
Chapter 7
Alignment of Tilt Series

A. Verguet, C. Messaoudi, C. O. S. Sorzano and S. Marco

Abstract Computing of three-dimensional reconstructions from images obtained
by transmission electron tomography needs three main steps: data acquisition,
projection alignment, and 3D reconstruction. In this chapter we will focus on the
process of alignment moving from the justification of its need to the study of the
different classical approaches (cross-correlation, use of added fiducial markers) that
have been commonly used in this alignment process. We will also discuss the most
recent algorithms (multiscale registration, invariant feature recognition) as they
have been adapted to Electron Tomography and improved to increase the accuracy
and resolution of the final tomograms.

7.1 Why Do We Need to Align Tilt Series?

We may consider that tomography consists in determining a numerical represen-
tation in three dimensions of an object from their projections which requires the
mathematical combination of the acquired projections by a process called recon-
struction. In the case of transmission electron tomography (TET), these projections
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are generated by tilting the object to be reconstructed around an axis. Therefore, the
reconstruction process requires an accurate determination of the orientation of this
axis, which is common to all projections, to combine them in a correct way. In
addition, mathematical combination of projections needs that each one of the values
on the 3D numerical representation of the reconstructed object has been estimated
from data representing the same object at different tilt angles used during the
acquisition process. In case that the orientation of the tilt axis is not precisely
defined for each projection or that the values combined to compute the recon-
struction do not correspond to an equivalent position in the original object, the
mixed information will result into inaccurate results and artifacts. Some classical
artifacts are blurred borders with small shifts or object deformation in “banana” or
“star” shapes (see Fig. 7.1). A detailed explanation of geometrical artifacts can be
found in [1].

In practice, as during the acquisition of the projection images the specimen is
placed in a holder, which is physically tilted by a goniometer inside the imaging
system, the precision and stability of motors to keep sample at the same exact
position during acquisition is unattainable at the nanometer scale expected for TET.
To compensate the lack of perfect tilting, automated acquisition tracks position and
focus of sample. However, despite the high performance achieved, this compen-
sation is still not enough and gives rise to shifts and rotations. In addition, the
sample can be damaged during the acquisition process by suffering shrinkage or
simply the compensation process can slightly modify the position of the focal plane.

Fig. 7.1 Reconstructions of Pyrodictium abyssi. a XZ from a reconstruction with correct
alignment of tilt series images. b XZ from a reconstruction with incorrect alignment of tilt series
images. It can be seen that spherical shape are elongated to the right in a shape similar to banana
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This can lead to magnification changes or deformations in the recorded projections.
The result is that the geometric relationships between the object and the obtained
projections are not precisely known initially. Thus, a step of image alignment of
these projection images is mandatory prior to compute accurate reconstructions. In
this chapter, we will discuss different approaches to perform image alignment used
with the aim of correcting most of the deviations from an ideal projection geometry.
This means to describe methods to determine the geometrical relationships existing
between the different projections of a tomographic tilt series.

Different approaches have been used to perform image alignment. The most
classical one, frequently used to correct shifts between projections, is based on the
maximisation of the cross-correlation existing between images [2–4]. However,
this approach does not consider the existence of magnification changes or
deformations cross-correlation, so that it is not good enough to align projections
when shrinkage or change of focus occurs during the acquisition process which is
not unusual in biological samples which are sensible to damages induced by the
electron beam. A second way to perform image alignment, frequently used in
biological samples, is to add fiducial gold colloidal markers to the sample. As gold
beads can be localized very accurately, due to their spherical shape and high
contrast, the alignments base on these markers are very accurate. In addition, if a
large number of beads is used, the errors in their localization are averaged [5]. The
marker-based methods have another advantage as it will generate a 3D model of
their positions which guarantees a consistent alignment among the images from
the full range of tilt angles. This 3D model can also be adapted to correct
deformations induced in the sample during imaging. However, it is not always
possible to use fiducial gold colloidal markers as they can interfere with recon-
struction process (streak artifact for example [6]). Moreover, even if markers are
added during sample preparation before observation, sometimes they are not
uniformly distributed, being absent (or numbering not enough) in the region of
interest for the reconstruction. To deal with this problem, approaches based on
feature recognition have been developed. Thus, instead of adding external markers
to the sample characteristic features are automatically extracted and tracked along
the projection images of tilt-series before building 3D models prior to determine
alignment parameters ().

7.2 Standard Alignment Process

As aforementioned, the acquisition of tilt series under the transmission electron
microscope suffers from the goniometer and sample instabilities which main effects
leads to shifts and in-plane rotations. To evaluate the accuracy of different align-
ment processes and algorithms it is frequent to use numerical phantoms which
values are perfectly determined and which precisely simulate the different shifts,
rotations or deformations to be corrected. Thus, it is possible to compare the
parameters determined by algorithms or process to the simulated values included in
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the phantom. Therefore, we show in Fig. 7.2 the phantom of a Candida albicans
cell and 3 of its projections at different angles (0°, 1°, and 20°) that we will use for
to illustrate how alignment approaches can identify the shift and rotation between
two projection images and correct them as if they would have been acquired using a
perfect goniometer.

