorch neural network scheme.

In the neural network, data and weights are entered. The output of the

activation function will be the weighted sum of the previous input (see Figure 12),

where "b" is bias, "x" is the input data, "w" refers to the weights. The network is

composed of different linear layers. Each linear layer is followed by a ReLu function, a

batch normalization and a dropout function. The linear layers will contain the nodes.

Development of a classification neural network for the detection of relationships between

biomedical entities

 15

ReLu function is a rectification function for applying nonlinear functions. Batch

normalization is a method that normalizes each batch of data, prevents very different

distances between data. Dropout function is a regularization technique to reduce the

overfit, this technique takes some weights and puts them at 0.

Figure 12. Activation function.

Subsequently, the function loss of the output “z” and the expected output “y” is

calculated, using BCE with logits loss. This function combines a Sigmoid layer and the

BCELoss in one single class. Sigmoid applies the element-wise function (see Figure

13). BCE Loss creates a criterion that measures the Binary Cross Entropy between the

target and the input probabilities (see Figure 14), where “n” is the batch size. The final

result will be the mean of L.

Figure 13. Sigmoid Function.

Figure 14. BCE loss function.

Once the final output is obtained, we proceed to the last step, the optimization

of the weights. This optimization is carried out by Adam optimizer. Adam optimizer

involves a combination of two gradient descent methodologies, momentum and root

mean square propagation. Momentum accelerates the gradient descent algorithm by

computing the exponentially weighted average. The use of averages makes the

algorithm converge towards the minima in a faster pace. Root mean square propagation

takes the exponential moving average of the squared gradients. Adam inherits the

Development of a classification neural network for the detection of relationships between

biomedical entities

 16

strengths of the positive attributes of these two methods and build a more optimized

gradient descent (see Figure 15).

Figure 15. Adam optimizer. Left side of the equation equals to momentum.

Right side of the equation equals to Root mean square propagation.

Adam optimizer gives much higher performance than other optimizers (see

Figure 16), the graph shows how this optimizer outperforms the rest in terms of training

cost (low) and performance (high). Therefore it has been selected for his use.

Figure 16. Training cost vs performance of optimizers graph.

This library includes different modules. These modules allow PyTorch to

calculate the gradients of the weights of the different layers at the same time as it

applies the forward phase to the train data. Other machine learning techniques, such as

Keras, calculate the gradients statically and then apply the algorithm.

Another advantage of PyTorch is the use of tensors. Tensors, as mentioned

before, are multidimensional matrices. The tensors used by PyTorch require an

indication of whether the gradient needs to be calculated for the particular tensor or not.

Development of a classification neural network for the detection of relationships between

biomedical entities

 17

3 MATERIALS AND METHODS

3.1 Input Files Bert pre-training Obtention

COpenMed [5] database has been used during this report. This database

currently contains 10,000 entities. The database also contains the relationships between

these entities. The entities contained are different diseases, causes, symptoms and

treatments. All the data recorded in this database have been entered by volunteers or

students and supervised by the site leaders.

Recorded data can be represented using graph theory. The world today can be

represented in graphs to understand it almost fully. Graph models for database

management are extremely powerful and allow us to know information that is hidden

from the naked eye. A graph [19] is a mathematical structure that allows us to model

everyday problems through a graphical representation formed by nodes or vertices and

edges. In this case, each node will be an entity of the database, and each edge will

represent the links or relationships between these entities. On the COpenMed website

[5], if we access an entity, we will be able to visualize a star graph, where there is a

central node and directed edges connecting with other nodes (see Figure 17).

Figure 17. Directed star network of the entity brittle nails.

Development of a classification neural network for the detection of relationships between

biomedical entities

 18

The distance between the central node and the external nodes indicates the

closeness of the relationship between these entities, the closer the central node is to an

external node, the closer the relationship is. In the database, the level of relationship

between entities is also established numerically in a range of 1-0, where "1" designates a

very strong relationship and "0" a non-existent relationship. The colors designate the

type of node type: symptom, anatomy, treatment, etc. (see Figure 17).

