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ABSTRACT Functionally meaningful reversible protein-membrane interactions mediate many biological events. Fluorescence
correlation spectroscopy (FCS) is increasingly used to quantitatively study the non-reversible binding of proteins to membranes
using lipid vesicles in solution. However, the lack of a complete description of the phase and statistical equilibria in the case of
reversible protein-membrane partitioning has hampered the application of FCS to quantify the partition coefficient (Kx). In this
work, we further extend the theory that describes membrane-protein partitioning to account for spontaneous protein-membrane
dissociation and reassociation to the same or a different lipid vesicle. We derive the probability distribution of proteins on lipid
vesicles for reversible binding and demonstrate that FCS is a suitable technique for accurate Kx quantification of membrane-pro-
tein reversible association. We also establish the limits to Kx determination by FCS studying the Cramer-Rao bound on the vari-
ance of the retrieved parameters. We validate the mathematical formulation against reaction-diffusion simulations to study
phase and statistical equilibria and compare the Kx obtained from a computational FCS titration experiment with the experi-
mental ground truth. Finally, we demonstrate the application of our methodology studying the association of anti-HIV broadly
neutralizing antibody (10E8-3R) to the membrane.
SIGNIFICANCE The reversible association of peptides and proteins with biological membranes is key to many cellular
and physiological processes, as well as of growing interest for the pharmaceutical and biomedical industries. In this work,
we tackle the quantification of protein-membrane affinity for proteins that spontaneously dissociate and reassociate from
and to the membrane, taking into account how proteins distribute on lipid vesicles using fluorescence correlation
spectroscopy (FCS). We further extend the methodological spectrum of available techniques to study membrane-
mediated biological events, introducing a method that allows a most rigorous quantitative description of proteins that
spontaneously dissociate and reassociate from and to the membrane.
INTRODUCTION

Reversible interaction of peptides and proteins with biolog-
ical membranes is key to many cellular and physiological
processes, such as signaling and antigen recognition, as
well as of growing interest for the pharmaceutical and
biomedical industries (1–3). The functional outcome of
these interactions depends on protein partitioning between
the aqueous buffer and the membrane. Due to the nature
of lipid bilayers, membrane-protein interaction and, thus,
protein partitioning to the membrane is dependent on the
chemical species involved in the interaction but also on
membrane collective properties such as viscosity and elec-
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trostatic surface potential (4,5). The quantitative study of
the affinity of proteins for the membrane is crucial to
unravel the mechanics of protein-membrane association,
to understand the role of the membrane collective biophys-
ical properties on the interaction (4), and to determine the
energetics of protein-membrane association or protein inser-
tion (6). An added complication to describe protein-mem-
brane association is that, on most occasions, biomolecules
associate to the membrane through a combination of several
mechanisms: stoichiometric binding to one or several lipid
molecules, adsorption to the bilayer through electrostatic
attraction (non-stoichiometric interaction), or partial or
complete insertion into the hydrophobic core of the
lipid bilayer driven by the hydrophobic effect (7,8). For
this reason, methodologies or models that presume a
specific binding stoichiometry do not adequately describe
the interaction. Instead, the partition coefficient allows
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quantification of the non-stoichiometric interaction of a
molecule in aqueous solution with a biomembrane (6,9).

The partition coefficient (termed Kx or Kp) can be deter-
mined using a variety of methods, including centrifugation,
calorimetry, and fluorescence spectroscopy (6,9,10). Most
methodologies used to determine Kx rely on lipid molecules
that self-assemble in the aqueous solution forming lipid ves-
icles. Upon association, proteins or peptides do not
distribute evenly onto vesicles, but they follow a particular
probability distribution so that every vesicle carries a
different number of proteins. For this reason, in addition
to phase equilibrium, the characterization of partitional
behavior requires statistical equilibrium to be considered
through the description of its probability distribution. It
has been acknowledged that the description of the protein
distribution on vesicles is critical to precise Kx determina-
tion, and the case of non-reversible binding has already
been successfully addressed (11–13). However, to our
knowledge, the effect of dissociation and reassociation
events on the distribution of proteins on vesicles and, as a
consequence, on Kx quantification has so far not been
considered. Thus, quantitative understanding of partitional
behavior is undermined by the lack of models that fully
describe reversible association.