As previously discussed, we can distinguish to main families of methods to align
projections in a tomographic tilt series. The first family, which historically was the
first used, considers all the information present in the projections, while the second
family focus on a few confident points (points that can be precisely identified along
the tilt series, see the arrows in Fig. 7.2). Since the first family of methods are
frequently less accurate than those from the second family, they are usually used to
precenter projections. This is done prior to the refinement of the alignment and to
the determination of the orientation of the tilt axis, which is commonly performed
by using methods based on 3D models of the positions of characteristic features.

7.2.1 Precentering the Tilt Series

Maybe, one of the first attempts to correct for the shifts was performed in 1982 by
[4]. The idea was to exploit the similarity between projections at different tilts.
Actually, if the difference between tilt angles is not large, the difference between the
images is rather small (see tilt projections at 0° and 1° in Fig. 7.2) [4] performed a
very detailed analysis of the modifications of the correlation function needed to

Fig. 7.2 Phantom of a Candida albicans cell. In the top row, the cell has been virtually cut to
show its interior. In the bottom row, projections at 0°, 1° and 20° are shown. Typically, a tilt series
go from −60° to 60°
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account for the fact that the two images being compared are coming from the same
3D object and are related by a single tilt operation. However, let us give one step
back and introduce the correlation as a measure of similarity between two images.

Let us assume that we have two identical images whose relationship between
both of them is a simple shift (see Figs. 7.1, 7.2 and 7.3). The cross-correlation
function (called auto-correlation when only one image is used) between Figs. 7.1
and 7.2 may be defined as:

R1;2 Dx;Dyð Þ ¼
X

x;y
I1 x� Dx; y� Dyð ÞI2 x; yð Þ

This function is maximum when the two images maximally overlap. In this way,
we may identify the shift D1;2 ¼ Dx;Dyð Þ required to go from Fig. 7.1 to Fig. 7.2,
or viceversa D2;1 ¼ �D1;2 (see Fig. 7.3). An interesting formula of this similarity
estimator is that the location of the maximum is insensitive to linear transformations
of the image intensities. Fortunately, this function can be calculated very quickly
due to a property of the Fourier transform

R1;2 Dx;Dyð Þ ¼ FT�1fFT I1f gðFT I2f gÞg

Therefore, all we have to do to determine the position that maximize the overlap
between two images is to transform them to Fourier space, multiply the Fourier
transform of one image by the complex conjugate of the other, and come back to
real space. The simplicity of this operation has made that most packages to perform
three-dimensional reconstructions from transmission electron microscopy

Fig. 7.3 Two identical images related by a shift, note that Image 2 is a shifted version [shifted by
a vector displacement Dx;Dyð Þ] of Image 1. The correlation function is maximum at the shifts
required to go from Image 1 to Image 2
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projections, include a tilt series alignment by cross correlation, as just described in
this chapter and not in its modified version proposed by [4]. When this approach is
applied to an experimental TET tilt series, the cross-correlation between two con-
secutive images, Ii and Iiþ 1 is computed and the corresponding displacements
(Di;iþ 1) identified. This estimated displacement is a good estimation of the real
shifts since in a tilt series, when the increment on the tilt angle is low, two con-
secutive images are almost the same (except for a shift, as illustrated in Fig. 7.2).
Once the consecutive shifts are identified, we may find the relative shift between
any two images i and j. For that, all images are translated to be centered with respect
to the 0-tilt image. Let us illustrate this by representing a tilt series from �hmax to
hmax degrees with increments of Dh degrees (e.g., from −60° to 60° in steps of 1°),
with indexes from �imax to imax ðimax ¼ hmax=DhÞ. The shift needed to align an
image with negative tilt to the 0-tilt image is just the accumulation from �i to 0 of
all the consecutive shifts:

D�i;0 ¼ D�i;�iþ 1 þD�iþ 1;�iþ 2 þ � � � þD�1;0 ¼
X�1

j¼�1

D�j;�jþ 1

On the other side, for positive tilts, we need to accumulate the shifts in reverse
order

Di;0 ¼ �Di�1;i � Di�2;i�1 � � � � � D0;1 ¼ �
Xi�1

j¼0

Dj;jþ 1

With these translations we may produce a new set of centered images ~Ii.
Unfortunately, reality is not that easy for several reasons:

• Experimental images are extremely noisy, resulting in a noisy correlation
function whose maximum may be spuriously misplaced (see Fig. 7.4).