Each of the nodes with which the central node connects, which is the entity we

have searched for, contains another star graph, so that from an entity/node "a" we can

reach an entity/node "c", with which there is no direct edge/relationship, through an

entity/node "b" with which “a” and “c” separately establish a direct relationship. To

better visualize this example, from the entity brittle nails (“Uñas quebradizas”) shown in

Figure 17 we can reach through hypothyroidism (“Hipotiroidismo”) the entity fatigue

(“cansancio”) (see Figure 18).

Figure 18. Directed star network of the entity hypotyroidism.

If we were to observe a complete graph of the database where all the entities

and all the relationships were observed, (see Figure 19), we would be able to observe

Development of a classification neural network for the detection of relationships between

biomedical entities

 19

how from one entity we can reach another through various nodes, on this theory are

based the random walks that will be explained below and that as mentioned before,

allow us to see connections established between entities, which at first sight cannot be

observed.

Figure 19. Global network example.

The objective of the neural network to be developed is to detect relationships

between entities. BERT is the first step to be developed for this purpose. This pre-

training phase requires a plane text file, containing one sentence per line. To facilitate

this work, input files have been generated, one file for each entity,

"randomWalkxxx_walks.txt", where "xxx" is the number of the entity. Each file

contains 100 random walks starting from the selected entity, the walks have a length of

30 entities. Each walk will be equivalent to one sentence. The random walks start from

the selected entity and connect to different nodes (entities), to which they are related.

The random walk stops when it reaches 30 different entities.

The paths will have a total length of 61 words, 30 entities, 30 relationships and

a word <eol> indicating the end of the path. Entities will be represented by an "e"

followed by the entity number; relationships will be represented by an "r" followed by

the relationship number (see Figure 20).

Figure 20. Random walk example from entitie 9.

Development of a classification neural network for the detection of relationships between

biomedical entities

 20

BERT also uses a text file called vocabulary, mentioned in section 2.3.1. This

vocabulary, contained in "randomWalk_vocab.txt", is used to know the possible words,

contained in the sentences, that we are going to introduce. To generate this text file, the

possible special tokens that will be introduced by the MLM model: [PAD], [UNK],

[CLS], [MASK], [SEP], and the possible entities and relations contained in the

sentences have been introduced in it. The vocabulary consists of a total of 9381 words.

The special tokens are intended to be a representation. Each token has a

different meaning, the meanings have been described in section 2.3.1. Common words

are not used because we are training a model that uses words. These tags only have the

purpose of being a sentence-level representation for classification.

3.2 Bert Pre-training implementation

For the development of the code used for the pre-training of the neural

network, we have resorted to a Github repository, where the BERT code is published

[20].

In this dissertation only the pre-training part will be used. The pre-training of

the neural network has a high cost of time and CPU, GPU or TPU usage, but it is a one-

time procedure. The code we will use is an adaptation of BERT Python, the original

BERT code was written in C++.

To facilitate the use of the code in the future, a Colab file containing 5 cells has

been generated, each code cell is in charge of one step of the pre-training. This full

code, and all the files necessary to reproduce it are in a repository of Github [21].

In the first cell we find the code needed to connect to our Google Drive. It is

necessary to connect with Google Drive to obtain the input_files, the code and indicate

where we want to generate the output_files. In this cell we also indicate the versions of

the libraries we want to use. In this case, we will use Tensorflow 1 and numpy 1.19.

These versions are necessary because the code has been developed on them. The Python

version that manages this libraries version is Python 3.7.

In the second cell we find the first step to start the pre-training,

"create_pretraining_data". This execution file needs the determination of some inputs

Development of a classification neural network for the detection of relationships between

biomedical entities

 21

(see Figure 21). "--input_file" refers to the directory where the text files that contains

the random walks are located, "--output_file" refers to the location where we want to

place our output, this file must be of TFRecord extension, "vocab_file" refers to the

location of the file containing the vocabulary, "do_lower_case=True "is used to convert

all letters to lowercase and not interpret them differently, "-max_seq_length "is used to

indicate the maximum length of the sentences we want, in our case, the length will be

61, "masked_lm_prob" is used to indicate the number of words to be masked,

"random_seed" is used to indicate the seed we want to randomly start from and

"dupe_factor".

Figure 21. Create pre-training data inputs.

