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Abstract

In this work, a powerful parametric spectral estimation technique, 2D-auto regressive moving average modeling

(ARMA), has been applied to contrast transfer function (CTF) detection in electron microscopy. Parametric techniques

such as auto regressive (AR) and ARMA models allow a more exact determination of the CTF than traditional

methods based only on the Fourier transform of the complete image or parts of it and performing some average

(periodogram averaging). Previous works revealed that AR models can be used to improve CTF estimation and the

detection of its zeros. ARMA models reduce the model order and the computing time, and more interestingly, achieve

increased accuracy. ARMA models are generated from electron microscopy (EM) images, and then a stepwise search

algorithm is used to fit all the parameters of a theoretical CTF model in the ARMA model previously calculated.

Furthermore, this adjustment is truly two-dimensional, allowing astigmatic images to be properly treated. Finally, an

individual CTF can be assigned to every point of the micrograph, by means of an interpolation at the functional level,

provided that a CTF has been estimated in each one of a set of local areas. The user need only know a few a priori

parameters of the experimental conditions of his micrographs, for turning this technique into an automatic and very

powerful tool for CTF determination, prior to CTF correction in 3D-EM.

The programs developed for the above tasks have been integrated into the X-Windows-based Microscopy Image

Processing Package (Xmipp) software package, and are fully accessible at www.biocomp.cnb.uam.es.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Images obtained from the electron microscope
are affected by many forms of aberration arising

from the complex interaction between the matter
and the electron beam in the microscope. These
aberrations are mainly produced by the electron
source, magnetic lenses and the defocus used in
experimental practice. Mathematically, the differ-
ence between a theoretical specimen projec-
tion and the actual experimental projection
obtained in the micrograph is modeled by a linear
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transfer function known in electron microscopy
field as contrast transfer function (CTF). Although
a well-established theory of image formation in
transmission electron microscopy exists [1–4], that
describes the CTF in parametric form, there is still
a need for a good estimation method, allowing the
actual shape of the CTF affecting the experimental
images to be determined.
The methods used so far [5–10] include the

classical spectral analysis techniques such as
the periodogram (simply the square magnitude of
the Fourier transform (FT) of the image) and
periodogram averaging followed by a fitting of the
parametric model of the CTF to a 1-D radial
average of the resulting spectrum. Good results
can sometimes be obtained; however, the informa-
tion on the local properties throughout the
micrograph is lost. In other approaches [10], the
power spectrum of the image is filtered by radially
limiting its inverse transform, the autocorrelation
function, and then a 2-D CTF parametric fitting is
done.
Previous work in our group [11] revealed that

parametric spectral estimation methods, such as
autoregressive (AR) models, can be used to
improve the CTF estimation and the detection of
its zeros. Here, an extension of this work is done
using 2D-auto regressive moving average (ARMA)
models [12] that allow a reduction in model order,
and consequently in computing time, while also
increasing estimation accuracy. Subsequently, a
truly 2-D adjustment of the CTF parametric
function is done, thus enabling full consideration
of the CTF values (phase and amplitudes) and also
the treatment of astigmatic images.
In the rest of the paper, we describe the

theoretical CTF considered in our work (Section 1),
discuss the methods currently used for CTF
determination (Section 2), introduce ARMA
models (Section 3), describe the search algorithm
for the parametric CTF determination (Section 4)
and the method of interpolating the CTF function
to obtain local values in a micrograph (Section 5),
discuss the determination of the optimal
ARMA order making a comparison with the
periodogram averaging method, and including
results obtained for negatively stained and cryo-
microscopy micrographs (Section 6), and finally,

discuss the algorithm devised and the results
obtained (Section 7).

2. CTF function theory

Mathematically speaking, the image formation
process in the microscope can be represented by a
point spread function h that convolves the true
projection f of the electron density potential
function of an object, yielding the experimental
TEM image i:

iðrÞ ¼ hðrÞðfðrÞ þ nbðrÞÞ þ naðrÞ; ð1:1Þ

where r is a vector in R2 representing a real space
point. In Eq. (1.1), two noise terms appear. The
first, nb, denotes noise before image formation, i.e.
the noise present in the projection image affected
by the CTF; the second, na, denotes noise after
image formation, i.e. the noise added by the
recording and digitization processes. Fourier
transformation of expression (1.1) yields

IðxÞ ¼ HðxÞðFðxÞ þ NbðxÞÞ þ NaðxÞ; ð1:2Þ

where x is a vector representing the spatial
frequency, and H represents the CTF. H is a
complicated parametric function, which takes into
account the effects of voltage, defocus and
spherical aberration of the microscope, among
others.
Image formation theory states that the electrons

arrive at the image plane with a phase shift wðoÞ
given by

wðoÞ ¼ plðDfo2 þ 1
2

Cso4l2Þ: ð1:3Þ

Phase shift (1.3) is a function of the parameters
defocus Df ; spherical aberration coefficient Cs and
the wavelength of the electrons l. When astigma-
tism is being considered, the size of the defocus can
be expressed by its maximum DfM and minimum
Dfm values, which are in perpendicular directions,
and the angle y between Dfm and the X-axis of the
spatial frequency domain:

Df ðoÞ ¼ signðDfMÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DfM cosð+x � yÞ½ �2þ Dfm sinð+x � yÞ½ �2

q
:

ð1:4Þ
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In Eq. (1.4),+x represents the angle of x when
it is expressed in polar coordinates. The mathe-
matical expression for H, given by Erickson and
Klug [1], includes both contributions of phase and
amplitude contrast:

HðxÞ ¼ �ðsinðwðxÞÞ þ QðxÞcosðwðxÞÞÞ: ð1:5Þ

The term QðxÞ is the proportion of amplitude
contrast, i.e. the fraction of electrons lost from the
beam. But here a modified version is used:

HðxÞ ¼ � KðsinðwðxÞÞ þ QðxÞcosðwðxÞÞÞ

� EðxÞ; ð1:6Þ

where K is a scale factor term introduced to
account for discrepancies between the theoretical
value given by Eq. (1.5) and the actual estimated
value, and E is an attenuation term, known as
envelope function [2], covering the set of effects
that produce the decrease in CTF amplitude. The
functional form of the attenuation term is given by

EðoÞ ¼ EsprðoÞEDf ðoÞEDRðoÞEaðoÞ: ð1:7Þ

The same expression is considered in the
program ICE [5], and is closely similar to those
used in Ref. [8]. Below we study each of
the envelope terms:

EsprðoÞ

¼ exp �
½ðpCal=4ÞðDU=V þ 2DI=IÞ�2

lnð2Þ

� �
o4:

ð1:8Þ

This term considers the energy spread DU of the
beam’s electrons, as a percentage of the voltage V

of the microscope, and the lens current instability
DI, as a percentage of current I, and the chromatic
aberration coefficient Ca.
The effect of the beam coherence is modeled by

a function of its semi-angle of aperture or angular
source size a:

EaðoÞ ¼ exp �p2a2ðCsl
2o3 þ DfoÞ2

� �
: ð1:9Þ

The possible mechanical displacement DF, due
to drifts of the sample in a direction perpendicular
to the focal plane, influences the CTF by

EDF ðoÞ ¼ J0ðp DF lo2Þ; ð1:10Þ

where J0 stands for the Bessel function type one
and zero order. The effect of the drift DR in the

plane of the sample is given by Frank’s formula
(1969):

EDRðoÞ ¼ sincðoDRÞ: ð1:11Þ

The wavelength of electrons is calculated using
Hall’s formula (1966):

l ¼
1:23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V þ 10�6V2
p ðnmÞ: ð1:12Þ

This theoretical model has been used to adjust
the CTF in our programs. The user can introduce
a first estimate of the model parameters, namely
V ; Ca; Cs; DfM; Dfm; y; DU=V ; DI=I ; a; DF ; DR;
Q; as a starting point for the search algorithm,
although only V and Cs are mandatory. Any of
them can also be given a fixed value. It should be
noted that for those combinations of parameters
for which Eqs. (1.8), (1.10) and (1.11) become
one and the term o3 in Eq. (1.9) is negligible;
the general expression of Eq. (1.7) is reduced to the
simpler one:

EðoÞ ¼ EaðoÞ

Eexp½�p2a2ðDf oÞ2�

¼ exp½�Ao2�; ð1:13Þ

an approximation that has been adopted in
previous works [7]. Indeed, in the resolution range
normally used in 3D electron microscopy, where 3
or 4 CTF zeros are distinguishable, Eq. (1.13) is a
sufficiently good assumption. The spherical aber-
ration coefficient only has an important role when
considering quite high spatial frequencies. Also,
the effect of other parameters such as the long-
itudinal DF and horizontal DR displacements can
be adequately included in parameter A of
Eq. (1.13), thus masking the contribution of terms
(1.10) and (1.11) to the general expression (1.7).
The same masking effect occurs with those
parameters appearing in Eq. (1.8). This means
that although the model presented in Eq. (1.7) is
mathematically well defined, i.e., every CTF has a
defined set of parameters that cannot be altered
without altering its shape, there is an entire range
of parameter sets that are compatible with a given
shape if one considers only a limited spatial
frequency range.

J.A. Vel !azquez-Muriel et al. / Ultramicroscopy 96 (2003) 17–35 19



In this work, we have fitted both models
expressed by Eqs. (1.7) and (1.13) with good
results in both cases.

3. CTF determination methods

Different methods have been applied to the
problem of CTF estimation. All of them are based
on spectral estimation. Given the image formation
model in Eq. (1.2), its power spectrum is

SI ðxÞ ¼ HðxÞj j2ðSFðxÞ þ SNb
ðxÞÞ

þ SNa
ðxÞÞ; ð1:14Þ

where SX ðxÞ is the power spectrum of the random
field X. In the case of X being a deterministic
signal, SX ðxÞ can be computed as X ðxÞj j2:

3.1. Periodogram models

The first way of estimating the power spectrum
SI ðxÞ of a random field I of size Nx � Ny is the
periodogram: a simple computation of the squared
amplitude of the Fourier transform of the image
divided by the number of pixels:

#SPERI ðxÞ ¼
1

NxNy

X
r

iðrÞe�2piðx
rÞ

					
					
2

: ð1:15Þ

This estimator has an expected value of SI ðxÞ;
however, its standard deviation is also SI ðxÞ;
rendering the estimator unreliable.
An improved version of the periodogram

estimator results from splitting a micrograph into
k non-overlapping regions of equal size, and
computing the average of the periodograms over
those regions:

#SAVPERI ðxÞ ¼
1

k

X
k

#SPERIk
ðxÞ2: ð1:16Þ

This operation reduces the variance of the
estimator by a factor k, at the cost of reducing
the resolution. Region overlapping may be used to
achieve a stronger variance reduction [8,11].
Fern!andez et al. [11] obtained a mathematical
expression of this reduction for the case of K1 � K2

regions with half overlapping sections in both
directions. The reduction in variance achieved by

allowing region overlap is greater since more
regions inside an image can be considered. In
short, these two classical estimation methods
based on the Fourier transform involve a hard
trade-off between spectral resolution and variance.