• If one of the images is in-plane rotated with respect to the other, the correlation
function is distorted with respect to the unrotated correlation function. This
distortion may produce a totally incorrect estimation of the displacement vector
(see Fig. 7.5).

• Local differences in the illumination conditions or the presence of a persistent
illumination pattern totally distorts the correlation pattern (see Fig. 7.6).

Acknowledging these difficulties, we may try to robustly estimate the shifts
between any two images. First, we can bandpass filter the images to remove any
persistent illumination pattern, smooth local illumination variations (low frequency)
as well as noise and small image details (high frequency) unnecessary to globally
align two images. Once the images are bandpass filtered, they can be safely
down-sampled, to reduce their size and speed-up calculations. Then, we may
construct a polar 2D correlation function (the correlation function when the images
are expressed in polar form). The location of the maximum in this polar correlation
map indicates the optimal rotation [7]. In this way, we can identify both rotations
and translations by alternating between looking for the best shift, then for the best
rotation, and iterating several times this sequence till convergence.
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Fig. 7.4 Noisy Image 1, the corresponding correlation function with the Noisy Image 2, and a
zoom of the summit of the correlation function

Fig. 7.5 Reference image (left), shifted image (middle) and shifted and rotated image (right), and
their corresponding correlation functions. In the only shift case, the maximum of the correlation
function correctly identifies the displacement vector, but this is not the case if there is also a
rotation. Even small rotations of 2°–5° may totally break the structure of the correlation function
depending on the specific object being imaged
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Correlations between images separated by small tilts (1°–3°) are still good
approximations to the hypothesis that the images being compared are the “same”
simply related by an in-plane operation.

Combining all these strategies, we may safely calculate vector displacements
between any two images i and j, Di;j (i\j and j� ij jDh\e, for a user selected e).
Then, we can solve the overdetermined system of equations

Di;j ¼
Xj�1

k¼i

Dk;kþ 1

as was done for Direct Detector frame alignment [8].

7.2.2 Determining the Orientation of the Tilt Axis

Once projection images on a tilt series are prealigned, they share a common ori-
entation of the tilt axis. Thus the orientation of the tilt axis along the tilt series
should not change and each projection in the tilt series should correspond to a
different projection of the specimen at a given tilt angle. Therefore it is now
possible to estimate the direction of this tilt axis used to generate the projections
(see Fig. 7.7). Once identified, it is usually aligned with the vertical axis. Although
this is not absolutely required to perform 3D reconstruction, it is convenient since it
converts the 3D reconstruction problem into a 2D reconstruction problem con-
veying a speed-up of the reconstruction process by more than 1 order of magnitude.

Fig. 7.6 The presence of a non-uniform illumination background, totally distorts the correlation
structure
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The reason is that each slice can be reconstructed independently using the pixel
values observed in each one of the rows of the aligned images.

Nevertheless, the accurate estimation of the direction of the tilt axis is not always
possible from prealigned projections for different reasons: (1) the goniometer
instabilities can induce some in-plane rotations which make the orientation of the tilt
axis to be slightly different in each image; (2) our precentering of the images
(previous section) is normally far from a perfect algorithm and although major
movements have been corrected, there is still a non-negligible amount of shift
between successive images; (3) more subtle, small errors during the centering of
images may accumulate along the tilt series, so that there is an important accumulated
drift from the beginning of the tilt series to its end. This latter error is the responsible
of the “banana” shapes observed at the 3D reconstruction of misaligned tilt series.

Therefore, the accurate determination of the tilt axis direction in each one of the
images is the most delicate process in the alignment process. For doing so, we need
to identify corresponding points along the tilt series (see Fig. 7.8). These corre-
sponding points in the projections are called 2D landmarks and they can be iden-
tified by different approaches:

• Manual, where markers are selected in each image of the tilt-series. The interest
is the manual validation of corresponding points. However, the location of
points are imprecise (a few pixels precision) and the process is not reproducible
and time-consuming.

• Semi-automatic, where landmarks are manually selected on one image and the
corresponding location on the other images is performed automatically. The
interest is the manual selection of interesting points to track with an improve-
ment of reproducibility and time consumption.

• Fully automatic, where the 2D landmarks are identified as any outstanding
image feature like local maxima or minima [9] (Chap. 6), Harris corners [10], or
any other feature detection algorithm could be employed (Fig. 7.8 show local

Fig. 7.7 Tilt axis shown on a
projection of Pyrodictium
abyssi taken at the Electron
Microscope. Ideally, the
visualization of the whole tilt
series should show a smooth
transition from one image to
the next in which the location
and orientation of the tilt axis
is fixed
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minima features detected by TomoJ). Even small pieces of the image have been
used once an initial alignment is manually provided by the user [11].