Kx determination is frequently performed using methods
based on fluorescence spectroscopy (e.g., (10,14) and refer-
ences therein). They are highly sensitive and, threfore, mea-
surements can be performed at low solute concentrations. In
addition, no physical separation of phases is required, result-
ing in minimal perturbation of the partition equilibrium (9).
Fluorescence correlation spectroscopy (FCS) and fluores-
cence cross-correlation spectroscopy (FCCS) are highly sensi-
tive spectroscopic techniques based on the analysis of the
fluctuations of the emission of fluorescently tagged particles
(e.g., molecules or lipid vesicles) as they traverse a very small
detection volume (15,16). FCS is particularly suited to study
binding and insertion of biomolecules into the membrane as
it requires very lowprotein concentration andhas single-mole-
cule sensitivity (13,17–20). FCS is also advantageous as it al-
lowsmolecules to be labeled at non-interfering locations away
from the protein-membrane interaction site, thus avoiding po-
tential perturbation of the partition equilibrium due to fluoro-
phore-membrane interactions.

In this work, we tackle the quantification of protein-mem-
brane affinity for proteins that spontaneously dissociate and
reassociate from and to the membrane taking into account
how proteins distribute on lipid vesicles in equilibrium.
We extend and improve previous work that described the
use of FCS for the case of non-reversible association
(13,17–20) and demonstrate that FCS accurately determines
the binding constants in the case of reversible association.
To do so, we first derive the mathematical formulation of
the probability distribution of proteins on vesicles and test
it against an in silico reaction-diffusion experiment. We
then study the application of this mathematical formulation
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to determine Kx using titration FCS experiments. We
validate the use of this probability distribution using compu-
tational FCS and we study the Cramer-Rao bound (CRB) on
the variance of the retrieved parameters to establish the
accuracy and the application limits for the quantification
of reversible association using FCS.

Finally, we demonstrate our work by quantifying protein-
membrane reversible association for a highly relevant
biotechnological application, namely the optimization of
an anti-HIV-1 antibody (Ab) (10E8) by engineering its
membrane avidity. 10E8 is capable of blocking infection
by almost all HIV-1 strains (21), and it has recently been
shown that the promotion of membrane interactions of the
10E8 broadly neutralizing Ab can significantly increase its
potency without increasing its polyreactivity (22,23).
Thus, accurate quantitative description of the interactions
of the Ab and the viral membrane is paramount to the
rational design of HIV-optimized Abs. In turn, this is of
great interest to developing vaccines (24) and treating
HIV infection by passive immunization (25).
THEORY

Here,we formulate the probability distribution of proteins that
reversibly associate to lipid vesicles and establish the frame-
work to quantify protein-membrane affinity in this case. All
symbols used throughout the text are summarised in Table 1.
Phase equilibrium

Proteins at an aqueous/membrane interface undergo a
continuous series of association and dissociation events at
a rate that depends on the polar properties of the aqueous
buffer, the membrane core and its interface, and the biomol-
ecule itself. In phase equilibrium, the rates of protein asso-
ciation and dissociation to and from the lipid membrane are
equal and the amount of membrane-bound protein fluctuates
around a stationary value. Assuming that the accessible lipid
concentration is sufficiently large, so that the membrane
does not saturate with bound protein, the mole fraction parti-
tion coefficient can be defined as (6,9):

Kx ¼ mp
mem

�
mL

mp
aq=mW

(1)

where mp
mem and mp

aq are, respectively, the moles of mem-
brane-associated protein and protein in the aqueous buffer,

and mW and mL are the moles of water and accessible lipid.
Eq. 1 is commonly expressed in terms of concentrations:

Kx ¼ ½P�mem
�½L�acc

½P�aq
.
½W�

(2)

where [P]aq and [P]mem are, respectively, the concentration
of free (aqueous phase) and membrane-associated protein,



TABLE 1 Symbols used throughout the text

Symbol Meaning

Ai ACF absolute amplitudes

ai Probability normalization factor

A, D Random variables that describe membrane-

protein association and dissociation events

BP
aq, Bi Absolute brightness of fluorescent proteins in

solution, brightness of the ith fluorescent

species (1 refers to proteins in solution, 2 to

protein-carrying vesicles, 3 to free dye)

a, d Number of associations and dissociations per

vesicle

D Diffusion coefficient

f FCSaq , f FCSmem
FCS fraction of the protein in solution and

partitioned protein, respectively

fmem Mole fraction of membrane-associated protein

f satmem Fraction of membrane-bound protein measured

at lipid saturation

G(t), g(t) Normalized and non-normalized ACF

l Average number of membrane-bound proteins

per vesicle

Kx Mole fraction partition coefficient

kon, koff Association (on) and dissociation (off) rate

constants corresponding to individual protein-

membrane association/dissociation events

k Probability mass function exponential factor

[L]acc Accessible lipid concentration

[V] Concentration of vesicles in solution

[W] Water concentration

mp
mem, m

p
aq Moles of membrane-associated protein, moles of

protein in the aqueous buffer

mW, mL Moles of water and accessible lipid

m Number of lipids per vesicle

Nmem Discrete random variable for the number of

membrane-bound proteins per vesicle

nPTot, n
P
mem, n

P
aq

Total number of proteins, number of proteins

associated to the membrane, number of

proteins in solution

nPi Number of proteins bound on vesicle i

nVTot Total number of vesicles

nF, nFi Number of fluorescent particles in the

observation volume (index 1 refers to proteins

in solution, 2 to protein-carrying vesicles)

[P]Tot, [P]aq, [P]mem Total concentration of protein at the membrane,

concentration of free (aqueous phase),

concentration of membrane-associated protein

qi Relative brightness of the ith fluorescent species

to proteins in solution (1 refers to proteins in

solution, 2 to protein-carrying vesicles)

Q Probability mass function normalization factor

S Confocal volume dimension ratio (S ¼ uz=uxy)

t ACF lag time

tD Characteristic transit time of the fluorescent

particles through the confocal volume

uz, uxy Axial and lateral dimensions of the confocal

volume
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[L]acc is the accessible lipid concentration, and [W] is the
water concentration ([W] ¼ 55.5M at room temperature).
Assuming that protein association to the membrane is
non-cooperative, the mole fraction of membrane-bound pro-
tein, fmem, is
fmem ¼ ½P�mem
½P�Tot

¼ Kx½L�acc
½W� þ Kx½L�acc

(3)

Using the above definition, Kx is a dimensionless quan-
tity. We note that there are other formalisms in literature
for the partition coefficient. These have been discussed thor-
oughly in (10). Throughout this work we will use Kx and
fmem as defined in Eqs. 1–3.

A frequent observation in binding experiments is that
protein-membrane binding is not complete even at large
lipid concentrations, which results in fmem not reaching 1
asymptotically (e.g., (13,26–28) among many others). This
has been ascribed to the presence of a conformer of the
protein that is not membrane competent (27) or free fluores-
cent dye in solution (13), and it has been accounted for
introducing an empirical factor, f satmem, in Eq. 3:

fmem ¼ ½P�mem
½P�Tot

¼ f satmem

Kx½L�acc
½W� þ Kx½L�acc

(4)

where f satmem is the fraction of membrane-bound protein
measured at lipid saturation (27).
Determination of the protein distribution on lipid
vesicles: Statistical equilibrium

