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SPI-EM: Towards a Tool For Predicting CATH
Superfamilies in 3D-EM Maps
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In this paper the theoretical framework used to build a superfamily
probability in electron microscopy (SPI-EM) is presented. SPI-EM is a new
tool for determining the homologous superfamily to which a protein
domain belongs looking at its three-dimensional electron microscopy map.
The homologous superfamily is assigned according to the domain-
architecture database CATH. Our method follows a probabilistic approach
applied to the results of fitting protein domains into maps of proteins and
the computation of local cross-correlation coefficient measures. Themethod
has been tested and its usefulness proven with isolated domains at a
resolution of 8 Å and 12 Å. Results obtained with simulated and
experimental data at 10 Å suggest that it is also feasible to detect the
correct superfamily of the domains when dealing with electron microscopy
maps containing multi-domain proteins. The inherent difficulties and
limitations that multi-domain proteins impose are discussed. Our
procedure is complementary to other techniques existing in the field to
detect structural elements in electron microscopy maps like a-helices and
b-sheets. Based on the proposed methodology, a database of relevant
distributions is being built to serve the community.
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Introduction

Three-dimensional electron microscopy (3D-EM)
is an emerging technique in structural biology able
to obtain a 3D map of the electron density of the
specimen under study combining different projec-
tion images taken with an electron microscope.1

One of the advantages of this technique is the wide
range of specimen sizes that can be studied: from
cellular organelles like the ribosome, to viruses,
protein complexes, or individual proteins. Another
advantage is that it does not require large amounts
of purified specimens, as X-ray diffraction and
NMR spectroscopy does, avoiding potential bottle-
neck in protein expression and purification (a key-
stone problem in many of the running structural
proteomics projects). This makes the technique
lsevier Ltd. All rights reserve
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suitable for studies where the quaternary structure
of protein complexes has to be elucidated under a
variety of conditions. The resolution that can be
obtained in the study depends on the quality,
quantity and angular coverage of the projection
images, together with the structural homogeneity of
the specimen. Low-resolution 3D-EM maps should
be expected if the specimen shows a high structural
heterogeneity. Generally speaking, it is very difficult
to achieve atomic resolution experimentally using
EM. Most often, 3D-EM maps are in the resolution
range between 6 Å and 30 Å.1–5 The best resolu-
tions, 6–9 Å, can only be achieved when the speci-
men is highly symmetrical (like icosahedral
viruses6,7) or witty very well defined conformations
(like the ribosome8 or GroEL9,10). When the single-
particle approach is employed, resolutions in the
range of 8–12 Å are considered of good quality. At
these resolutions it is impossible to trace the
backbone and residual groups of the amino acids
making up the protein, as done in X-ray crystal-
lography. It is also difficult to see the secondary
structure elements, a-helices and b-sheets. The
homologous superfamily of the protein domains
d.
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can be understood as the next level within the
protein structural hierarchy. The aim of this paper is
to search for it in medium-resolution 3D-EM maps.
This allows searching for bigger and more function-
defined pieces of information in the 3D-EM maps
than secondary structure elements alone, and does
not depend on their type. However, if secondary-
structure information is available, it can be used in
combination with the method presented here. For
instance, two recent tools have been developed to
find individual secondary structure elements in
3D-EM maps at resolutions better than 8 Å: HELIX-
HUNTER11 and SHEETHUNTER.12

The amino acid sequence of the domain can be a
valuable source of information as well. There are
many computational techniques to deal with the
problem of predicting the fold from the amino acid
sequence: homology modeling, threading, and ab
initiomethods, but a method to locate the predicted
folds into the 3D-EM maps is still needed. Hence,
these methods and the one proposed here are
complementary, too.

Different manual or computational techniques for
finding protein domains into 3D-EM maps have
been reported. In the manual approach, the
researcher employs visualization programs like
O13 or VMD14 to fit a high resolution structure,
typically obtained by X-ray crystallography, into a
medium resolution 3D-EM map. This approach has
the disadvantages of being time consuming and
subject to the personal appreciation of the
researcher. Most computational approaches are
based on finding the orientation of the high-
resolution structure in the 3D-EM map by maxi-
mizing a measure of fitness. The most popular
measures of fitness are the cross-correlation coef-
ficient (CCC) (used by COAN,15 SITUS-COLORES16