In many experiments, gold beads (seen as black dots in the images due to the
high electron density of gold with respect to the biological material) are added to
the sample. If case that they do not aggregate and that their distribution is good
enough and uniform over the region of interest, they can be used as fiducial markers
that can be easily tracked along the tilt series and so improve quality of alignment.
However, adding gold beads is not strictly required for the alignment process
because, even if gold beads are available, points that can be safely tracked along the
tilt series can be frequently identified in the dataset. For instance, some of the points
shown in Fig. 7.8 correspond to gold beads, but some others do not.

Once 2D landmarks (usually between 15 and 100) are identified on each image,
the next step is to establish the correspondences between points in different images
to obtain 2D landmark chains, i.e., tracking the same landmark along the tilt series
(see Fig. 7.9). A landmark chain is allowed to have gaps (this means that the
algorithm cannot find the landmark in a given projection, but it does in the pro-
jections before that image and after that image). The maximum gap length is
normally selected by the user and frequently it is a number between 1 and 5 images;
the larger the gap length, the higher the probability of tracking the wrong point.
Each landmark chain is supposed to be related to a single (unknown) 3D landmark.
This 3D landmark, when projected onto the different collected images, is located at
different places. The coordinate of their projections depend as

pij ¼ Ai;tiltAxisrj þ si ð7:1Þ

That is, the coordinate of the j-th 3D landmark in image i, pij 2 R
2, can be

calculated using a matrix that depends on the orientation of the tilt axis in the i-th
image and its tilt angle, Ai;tiltAxis, the 3D location of the landmark, rj 2 R

3, and a
shift of the projection, si 2 R

2 (this shift should be ideally zero if the precentering
was perfectly performed). This projection model is at the basis of a number of

Fig. 7.8 Corresponding points between two projections at different tilt angles
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works [10, 12–17]. A much more detailed description of the projection mathematics
can be found at [18].

After having determined the landmark chains, it is possible to precisely compute
the orientation of the tilt axis by finding the matrices Ai;tiltAxis and residual shifts si.
If there are Nprojections in the tilt series, we need to estimate Nprojections angles (the
small rotations suffered by each projection), 2Nprojections shift parameters (x; y shifts
per image), and 2 parameters for the orientation of the tilt axis with respect to the
electron beam. This makes a total of 3Nprojections þ 2 parameters. However, the
process requires the estimation of the auxiliary variables rj. Thus, if we have an
average of Nchains landmark chains per image, each with a x; y; zð Þ location, there
would be a total of 3NchainsNprojections extra parameters to estimate. Each point in the
landmark chain brings 2 equations for an overdetermined equation system, and let
us assume that on average the length of a chain is Lchain. Then, there are
2NchainsNprojectionsLchain equations and 3Nprojections Nchains þ 1ð Þþ 2 unknowns. The
ratio between the number of equations and the number of unknowns is approxi-
mately 2=3Lchain. A typical value of Lchain is between 10 and 50, meaning that this
is a highly overdetermined equation system. Therefore, this equation system can be
easily solved by Least Squares [10, 12, 16], or by Least Squares combined with
some statistically robust technique [14, 18].

An important problem of the construction of the landmark chains is the problem
of landmark occlusion (illustrated in Fig. 7.10). When the projection of two land-
marks overlaps, algorithms have difficulties in deciding which 2D landmarks go with
which, and landmark chains are sometimes misconstrued mixing projections from
several 3D landmarks. A robust resolution of the equation system at (7.1) tends to
mitigate this effect.

Fig. 7.9 The 2D landmarks observed in each of the projections correspond to the projection of a
3D landmark (whose exact location has to be estimated). A landmark chain (like the yellow one
highlighted in the figure) is formed by the set of 2D locations of the same 3D landmark projected
at different tilt angles
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Another source of problems during the alignment is the uneven distribution of
landmarks along the tilt series. Normally at high tilts it is more difficult to distin-
guish 2D landmarks due to the thicker sample and resulting low contrast.
Additionally, as the tilt increases, there are more chances of overlapping projections
of different 3D landmarks resulting in a lack of reliable landmark chains covering
high tilt angles. However, in spite of these difficulties, projection alignment and
determination of the tilt-axis orientation is frequently feasible, but in some cases
some advanced alignment methods are required.

7.3 Advanced Alignment Methods

In this section, we will explain and evaluate the interest of some improvements for
image registration between two images suitable for the alignment of tilt series in
electron tomography. Some of these improvements use global image information by
applying a multiscale scheme associated to change in similarity measure. Others are
based on registration of unique descriptors for points of interest.