Lipids in solution do not organize as a bulk membrane;
instead, they self-assemble in the form of lipid vesicles.
For this reason, most quantification methods (e.g., (9) and
references therein) quantify partitioning by titrating a pro-
tein solution with increasing amounts of lipid and estimating
the fraction of protein that has partitioned onto the vesicles
as a fraction of accessible lipid concentration. Proteins do
not distribute homogeneously on the vesicles; rather, every
vesicle may carry a different number of protein copies
(Fig. 1 A) defined by a probability distribution. Thus, in
addition to phase equilibrium, statistical equilibrium must
also be considered, so that the ratio of protein in solution
to membrane-bound protein and the distribution of proteins
on vesicles remain constant in time. In phase equilibrium,
proteins may dissociate and reassociate from and to the lipid
membrane; similarly, in statistical equilibrium, a protein
may dissociate from a lipid vesicle and reassociate to a
different one, but, importantly, the probability distribution
of proteins on vesicles will remain unchanged.

Association of proteins to vesicles is a Poisson process,
and it is a common assumption that, upon adding protein
to a solution containing lipid vesicles, proteins distribute
on the vesicles following a Poisson distribution (13). This
assumption holds whenever there are no or few protein
dissociation events from the vesicles (11). However, in the
general case of reversible protein association (that is, asso-
ciation, dissociation, and reassociation), protein dissociation
from the membrane, which is itself a Poisson process too,
must also be considered.
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FIGURE 1 Quantification of protein-membrane partitioning using FCS.

(A) Proteins in solution do not distribute homogeneously on lipod vesicles.

Proteins in solution (blue spheres) associate with lipid vesicles, which may

carry one or several proteins, or none at all. The number of proteins per

vesicle in equilibrium is neither homogenous nor random, and is deter-

mined by a specific probability distribution. (B) FCS explanation. As a fluo-

rescent molecule traverses the confocal volume (top left), its fluorescent

emission (F(t)) is registered in time (top right). The time (tD) a fluorescent

molecule takes to traverse the confocal volume (bottom left) is directly

related to its diffusion coefficient, D. The ACF (G(t))of the emission

time-trace (bottom right) allows the diffusion coefficient and the average

number of molecules in the confocal volume (with dimensions uxy and

uz) to be determined. (C) FCS titration experiment. The protein-membrane

Kx can be determined by titrating the protein with different amounts of lipid

that self-assembles in vesicles in an aqueous buffer. The FCS fraction of

partitioned protein is measured for every lipid concentration, and Kx and

f satmem are determined from the FCS titration curve using Eq. 29. The different

features of the FCS titration curve reflect both the protein partitional

behavior and the distribution of the proteins on vesicles. To see this figure

in color, go online.
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Association and dissociation events are described by
random Poisson variables A and D with probability mass
function (pmf) PðA;aÞ and PðD; dÞ, where a(t) and d(t)
are the number of associations and dissociations per vesicle.
At any given time, the resulting distribution of proteins on
vesicles (Nmem) is given by the subtraction of A and D,
conditioned to the physical limitation that no dissociation
can occur from a vesicle with no proteins attached to it.
The expected value of the number of associated proteins
per vesicle is E½Nmem� ¼ aðtÞ � dðtÞ ¼ lðtÞ. It is worth
noting that Nmem is not Poisson distributed because the sub-
traction of Poisson random variables is not another Poisson
4 Biophysical Journal 122, 1–16, March 2, 2023
variable. In addition, association and dissociation are not
generally independent, since dissociation may depend on
previous association events, resulting in a complex pmf. In
the upcoming section, we address the pmf at protein-vesicle
equilibrium (section ‘‘distribution of proteins on vesicles in
statistical equilibrium’’). The pmf that describes the time
evolution before equilibrium does not generally have a
closed solution; as a consequence, we only address a partic-
ular case given certain assumptions in section ‘‘dynamic dis-
tribution of proteins on vesicles.’’