Create_pretraining_data will generate the input needed to perform the pre-

training. To achieve this goal, the text files containing the random paths are read, and

once the sentences containing the random paths are obtained, 15% of the words in each

file are randomly masked with the available tokens. The output file that will be

generated during the execution will contain the masked sentences, the position where

the masking took place and the word that previously occupied the place where the mask

is located. This file has an extension of type Tfrecord. Tfrecord is a binary file

consisting of a sequence of records in which each record is a string of bytes, allows

more efficient storage, takes up less space than the original data and can be split into

several files. This type of file allows the data to be stored unordered, without losing the

order, which fulfils the objective to be obtained at the exit of the execution.

In the third cell, we have the code needed to perform the pre-training. Before

running this step, we need to modify the execution environment that Google Colab is

using. For this, the offered graphical interface is used and we will select GPU as the

execution environment. This execution file needs the specification of some inputs (see

Figure 22). "--input_file" as we have explained before, the input file corresponds to the

Development of a classification neural network for the detection of relationships between

biomedical entities

 22

Tf_record file generated in the previous step. "--output_dir" is the directory where we

want to generate our output, “--do_train” and “--do_eval” we will set them to true to get

results, “--bert_config_file”, we will specify the location of the bert_config_json file,

this file contains different specifications, size of the vocabulary, how many sequences

are masked, the size of the embeddings... "--init_checkoint" will determine the location

of the file bert_model.ckpt, "--train_batch_size" refers to the size we want to take from

all the elements, to train them together, "max_seq_Length", has the same meaning as

before and must have the same value. "max_predictions", must be the result of

multiplying the previous parameter by the masking probability.

Figure 22. Run pre-training inputs.

This code aims to obtain some initial weights, using the Tfrecord generated in

the previous section as input. This code file is intended to learn how to unmask the

masked words, for which it uses the previously explained cross-loss function. The

output of this execution is the result of the probability with which it unmasks the words

in a correct way, it also generates a series of files that mark the weights with which the

final tests have been generated.

The last cell contains the code necessary to execute “extrac_features”. This is

the last step of our pre-training, in this step we will obtain the pre-trained contextual

embeddings of each entity in the database. These embeddings are fixed contextual

representations of each input token generated from the hidden layers of the pre-trained

model. The code has been modified to generate one numpy file per entity, and it has

also been specified that this numpy file must contain the embeddings generated for the

token [SEP], located in the last layer, layer -1, because it contains the representation of

the entire sentence. BERT is designed, as previously mentioned, not only to perform

Development of a classification neural network for the detection of relationships between

biomedical entities

 23

MLM tasks but also to perform NPL tasks. In this work only MLM tasks are used, that

is why the code areas where NPL is used have been removed.

Figure 23. Extract features inputs.

The necessary inputs (see Figure 23) are: "--input_file" we will specify the path

to our text file containing the generated sentences, "randomWalk_walks.txt", “--

output_file”, we will specify the path where we want to deposit our output file, this file

will be transient since it will be read later and modified to generate an .npy per entity. "-

-vocab_file" specify the path to the file containing the vocabulary, "--bert_config", “--

maxseqlength” and “--batch_size” are the same as in the previous steps, “--

init_chekpoint” specify the path containing the check points file generated in the

previous step, “--layers”, indicates the number of layers to which we want to access, in

our case it will only be necessary to access layer -1.

3.3 Input files PyTorch obtention

The pre-training performed with BERT resulted in a .npy file for each entity in

the database. This file contains the pre-trained contextual embeddings for each entity for

the token [SEP].

The input file necessary for the training to be carried out with PyTorch must be

made up of a column of type 'label', which indicates whether or not there is a

relationship between two embeddings, and two other columns that will each contain an

embedding of an entity.

Different text files have been generated to prevent memory collapse during

execution. A Python code has been generated that reads the existing relationships

between the entities. For each relationship, 10 lines of text are generated, containing a

"1" marking the existing relationship between the two entities, and where a random

embedding is taken from each of the entities that make up the relationship. After writing

Development of a classification neural network for the detection of relationships between

biomedical entities

 24

these lines, another 10 lines of text are written, containing a "0" marking the non-

relationship between two entities, and where a random embedding is taken from one of

the related entities and a random embedding is taken from another entity unrelated to

the previous entity. The files contain 16,000 lines each.