7.3.1 Multiscale Registration

Most recent advances in image registration are based on multiscale scheme asso-
ciated to gradient descent algorithms to determine the transformation between two

Fig. 7.10 The projections of
two 3D landmarks (green and
yellow in the figure) may
come close to each other as
the tilt is increased.
Eventually they overlap, and
as the tilt keeps increasing
they separate again. If instead
of two 3D landmarks, the 3D
landmarks tend to aggregate
(as shown in the experimental
image), then the problem is
much more aggravated
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images. The main principle of multiscale scheme is to separate information in
images at different scale. Coarse scales would then consist to main shapes and
general features of the images while fine scales consist to details and noise. The
decomposition allows a coarse-to-fine registration in which an initial transformation
is found for the coarsest scales of the images and then it is refined using finer scales
images. The use of this technique has many advantages:

• large transformations between two images can be found on coarser scales of
images

• the signal-to-noise-ratio increases with coarser scales thus making it easier the
finding of alignment

• as images at coarse level have less possible local minima, the robustness is
increased

• part of the computation is done on smaller data and it need less time than
computing everything on full size data

The multiscale decomposition can be done in several different ways. The simpler
one is Gaussian pyramid where images size are reduced after applying a Gaussian
filter in a pyramidal manner (Fig. 7.11). But other possibilities have also been
proposed such as Laplacian pyramids [19], wavelets or BV, L2 decomposition [20].

The multiscale approach allows the use of different models for transformation:
translation only, rigid transformation (translation and rotation), affine transforma-
tion (global deformations where straight lines stays straight) or non-rigid trans-
formation (combination of global and local deformation). With translation only or
rigid transformation the gain over classical cross-correlation is not so clear. The
main interest is the increased robustness and by extension, a lower error propa-
gation at the cost of higher computation time compared to Fourier calculations.
However, translation, as aforementioned is not enough to correct most of deviation
from the ideal projection geometry. The addition of deformation in the transfor-
mation could seem a good idea to correct deformations in projection geometry

Fig. 7.11 The gaussian pyramid is formed from original image (on the right), filtered with
Gaussian filter and reduced in size to form coarser scale of image. The coarser scale is used first for
correction of large transforms and then finer scale is used to further improve transform
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(change in magnification or sample shrinkage for example). The problem arising is
that images are easily aligned 2 by 2 without taking into account global projection
geometry but then some deformations in images are due to change of tilt angle. It is
then necessary to add some prior information such as tilt axis position and tilt angle
of images to prevent some wrong correction in projection geometry. When infor-
mation about tilt axis position and tilt angle is not known a priori, the possibility of
deformation is unusable.

Once the type of transformation is fixed, the multiscale approach also allows
different optimization techniques to find the best transformation. It can be brute
force testing, where an exhaustive but limited set of possibilities is taken at each
scale. It helps to stay around the local minima found at coarsest scale. Better
optimization scheme involves the use of gradient descent algorithms, often powell
or convex. The interests of these approaches were well debated in the medical
imaging field [21–24] to register data in 2D and 3D from computer axial
tomography (CAT), positron emission tomography (PET), magnetic resonance
imaging (MRI) or ultrasound.

To estimate the better result of alignment, there is need of a metric. Many
algorithms use mean (or sum) of square difference or correlation (see part 7.1 for
more concise description), but other metrics exists such as mutual information.
Mutual information was designed to allow the registration of images with very
different contrasts [25, 26]. Formally, the mutual information of two discrete ran-
dom variables X and Y can be defined as:

I X; Yð Þ ¼
X

x;y
p x; yð Þlog p x; yð Þ

p xð Þp yð Þ

Where p x; yð Þ is the joint probability distribution function of X and Y , and p xð Þ
and p yð Þ are the marginal probability distribution functions of X and Y respectively.
In the case of 3D chemical mapping by EFTEM, mutual information was designed
to align energy filtered images together between them or with zero-loss or plasmon
images which represents the ultra-structural information. So, mutual information is
needed to obtain better alignment between chemical and structural images (two
modalities). Even if some studies demonstrated higher robustness and lesser sen-
sitivity to noise [23], the higher computation cost over cross-correlation makes the
use of mutual information approach questionable to align images coming from a
single modality (ultra-structural tilt series from standard tomographic approach for
example).

Multiscale registration allows to have sometimes a better alignment than
cross-correlation methods but it does not compensate the fact that it is not sufficient
as it will still align image two by two and so some propagation of errors will still
occurs even if smaller. There is also need to take into account the fact that the
information inside the image is a projection from a 3D sample and so the
improvement is not competitive enough compared to feature-based registration.
Therefore, multiscale registration is suitable for prealignment but it will frequently
require further refinement based on landmarks.

196 A. Verguet et al.



7.3.2 Invariant Feature Recognition

A way to further improve alignment of tilt series is to optimize the detection of
corresponding points in images of the tilt series. For this purpose, new approaches
in object detection or panoramic stitching, based on the concept of Scale Invariant
Feature Transform (SIFT), introduced by Lowe [27], have been proposed for
alignment in electron tomography [28].