Distribution of proteins on vesicles in statistical equilibrium

When the protein-vesicle system achieves phase equilib-
rium, a subset of proteins will remain in solution, whereas
the rest will be attached to the lipid vesicles, as determined
by Kx. In phase equilibrium, the rates of protein association
and dissociation to and from the membrane are equal and
therefore the expected number of membrane-associated pro-
teins, lðtÞ ¼ aðtÞ � dðtÞ, remains constant over time,
lhlðtÞ. At any given time, the number of membrane-asso-
ciated proteins fluctuates around l, meaning that, as one
protein dissociates from a vesicle, another (or the same) pro-
tein associates to the same or a different vesicle. Impor-
tantly, as the specific vesicle to which the molecule
associates is, in general, different, this exchange modifies
the distribution of proteins on vesicles until the protein-
vesicle system reaches statistical equilibrium. From this
point on, the distribution of proteins on vesicles remains
constant over time, implying that both the expected value
and the variance are also constant over time.

To determine the probability distribution of proteins on
vesicles in equilibrium, we consider an isolated system of
lipid vesicles in phase and statistical equilibria with freely
diffusing proteins in an aqueous solution. Proteins can asso-
ciate and subsequently dissociate from the vesicles, but, be-
ing an isolated system, the amounts of protein and lipid are
fixed. Importantly, in this system, the number of lipid vesi-
cles is also fixed (that is, vesicles cannot undergo fusion of
fission). Such a system has a fixed partition coefficient Kx.

In this system, all vesicles are identical to each other, and
all proteins too. Therefore, for a given number of vesicle-
attached proteins, all microscopic arrangements of proteins
on vesicles are equally likely. The total number of proteins is
conserved, and we assume that this number is sufficiently
large so that, when a protein in solution binds to a particular
vesicle, it does so at the expense of the remaining protein in
solution without depleting it, and does not influence the pro-
teins already associated to the rest of the vesicles. In addi-
tion, we assume that proteins already bound to a vesicle
do not influence other proteins associating to the same
vesicle. Under these two assumptions, lipid vesicles are in-
dependent of each other and there is no constraint on several
vesicles carrying exactly the same number or protein copies.
As a consequence, the probability PðNmem ¼ n; kÞ of
finding a vesicle with n proteins associated to it when the
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system is in phase and statistical equilibrium has a
decreasing exponential functional form,

PðNmem ¼ n; kÞ ¼ 1

Q
e
� n
k (5)

where Q ¼ PN
m¼ 0e

�m
k is a normalization factor that stems

from the fact that the sum of all probabilities of finding

proteins associated to vesicles must add up to 1, and k is a
characteristic parameter of the system, with k > 0 to satisfy
that the number of vesicles carrying an increasingly large
number of proteins tends to 0. A complete derivation of
the exponential functional form of PðNmem ¼ n; kÞ can be
found in the Supporting material.

Q is a geometric series with coefficient 1 and ratio r ¼
expð� 1 =kÞ, which is always smaller than 1 since k is
positive. Thus, this series converges to the sum

Q ¼ 1

1 � e
� 1
k

(6)

We rely on physical arguments to find out how parameter
k relates to the system. In equilibrium, the association and
dissociation rates are the same and thus, the number of
vesicle-bound proteins per vesicle, l(t), fluctuates around
its average value l, which is the expected number of proteins
per vesicle:

E½Nmem� ¼ l (7)

with
l ¼ nPmem
nVTot

¼ ½P�mem
½V� (8)

where ½V� is the concentration of vesicles in solution.
By definition, E½N� ¼ PN m $PðN ¼ m; kÞ: Substitut-
m¼ 0

ing P and Q from Eqs. 5 and 6 and taking advantage of the
convergence properties of the polylogarithm of order �1
(Li� 1ðpÞ ¼ P

k

kpk, with p ¼ expð� 1 =kÞ),

E½Nmem� ¼ e
� 1
k

1 � e
� 1
k

¼ l (9)