This text files are intended to ensure that there are enough existing or non-

existing relationships to train the neural network. This code and the code that has been

developed to train and test the PyTorch neural network has been developed in Spyder

5.1.0, Python 3.9. Google Colab has not been used for space reasons.

3.4 PyTorch training implementation

The implementation of the classification neural network developed during this

Bachelor thesis makes use of different libraries, among which we can highlight torch

and sklearn.

Torch is the library that allows us to make use of PyTorch, a tool presented in

section 1.3.4 and whose inner workings have been presented in section 2.3.2. The

Sklearn library is used to make analytical predictions, which help us to evaluate the

training of the network.

When developing a neural network, we must be clear about its purpose before

proceeding with its design. In this case, as mentioned before, the neural network will

perform a binary classification and its inputs will be two embeddings, one of each

entity. This already gives us the necessary input and output neurons, as mentioned in

section 2.3.2 the network must contain an adequate number of neurons for the learning

to be correct. The number of neurons and linear layers chosen for this neural network is

as follows: The embeddings are formed by 768 inputs each, each neuron will take care

of one input, so the total number of input neurons is 1536, the network is composed by

two hidden layers of neurons, the first one is composed by 512 neurons and the second

one by 128 neurons, finally the output layer is composed by a single neuron that will

mark if there is an existing relationship or not between the two inputted entities, this

output will be marked with a "1" if there is an existing relationship or by a "0" if there is

not an existing relationship. Different operations are necessary between these layers,

Development of a classification neural network for the detection of relationships between

biomedical entities

 25

which have been presented in section 2.3.2 and help the operation of the network (see

Figure 24).

Figure 24. Neural network final scheme.

The implementation of this scheme and its directionality has been done as

follows (see Figure 25). As can be seen in the image below, a declaration of the layers

and functions to be used is made. Subsequently, the order of these is declared, where the

“x” containing the entered entries goes through the established order.

Figure 25. Neural Network structure declaration.

Development of a classification neural network for the detection of relationships between

biomedical entities

 26

To train the network correctly, it is necessary to make several passes through

the neural network to adjust the weights, this is called backward propagation. During

backward propagation a sigmoid layer is also applied in the BCEWithLogisticLoss

function. To fulfil this purpose, the training of the network will be carried out in epochs,

where in each epoch there will be different batches. The batches indicate how the input

data is divided to perform several passes through it. The epochs mark how many times

the training is to be repeated. As mentioned in section 3.3 different input files have been

obtained, in total 90 files, to perform the training 1800 epochs have been declared, in

each epoch a different file will be chosen which will be divided in batches. To avoid

overlearning of the network, every 90 epochs the files are reordered randomly so that

they are not always entered in the same order.

To do this, two nested for loops have been designed, the outer one will

increment the epochs, the inner one the batch used. Before starting the loop that will

perform the network training, it is necessary to declare the optimisation and loss

functions that will be used. As mentioned and explained in section 2.3.2 these functions

are BCEWithLogisticLoss and Adam optimizer. The learning rate, which is the

exchange rate at which the weights are updated, used has been set as 0.001.

Once we have all the parameters declared we start the for loop mentioned

above. This loop will start executing in epochs, in each epoch, it will load a data file

with which it will train the network, divide it into batches and start the training carried

out by the internal for loop. In each batch it passes the data through the neural network,

calculates the obtained loss and the accuracy and performs a summatory of both

parameters separately. It carries out the optimisation step where it seeks to improve the

assigned weights and cleans the gradient so that it does not accumulate.

To observe the progress of the network, the loss and the accuracy obtained at

each epoch has been displayed on screen and recorded in a text file (see Figure 26 and

Figure 27). To calculate the final loss and accuracy for each epoch, both are divided by

the number of batches used. As can be seen the Loss in the latter epochs (see Figure 27)

is much closer to zero than in the earlier epochs (see Figure 26) and the Accuracy in the

latter epochs (see Figure 27) is higher than in the earlier epochs (see Figure 26).

Development of a classification neural network for the detection of relationships between

biomedical entities

 27

Figure 26. Loss and Accuracy of the first 5 epochs.

Figure 27. Loss and Accuracy of the last 5 epochs.

Once the model has been trained, the weights obtained in the last epoch are

saved in a file in order to be able to use the final network at another time without having

to re-train it.