Feature-based alignment methods require several steps which are performed by
separate algorithms. Here we will describe these steps which correspond to the
common strategy used for image alignment using SIFT. Additionally to the
emergence of this method many other algorithms appeared, providing alternatives
for the different steps.

• Detection of points of interest

First step is the detection of points of interest. To this purpose the algorithm has
to choose points in the image which will be easy to locate in other images of the
same sample. These points of interest are determined where the algorithm is able to
recognize a feature which is based on mathematical properties, such as local
extrema, and may not match physical features of the sample. This feature detection
step is performed independently on all images of a series and leads to the creation of
unique descriptors for each point of interest.

• Creation of a unique descriptor for each point of interest

With a set of point of interest on each image, alignment requires that they
correspond to the same physical location on the feature to be matched. One way to
achieve that is to rely on distinctive features. Most algorithms attach a single
descriptor to each interest point for that purpose.

• Comparison of interest points between two or more images

The next step is to identify the matches in the sets of points of interest by
comparing their descriptors. Once the point of interest, associated to the same
feature, are grouped together they can be used to deduce the space transformation
which occurred during the tilt-series acquisition.

7.3.2.1 Methods to Detect the Points of Interest

Different mathematical methods can be used to perform the detection step which
yields various shape of interest on the image: point, curve or area. The methods
proposed in detection algorithms are essentially based on contours detection, i.e. the
detection of variation of intensity levels on the area near the location of interest. In
the case of the SIFT detection algorithm, each point of interest is identified by its
location on the image (coordinates x, y), its gradient orientation, the scale factor and
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finally a descriptor noted as D. The Fig. 7.12a is an example of the composition of
an interest point.

In order to determine the location of the points of interest, the initial step is their
detection at various image scales. For fulfilling this task, first the original image is
reduced several times to obtain different scale levels, called octaves. For each image
scale, a Gaussian blur is applied several times.

Second, in order to detect the local extrema, the computation of the Gaussian
gradients is required at the same scale (Fig. 7.12b). Differences of Gaussians
(DoG) are used on adjacent Gaussian in an octave. The different blur and octave can
be represented as a pyramid of images as shown on Fig. 7.13.

Then, all local extrema are searched on all DoG at all scales. This defines the
location of the interest points. It is stored along with the scale and convolution level
that led to its detection. Afterwards, to obtain a position with a sub-pixel resolution
it is possible to interpolate using a Taylor model. Moreover, the points with a low
contrast or on an edge without curvature are eliminated.

Additionally to the location and scale, an orientation needs to be computed for
each point of interest. This is obtained by filtering the gradients of multiple areas
near the interest point. Once multiple gradients have been computed for some
points of the neighborhood, an histogram is created. This histogram categorizes the
orientations in a fixed number of classes which are weighted by the amplitude of
gradients. At the end, the retained orientation of the point of interest is defined by
the major orientation in the histogram (Fig. 7.14b).

(a)

(b)

Fig. 7.12 a An interest point is composed by its location, the gradient information and an unique
descriptor noted D. b Diagram showing an example of the extremum detection during the
computing of the difference of Gaussian for one point. The point of interest (dark blue) is evaluated
from its neighborhood (light blue) between 3 different scales
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There are several other alternate algorithms available for detection. Some are
similar to the SIFT detection as they rely on the pyramid concept but using a
differing convolution kernel. Here is a list of notable detection algorithms:

• Most blob detection methods are based on local differences in an image, as is the
case for the search of local extrema. Several properties of the region of interest,
like contrast and pixel intensity, are compared against surrounding regions. The
difference of Gaussian presented previously is one of these methods. However,
it is possible to use the Laplacian of Gaussian (LoG) or the difference of Hessian
(DoH) instead.

• Some algorithms, like Harris corner and FAST (Features from Accelerated
Segment Test [29]), are based on corners detection. They work by detecting
corners which are the intersection of two edges on an image. This method is
based on finding small patches in the image which are not similar to neighbor

Fig. 7.13 This pyramid is obtained with a projection of Pyrodictium abyssi at several gaussian
blurs and scales also called octave

(a)

(b)

Fig. 7.14 a This step is the
creation of the future
descriptor, with the
computing of each histogram
of orientation in the
neighborhood. The histogram
is shown as the sum of
vectors. b Each histogram
composes the final descriptor
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patches. When a patch is located on a low contrast area, all close patches of a
given size are similar. When the patch is located on a line or edge, close patches
along the edge are similar too. This similarity is measured with the sum of
squared differences of multiple patches being compared.

• Affine variants of the previous methods can be used to identify similar regions
between images with scale change, rotation and shearing. Harris affine and
Hessian affine are the most common.

7.3.2.2 Construction of the Descriptor

Once interest points are detected, they must be made distinctive. To do so, one
approach is to build a vector which depends on a small image patch near the interest
point. There are two common methods used to compute a descriptor: SIFT and
SURF. The SIFT descriptor is based on orientation histograms. The SURF
(Speed-Up Robust Features) [30] descriptor is based on the sum of the Haar wavelet
response around the point of interest.