3.2. Autoregressive models

If the random process can be modeled as a
response to a parametric system excited with some
type of noise, other spectral techniques can be used
that may lead to an increase in resolution. The
assumption can be stated in the form of a linear
difference equation for the image i:

iðxÞ ¼
X
rAR

yARðrÞiðx� rÞ þ eðxÞ; ð1:17Þ

where e represents the input noise that excites the
system, and yAR(r) is a coefficient which determines
how much the point i(x�r) influences the value of
i(r). R is known as the support region of the model,
which indicates the region of Z2 � fð0; 0Þg used to
predict the value of the current pixel. Assuming
that e is the white noise of zero mean and variance
s2, the corresponding model is known as AR
model. The power spectrum of an image i derived
from Eq. (1.17) is

#SARI ðxÞ ¼
s2

1�
P

rAR yARðrÞe�2piðx
rÞ
		 		2: ð1:18Þ

The selection of the shape and size of the
support region is crucial to the performance of the
AR model. According to the shape of the support
region, models can be causal, semi-causal or non-
causal (see Fig. 1, left, center, right). The order of
the models, which determines the number of
parameters considered, is given by the number of
pixels in the vertical and horizontal directions. For
example, a causal AR model of order (4,4)
involves a support region in the non-symmetric
half plane of 4 pixels considered in both directions
(Fig. 1, left).
AR models with causal support regions were

extensively studied in our group [11], and its
usefulness was shown with real data. It was found
that the greater the order of the AR model, the
closer the similarity between the estimated and
the actual power spectra when simulated images
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were used. AR models of order as high as 60� 60
were used to estimate the CTF of the micrographs,
thus obtaining 7320 AR coefficients.

3.3. ARMA models

In this work, we extend the use of the 2-D AR
models applied to electron microscopy micro-
graphs including moving average (MA) models
in the spectral estimation technique. These models
are also known as 2D-ARMAmodels, and here we
introduce a class of them that can be used in any
process with rational spectral density [12]. The
difference equation that defines an ARMA model
is similar to Eq. (1.17):

iðxÞ ¼
X
rAR

yARðrÞiðx� rÞ þ
ffiffiffi
u

p
eðxÞ: ð1:19Þ

However, in this case the input noise term e is
correlated and does not need to be white. The term
u is added recalling the variance term that appears
in Eq. (1.18). The power spectrum of Eq. (1.19) is
given by

SARMAI ðxÞ ¼ u
1þ

P
rAR yMAðrÞe�2piðx
rÞ

1�
P

rAR yARðrÞe�2piðx
rÞ

				
				
2

¼ u
BðxÞ
AðxÞ

				
				
2

: ð1:20Þ

The noise term considered to obtain Eq. (1.20) is
a zero-mean sequence with power spectrum:

SEðxÞ ¼ AðxÞBðxÞj j2; ð1:21Þ

where AðxÞ and BðxÞ are two polynomial terms of
the AR and MA coefficients of the model. In the

derivation of Eq. (1.20), an algorithm is found for
computing the AR and MA coefficients. We start
from the definition of power spectrum for a
stochastic process, which is the squared amplitude
of the Fourier transform of its autocorrelation
function r. Multiplying every term in Eq. (1.19) by
i(x�t) and computing its expected value, we obtain

E iðxÞiðx� tÞ½ � ¼E
X
rAR

yARðrÞiðx� rÞiðx� tÞ

" #

þ E
ffiffiffi
u

p
eðxÞiðx� tÞ

h i
: ð1:22Þ

This can be rewritten in terms of the correlation
function as

rI ðtÞ ¼
X
rAR

yARðrÞrI ðt� rÞ þ
ffiffiffi
u

p
rEI ðtÞ: ð1:23Þ

Repeating the same operation but multiplying
by e(x�t)

rEI ðtÞ ¼
X
rAR

yARðrÞrEI ðt� rÞ þ
ffiffiffi
u

p
rEðtÞ: ð1:24Þ

Fourier transforming Eqs. (1.23) and (1.24) and
combining them with Eq. (1.21), an expression for
the autocorrelation function is found:

RI ðxÞ ¼

ffiffiffi
u

p
AðxÞ

REI ðxÞ

¼
u

AðxÞ2
REðxÞ

¼
u

AðxÞ2
AðxÞBðxÞ

¼
uBðxÞ
AðxÞ

: ð1:25Þ

Fig. 1. Support regions for AR and ARMAmodels. Left: A causal region, where the value of the black pixel depends causally on both

directions. Center: A semi-causal region, where the black pixel depends causally on horizontal pixels, but not causally on vertical ones,

as they are unknown when the matrix is explored lexicographically. Right: A non-causal region. The black pixel depends on all its

neighbors.
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From Eq. (1.25), the expression for power
spectrum (1.20) can be directly obtained. Unlike
the 1-D case, the driving noise e cannot be replaced
by a finite moving average representation excited by
an independent identically distributed sequence, as
in AR, since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞ

p
is not, in general, a finite-

order polynomial. Also note that AR models
can be included as a special case of ARMA
models in which B(x)=1.
ARMA models, like AR models, can be causal,

semi-causal and non-causal. In this work, a non-
causal ARMA model is used leading to a reduc-
tion in the order of the model.
The parameters of the ARMA model can be

estimated by two methods [12], one based on
correlations, and the other based on maximum
likelihood. Here the correlation method is chosen
because its computational demand is smaller, and
its results are accurate enough when the order of
the ARMA model is small compared with the
image size. The models considered so far had
7320 parameters and the image sizes were
512� 512=262,144, or 1024� 1024=1,048,576;
so the above condition was met.
The method considers three subsets of
Z2 � ð0; 0Þ