Development of a classification neural network for the detection of relationships between

biomedical entities

 28

4 RESULTS

The effectiveness of the neural network in identifying whether two entities are

related has been evaluated using the confusion matrix technique.

A confusion matrix [22] is a tool that allows the visualisation of the

performance of an algorithm designed for supervised learning tasks. It consists of

columns and rows, in the columns we find the possible predictions, in the rows the

actual classification. From this matrix we can observe how many times the algorithm

has correctly identified whether there is an existing or non-existing relationship,

between two entities, true positive (TP) and true negative (TN), and how many times it

has been wrong, false positive (FP) and false negative (FN), (see Figure 28).

Figure 28. Confusion matrix structure.

The effectiveness of the network classification has been evaluated under two

different scenarios. The first scenario contains 100 pairs of strongly related entities,

relationship level "1", and 100 pairs of unrelated entities. The second scenario contains

100 pairs of entities with a relationship level of "0.5", and 100 pairs of unrelated

entities. A numpy file has been generated for each of the scenarios.

Once the files were obtained, the trained neural network model was loaded and

the data chosen for the test were passed through the neural network. Finally, the results

obtained by the neural network were compared with the real results, generating a

confusion matrix that will allow the model to be evaluated. This process was repeated

for each of the scenarios (see Table 1 and 2).

Development of a classification neural network for the detection of relationships between

biomedical entities

 29

Table 1. Confusion Matrix level 1.

Table 2. Confusion Matrix level 0.5.

From the confusion matrix we can obtain many measures that will allow a

correct evaluation of the model, among these we find the precision of the model, the

recall, the f1-score and the accuracy. Precision [23] is the ability of an instrument to

give the same result for different measurements under the same conditions (see Figure

29).

Figure 29. Precision formula.

Recall [23] allows to observe the sensitivity and specificity of the model,

sensitivity characterises the capacity of the neural network to detect existing

relationships between entities, specificity indicates the ability of our neural network to

96

4

50

50

Development of a classification neural network for the detection of relationships between

biomedical entities

 30

identify non-existing relationships. Accuracy is the ability of an instrument to give the

desired result accurately (see Figure 30).

Figure 30. Accuracy, Sensitivity and Specificity formulas.

A model can be very precise and not accurate or very accurate and not precise

(see Figure 31). The best quality scientific observations are both accurate and precise.

Figure 31. Accuracy and Precision comparision.

The F1 value [23] combines the precision and recall measures into a single

value. This is practical because it makes it easier to compare the combined performance

of accuracy and completeness between various solutions. It is calculated by making the

harmonic measure between the two parameters (see Figure 32).

Figure 32. F1-score formula.

The values obtained from these measurements from the confusion matrixes

shown were the following (see Table 3 and Table 4).

Development of a classification neural network for the detection of relationships between

biomedical entities

 31

Table 3. Precision, Recall, F1-score and Accuracy obtained, level 1.

Table 4. Precision, Recall, F1-score and Accuracy obtained, level 0.5.

Development of a classification neural network for the detection of relationships between

biomedical entities

 32

5 DISCUSSION

The results obtained show that the network has a greater capacity to identify

existing relationships, sensitivity 95% for level 1 relationships and 96% for level 0.5

relationships, than for identify non-existing relationships, specificity 55% for level 1

and 50% for level 0.5. While it shows a higher precision in identifying non-existing

relationships, 92% for level 1 and 93% for level 0.5, than for identify existing

relationships, 68% for level 1 and 66% for level 0.5.

The entities, as mentioned in previous sections, establish many connections

with each other, being able to reach very distant entities with a low level of relationship

with the initial entity, following random paths. The neural network has been trained

with relationships of all levels. The network has not been trained to directly identify

non-existent relationships, which is why the precision of non-existent relationships can

be so high, 92% precision for level 1 and 93% precision for level 0.5, it classifies

everything it does not identify, in the same area. As there are relationships at level 0.1,

which is a very low level, the network's ability to identify non-existent relationships,

level 0, is affected, with a specificity of 55% for level 1 and 50% for level 0.5.