and FOLDHUNTER11) and its variants: local cross-
correlation coefficient (LCCC) (used by EMfit17) and
rotational correlation function (used by FRM18). All
computational techniques tend to fail when only a
part of the structure is fitted, because of blurring of
surrounding domains that occurs when the resolu-
tion is lowered. As the resolution decreases, every
atom blurs into a bigger region of space, and this
region can be situated inside the space occupied by
the domain of interest. The maximum of the CCC
can place the high-resolution structure in a wrong
position due to the presence of surrounding
electron densities interfering with the density at
the correct position. This is especially evident when
fitting remote homologues to a given map.11 To
decrease this effect, the Laplacian of the electron
density is added to the measure offitness by Chacon
et al.,16 thus taking into account surface information
for the fitting. The local cross-correlation coefficient
minimizes the influence of the surrounding density,
because the CCC is only computed in the voxels
occupied by the fitted domain. EMfit17 maximizes
LCCC at the cost of increased computation time.
The problem with the surrounding electron density
can also be treated manually. If the researcher
knows in which zone of the map the high-resolution
structure is located, the rest of the volume can be
masked out.

In both approaches, the researcher assumes that
the high-resolution structure that he or she is fitting
is actually present in the 3D-EM map and in the
same structural conformation. Here, a first step
towards eliminating these assumptions is pre-
sented. Because a given domain may not be present,
or appear in a slightly different conformation, the
aim is not to find that particular domain, but to
determine with a high probability to which homo-
logous superfamily (if any) the domain belongs.
Superfamilies are defined by domain databases like
CATH,19 SCOP20 or FSSP.21 Here the classification
given by CATH is used. A homologous superfamily,
or superfamily for short, is defined by CATH as the
group of protein fold realizations (domains) sharing
a common ancestor. Two domains belong to the
same superfamily if 60% of the larger structure is
similar to the smaller one.

In the following, the SPI-EM methodology is
presented. It is based on fitting many high-
resolution domains into the 3D-EM map of the
specimen and the application of a probability
framework to determine its superfamily. Its ability
to deal with 3D-EM maps containing isolated
protein domains is proven. The influence of the
resolution in the confidence of the results, and the
possibility of not being able to distinguish two
superfamilies at the working resolution are
explored. Finally, the methodology is applied to
simulated and experimental multi-domain maps
demonstrating its usefulness. The inherent diffi-
culties observed are discussed.
Theory
Related work

In the field of sequence homology search, there
exists a robust statistical theory22 to compute
p-values, the probability of having by chance a
given score or better when aligning two amino acid
sequences. The p-value is calculated by relating the
observed alignment score, s, to the expected distri-
bution of the alignment scores obtainedwith random
sequences of the same length and composition as the
query. It can be proven22 that the limit distribution for
maximal segment scores depends on two parameters
K and l, and is defined by equation (1):

ProbðSOsÞZ 1KexpðKKeKlsÞ (1)

where K and l are computed from the set of scores
obtained from comparisons of random sequences.
The p-value indicates if the level of homology
between two sequences is statistically significant
(the lower the p-value, the more significant it is).

It is possible to combine the p-values of various
sequence alignments to estimate the probability of a
sequence being a member of a CATH protein
superfamily. In the work of Bailey et al.,23 the



product of the p-values of various independent
sequence alignments is used, and the probability of
observing a value smaller than or equal to x for the
product of p-values is given by the distribution:
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Equation (2) is valid for any product of independent
values, not necessarily p-values. In later work,24 the
case of correlated p-values is treated, which is
important when the p-values combined in the
product belong to alignments of proteins of the
same superfamily, because they are correlated.
SPI-EM probabilistic approach to superfamily
assignment

We follow a conceptually similar approach to
determine the superfamily to which a given 3D-EM
map belongs: first, the local cross correlation coeffi-
cients (LCCCs, this measure is formally introduced
below) of fitting the domains of a CATH superfamily
into the 3D-EMmap are combined, as Bailey et al.23,24

combine the p-values. Note that, due to the fact that
the fitting is done via LCCCs (K1,1), higher values
indicate better fits. This is in opposition to the
sequence homology search, where low p-values
correspond to correct alignments.