� �
; N1 (the support region for the AR

part of the model), N2 (the support region for the
MA part of the model) and N3 (a set of neighbors
to obtain the AR coefficients). Each Ni is a finite
symmetric set composed of anti-symmetric subsets
Nsi and %Nsi defined by

Ni ¼ Nsi, %Nsi;

Nsi- %Nsi ¼ 0;

ði; jÞANsk ) ð�i;�jÞeNsk:

The subsets used in this work are shown in Fig. 2.
The symmetry of the correlation function rðrÞ ¼
rð�rÞ; implies that the coefficients of the model are
symmetric yARðrÞ ¼ yARð�rÞ; yMAðrÞ ¼ yMAð�rÞ
and Eq. (1.19) can be rewritten as

iðxÞ ¼
X
rANs1

yARðrÞðiðx� rÞ þ iðxþ rÞÞ

þ
ffiffiffi
u

p
eðxÞ; ð1:26Þ

where the cross-correlation between the image and
the noise e is

rEI ðrÞ ¼ E½eðxÞiðxþ rÞ�

¼

ffiffiffi
u

p
if r ¼ 0;ffiffiffi

u
p

yMA if rAN2;

0 otherwise:

8><
>: ð1:27Þ

Fig. 2. Support regions for the ARMA models. N AR and M AR determine the size of the AR support region and N MA, M MA,

the size of the MA support region. N1 and N3 are composed of Ns1 and %Ns1: N2 is composed of Ns2 and %Ns2:
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With Eqs. (1.26) and (1.27), it is possible to
derive the calculation procedure. Multiplying by
yð0Þ; yðxþ sÞ; sANs2; yðxþ tÞ; tANs3 and taking
expectation we obtain, respectively:

rð0Þ ¼ 2
X
rANs1

yARðrÞrðrÞ þ u; ð1:28Þ

rðsÞ ¼
X
rANs1

yARðrÞðrðs� rÞ þ rðsþ rÞÞ

þ
ffiffiffi
u

p
yMAðsÞ; sANs2; ð1:29Þ

rðtÞ ¼
X
rANs1

yARðrÞðrðt� rÞ þ rðtþ rÞÞ tANs3: ð1:30Þ

The following algorithm is applied:

1. Choose the sets N1, N2 and N3. N3 must be the
symmetric set having the n nearest points to the
origin so that N2-N3 ¼ 0; where n is the size of
Ns1. The condition of no intersection between
N2 and N3 is required because if some particular
s belongs at the same time to N2 and N3, this
will lead to a corresponding MA coefficient of
value zero (this can be easily verified from
Eqs. (1.29) and (1.30)). Nevertheless, note that
N3 is not unique. The sets selected in this work
are represented in Fig. 2. N3 is chosen to be the
same as N1.

2. Estimate the various correlation terms needed:

#rðrÞ ¼
1

N

X
x

iðxÞiðxþ rÞ; ð1:31Þ

where N is the number of pixels where the two
shifted versions of the image overlap. In our
programs, this is done efficiently using FFTs.

3. Solve the linear system in Eq. (1.30), using the
correlation estimates from the preceding step to
obtain the AR coefficients of the model. It is
worth noting that the system is close to
singularity; so usual techniques for linear
system solving do not apply. We have used
the singular value decomposition algorithm
[13], which allows specifying a tolerance for
the eigenvalues of the system matrix, eliminat-
ing those that are too small.

4. Solve the equation in Eq. (1.28), replacing each
yAR by its estimate, and obtain the term u.

5. Solve each equation in Eq. (1.29) for the
corresponding MA coefficient, replacing the

estimated values for yAR and u obtained in steps
3 and 4.

6. Finally, the power spectrum is determined using
the variant given for a toroidal ARMA model
[12], since it has been found to be more accurate
for our images:

SARMAI ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u
1þ

P
rAR yMAðrÞe�2piðx
rÞ

1�
P

rAR yARðrÞe�2piðx
rÞ

s					
					
2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

BðxÞ
AðxÞ

s					
					
2

: ð1:32Þ

For our purposes, it is additionally supposed
that we are processing images where the signal
comes mainly from the noise terms of Eq. (1.14)
(thus the specimen spectrum is negligible), and that
the noise before image formation is white. Under
these assumptions, the spectrum SARMAI ðxÞ is an
estimation of the squared modulus of the CTF
plus the background term of noise after image
formation:

SARMAI ðxÞCSI ðxÞ

¼ HðxÞj j2þSNa
ðxÞ: ð1:33Þ

4. Parameter adjustment algorithm

The estimation of the power spectrum produces
an image of the same size as the original with the
values of the power spectrum for every pixel. To
adequately estimate the parametric expression of
the CTF, we need to extract the values of the CTF
physical parameters from Eq. (1.33). This is done
by adjusting the CTF model in question to the
power spectrum obtained by the ARMA model-
ing. The process performs a 2-D surface adjust-
ment over the 24 parameters of the theoretical
model. No rotational averaging is done in any
way, so that the presence of astigmatism can be
detected and images affected by it can be
adequately treated.
Based on the spectra observed in our images,

and on previous models [7], we have found that
exponential functions fit the background noise
term fairly well. We propose a function of three
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terms to reproduce the observed behavior:

SNa
ðxÞ

¼ b þ Kg exp �
ðoU � oU0Þ

2

2s2gU

�
ðoV � oV0Þ

2

2s2gV

" #

þ Ks exp �

ffiffiffiffiffiffiffiffiffi
oUj j

p
ssU

�

ffiffiffiffiffiffiffiffiffi
oVj j

p
ssV

" #
;

oU ¼ oX cosðyaÞ þ oY sinðyaÞ;

oV ¼ �oX sinðyaÞ þ oY cosðyaÞ: ð1:34Þ

The first constant term b is intended to adjust
the high spatial frequency base level of the
spectrum, the second term is a gaussian function
to adjust medium spatial frequencies, and the third
term reproduces the shape of the spectrum at low
spatial frequencies quite well. The angle ya allows
for considering an anisotropic noise spectrum, and
oU0, oV0 are values to shift the gaussian from the
center of coordinates so that the middle spatial
frequency range can be better adjusted. It must be
pointed out that the anisotropic noise considered
here is not directly due to the microscope, but can
be the result of the composition of different effects
subsequent to image formation, such as the effect
of the scanner on the digitalization step of the
micrograph. The noise model amounts to a total of
10 parameters: b; Kg; sgU ; sgV ; oU0; oV0; Ks; ssU ;
ssV ; ya: The 2-D nature of the search performed
forces us to duplicate sg; ss and o0; and introduce
the angle ya: The background noise, ideally, would
have to coincide with the power spectrum surface
in all the CTF zeros (which are the minima of
the surface) and in high spatial frequencies where
the CTF is attenuated. In one dimension, the
model has 6 parameters, differing from previous
models [7] only in the constant term b and the
displacement term o0. In fact, if the images used
are not astigmatic, the values that our programs
are able to find look very similar in both
directions, and the model can eventually be
reduced to working in one dimension to cover this
situation.
We discovered in the course of our experiments

that a good adjustment of this background term is
crucial for a satisfactory final adjustment and
parameter estimation. We therefore developed a
stepwise search algorithm that basically finds first

the best background term and then adjusts the
parametric CTF shown in Eq. (1.6). This proce-
dure is described in the next section.

5. Search method

Due to the considerations made in the descrip-
tion of the CTF model, some of the least relevant
parameters for the CTF shape are masked because
of their relatively small influence at medium
resolution. This implies that a large number of
local minima exist in the search space, complicat-
ing an accurate determination of these CTF
parameters. For this reason, our program per-
forms a gradual approach to the solution that
guarantees that the CTF function is fitted and the
parameters have physical meaning, although some
variation in the less sensitive parameters may
occur when treating medium resolution images.
The optimization method used is Powell’s

algorithm [13], an efficient algorithm for mini-
mization of a multidimensional function when no
explicit function is available for the gradient,
although it is sub-optimal in the sense that it can
be trapped in a local minimum. Therefore this
algorithm is run not once, but many times in a
sequence of steps consisting of (i) determination of
the background noise, (ii) determination of the
physical CTF model, (iii) weighted optimization
and (iv) fine tuning of the model.
The background noise determination starts with

the calculation of b. It is computed as the average
of the power spectrum values for high spatial
frequencies. Then the term dependent on the
square root of the spatial frequency is computed
in three phases: (a) least-squares adjustment to
obtain an initial solution, (b) optimization of the
L1 norm of the error to fit better the zones of the
curve that have lower values, and (c) gradual
penalization of this term so that it is always under
the power spectrum. This objective is achieved by
heavily penalizing the L1 fitting error in those
cases where the fitting surface is above the
spectrum. Extreme changes in the penalization
factor value tend to make the algorithm unstable,
and therefore a strategy of gradually increasing
penalizations is used, starting with a value of 2 and
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increasing it in powers of 2 up to the value given
by the user. In our experiments, this value is 128.
Finally, the gaussian term is found, first by varying
only the parameters Kg; sgU ; sgV ; oU0; oV0

in a least-squares fit and then globally op-
timizing all the ten parameters for the background
noise.
It is important to note that we have used the

L1 norm of errors in the distance calculations of
the optimizing algorithm, and not the L2 norm,
since the latter tends to give more importance
to large errors, and we are interested in fitting
the small details present mostly in the CTF and
not in the noise. The L2 norm has been implicitly
used only during the least-squares first step of the
parameter search, precisely where large errors
occur.
Once the background noise is adjusted, an

exhaustive search over the defocus in the X- and
Y-axis is done, supposing that the astigmatism is
not rotated, i.e. that the angle y in Eq. (1.4) is zero.
For each defocus combination, the a semi-angle
and K of Eqs. (1.9) and (1.6) are estimated by a
simple least-squares method. Next, all the
parameters of the CTF model in Eq. (1.6) are
found, minimizing the weighted relative error
with Powell’s algorithm. This distance function
of the weighted relative error is used here and
in subsequent steps because of the need to
concentrate the search on the values of the CTF
lobes, which are usually very small compared
with that of the noise. Following the gradual
relaxation of the imposed restrictions, a global
optimization is done, allowing the variation of all
24 parameters, but still penalizing the background
noise.
A good approximation of the power spectrum

has now been obtained, but two drawbacks
remain to be overcome. First, the parametric
CTF model has values much lower than those of
the noise, and even in the case of good numeric
approximation, the shape of the CTF could not
have been adequately modeled. Secondly, the
penalization imposed on the noise term keeps it
well under the curve, holding down with it
the parametric CTF described by Eq. (1.6).
The solution adopted in this algorithm is to
increase progressively the parametric CTF weight

in the distance function according to the spatial
frequency modulus o:

WxðoÞ ¼
1

x
� 1þ elnð2�1=xÞðo�ominÞ=ðo1�ominÞ; ominoooo1;

1; o1oooo3;

e�lnð1=xÞðo�o3Þ=ðomax�o3Þ; o3oooomax;

0; otherwise:

8>>>>><
>>>>>:

ð1:35Þ

The spatial frequencies omin and omax represent
10% and 90% of the maximum signal-related
spatial frequency present in the micrograph; o1
and o3 are the spatial frequencies of the first and
third zeros, respectively, and x is the weighting
parameter, ranging from 2 to 1024 in powers of
two. Once the CTF has been given more impor-
tance, the weight of the background term
is gradually reduced and a new optimization
is run.
So far, to increase the speed of the distance

function evaluation, the power spectrum values
were taken every 8 pixels. Although good results
are obtained, a final tuning step is done, this
time optimizing all the parameters, without back-
ground noise penalization and evaluating over all
the pixels. Only the weighting strategy to enhance
the fit between the first and third zeros is
maintained.
As can be seen in Fig. 3, very good approxima-

tions fulfilling our objective of adequately model-
ing the CTF have been achieved.

6. Interpolation of CTF functions

In practice, every point of a micrograph
is affected by a different CTF function. Ideally,
it would be desirable to know this function in
all cases, but this is not actually feasible. In this
work, the micrograph is divided into small sections
of varying size and the CTF is computed for
each one of these regions following the ARMA
and the parametric CTF adjustment explained
so far. Here 512� 512 pixel sections have been
used. Although the ARMA model of smaller
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regions can be calculated, this size is a good
balance between the increased accuracy observed
when larger regions are modeled, and the
higher number of local CTFs that must be
calculated with smaller regions. Next, the power
spectrum is adjusted to each selected particle,
using the following interpolation scheme: (1)
Calculate the distance and relative position of
the central point of the particle image to the
central point of the nearest four regions where an
ARMA model has been estimated. If the particle is
on the border of the micrograph, only the two
nearest regions are used to interpolate, and if it is
in a corner, the power spectrum of the corner’s
region is assigned to the particle without inter-
polation. (2) Next, weights are assigned to the
regions based on the previously computed dis-
tances, and (3) a bilinear interpolation is per-
formed to obtain the particle’s associated power
spectrum function. This interpolation is an
approximation that could be avoided if an ARMA
model is performed over the particle region, at the
cost of increasing the computational time when a

large number of particles is present in the
micrograph.

7. Results

We have tested our programs with simulated
and experimental data coming from studies
of negative staining microscopy as well as
cryomicroscopy, using carbon-coated and non-
carbon-coated grids.
To start with, a quantitative comparison test

between the ARMA models and the periodogram
was done using simulated data. A CTF of given
parameters (see Table 1) was applied to a total of
1470 noisy images whose pixel density was dis-
tributed as N(0,1), and their periodogram averaging
and ARMA models were calculated over the
images. The conditions used for this experiment
included two sizes (512, 1024 pixels), five defocus
values (4000, 8000, 12,000, 16,000, 24,000 (A), and
seven AR and MA orders (16, 20, 24, 26, 30, 34,
38), in all their possible combinations. Three

Fig. 3. Profile along a line through the x-axis of an ARMA estimation and its adjusted curve using the search algorithm outlined in the

text. The first three zeros of the CTF seem to have been adequately detected, and a good approximation of the amplitudes achieved.

The original data came from a 512� 512 pixels section of a carbon-coated grid cryomicrograph taken with a FEG microscope at

200 kV. The sampling rate is 3.27 (A/pixel. Spatial frequencies lower than 10% of the maximum present in the micrograph and greater

than 90% have not been represented as they were not included in the adjustment.
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realizations of every set of values were performed
and their error figures, averaged for the ARMA
models, as well as for the periodogram averaging,

were computed. The parameters applied for the
periodogram averaging were the optimal ones
determined in [11] by Fern!andez et al.
To measure the fitness of these models we

generated an image with the simulated CTF value
at every pixel, called the CTF-image from here on.
Then the ARMA model (ARMA-image) and the
periodogram averaging of the image (PA-image)
were calculated. The L1 norm of the error between
the CTF-image and the ARMA-image was com-
puted over those pixels ranging in spatial frequen-
cies between the first and third zeros of the CTF.
Then, the Fourier transform of the CTF-image
and ARMA-image were calculated, and their
amplitudes were compared, again with an L1
norm. Finally, a weight of 50% was applied to
every measure as in the following expression:

Error

¼
1

2

L1zeros �min L1zeros½ �
max L1zeros½ � �min L1zeros½ �

þ
1

2

L1fft �min L1fft½ �
max L1fft½ � �min L1fft½ �

: ð1:36Þ

The combined use of the real and Fourier space
measures allows the estimation of the error

Fig. 4. Variation of the error figure against the defocus in the simulated ARMA models. Every point is an average over those models

with a given defocus.

