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ABSTRACT 

COpenMed is a website created for the structuring of medical knowledge. This 

website was created to facilitate people's access to medical information. According to 

the United Nations, more than half of the world's population does not have access to 

essential health services but more than 60% of the population has access to the Internet. 

COpenMed is not a diagnostic website, it aims to guide and provide information about 

symptoms and diseases. The purpose of this Bachelor thesis is to generate, with the use 

of Python language, a classification neural network to identify if there is a relationship 

between two biomedical entities registered in the web database. The pre-training of the 

neural network has been carried out with BERT, for the training of the neural network 

PyTorch has been chosen. Data on diseases and symptoms were extracted directly from 

the COpenMed database. For the evaluation of the results, the confusion matrix 

technique was used. The generated network obtained a 95% and 55% of sensitivity and 

specificity respectively detecting strong relations between entities. 
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RESUMEN 

COpenMed es una página web creada para la estructuración del conocimiento 

médico. Esta web fue generada con el fin de facilitar el acceso a las personas a 

información médica. Según las Naciones Unidas, más de la mitad de la población 

mundial no tiene acceso a servicios de salud esenciales (pero más del 60% de la 

población tiene acceso a Internet). COpenMed no es una web diagnosticadora, pretende 

orientar y facilitar información acerca de síntomas y enfermedades. El propósito de este 

proyecto es generar, con el uso de lenguaje Python, una red neuronal de clasificación 

que permita identificar si existe relación entre dos entidades registradas en la base de 

datos de la web. El preentreno de la red neuronal se ha llevado a cabo con BERT, para 

el entreno de la red neuronal se ha escogido PyTorch. Los datos sobre las enfermedades 

y síntomas se han extraído directamente de la base de datos de COpenMed. Para la 

evaluación de los resultados se ha usado la técnica de matriz de confusión. La red 

generada ha obtenido un 95% y 55% de sensibilidad y especificidad respectivamente 

detectando relaciones fuertes entre entidades. 
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1 INTRODUCTION 

1.1 Motivation 

The Universal Declaration of Human Rights [1] states that: "Everyone has the 

right to a standard of living adequate for the health and well-being of himself and of his 

family...". The current world situation is far from this right, according to World Health 

Organisation (WHO) [2]: "Half the world lacks access to essential health services...". 

This means that 50% of the population does not have access to regular health 

consultations. In contrast, according to the International Telecommunication Union 

(ITU) [3], which is the United Nations specialised agency for information and 

communication technologies (ICT), more than 60% of the population has access to the 

internet. 

Health has always been a topic of interest within society. In recent years, due to 

the COVID-19 pandemic, also called coronavirus, the volume of searches on health 

issues, symptoms and diseases has increased. Google trend [4], a free and open access 

tool provided by Google, which allows us to compare the search popularity of various 

words or phrases, classifies "symptoms" as a "very recurrent" search in different regions 

worldwide and the word "disease" as a "recurrent" search (see Figure 1).   

 

Figure 1. Google trend detection of searchs 2020-2022. Left picture 

“symptoms”, Right  “disease”. 

If we enter "cough", one of the symptoms of different respiratory diseases, the 

search volume expands to many more regions worldwide (see Figure 2). 
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Figure 2. Google trend detection of searchs 2020-2022.”Cough”. 

People are interested in knowing the causes of changes in their health, which is 

why it is essential to provide health information in an appropriate way. CopenMed is an 

open content website for structuring medical knowledge [5], which aims to offer a web 

search engine that provides medical information in a correct way, understanding the 

common language used by users. 

Today the amount of information available on diseases, symptoms, causes and 

treatments in the entire medical field is enormous, far more extensive than a human 

brain can assimilate. Deep learning techniques are a type of machine learning, artificial 

intelligence (AI), whose aim is to efficiently automate the process of creating analytical 

models, allowing to identify and decide as a human brain would do but handling a much 

larger volume of data. These techniques are composed of artificial neural networks [6], 

which, as their name suggests, aim to mimic the functioning of neural networks in living 

organisms. This technique will be explained in depth in section 2. 

This Bachelor thesis focuses on the development of a classification neural 

network, created using Python language, which aims to identify the relationships 

between different symptoms and diseases, registered in COpenMed [5]. BERT [7] and 

PyTorch [8] have been chosen for the development of the neural network. Anaconda [9] 

and Google Colab [10] have been used as working environments. 



Development of a classification neural network for the detection of relationships between 

biomedical entities 

 3 

1.2 COpenMed 

COpenMed [5], as previously mentioned, is an open content website for 

structuring medical knowledge. One can think of this website as a kind of Wikipedia. Is 

not intended to replace the doctor, nor is it a diagnostic website. The aim of this website 

is to bring structured health information to everyone. 

This website is operated by volunteers and trainees who add contributions to 

the structuring of the content. Currently, the website has about 10,000 entities and 

relationships. Each entity is equivalent to a symptom, disease, treatment, or cause. 

Within the database, the relationships that exist between these entities are established. 

The objectives of this website are twofold: to facilitate people's access to 

medical information using a more commonly used language, but without losing the 

technical and scientific rigor, and to facilitate the access of machines to this information 

to build automatic medical "reasoners" that, from the symptoms, can find the most 

probable causes that provoke them. 

This report aims to contribute to the objectives of the creation of this website, 

building a neural network of classification that is able to identify the relationships 

between the different entities. This network will contribute to the development of the 

web search engine that will be generated for the website. 