Second, we compareMCC, the arithmetic mean of
the LCCCs, with a background distribution of
arithmetic means for the CATH superfamily that
we are testing. Ideally, this background distribution
would be determined by fitting all superfamily
domains against a set of all existing domain
structures. Since the total number of possible folds
in nature is not known, this is not possible. Instead,
we use a set of all H-level representatives (Hreps)
given by CATH v2.4 to generate the background
distribution. It is obtained by fitting each member of
the superfamily against all Hreps, and computing
the mean of LCCCs for each Hrep. All proteins
in the same H-level (homologous superfamily level)
share the same overall shape, connectivity of the
secondary structures, and a common ancestor. The
Hreps set contains a representative domain of every
CATH superfamily, forming a complete and non-
redundant set covering all known feasible cases in
the space of protein structures. Therefore, it is a
reasonable set for computing the background
distribution.
The difficulties to transfer the statistical method-

ology employed with protein sequences to 3D-EM
are not only related with the election of the
appropriate set. The LCCC values of fitting an
individual superfamily domain against Hreps do
not follow the distribution given by equation (1) for
the case of sequence data (data not shown). Neither
does the distribution of the product of LCCC values
for each Hreps representative follow the formula
given in equation (2). This is because equation (2) is
derived assuming that each of the terms (in that
case the p-values) entering into the product are
independent, while this is not the case with LCCC
values for different members of a superfamily. We
have tried to adjust the distribution of the product
of LCCCs to the model for non-independent results
proposed in Bailey et al.,24 but without success.
Instead, here we show that the arithmetic mean of
LCCCs, and the cumulative background distri-
bution of the means can be employed in the
classification task.
Finally, the probability that the mean MCC value

is significant is computed by reporting the fraction
of means in the background distribution with a
poorer value. This fraction is our P-value. It is
computed directly as the corresponding value for
MCC in the cumulative background distribution. We
interpret this P-value as the probability that the



 

 

  

 

 

  

Figure 3. Cumulative distributions of the mean of LCCC for different CATH superfamilies at 8 Å resolution. LCCC
distributions for some individual domains of each superfamily fitted into Hreps are also represented. (a) 1.20.1060.10;
(b) 2.30.100.10; (c) 3.10.30.10; (d) 1.10.238.10.
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imply that the underlying atomic structures are
indeed similar. If the study is repeated at a
resolution of 8 Å, the two superfamilies are clearly
separated (data not shown).

To show that superfamilies from very different
classes can also aggregate, a similar experiment was
performed with superfamilies 1.20.1060.10 (mainly
alpha) and 2.60.11.10 (mainly beta). At 12 Å these
families are aggregated, with P-valueO0.99,
D-valueOK0.1 and Q-value!0.2, but at a resolu-
tion of 8 Å they can be separated (Q-value between
2 and 14). Figure 4(b) shows an example of a
domain from superfamily 1.20.1060.10 fitted into
a member of superfamily 2.60.120.40 at 12 Å.
Although the backbone structure of the two
domains is very different, a high LCCC value of
0.879 was obtained. This is explained by fact that
many of the voxels of one domain are contained
into the other.
A third example illustrates that the aggregation

effect may be asymmetric. At 12 Å 2.60.120.40
domains fit well into superfamily 1.20.1060.10
(P-valueO0.95, D-valueOK0.09, Q-value!0.8),
but 1.20.1060.10 domains do not fit into 2.60.120.40



Table 1. Detection of the superfamily for 28 domains at 8 Å

Each domain has been tested against 477 superfamilies, but only the four first results are shown, ordered by P-value. The shadowed results are the correct superfamilies for each domain. Where no
superfamily has been shadowed for a given domain, the correct superfamily was not among the four first results.



Table 2. Domain fitting: domains of 1.20.1060.10 fitted into 1.10.530.40 at 12 Å; domains of 1.10.530.40 fitted into
1.20.1060.10 at 12 Å

Only the best 30 are shown. Shadowed results indicate than the domain meets the recognition criteria (P-valueO0.90, D-valueOK0.1
and Q-value!1).
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(P-value!0.86, D-valueOK0.1, Q-value!3). This
can be explained by the fact that the electron density
of 2.60.120.40 is contained in that of 1.20.1060.10. At
8 Å, the two superfamilies are separated (P-value!
0.86, D-valueOK0.2 and Q-value between 1.8
and 6).