Regarding the identification of relationships, the network shows a high ability

to identify strong and medium relationships, with a sensitivity of 95% for level 1 and

96% for level 0.5. Again, being trained on all types of relationships, strong and non-

strong, it makes sense that it is able to identify strong and medium relationships well. At

the same time, it is normal that the precision of the network is lower, 68% for level 1

and 66% for level 0.5, as the network has not been trained on only one type of

relationship between entities, not all relationships between entities will be located in the

same area.

The results of the network in the two scenarios do not differ much from each

other, reaching 50% specificity and 95% sensitivity in both cases. The behaviour of the

network does not vary much when it comes to identifying relationships of different

levels.

Development of a classification neural network for the detection of relationships between

biomedical entities

 33

6 CONCLUSIONS

The final objective of this final degree project was to develop a classification

neural network capable of detecting existing relationships between medical entities. The

classification neural network developed has a good ability to detect relationships

between entities, reaching 95% and 96% of detection for relationships with level 1 and

0.5 respectively. On the other hand, the detection of non-existent relationships is lower,

but still reaches or exceeds 50%: 55% and 50% detection for level 1 and level 0.5

respectively.

As future lines of work, it would be interesting to study the possibility of

teaching the neural network when two entities are not related in order to increase its

specificity, or the differences between related entities at level 0.1 and unrelated entities.

These goals can be achieved by changing the type of data with which the network is

trained. On the other hand, it is necessary to repeat the process for new entities,

introduced in the database. As new objectives to extend the capabilities of the search

engine, it would be convenient to continue with BERT's lines of work as well as to look

for new lines of work for the development of the neural network in order to rule out

better development possibilities.

Development of a classification neural network for the detection of relationships between

biomedical entities

 34

7 REFERENCES

[1] Web page of the United Nations Human Rights https://www.ohchr.org/en/special-procedures/sr-
health/international-standards-right-physical-and-mental-
health#:~:text=Everyone%20has%20the%20right%20to,age%20or%20other%20lack%20of (Accessed: April
2022).

[2] Web page of the World Health Organisation https://www.who.int/news/item/13-12-2017-world-bank-and-who-
half-the-world-lacks-access-to-essential-health-services-100-million-still-pushed-into-extreme-poverty-because-
of-health-expenses (Accessed: April 2022).

[3] Web page of the International Telecommunication Union https://www.itu.int/es/mediacentre/Pages/PR-2021-11-
29-FactsFigures.aspx (Acessed: April 2022).

[4] Web page of Google Trend https://trends.google.es/trends/?geo=ES(Accessed: May 2022).

[5] Web page of COpenMed https://copenmed.org/#/paginaInicio (Accessed April 2022).

[6] Web page of Neural Networks Description https://www.cienciadedatos.net/documentos/py35-redes-neuronales-
python.html (Accessed: May 2022).

[7] Vaswani A, Shazeer N, Parman N, Uszkoreit, Jones L, Gomez A, Kaiser L, Polosukhin I, Attention is all you
need, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, April

2019.

[8] Web page of PyTorch https://pytorch.org/ (Accessed: April 2022).

[9] Web page of Anaconda https://anaconda.cloud/ (Accessed: April 2022).

[10] Web page of Google Colab https://colab.research.google.com/ (Accessed: April 2022).

[11] Web page of Spyder https://www.spyder-ide.org/ (Accessed: April 2022).

[12] Web page of TensorFlow https://www.tensorflow.org/learn?hl=es-419 (Accessed: April 2022).

[13] Web page of Medline Plus https://medlineplus.gov/spanish/ency/anatomyvideos/000016.htm (Accesed: May
2022).

[14] Web page of Neural networks fundaments https://thales.cica.es/rd/Recursos/rd98/TecInfo/07/capitulo2.html
(Accessed: May 2022).

[15] Web page of Github BERT Tokens https://albertauyeung.github.io/2020/06/19/bert-tokenization.html/
(Accessed: May 2022).

[16] Web page of softmax activation function https://vidyasheela.com/post/softmax-activation-function-in-neural-
network-formula-included (Accessed: May 2022).

[17] Web page with Cross Entropy Loss info https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0
(Accessed: May 2022).

[18] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,

Desmaison A, Köpf A, Yang E, De Vito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J,
Chintala S, Pytorch: An imperative style, high-performance deep learning library, 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), Vancoucer, Canada.