Table 1

Images containing white noise were generated and a given CTF

was then applied

Parameter Value

K 1.3

Sampling rate 3.5 (A/pixel

Voltage, V 100 kV

DefocusU DfU ; DefocusV DfV Variable, 4000, 8000,

12,000, 16,000 and 24,000 (A

Spherical aberration, Cs 5.5mm

Chromatic aberration, Ca 6mm

Energy loss DU=V 9.8 ppm=9.8� 10�6 V/V
Longitudinal displace, DR 79 (A

Convergence cone, semi-angle, a 0.2mrad

Gaussian K, Kg 1.8

SigmaU sgU ; SigmaV sgV 160

Sqrt K, Ks 40

SqU ssU ; SqV ssV 17

Base line, b 0.2

The CTF parameters used in the simulation are shown in this

table. Those parameters not present in this table are supposed

to be zero. Their values were based on previous work on

cryomicroscopy data.

J.A. Vel !azquez-Muriel et al. / Ultramicroscopy 96 (2003) 17–35 27



committed in determining the CTF values in the
region of interest (between the first and the third
zeros) as well as in its shape (better captured in
Fourier space). The use of the L1 norm of the
error is intended to avoid giving more importance
to larger errors.
The results obtained from the comparison of the

ARMA models with the periodogram averaging

using the error figure in Eq. (1.36) were conclusive.
For the simulated data with variable defocus and
image size, the ARMA estimation was better in all
the 1470 cases, independently of the ARMA order
used. This can also be said for experimental data,
at least visually, as will be shown below.
Some dependence of the optimal ARMA order

on the image size and defocus can be expected a

Fig. 5. Variation of the error figure against the AR order in the simulated ARMAmodels. Every point is an average over those models

with a given AR order.

Fig. 6. Variation of the error figure against the MA order in the simulated ARMA models. Every point is an average over those

models with a given MA order.
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priori. The image size can limit the maximum
ARMA order while the rapid oscillations caused
by a high defocus may demand higher model
orders. To elucidate this point, we explored the
error figure for all the models in the previous
experiment, plus an added set of models of order
AR and MA 2, 4, 6, 8, 10, 12, 14, in all possible
combinations, again varying the defocus and size
of the simulated images.
An analysis of the results shows that the error of

the ARMA models tends to decrease with the
increase in size: an average value of the error
was 0.54 for the 512� 512 images whereas 0.23 for
the 1024� 1024 images. As far as dependence on
the defocus is concerned, Fig. 4 shows that when
the defocus is higher, and consequently the CTF
curve has more oscillations, the error increases
until it reaches a plateau. More interestingly, the
error figure for the AR and MA orders of the
ARMA model, averaged over all the conditions

Table 2

Optimal ARMA orders for the simulated CTF data in all the

conditions tested

Size

(pixels)

Defocus

( (A)

Optimal

AR order

Optimal

MA order

Error

figure

512 4000 26 16 0.30588

512 8000 20 26 0.37700

512 10,000 22 20 0.40334

512 12,000 20 16 0.44568

512 16,000 24 16 0.45339

512 20,000 20 20 0.48016

512 24,000 20 16 0.48961

1024 4000 26 30 0.10050

1024 8000 24 30 0.17554

1024 10,000 24 18 0.21140

1024 12,000 26 16 0.23284

1024 16,000 26 16 0.24696

1024 20,000 22 16 0.24792

1024 24,000 24 16 0.23644

The rest of the CTF parameters were those of Table 1. The

order AR 24, MA 20, was not significantly different from the

best order in all the cases.

Fig. 7. 3-D graph showing the error figure in ARMA models. It can be seen that there is a region, around 15–25 in AR and 20–30 in

MA orders, where the ARMA models have minimum error.
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used, shows that there is an optimal value for
them, near 20 (see Figs. 5 and 6). For the AR
models used in previous works [11], it was found
that better results were obtained by increasing the
AR order (up to 60), but here the presence of a
minimum in a relatively low AR order value
implies a reduction in the number of coefficients
used, thus stabilizing the model and requiring less
computation time. This is not accomplished at the
cost of reduced accuracy, since the error figure
shows that the best ARMA models are superior
to the best of our previous AR models [11] (data
not shown).
A more detailed study of the estimation error of

the ARMA models as a function of the AR and
MA order, image size and specific image simula-
tion parameters shows that the optimal value of
the AR and MA order was different for every

experimental condition simulated (Table 2). How-
ever, it was also found that the combination of AR
order 24 and MA order 20 was always present in
the best choices for all conditions tested (Fig. 7).
Therefore, these were the order values used in our
tests with experimental data.
The tests with experimental micrographs were

done with data obtained from different techniques
and microscopes. Negative staining microscopy
micrographs came from a Jeol 1200 Ex-II, 100 kV
microscope. Carbon-coated grids cryo-micrographs
came from a Phillips CM120 operating at 100 kV,
and finally non-carbon-coated grids cryo-micro-
graphs were taken with a Philips CM200FEG
operated at 120kV. The results appear in
Figs. 8–10, showing that the ARMA models give
a clearer determination of the CTF rings. The results
for non-carbon-coated grids cryo-micrographs are