Application to multi-domain maps with SITUS-
COLORES

The statistical approach introduced in this paper
can be extended to multi-domain 3D-EM maps,
provided that individual domains are correctly
located within the multi-domain map. We used
the program COLORES16 integrated in the SITUS
suite for this task. Since the LCCC is used as a
similarity measure in our methodology, surround-
ing voxels of other domains should not interfere in
the CCC computation. Therefore, our methodology,
which was developed for single-domain 3D-EM
maps, is still valid for detection of superfamilies
within multi-domain 3D-EM maps. As an example,
Figure 5 shows the result of the correct fitting of
domain 4BDPA2 (filled blue) into a simulated 8 Å
map of 4BDP (crystal structure of Bacillus
stearothermophilus DNA polymerase I, fragment
297–87625) using SITUS-COLORES. The results of
superfamily detection for this multi-domain struc-
ture at 8 Å are shown in Table 3. This structure
comprises four different domains: 4BDPA1 (amino
acid residues 297–490, superfamily 3.30.420.10,
mixed alpha–beta), 4BDPA2 (amino acid residues
491–605, 1.20.1060.10, mainly alpha), 4BDPA3
(amino acid residues 606–656 and 801–875,
3.30.70.370, mixed alpha–beta), and 4BDPA4
(amino acid residues 657–800, 1.10.473.10, mainly
alpha). We only show the results corresponding to
the superfamily assignment of domain 4BDPA2,
since this isolated domain was previously studied
(see Table 1). Also as part of a larger structure, the
correct superfamily for this domain can still be
detected based on P-value ranking (see Table 3).
However, in this case the P-value is 0.833, while
when considered as an isolated domain it was 1.00.
The D and Q-values deteriorate in a similar way.
We explain this deterioration by the blurring effect
caused by surrounding domains: as the resolution
decreases every atom blurs into a wider space,
affecting the region of the studied domain. This
imposes limits on the methodology, which are
inherent to all fitting methods. Consequently, our
criteria to reject superfamilies adopted for the
isolated domains case should be relaxed.
This experiment further illustrates the advantage

of the SPI-EM approach over only taking MCC, the
LCCC mean, as shown in the results of Table 3. If
only MCC were considered, an incorrect super-
family would have been selected, while the
P-values of statistical approach readily distinguish
the correct solution.



Figure 4. (a) Fitting of 2KZZA2 (1.20.1060.10, mainly-
alpha, yellow map and blue skeleton) into 150LD0
(1.10.530.10, mainly-alpha, red map and skeleton) at
12 Å. (b) Fitting of domain 3BDPA2 (1.20.1060.10,
mainly-alpha, green) into 4TSVA0 (2.60.120.40, mainly-
beta, purple) at 12 Å.

Figure 5. Domain CATH 4BDPA2 (filled blue) fitted
into 4BDP (light blue) at 8 Å by SITUS-COLORES. The
small yellow spheres represent the voxels used to
compute the LCCC (voxels located into the inner part of
4BDPA2 not shown).
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Application to experimental multi-domain maps

We studied the 10.3 Å EM-structure of unli-
ganded, Escherichia coli GroEL chaperonin (EMD
Table 3. Superfamily detection for domain 4BDPA2 in PDB 4

The shadowed result is the correct superfamily.
database26 code: EMD-1042) to illustrate the
applicability of SPI-EM to experimental 3D-EM
maps. GroEL contains three different domains:
GroEL domain 1, (1.10.560.10), GroEL domain 2
(3.30.260.10) and the apical domain (3.50.7.10),
which are repeated 14 times throughout the
structure. The results of their superfamily detection
are presented in Table 4. Superfamily 1.10.560.10
was readily detected, and superfamily 3.50.7.10
emerged as the second candidate, despite the fact
that its P-value is relatively low. Superfamily
3.30.260.10 was not detected. To compare these
results with those obtained if the density map were
of still better quality, the experiment was repeated
with a 10 Å simulated EM-map, which was based
on the corresponding PDB structure (1GR5) for
EMD-1042 (Table 5). Now superfamilies 1.10.560.10
and 3.50.7.10 are both correctly detected with
P-values of 0.962, and 0.847, respectively. The
BDP file at 8 Å



Table 4. Superfamily detection for domains of experimental 3D-EM map EMD-1042 (GroEL chaperonin, unliganded
from E. coli)

Resolution, 10.3 Å. Shadowed results are the three superfamilies present in the map.
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P-value for 3.50.7.10 is similar to the one observed
for the correct superfamily in the 8 Å experiment of
the previous section (Table 3). For superfamily
3.30.260.10 a P-value of 0.431 was obtained, which is
relatively low compared to the values for the other
two superfamilies. This indicates that this super-
family is more difficult to detect, and suggests that
this fold lies at the limits of the method ability.