1.3 Software 

1.3.1 Anaconda 

Anaconda [9] is the world’s most popular open-source Python distribution 

platform. This open-source software has been choosing because is intuitive, allowing 

easy installation of packages. The packages are securely hosted and regularly updated. 

The software has been installed for use under the SO of Windows and allows the use of 

various packages used in Machine Learning techniques (e.g. TensorFlow, torch...). 

Spyder [11] is a powerful scientific Python development environment pre-

installed in Anaconda.  It includes editing, interactive testing, debugging, and 

introspection features. During this Bachelor thesis the 5.0.1 version has been used. 
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Python is a programming language that prioritises code readability. Versions 

3.9 and 3.7 have been used. Python code is readable and consistent furthermore the 

libraries provided by Python are diverse, containing many data science and 

mathematics-oriented libraries. One of the most prominent libraries for developing 

Deep Learning techniques and provided by Python is TensorFlow [12], which is an 

open-source library developed by Google, used to build and train neural networks. 

1.3.2 Google Colab 

Google Colab [10] is a Google tool known as "Colaboratory", this tool allows 

programming, running and sharing code, using the Python language, within Google 

Drive. Colab can be thought of as a JupiterNotebooks notebook stored in Google Drive, 

this notebook is connected to a "runtime" in the Colaboratory cloud so it allows to run 

Python code without prior installation. During execution, Colab offers a specific amount 

of RAM and Hard Disk space, if this space is exceeded the code stops executing. The 

code can be shared via Google Drive or Github. Google Colab notebooks are stored in 

the same format as Jupiter notebooks "ipybn". This programme has been selected as a 

method for developing and executing code, because it is particularly suitable for 

machine learning tasks. Google Colab provides free access to GPUs, is always ready to 

use and requires no installation of libraries, which makes it easier and faster to run code. 

1.3.3 BERT 

To improve the classification performance of the neural network, a pre-training 

of the network has been developed. Neural networks are composed of different layers, 

in each of which there are a different number of neurons. The neurons in the network 

have a numerical weight, which modifies the received input, which must be numerical. 

At the beginning of the training of a neural network [6], the weights 

accompanying the neurons are usually initialised randomly, these weights will be 

adjusted by mathematical functions until an optimal output is obtained. 

A BERT [7] pre-training stage allows the weights of the network to be easily 

adjusted when the network is trying to obtain an answer from the language expressed by 

humans. BERT pre-training finds a good set of vector representation weights to 
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compress the input data and usually achieves better network classification performance 

because it provides a numerical representation of the expressed sentence that can be 

processed by the neural network. 

BERT [7], Bidirectional Encoder Representations from Transformers, is an AI-

based system. The system was developed to assist Google Search in natural language 

understanding (NLP) tasks. In this way, Google can better understand the language 

commonly used by people. COpenMed [5] aims to bring medical information closer to 

the user by using a more common language, so the objectives that BERT fulfils are in 

line with what is desired on this website. 

BERT is bidirectional, as its name suggests, because it analyses the sentence in 

two directions. This task is carried out using a novel technique called masked LM 

(MLM). It analyses the words before and after a keyword. This property allows it to 

deeply understand the context of phrases. It prioritises search intent over keywords. 

This system has been used as a pre-training method for the classification neural 

network developed during this Bachelor thesis. The BERT code has been modified 

using Spyder, Python 3.7, to suit the intended purpose. The code has then been run 

using Google Colab to employ the use of GPUs. BERT tools will be explained in 

section 2.3.1, BERT implementation will be described in section 3.1. 

1.3.4 PyTorch 

PyTorch [8] is an open-source library with a great ease of use, it is created to 

be flexible. This library has a syntax and application similar to Python, its 

documentation is organized and useful for beginners, it is simple to use, the learning 

curve for developers is short. It is focused on performing numerical calculations using 

tensor programming, this property facilitates its use in deep learning tasks. 

 PyTorch employs data parallelism which allows it to distribute the work 

among multiple CPU or GPU cores. The use of GPUs accelerates the training of 

models. PyTorch has been a key player in the development of relevant artificial 

intelligence applications, such as Tesla's Autopilot. 
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These features make PyTorch one of the most affordable options for building 

neural networks. This library is included in Anaconda. PyTorch tools will be explained 

in section 2.3.2, PyTorch implementation will be described in section 3.2 

1.4 Phases and Structure of the memorie 

Throughout this report, the process of creating, executing and evaluating the 

pre-training and training of the classification neural network will be described. 

The paper is divided into the following sections: section 2, describes the 

principles of neural networks and the mathematical procedures of Bert and PyTorch, 

section 3, describes the database used and the process of creating the pre-training and 

training of the neural network, section 4, describes the evaluation tests carried out and 

presents the results obtained from the training, section 5, discusses the results, and 

section 6, presents conclusions drawn from this Bachelor thesis. 
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2 ARTIFICIAL NEURAL NETWORKS 

2.1  Introduction 

The brain is an organ of the human body, [13]. It is made up of more than a 

billion neurons. Neurons are a type of cell in the nervous system. They work together, 

giving us the ability to reason and understand the world. 

Biologically [14], a neuron is made up of: The body of the cell, or soma, which 

houses the nucleus. Dendrites, which are branches that start from this cell and form a 

dense network, and the axon. The axon is a longer fibre, usually about one centimetre 

long, which allows connections to be made between different neurons (see Figure 3). 