Fig. 8. Results of CTF estimation for negative stain micrographs. Upper left: original data (512� 512 pixels). Upper right:

periodogram-averaging estimation of the CTF (sections of 64� 64 pixels, 32 pixels of overlapping in both directions and padding up to
512 pixels). Lower left: ARMA estimation of order 24, 20. Lower right: model CTF function generated with the estimated parameters.
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especially interesting (Fig. 10), since it is difficult
to detect the CTF in such conditions by classical
methods [14]. Fig. 11 shows a profile and the radial
average of the corresponding ARMA and PA-
images for the non-carbon-coated grids micro-
graph showing the superiority of the ARMA-
based estimation over periodogram averaging.
Finally, the possibility of performing ARMA

averaging over different regions of a micrograph
was considered. This methodology would be of
interest when dealing with extremely faint CTFs.
An experiment with simulated data was carried
out: 100 individual ARMA models were computed
for small regions of a micrograph with constant
defocus (10,000 (A). Their error figure turned out to
be 0.4286870.0196. If the set of 100 models is
divided into 10 groups with 10 models each and
an average performed within each group, then

the error of the average estimation per group
decreases to 0.3486870.0132. The two values were
found to be statistically different at 95% con-
fidence by Student’s test. These results suggest that
averaging could be an acceptable practice with
ARMA models.

8. Discussion

The studies presented in this work on the
applicability of ARMA models to CTF estimation
of electron micrographs have shown that this
approach is indeed valuable, although as with all
methods, a thorough understanding of how they
should be applied is essential.
The experiments that were carried out show that

the order of the ARMA model depends on the

Fig. 9. Results of CTF estimation for carbon-coated holey grid cryo-micrographs. Upper left: original data. Upper right: periodogram

averaging. Lower left: ARMA estimation. Lower right: Model. See Fig. 8 for details.
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image size and the defocus of the micrograph.
However, the good news is that there exists a set of
ARMA models statistically indistinguishable from
the optimal order for each size and defocus
combination. Thus, in a practical application, the
AR order can range from 20 to 30, and the MA
order from 15 to 25. It has also been shown that
with increased image size, keeping the ARMA
order constant, reduces the estimation error. This
could be explained by the fact that more data for
calculating autocorrelation values are available.
Fig. 7 shows that a combined use of the AR

part and the MA part on ARMA models improves
on the results of purely AR or MA ones. The AR
model is responsible for the main part of the
CTF shape fitting while the MA coefficients
are very helpful in the fine adjustment of the
CTF values. This is the reason why our ARMA

orders are much lower than those previously
determined [11].
It should be pointed out that high-order pure

AR models usually produce spikes in the spectrum
[11]. However, the 2-D error function used
effectively in this work favors the selection of less
spiky estimations.
A typical running time for performing an

ARMA estimation of order 24, 20 on a 512� 512
section of a micrograph is 1–2min in our
computers (an SGI Origin 200 SGI with R12000
processors at 360MHz. This time can reach up to
4–5min in a Pentium III at 800MHz, running
under Linux.) The algorithm complexity is
OðnðAR2 þMA2ÞÞ where n denotes the total
number of pixels, and AR and MA the orders of
the model selected. The program has been used
with micrographs as big as 3000� 3000 and as

Fig. 10. Results of CTF estimation for non-carbon-coated holey grid cryo-micrographs. Upper left: original data. Upper right:

periodogram averaging. Lower left: ARMA estimation. Lower right: Model. See Fig. 8 for details.
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Fig. 11. Upper graph: profile along the zero spatial frequency axis in x-direction of the CTF estimations. It is clearly seen that ARMA

estimation is a technique that reveals its usefulness in the most difficult experimental conditions, where the periodogram averaging

offers poor results. Left: radial averages of the CTF estimations. ARMA allows a clearer detection of the first three zeroes of the CTF

than the periodogram averaging. Data are the same as that for Fig. 10. Digital spatial frequencies lower than 0.05 are not shown, as

they would not be used in the adjustment of the CTF model.
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small as 200� 200 pixels without problems. How-
ever, it should be pointed out that in the latter
case, we are near the practical limits of applic-
ability of our algorithmic implementation of
ARMA.
The theoretical CTF fitting algorithm has a

typical running time of 10min in the same
situation cited above, its complexity being roughly
OðnkÞ where k is the number of parameters to
estimate. However, this time is highly variable,
depending on the accuracy of the first estimation
provided by the user, as well as the subsampling
rate applied to the ARMA-image at the first stages
of the search.
In the course of our experiments, we found that

the ARMA algorithm may become unstable if
applied to low pass filtered images. This was
detected by the appearance of anomalous
peak regions in the ARMA image. This is due to
the presence of spatial frequencies with zero
value in the power spectrum, which cannot be
properly treated by the AR part of the model. For
this reason, the use of the approach with hard-
filtered images should be avoided. Normalizing
the image values before applying ARMAmodeling
is also recommended for avoiding numerical
instabilities.

9. Conclusions

In this work, a new technique for the practical
estimation of the CTF on electron micrographs
has been introduced and compared with those
currently in use. It has been shown that much
better estimations can be obtained by means of
parametric ARMA modeling with a truly 2-D
consideration of the estimation problem, thus
allowing the treatment of difficult scenarios like
the effects of astigmatism and the low contrast
when ice is used as the only support of the
specimen sample. The ARMA technique also adds
stability and takes less computing time than
formerly used AR models, there being fewer
parameters to calculate.
A theoretical CTF model with a full description

of the underlying physics is adjusted to the ARMA
spectral estimation. The fitting algorithm works

with a high number of parameters although the
theoretical model can be reduced to a simpler one
without losing accuracy, except for very high-
resolution studies.
An interpolation scheme has been implemented

to produce a CTF estimation for every particle
projection involved in the image processing. All
programs developed for the task are fully available
and free as part of the Xmipp software package
for 3D electron microscopy at www.biocomp.
cnb.uam.es.
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