In the SIFT algorithm, the calculation of the descriptor is similar to the last step
of the detection process, but it is more computationally intensive. The descriptor is
computed from an image area around the interest point, which is first transformed
according to the scale and orientation computed during the detection phase. This
ensures that the content of the descriptor is not sensitive to the image scaling and
rotation. Thus, the descriptor only depends on the orientation and the amplitude of
the gradient in multiple neighborhood areas of the point of interest. In order to
create a descriptor having the aforementioned properties a common way to proceed
is to determine the orientations in different 4 � 4 pixels patches in the 16 � 16
neighborhood of the interest point. Nevertheless, other patch sizes may be used.
The Fig. 7.14 shows an example of gradient in each patch around an interest point.
An histogram of orientations is then created for each patch. The final descriptor is
composed by a vector containing values from all histograms.

The final size of the descriptor depends on the choice of patch size and the
number of orientations classes in the histogram. For example, for a patch size of
4 � 4 pixels and a number of orientation classes of 8, the histogram created will
have a size of 36 like in the Fig. 7.14.

In this example, the values in each histogram of the 16 patches are organized
according to 8 angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) for a final size
vector of 128 values. Then the vector is normalized in sum unit to obtain contrast
invariance. To be sure that the vector of the interest point will be invariant in front
of the local affine transformations, each value is weighted in the histogram. The
method allows having a descriptor more robust and unique for each interest point
on the image.

As in the detection section, several other alternatives at the SIFT descriptor are
available since some years. These alternatives are presented here as a non-exhaustive
list:
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• The ORB algorithm [31] is like SIFT divided in two major parts: the detection
and the creation of a descriptor. ORB is based on the Features from Accelerated
Segment Test (FAST) algorithm for the interest points detection and on the
BRIEF algorithm [32] for the descriptor creation. The FAST algorithm relies on
the corner detection method.

The BRIEF algorithm itself is based on the DAISY algorithm [33] which uses
another type of descriptor which is a binary vector which created by following 3
steps:

– The research of a pattern around the interest point,
– The selection of several couple of points a
– The creation of the descriptor itself starting by a comparison of point intensity in

each couple. If the value of the first point intensity is higher of the second, the
value returned is 1, else it is 0. This way allows to obtain a binary chain whose
the size is depending of the number of couples selected.

In the case of the binary descriptor, the pattern used can be different according to
the algorithm.

• BRISK [34] is based on FAST algorithm for detection and inspired of
BRIEF/DAISY for the descriptor creation, it used a concentric pattern to
determined the neighborhood of the interest point.

• The Descriptor-Nets or D-net [35] is based on SIFT for detection, but guided
random position are also proposed. The descriptor creation relies on paths
connecting interest points in graph. Thus, it uses the information between nodes
to create the descriptor instead of using neighborhood of interest points.

7.3.2.3 Comparison of Interest Points Between Two or More Image:
Match and Alignment

Once the points of interest of two images are detected, the next step is to establish
the match between the points of the first image with those of the second image.

This match between is determined by computing the Euclidian distance. The
couple of interest points with the smallest distance is preserved. The difference
between the two Euclidian distances of the interest points descriptor selected is then
computed. The Fig. 7.15 is a diagram of the possible matches between three
descriptors of three interest points.

The difference obtained is next compared with a user defined threshold and the
match is considered strong when the difference computed is higher than the
threshold. In this case, the point of interest of the first image and the best of
the points selected in the second image are considered the same. This method of
matching is considered as brute-force mechanism.
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In the case of SIFT, the algorithm used to determine the parameters of the
alignment of two images is the algorithm RANdom SAmple Consensus
(RANSAC), an iterative algorithm proposed by Fischler and Bolles.

Fig. 7.15 This diagram shows the research of the best match between each descriptor of the first
image with each descriptor in the second image. In this example The red orientations are the cases
of match between the descriptor of interest in the first image and each descriptor of the second
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Summarizing, the algorithm SIFT is used to find common features between two
images. These features are then used to find the parameters to align these two
images. Since, tomography involves the alignment of a series of images acquired
with different tilts angles, the detection step and the descriptor creation step must be
performed for each image in the tilts series. The alignment step occurs once the
matching of the descriptors associated to interest points have been determined for
each couple of images in the tilts series. To align the images in the tilts series, an
additional step of chain creation is needed. This mechanism consists in the tracking
of each point of interest based on the results of the matching. The obtained chain
can begin and end on any image. The chains of each point of interest along the
sequence of images are used during the final alignment. The alignment model,
allowing to determine the orientation of the tilt axis, that can be used in tomography
is detailed in Sect. 2.2.