[19] Web page with graph information https://www.grapheverywhere.com/grafos-que-son-tipos-orden-y-
herramientas-de-visualizacion/ (Accessed: June 2022).

[20] Web page with pre-training Bert information https://github.com/google-research/bert (Accesed: September
2021).

[21] Web page with pre-training Bert repository code in Github https://github.com/cossorzano/copenmed_tools

(Posted: June 2022).

[22] Web page with Confusion Matrix information https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-
metricas/ (Accesed: June 2022).

[23] Web page with precision , recall and f1-score information https://www.iartificial.net/precision-recall-f1-
accuracy-en-clasificacion/ (Accessed: June 2022).

https://www.ohchr.org/en/special-procedures/sr-health/international-standards-right-physical-and-mental-health#:~:text=Everyone%20has%20the%20right%20to,age%20or%20other%20lack%20of
https://www.ohchr.org/en/special-procedures/sr-health/international-standards-right-physical-and-mental-health#:~:text=Everyone%20has%20the%20right%20to,age%20or%20other%20lack%20of
https://www.ohchr.org/en/special-procedures/sr-health/international-standards-right-physical-and-mental-health#:~:text=Everyone%20has%20the%20right%20to,age%20or%20other%20lack%20of
https://www.who.int/news/item/13-12-2017-world-bank-and-who-half-the-world-lacks-access-to-essential-health-services-100-million-still-pushed-into-extreme-poverty-because-of-health-expenses
https://www.who.int/news/item/13-12-2017-world-bank-and-who-half-the-world-lacks-access-to-essential-health-services-100-million-still-pushed-into-extreme-poverty-because-of-health-expenses
https://www.who.int/news/item/13-12-2017-world-bank-and-who-half-the-world-lacks-access-to-essential-health-services-100-million-still-pushed-into-extreme-poverty-because-of-health-expenses
https://www.itu.int/es/mediacentre/Pages/PR-2021-11-29-FactsFigures.aspx
https://www.itu.int/es/mediacentre/Pages/PR-2021-11-29-FactsFigures.aspx
https://trends.google.es/trends/?geo=ES(Accessed
https://copenmed.org/#/paginaInicio
https://www.cienciadedatos.net/documentos/py35-redes-neuronales-python.html
https://www.cienciadedatos.net/documentos/py35-redes-neuronales-python.html
https://pytorch.org/
https://anaconda.cloud/
https://colab.research.google.com/
https://www.spyder-ide.org/
https://www.tensorflow.org/learn?hl=es-419
https://medlineplus.gov/spanish/ency/anatomyvideos/000016.htm
https://thales.cica.es/rd/Recursos/rd98/TecInfo/07/capitulo2.html
https://albertauyeung.github.io/2020/06/19/bert-tokenization.html/
https://vidyasheela.com/post/softmax-activation-function-in-neural-network-formula-included
https://vidyasheela.com/post/softmax-activation-function-in-neural-network-formula-included
https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0
https://www.grapheverywhere.com/grafos-que-son-tipos-orden-y-herramientas-de-visualizacion/
https://www.grapheverywhere.com/grafos-que-son-tipos-orden-y-herramientas-de-visualizacion/
https://github.com/google-research/bert
https://github.com/cossorzano/copenmed_tools
https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/
https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/
https://www.iartificial.net/precision-recall-f1-accuracy-en-clasificacion/
https://www.iartificial.net/precision-recall-f1-accuracy-en-clasificacion/

	1 INTRODUCTION
	1.1 Motivation
	1.2 COpenMed
	1.3 Software
	1.3.1 Anaconda
	1.3.2 Google Colab
	1.3.3 BERT
	1.3.4 PyTorch

	1.4 Phases and Structure of the memorie

	2 ARTIFICIAL NEURAL NETWORKS
	2.1 Introduction
	2.2 Components and biological comparisons
	2.3 Inside Characteristics
	2.3.1 BERT
	2.3.2 PyTorch

	3 MATERIALS AND METHODS
	3.1 Input Files Bert pre-training Obtention
	3.2 Bert Pre-training implementation
	3.3 Input files PyTorch obtention
	3.4 PyTorch training implementation

	4 RESULTS
	5 DISCUSSION
	6 CONCLUSIONS
	7 REFERENCES