The connection established between neurons is called a synapse. The number of 

connections established by a neuron varies from a dozen to a thousand. 

 

Figure 3. Neuron anatomy. 

Neurons communicate by means of signals [14]. Signals are propagated by 

electrochemical reactions. The synapse, or connection established between neurons, 

releases transmitter chemicals that enter through the dendrites, raising the electrical 

potential of the cell body (see Figure 4). If the set limit is reached and exceeded, an 

electrical impulse, also called an action potential, is sent to the axon. The impulse 

diffuses down the branches of the axon, eventually reaching the synapse and releasing 

transmitters into the bodies of other neurons. There are two types of synapses, 

excitatory, which increase the potential, or inhibitory, which decrease the potential. 

Another point to note is the plasticity of synaptic connections. Plasticity is a property 

that allows the intensity of connections to be altered over time in response to a 

simulated pattern, the brain learns from the experience. These mechanisms are the 

foundation of learning in the brain.  
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Figure 4. Neural signal transmision. 

People have a great capacity for reasoning. We can perform several operations 

simultaneously, we have a very complex, non-linear and parallel information 

management system. Our brain, however, has some limitations. Many learning tasks 

require a large analysis of a huge amount of data to draw conclusions, our brain has a 

limited memory for analysis compared to computers. Computers allow us to store an 

enormous amount of data, they also speed up the results, surpassing the human brain in 

speed. However, in recognition tasks, the human brain still outperforms the computer. 

Brains and computers can resemble. The brain picks up signals from the 

environment, processes the information it receives and generates a response from, as 

discussed in the previous section, electrical impulses and chemical reactions. Computers 

contain microprocessors. Microprocessors treat information in the form of electricity, 

process it based on their established programming and generate an output response. 

Artificial intelligence systems aim to take advantage of both brain and 

computer systems. This is the reason for the creation of neural networks.  

2.2  Components and biological comparisons 

The following section explains the components of artificial neural networks 

and their similarities to the biological ones they are inspired by.  
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The key element of a biological neural network is the neuron, likewise, the key 

element of an artificial neural network is the "node", also called neuron. The nodes are 

linked by connections and are organized in layers. We can classify the layers as: 

external layers and hidden layers. The external layers can be of two types, input layers 

and output layers. Input layers are composed of nodes that are connected to an external 

environment; they receive external stimuli. Output layers, give response to the system. 

The hidden layers are composed of nodes that establish connections with other nodes, 

they have no contact with the outside. Each node, as biological neurons, can receive “n” 

inputs since they can stablish different connections (see Figure 5). 

 

Figure 5. Neural Nework Scheme. 

Each connection established between nodes has assigned a numerical weight, 

“wij”. This is the main long-term memory resource. In the previous section, it has been 

argued that neurons can have either inhibitory or excitatory power, artificial neurons can 

also have this power. If the weight "wij" has a positive value, it indicates that the 

relationship between neurons, as in biological neurons, is excitatory, this means that if 

neuron “i” is activated, neuron “j” will receive a signal that will tend to activate it. If, on 

the contrary, the weight "wij" has a negative value, the relationship between neurons 

will be inhibitory, if neuron “i” is activated, it will send a signal that will deactivate 

neuron "j". The learning that the neural network performs during its training is done by 

updating these weights. This property is similar to the plasticity shown by the brain 

when learning new things, commented in section 2.1. 
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The "wij" weights measure the intensity of interaction between the nodes that 

are connected. At node "i", the sum of the “n” inputs "xj", weighted with the weights 

"wij", generates the total input or "post-synaptic potential" of node "i". The activation 

function “f” is the one that will designate the output "yi" of the node, to this function is 

applied the difference between the "postsynaptic potential" and the threshold “ϴi”. If 

the threshold is exceeded, a connection with the next neuron is established (see Figure 

6). 

 

Figure 6. Artificial and biological neuron components. 

Biologically, it is generally accepted that the information stored in the brain is 

more related to the synaptic values of the connections between neurons than to the 

neurons themselves. Knowledge is found in the synapses. Likewise, in artificial neural 

networks, knowledge is found in the "wij" weights. Every learning process involves a 

certain number of changes in these connections. 

2.3 Inside Characteristics 

This section will describe the configuration characteristics an the mathematical 

inside of the neural network developed during this Bachelor thesis.  

Neural networks are composed, as mentioned in previous sections, of layers 

containing nodes. The nodes establish connections between them. The connectivity 

between the nodes of a network is related to the way in which the outputs of neurons are 

channeled to become inputs to other neurons. There are two types of connectivities 

forward and backward. Forward propagation fed the input data in the forward direction 
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through the network. Backward propagation allows cycles and connections with 

previous levels (see Figure 7). PyTorch [8] and BERT [7] make use of both, after 

performing forward propagation, they perform backward propagation to update the 

weights. 

 

Figure 7. Back propagation network. 

There are different types of learning, supervised and unsupervised learning. 

BERT use an unsupervised learning, the data introduced is not labelled. The type of 

learning used during the training part, developed using PyTorch, is supervised learning. 

This learning makes use of labels, where the machine is provided with a set of labeled 

data so that it knows how to draw conclusions and classify from these labels. This 

learning method has been used because the existing relationships between entities are 

available. 