7.4 Extension to Data Other than Tilt Series

7.4.1 Data Alignment in Multiple-Axis Tomography

The impossibility to acquire a full 180° tilt series under the electron microscope
generate a lack of information. To compensate this limitation two approaches are
frequently used: N-axis tomography and sub-tomogram averaging. Both of then
consist in combine reconstructed volumes in a single final reconstruction but they
differ in the origin of data. In N-axis tomography several tomograms of a single
object are combined whereas in sub-tomogram averaging tomograms of several
objects are fused.

7.4.1.1 N-Axis Tomography

N-axis tomography, allows to get back some of the missing information by
acquiring multiple tilt series. The simplest approach is dual-axis tomography in
which two tilt series are recorded with perpendicular tilt-axes [36, 37]. The use
more than two axis has also been proposed [38, 39], but the higher dose and
complexity of post-processing, compared to the gain of information is not valuable
enough.

The reconstruction of data from N-axis tomography is performed by independent
alignment and reconstruction of each tilt series followed by the determination of the
geometric relationships between the different reconstructions. These relationships are
computed using methods similar to those described in this chapter: correlation-based
or landmarks-based approaches, but in three dimensions. Most of the time, software,
such as imod [40], uses gold beads correspondences between the reconstructions to
solve shifts, rotations and deformations such as shrinkage. Once aligned, tomograms
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are combined in the Fourier space to take advantage of the precise positioning of the
missing information in the Fourier transform. Thus, intensities for each frequency are
generated by averaging non-null values, in the Fourier space, from tomograms to be
combined.

7.4.1.2 Sub-Tomogram Averaging

Sub-tomogram averaging consists in performing many independent reconstructions
of biochemically identical or structurally similar objects (often macromolecular
complexes) and then to average them to get a final reconstruction having higher
resolution, less noise and without missing information artifacts [41]. To this purpose
the objects are extracted from a single or from several tomograms. Since each one of
the extracted object does not have the same orientation with respect to tilt axis, their
missing information is different. Therefore, when combined, the lack of information
of one extracted object is compensated by other objects. Such in N-axis tomography
the information is combined in the Fourier space.

The computational process for sub-tomogram averaging is mainly adapted from
single particle analysis approach [42]. This requires data alignment, classification
and reconstruction averaging. Because of the missing information occurring in
different orientation in each sub-tomogram, the major difficulty is the 3D alignment
which need to consider this lack of information to compute the correlation functions
in the Fourier space. Presently there are two main software devoted to
sub-tomogram averaging: Dynamo [43] and Relion [44].

7.4.2 Serial Images Alignment

Nowadays an important effort is realized to get 3D information by other tomo-
graphic methods which are not based on the acquisition of tilt-series. In structural
biology these methods are based on sample serial sectioning followed by image
acquisition of each section. The most widespread methods are the serial block face
(SBF) and dual-beam (FIB–SEM) in scanning electron microscopes and serial
sectioning in transmission electron microscopy (ssTEM) or array tomography in
scanning electron microscopes or light microscopy. The main differences between
the first two methods and the latest ones are based on how sections are obtained.
For SBF and FIB–SEM, resin embedded biological samples are directly sectioned
and imaged in the electron microscope whereas in the other cases sections are
produced before being deposited onto a support which is transferred to the
microscope. Once serial images acquired, from the image processing point of view,
the reconstruction process is identical independently of the acquisition method:
images are superposed to produce a 3D reconstruction.

The limitation of this technique is associated to the anisotropy in the voxel size
because X, Y dimensions depends on the electron microscope whereas Z dimension
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relays on the sectioning system. In addition, the sectioning process lead to a rupture
of the matter continuity in the sample and to deformations induced by sectioning
forces when ultramicrotomes are used. Deformations and anisotropy should be
taken in consideration to align images. Thus, a pre-alignment based on rigid
alignment approaches is needed and, when deformations occur, it should be fol-
lowed by elastic transformations computation to correct the deformations induced
by sectioning. In both cases the methods used for axial-tomography described in
previous sections of this chapter are valuable for both, rigid and elastic alignment.
However, specific methods, based on squared difference [45, 46] or landmarks
defined either manually or automatically using specific definition [47] or using
SIFT [48], have been proposed for serial image alignment.

7.5 Conclusion

Alignment of images in tomography is a crucial step to succeed in accurate
reconstructions process. In spite that several methods and algorithms exist, while
tomography trends towards new frontiers such as 3D chemical mapping, there is an
active research on this field of image processing. Thus, from classical approaches,
based on cross-correlation and on the use of gold-beads as fiducial markers, we
move nowadays to more robust methods allowing the correction of image defor-
mations or the automatic determination of inherent landmarks. Thus, it is expected
that in near future, the advances in image alignment will contribute to the devel-
opment of high-through flow tomography integrated in a multimodal and multiscale
3D imaging approach.
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