As in the simulated multi-domain case, the
superfamily rejection criteria based on P, D and
Q-values need to be relaxed when the method is
applied to the experimental multi-domain case. In
this case, the noise present in the EM micrographs
and the reconstruction procedure, as well as a
potentially lower signal power at frequencies close
to 10 Å, form additional sources of error lowering
the LCCC values.
Discussion

Here a new statistical approach for recognizing
the superfamily of a given 3D-EM domain map is
presented. The method fits all superfamily mem-
bers into the 3D-EM map and computes the
arithmetic mean of the LCCC values (MCC) within
each superfamily. The fraction of lower mean values
in the background distribution for the superfamily
(built fitting the Hreps from CATH against all
members of the superfamily) gives the significance
of MCC, the P-value. This P-value is interpreted as
the probability that the domain present in the
3D-EM map belongs to the CATH superfamily
tested. The P-value is complemented computing the
difference D-value between the MCC obtained with
the query volume and the MCC obtained with the
superfamily representative in Hreps. The difference
is compared with the internal superfamily
Table 5. Superfamily detection for domains of simulated 3D-

Resolution, 10 Å. The shadowed superfamilies are the three ones pre
variability through the Q-value. Detection of the
most likely superfamily is based on a combined
analysis of these three measures.
This approach has been shown to work with

simulated 3D-EM maps of isolated domains.
Analysis of LCCC distributions showed that the
statistical approach of SPI-EM has clear advantages
over the fitting of single domains in low-resolution
electron density maps. In a general applicability test
comprising 28 highly different domain structures,
the correct superfamily (among 477) could be
readily detected in 80% of the cases.
As the resolution of the EM map decreases,

different superfamilies become indistinguishable.
Since this effect, which we termed superfamily
aggregation, imposes a fundamental restriction to
the methodology, we studied it in more detail.
As expected, the power of the method depends
strongly on the level of superfamily aggregation at
the working resolution. Best results are expected at
resolutions higher than 10 Å, since we observed
that for these resolutions the aggregation effects
may be significantly decreased.
Multi-domain 3D-EM maps represent a further

challenge to superfamily detection. Since, especially
for lower resolutions, domain boundaries cannot
be recognized and the blurring of neighboring
domains in the relevant one lowers the sensitivity
of superfamily detection. The SPI-EM approachwas
tested on both simulated and experimental multi-
domain maps. Although the rejection criteria
should be greatly relaxed in these cases, our results
suggest that superfamily detection may still be
possible in such maps.
One of the main drawbacks of the method is that

it requires large amounts of CPU. Especially when
dealing with multi-domain maps, most of the
fitting programs are very time consuming.
EM map from 1GR5

sent in the map.
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SITUS-COLORES takes about 30 minutes on a
1 GHz Alpha CPU to complete a single fitting. In
this way, one medium-sized superfamily of 30
elements takes about 15 hours. These computing
times are expected to be greatly reduced once
SITUS-COLORES with Fast Rotational Matching is
released (W. Wriggers, personal communication).
Another possibility to reduce the required com-
puting time is a combination of SPI-EM with
complementary methods to search structural
elements in low-resolution maps. In particular, we
mention the possibility to combine our approach
with HELIXHUNTER.11 HELIXHUNTER can be
used as a discriminative tool to establish the mini-
mum number of a-helices (the program is built to
avoid false positives). Therefore, after running
HELIXHUNTER on a query 3D-EM map, all
superfamilies with fewer a-helices can be discarded
with relative confidence. In this way the super-
family search space can be reduced, saving large
amounts of computation time (results not shown).
Another time-consuming aspect is the computation
of background distributions of MCC for each CATH
superfamily, since it implies the fitting of all
members of the superfamily against all Hreps at
the relevant resolution. We are currently building a
database with these distributions at different
resolutions that will be made accessible via the
WWW to serve the community.

Finally, it is worth noticing that the presented
statistical approach is independent on the fitting
program used, provided that this program allows
fitting of single domains (of any architecture) in
multi-domain maps. This implies that SPI-EM may
benefit from any advances in the field of domain
fitting in low-resolution maps.
Materials and Methods

The SITUS suite of programs v2.0 was used to perform
most of the operations implied in the fittings. The fittings
of isolated domains were performed with FRM.18 For the
multi-domain case, SITUS-COLORES27 was employed
with an angular step for the search of 30 degrees and the
Powell optimization option set to off. Python scripts were
developed to perform sequentially the required fittings,
compute LCCC means, build the MCC distributions, and
derive the P, D and Q-values. The PDBLUR utility from
the SITUS suite was used to lower the resolution of the
PDB files and CATH domains. The CATH domains files
for the fittings were generated directly from the corre-
sponding PDB files using the CATH v2.4 description of
domains. The visualization software AMIRA was
employed to test the results of the fittings and develop
the Figures of 3D-EM maps shown here.
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