A binary classifier has been used for the application of this learning. Binary 

classifiers distinguish between two categories, "related" 1 or "unrelated" 0. This 

classifier will make use of linear and non-linear functions. 

The size of the network must be chosen carefully for the network to be optimal. 

A network size that is too large will present generalization problems when entries are 

introduced that he has not previously seen. A network size that is too small will not be 

able to represent the desired function. This problem makes it necessary to be careful 

with the size of the network you choose. Following sections will explain more in detail 

the logistics inside BERT and the neural network developed using PyTorch. 

2.3.1 BERT 

BERT [7] is conceptually simple and empirically powerful. It consists of two 

steps: pre-training and fine-tuning. During this work we have made only use of the pre-
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training which will provide us with a numerical representation of the input that will 

facilitate the training of the neural network. 

During pre-training, the model is trained on unlabeled data, phrases composed 

of biomedical entities and relationships, using two unsupervised tasks. Task one, 

Masked LM and task two, Next Sentence Predicition (NSP). MLM task mask some 

percentage of the input tokens at random, and then predict those masked tokens. The 

final hidden vectors corresponding to the mask tokens are fed into an output sofmax 

over vocabulary. In this Bachelor thesis we masked over 15% at random. The masked 

words will be predicted later with cross entropy loss. 

The input of this model must be a sentence. Bert will mask this sentence during 

MLM tasks. This technique uses a token vocabulary [15], where we can find: [CLS] 

which stands for a special classificaton token and is placed at the beginning of the 

sentence. [SEP] that separates sentences and it is placed at the end of sentences. [UNK] 

which refers to unkown token, [MASK] which replaces the keywords from which we 

will draw context and [PAD] that is used to adjust the sentence to the size you have 

specified the input sentences should be, if the sentence is shorter than expected, [PAD] 

is added to reach the desired length. 

BERT uses Transformer during pre-training for obtaining numerical 

representation with which to work mathematically. Transformer is a mechanism capable 

of learning the contextual relationships between words. Transformer offers different 

mechanisms. BERT uses the Transformer mechanism as an encoder that reads the input 

text and converts it into a vector.  

Transformer reads the entire sequence of words at once, which is why it is 

considered bidirectional, it learns the context of a word based on its entire environment 

(left and right). This method uses as input a sequence of tokens, these are converted into 

vectors and then processed in the neural network. The output is a sequence of vectors 

where each vector correspond to a token. 

Transformer as an encoder has two layers: self-attention and feedback. Self-

attention is the method that allows to reformulate the representation of a word, based on 

all the other words in the sentence. 
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The Softmax [16] activation function is the activation function of this model.  

This function converts a vector of numbers into a vector of probabilities, where the 

probabilities of each value are proportional to the relative scale of each value in the 

vector (see Figure 8). 

 

Figure 8. Softmax activation function. 

Cross-entropy loss [17] is used when adjusting model weights during training. 

The aim is to minimize the loss, the smaller the loss the better the model. A perfect 

model has a cross-entropy loss of 0. Cross-entropy function is defined as H(P,Q), where 

P is the target distribution, and Q is the approximation of the target distribution (see 

Figure 9). 

 

Figure 9. Cross-entropy function. 

The purpose of the Cross-Entropy is to take the output probabilities (P) and 

measure the distance from the truth values (see Figure 10). The error formula, showed 

in figure 10, applies the algorithm in such a way that the closer the output is to 1, the 

smaller the error, the closer the output is to 0, the higher the error. 

 

Figure 10. Distance between left and right values. 
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NSP task is not used in this pre-training since we are only generaiting one 

sentence per entity. This pre-training part is the most expensive part of the computing, 

Once the Bert neural network has been trained following the previous steps, we can 

obtain the embeddings of each entity, which will be the contextual numerical 

representations of each token, that will serve as input for the training of the 

classification neural network developed with PyTorch. 

2.3.2 PyTorch 

PyTorch [18] is a machine learning library that make compatible usability and 

speed: it provides an imperative and Pythonic programming style that supports code as a 

model, makes debugging easy and is consistent with other popular scientific computing 

libraries, while remaining efficient and supporting hardware accelerators such as GPUs. 

The PyTorch neural network receives as input a data table that must contain 

labels. The labels serve to identify the result of our classification. To avoid overtraining 

the neural network, the initial data is divided into test and train. Train refers to the data 

that will be used to train the network. Test data is the one not used during training to 

avoid overfitting. The PyTorch neural network will process the data in batch mode. This 

library follows the following network schema shown in Figure 11: 

 

Figure 11. PyTorch neural network scheme. 

In the neural network, data and weights are entered. The output of the 

activation function will be the weighted sum of the previous input (see Figure 12), 

where "b" is bias, "x" is the input data, "w" refers to the weights. The network is 

composed of different linear layers. Each linear layer is followed by a ReLu function, a 

batch normalization and a dropout function. The linear layers will contain the nodes. 
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ReLu function is a rectification function for applying nonlinear functions. Batch 

normalization is a method that normalizes each batch of data, prevents very different 

distances between data. Dropout function is a regularization technique to reduce the 

overfit, this technique takes some weights and puts them at 0. 

 

Figure 12. Activation function. 

Subsequently, the function loss of the output “z” and the expected output “y” is 

calculated, using BCE with logits loss. This function combines a Sigmoid layer and the 

BCELoss in one single class. Sigmoid applies the element-wise function (see Figure 

13). BCE Loss creates a criterion that measures the Binary Cross Entropy between the 

target and the input probabilities (see Figure 14), where “n” is the batch size. The final 

result will be the mean of L.  

 

Figure 13. Sigmoid Function. 

 

Figure 14. BCE loss function. 

Once the final output is obtained, we proceed to the last step, the optimization 

of the weights. This optimization is carried out by Adam optimizer.  Adam optimizer 

involves a combination of two gradient descent methodologies, momentum and root 

mean square propagation. Momentum accelerates the gradient descent algorithm by 

computing the exponentially weighted average. The use of averages makes the 

algorithm converge towards the minima in a faster pace. Root mean square propagation 

takes the exponential moving average of the squared gradients. Adam inherits the 
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strengths of the positive attributes of these two methods and build a more optimized 

gradient descent (see Figure 15). 

 

Figure 15. Adam optimizer. Left side of the equation equals to momentum. 

Right side of the equation equals to Root mean square propagation. 

Adam optimizer gives much higher performance than other optimizers (see 

Figure 16), the graph shows how this optimizer outperforms the rest in terms of training 

cost (low) and performance (high). Therefore it has been selected for his use.  

 

Figure 16. Training cost vs performance of optimizers graph. 

This library includes different modules. These modules allow PyTorch to 

calculate the gradients of the weights of the different layers at the same time as it 

applies the forward phase to the train data. Other machine learning techniques, such as 

Keras, calculate the gradients statically and then apply the algorithm. 

Another advantage of PyTorch is the use of tensors. Tensors, as mentioned 

before, are multidimensional matrices. The tensors used by PyTorch require an 

indication of whether the gradient needs to be calculated for the particular tensor or not. 
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3 MATERIALS AND METHODS 

3.1  Input Files Bert pre-training Obtention 

COpenMed [5] database has been used during this report. This database 

currently contains 10,000 entities. The database also contains the relationships between 

these entities. The entities contained are different diseases, causes, symptoms and 

treatments. All the data recorded in this database have been entered by volunteers or 

students and supervised by the site leaders. 

Recorded data can be represented using graph theory. The world today can be 

represented in graphs to understand it almost fully. Graph models for database 

management are extremely powerful and allow us to know information that is hidden 

from the naked eye. A graph [19] is a mathematical structure that allows us to model 

everyday problems through a graphical representation formed by nodes or vertices and 

edges. In this case, each node will be an entity of the database, and each edge will 

represent the links or relationships between these entities. On the COpenMed website 

[5], if we access an entity, we will be able to visualize a star graph, where there is a 

central node and directed edges connecting with other nodes (see Figure 17).  

 

Figure 17. Directed star network of the entity brittle nails. 
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The distance between the central node and the external nodes indicates the 

closeness of the relationship between these entities, the closer the central node is to an 

external node, the closer the relationship is. In the database, the level of relationship 

between entities is also established numerically in a range of 1-0, where "1" designates a 

very strong relationship and "0" a non-existent relationship. The colors designate the 

type of node type: symptom, anatomy, treatment, etc. (see Figure 17). 

Each of the nodes with which the central node connects, which is the entity we 

have searched for, contains another star graph, so that from an entity/node "a" we can 

reach an entity/node "c", with which there is no direct edge/relationship, through an 

entity/node "b" with which “a” and “c” separately establish a direct relationship. To 

better visualize this example, from the entity brittle nails (“Uñas quebradizas”) shown in 

Figure 17 we can reach through hypothyroidism (“Hipotiroidismo”) the entity fatigue 

(“cansancio”) (see Figure 18).  

 

Figure 18. Directed star network of the entity hypotyroidism. 

If we were to observe a complete graph of the database where all the entities 

and all the relationships were observed, (see Figure 19), we would be able to observe 
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how from one entity we can reach another through various nodes, on this theory are 

based the random walks that will be explained below and that as mentioned before, 

allow us to see connections established between entities, which at first sight cannot be 

observed.  

 

Figure 19. Global network example. 

The objective of the neural network to be developed is to detect relationships 

between entities. BERT is the first step to be developed for this purpose. This pre-

training phase requires a plane text file, containing one sentence per line. To facilitate 

this work, input files have been generated, one file for each entity, 

"randomWalkxxx_walks.txt", where "xxx" is the number of the entity. Each file 

contains 100 random walks starting from the selected entity, the walks have a length of 

30 entities. Each walk will be equivalent to one sentence. The random walks start from 

the selected entity and connect to different nodes (entities), to which they are related. 

The random walk stops when it reaches 30 different entities.  

The paths will have a total length of 61 words, 30 entities, 30 relationships and 

a word <eol> indicating the end of the path. Entities will be represented by an "e" 

followed by the entity number; relationships will be represented by an "r" followed by 

the relationship number (see Figure 20). 

 

Figure 20. Random walk example from entitie 9. 
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BERT also uses a text file called vocabulary, mentioned in section 2.3.1. This 

vocabulary, contained in "randomWalk_vocab.txt", is used to know the possible words, 

contained in the sentences, that we are going to introduce. To generate this text file, the 

possible special tokens that will be introduced by the MLM model: [PAD], [UNK], 

[CLS], [MASK], [SEP], and the possible entities and relations contained in the 

sentences have been introduced in it. The vocabulary consists of a total of 9381 words. 

The special tokens are intended to be a representation. Each token has a 

different meaning, the meanings have been described in section 2.3.1. Common words 

are not used because we are training a model that uses words. These tags only have the 

purpose of being a sentence-level representation for classification. 

3.2 Bert Pre-training implementation 

For the development of the code used for the pre-training of the neural 

network, we have resorted to a Github repository, where the BERT code is published 

[20]. 

In this dissertation only the pre-training part will be used. The pre-training of 

the neural network has a high cost of time and CPU, GPU or TPU usage, but it is a one-

time procedure. The code we will use is an adaptation of BERT Python, the original 

BERT code was written in C++. 

To facilitate the use of the code in the future, a Colab file containing 5 cells has 

been generated, each code cell is in charge of one step of the pre-training. This full 

code, and all the files necessary to reproduce it are in a repository of Github [21]. 

In the first cell we find the code needed to connect to our Google Drive. It is 

necessary to connect with Google Drive to obtain the input_files, the code and indicate 

where we want to generate the output_files. In this cell we also indicate the versions of 

the libraries we want to use. In this case, we will use Tensorflow 1 and numpy 1.19. 

These versions are necessary because the code has been developed on them. The Python 

version that manages this libraries version is Python 3.7. 

In the second cell we find the first step to start the pre-training, 

"create_pretraining_data". This execution file needs the determination of some inputs 



Development of a classification neural network for the detection of relationships between 

biomedical entities 

 21 

(see Figure 21). "--input_file" refers to the directory where the text files that contains 

the random walks are located, "--output_file" refers to the location where we want to 

place our output, this file must be of TFRecord extension, "vocab_file" refers to the 

location of the file containing the vocabulary, "do_lower_case=True "is used to convert 

all letters to lowercase and not interpret them differently, "-max_seq_length "is used to 

indicate the maximum length of the sentences we want, in our case, the length will be 

61, "masked_lm_prob" is used to indicate the number of words to be masked, 

"random_seed" is used to indicate the seed we want to randomly start from and 

"dupe_factor". 

                              

Figure 21. Create pre-training data inputs. 

Create_pretraining_data will generate the input needed to perform the pre-

training. To achieve this goal, the text files containing the random paths are read, and 

once the sentences containing the random paths are obtained, 15% of the words in each 

file are randomly masked with the available tokens. The output file that will be 

generated during the execution will contain the masked sentences, the position where 

the masking took place and the word that previously occupied the place where the mask 

is located. This file has an extension of type Tfrecord. Tfrecord is a binary file 

consisting of a sequence of records in which each record is a string of bytes, allows 

more efficient storage, takes up less space than the original data and can be split into 

several files. This type of file allows the data to be stored unordered, without losing the 

order, which fulfils the objective to be obtained at the exit of the execution. 

In the third cell, we have the code needed to perform the pre-training. Before 

running this step, we need to modify the execution environment that Google Colab is 

using. For this, the offered graphical interface is used and we will select GPU as the 

execution environment. This execution file needs the specification of some inputs (see 

Figure 22). "--input_file" as we have explained before, the input file corresponds to the 
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Tf_record file generated in the previous step. "--output_dir" is the directory where we 

want to generate our output, “--do_train” and “--do_eval” we will set them to true to get 

results, “--bert_config_file”, we will specify the location of the bert_config_json file, 

this file contains different specifications, size of the vocabulary, how many sequences 

are masked, the size of the embeddings... "--init_checkoint" will determine the location 

of the file bert_model.ckpt, "--train_batch_size" refers to the size we want to take from 

all the elements, to train them together, "max_seq_Length", has the same meaning as 

before and must have the same value. "max_predictions", must be the result of 

multiplying the previous parameter by the masking probability. 

                           

Figure 22. Run pre-training inputs. 

This code aims to obtain some initial weights, using the Tfrecord generated in 

the previous section as input. This code file is intended to learn how to unmask the 

masked words, for which it uses the previously explained cross-loss function. The 

output of this execution is the result of the probability with which it unmasks the words 

in a correct way, it also generates a series of files that mark the weights with which the 

final tests have been generated. 

The last cell contains the code necessary to execute “extrac_features”. This is 

the last step of our pre-training, in this step we will obtain the pre-trained contextual 

embeddings of each entity in the database. These embeddings are fixed contextual 

representations of each input token generated from the hidden layers of the pre-trained 

model. The code has been modified to generate one numpy file per entity, and it has 

also been specified that this numpy file must contain the embeddings generated for the 

token [SEP], located in the last layer, layer -1, because it contains the representation of 

the entire sentence. BERT is designed, as previously mentioned, not only to perform 
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MLM tasks but also to perform NPL tasks. In this work only MLM tasks are used, that 

is why the code areas where NPL is used have been removed. 

 

Figure 23. Extract features inputs. 

The necessary inputs (see Figure 23) are: "--input_file" we will specify the path 

to our text file containing the generated sentences, "randomWalk_walks.txt", “--

output_file”, we will specify the path where we want to deposit our output file, this file 

will be transient since it will be read later and modified to generate an .npy per entity. "-

-vocab_file" specify the path to the file containing the vocabulary, "--bert_config", “--

maxseqlength” and “--batch_size” are the same as in the previous steps, “--

init_chekpoint” specify the path containing the check points file generated in the 

previous step, “--layers”, indicates the number of layers to which we want to access, in 

our case it will only be necessary to access layer -1. 

3.3 Input files PyTorch obtention  

The pre-training performed with BERT resulted in a .npy file for each entity in 

the database. This file contains the pre-trained contextual embeddings for each entity for 

the token [SEP].  

The input file necessary for the training to be carried out with PyTorch must be 

made up of a column of type 'label', which indicates whether or not there is a 

relationship between two embeddings, and two other columns that will each contain an 

embedding of an entity.  

Different text files have been generated to prevent memory collapse during 

execution. A Python code has been generated that reads the existing relationships 

between the entities. For each relationship, 10 lines of text are generated, containing a 

"1" marking the existing relationship between the two entities, and where a random 

embedding is taken from each of the entities that make up the relationship. After writing 
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these lines, another 10 lines of text are written, containing a "0" marking the non-

relationship between two entities, and where a random embedding is taken from one of 

the related entities and a random embedding is taken from another entity unrelated to 

the previous entity. The files contain 16,000 lines each. 

This text files are intended to ensure that there are enough existing or non-

existing relationships to train the neural network. This code and the code that has been 

developed to train and test the PyTorch neural network has been developed in Spyder 

5.1.0, Python 3.9. Google Colab has not been used for space reasons. 

3.4 PyTorch training implementation 

The implementation of the classification neural network developed during this 

Bachelor thesis makes use of different libraries, among which we can highlight torch 

and sklearn.  

Torch is the library that allows us to make use of PyTorch, a tool presented in 

section 1.3.4 and whose inner workings have been presented in section 2.3.2. The 

Sklearn library is used to make analytical predictions, which help us to evaluate the 

training of the network. 

When developing a neural network, we must be clear about its purpose before 

proceeding with its design. In this case, as mentioned before, the neural network will 

perform a binary classification and its inputs will be two embeddings, one of each 

entity. This already gives us the necessary input and output neurons, as mentioned in 

section 2.3.2 the network must contain an adequate number of neurons for the learning 

to be correct. The number of neurons and linear layers chosen for this neural network is 

as follows: The embeddings are formed by 768 inputs each, each neuron will take care 

of one input, so the total number of input neurons is 1536, the network is composed by 

two hidden layers of neurons, the first one is composed by 512 neurons and the second 

one by 128 neurons, finally the output layer is composed by a single neuron that will 

mark if there is an existing relationship or not between the two inputted entities, this 

output will be marked with a "1" if there is an existing relationship or by a "0" if there is 

not an existing relationship. Different operations are necessary between these layers, 
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which have been presented in section 2.3.2 and help the operation of the network (see 

Figure 24). 

 

Figure 24. Neural network final scheme. 

The implementation of this scheme and its directionality has been done as 

follows (see Figure 25). As can be seen in the image below, a declaration of the layers 

and functions to be used is made. Subsequently, the order of these is declared, where the 

“x” containing the entered entries goes through the established order. 

 

Figure 25. Neural Network structure declaration. 
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To train the network correctly, it is necessary to make several passes through 

the neural network to adjust the weights, this is called backward propagation. During 

backward propagation a sigmoid layer is also applied in the BCEWithLogisticLoss 

function. To fulfil this purpose, the training of the network will be carried out in epochs, 

where in each epoch there will be different batches. The batches indicate how the input 

data is divided to perform several passes through it. The epochs mark how many times 

the training is to be repeated. As mentioned in section 3.3 different input files have been 

obtained, in total 90 files, to perform the training 1800 epochs have been declared, in 

each epoch a different file will be chosen which will be divided in batches. To avoid 

overlearning of the network, every 90 epochs the files are reordered randomly so that 

they are not always entered in the same order.  

To do this, two nested for loops have been designed, the outer one will 

increment the epochs, the inner one the batch used. Before starting the loop that will 

perform the network training, it is necessary to declare the optimisation and loss 

functions that will be used. As mentioned and explained in section 2.3.2 these functions 

are BCEWithLogisticLoss and Adam optimizer. The learning rate, which is the 

exchange rate at which the weights are updated, used has been set as 0.001.  

Once we have all the parameters declared we start the for loop mentioned 

above. This loop will start executing in epochs, in each epoch, it will load a data file 

with which it will train the network, divide it into batches and start the training carried 

out by the internal for loop. In each batch it passes the data through the neural network, 

calculates the obtained loss and the accuracy and performs a summatory of both 

parameters separately. It carries out the optimisation step where it seeks to improve the 

assigned weights and cleans the gradient so that it does not accumulate. 

To observe the progress of the network, the loss and the accuracy obtained at 

each epoch has been displayed on screen and recorded in a text file (see Figure 26 and 

Figure 27). To calculate the final loss and accuracy for each epoch, both are divided by 

the number of batches used. As can be seen the Loss in the latter epochs (see Figure 27) 

is much closer to zero than in the earlier epochs (see Figure 26) and the Accuracy in the 

latter epochs (see Figure 27) is higher than in the earlier epochs (see Figure 26). 
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Figure 26. Loss and Accuracy of the first 5 epochs. 

 

Figure 27. Loss and Accuracy of the last 5 epochs. 

Once the model has been trained, the weights obtained in the last epoch are 

saved in a file in order to be able to use the final network at another time without having 

to re-train it. 
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4 RESULTS 

The effectiveness of the neural network in identifying whether two entities are 

related has been evaluated using the confusion matrix technique. 

A confusion matrix [22] is a tool that allows the visualisation of the 

performance of an algorithm designed for supervised learning tasks.  It consists of 

columns and rows, in the columns we find the possible predictions, in the rows the 

actual classification. From this matrix we can observe how many times the algorithm 

has correctly identified whether there is an existing or non-existing relationship, 

between two entities, true positive (TP) and true negative (TN), and how many times it 

has been wrong, false positive (FP) and false negative (FN), (see Figure 28). 

 

Figure 28. Confusion matrix structure. 

The effectiveness of the network classification has been evaluated under two 

different scenarios. The first scenario contains 100 pairs of strongly related entities, 

relationship level "1", and 100 pairs of unrelated entities. The second scenario contains 

100 pairs of entities with a relationship level of "0.5", and 100 pairs of unrelated 

entities. A numpy file has been generated for each of the scenarios. 

Once the files were obtained, the trained neural network model was loaded and 

the data chosen for the test were passed through the neural network. Finally, the results 

obtained by the neural network were compared with the real results, generating a 

confusion matrix that will allow the model to be evaluated. This process was repeated 

for each of the scenarios (see Table 1 and 2). 
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Table 1. Confusion Matrix level 1. 

 

Table 2. Confusion Matrix level 0.5. 

From the confusion matrix we can obtain many measures that will allow a 

correct evaluation of the model, among these we find the precision of the model, the 

recall, the f1-score and the accuracy. Precision [23] is the ability of an instrument to 

give the same result for different measurements under the same conditions (see Figure 

29).  

 

Figure 29. Precision formula. 

Recall [23] allows to observe the sensitivity and specificity of the model, 

sensitivity characterises the capacity of the neural network to detect existing 

relationships between entities, specificity indicates the ability of our neural network to 
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identify non-existing relationships. Accuracy is the ability of an instrument to give the 

desired result accurately (see Figure 30). 

 

Figure 30. Accuracy, Sensitivity and Specificity formulas. 

A model can be very precise and not accurate or very accurate and not precise 

(see Figure 31). The best quality scientific observations are both accurate and precise. 

 

Figure 31. Accuracy and Precision comparision. 

The F1 value [23] combines the precision and recall measures into a single 

value. This is practical because it makes it easier to compare the combined performance 

of accuracy and completeness between various solutions. It is calculated by making the 

harmonic measure between the two parameters (see Figure 32). 

 

Figure 32. F1-score formula. 

The values obtained from these measurements from the confusion matrixes 

shown were the following (see Table 3 and Table 4).  
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Table 3. Precision, Recall, F1-score and Accuracy obtained, level 1. 

 

Table 4. Precision, Recall, F1-score and Accuracy obtained, level 0.5. 
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5 DISCUSSION 

The results obtained show that the network has a greater capacity to identify 

existing relationships, sensitivity 95% for level 1 relationships and 96% for level 0.5 

relationships, than for identify non-existing relationships, specificity 55% for level 1 

and 50% for level 0.5. While it shows a higher precision in identifying non-existing 

relationships, 92% for level 1 and 93% for level 0.5, than for identify existing 

relationships, 68% for level 1 and 66% for level 0.5. 

The entities, as mentioned in previous sections, establish many connections 

with each other, being able to reach very distant entities with a low level of relationship 

with the initial entity, following random paths. The neural network has been trained 

with relationships of all levels. The network has not been trained to directly identify 

non-existent relationships, which is why the precision of non-existent relationships can 

be so high, 92% precision for level 1 and 93% precision for level 0.5, it classifies 

everything it does not identify, in the same area. As there are relationships at level 0.1, 

which is a very low level, the network's ability to identify non-existent relationships, 

level 0, is affected, with a specificity of 55% for level 1 and 50% for level 0.5. 

Regarding the identification of relationships, the network shows a high ability 

to identify strong and medium relationships, with a sensitivity of 95% for level 1 and 

96% for level 0.5. Again, being trained on all types of relationships, strong and non-

strong, it makes sense that it is able to identify strong and medium relationships well. At 

the same time, it is normal that the precision of the network is lower, 68% for level 1 

and 66% for level 0.5, as the network has not been trained on only one type of 

relationship between entities, not all relationships between entities will be located in the 

same area. 

The results of the network in the two scenarios do not differ much from each 

other, reaching 50% specificity and 95% sensitivity in both cases. The behaviour of the 

network does not vary much when it comes to identifying relationships of different 

levels. 
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6 CONCLUSIONS 

The final objective of this final degree project was to develop a classification 

neural network capable of detecting existing relationships between medical entities. The 

classification neural network developed has a good ability to detect relationships 

between entities, reaching 95% and 96% of detection for relationships with level 1 and 

0.5 respectively. On the other hand, the detection of non-existent relationships is lower, 

but still reaches or exceeds 50%: 55% and 50% detection for level 1 and level 0.5 

respectively. 

As future lines of work, it would be interesting to study the possibility of 

teaching the neural network when two entities are not related in order to increase its 

specificity, or the differences between related entities at level 0.1 and unrelated entities. 

These goals can be achieved by changing the type of data with which the network is 

trained. On the other hand, it is necessary to repeat the process for new entities, 

introduced in the database. As new objectives to extend the capabilities of the search 

engine, it would be convenient to continue with BERT's lines of work as well as to look 

for new lines of work for the development of the neural network in order to rule out 

better development possibilities. 
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