Solving for k, k ¼ 1=½logð1þl� 1Þ� and substituting in
Eq. 6 yields Q ¼ lþ 1. Finally, substituting k and Q in
Eq. 5, the probability of finding n proteins on a vesicle is
given by

PðNmem ¼ n; lÞ ¼ ln

ðlþ 1Þnþ1
(10)

where l is the average number of proteins per vesicle, which
is itself determined by Kx.
To fully describe the pmf, we still need to calculate its
variance. By definition, var½N� ¼ E½N2� � ðE½N�Þ2, with
E½N2� ¼ PN

m¼ 0m
2$PðN ¼ m; kÞ: Taking into account in

this case the convergence properties of the polylogarithm of
order �2 (Li� 2ðpÞ ¼ P

k

k2pk), the variance of the pmf is
var½Nmem� ¼ lðlþ 1Þ (11)

Dynamic distribution of proteins on vesicles

As explained above, association and dissociation are not in-
dependent events, since dissociation may depend on previ-
ous association events, resulting in a complex pmf. It is
possible to find a closed solution for the pmf that describes
the time evolution before equilibrium with certain assump-
tions: 1) the number of protein copies in solution is much
larger than the number of vesicles, so a protein is always
available in solution for association; and 2) the probability
of association is sufficiently larger than the probability of
dissociation, implying that dissociation is not limited by
association. In this case, association and dissociation can
be considered independent Poisson-distributed events and
the resulting distribution of protein on vesicles is given by
the Skellam distribution (29):

PðNmem ¼ n;a; dÞ ¼ e�ðaþdÞ $
�a
d

�n
2

$Ijnj
�
2

ffiffiffiffiffiffiffiffi
a$d

p �
(12)

where InðzÞ is the modified Bessel function of the first kind.
Eq. 12 satisfies that E½Nmem� ¼ a � d.
Determination of Kx using FCS

Effect of the statistical distribution of protein on vesicles in
FCS measurements

The partitional behavior of proteins on the bilayer was stud-
ied through the quantification of the fraction of free protein
in solution and vesicle-associated protein as they diffuse in
solution using FCS (Fig. 1 B). FCS is a single-molecule-
sensitivity technique that allows the diffusion coefficient
of a fluorescent particle to be determined in solution as it tra-
verses a fl-size volume defined by the confocal excitation/
detection volume (15,16). When two fluorescent species
diffuse together with largely different diffusion coefficients,
such as a small protein and a large vesicle carrying protein
on its surface, FCS allows the fraction of the fast- and slow-
diffusing species to be determined with high accuracy. In the
following section, we expand upon the formulation
presented in (13,16).

The normalized autocorrelation function, or simply the
autocorrelation function (ACF), of a single fluorescent
species diffusing in solution is

GðtÞ ¼ 1

nF

�
1þ t

tD

	� 1�
1þ t

S2tD

	� 1
2

(13)

where nF is the number of fluorescent particles in the obser-
vation volume, t is the ACF lag time, and tD is the charac-

teristic transit time of the particles as they traverse the
confocal volume with axial and lateral dimensions, uz and
uxy. S is the dimension ratio (S ¼ uz/uxy) and the diffusion
coefficient is defined by
Biophysical Journal 122, 1–16, March 2, 2023 5
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D ¼ u2
xy

4tD
(14)

Fluorescently tagged protein in solution and protein-
loaded vesicles are fluorescent species with different
diffusion coefficients due to their different sizes. In general,
species will also have different brightness due to every
vesicle carrying a different number of fluorescently tagged
proteins. In this case, the system ACF is the linear combina-
tion of the ACF of the different species, GiðtÞ, weighted by
their absolute molecular brightness Bi (16):

GðtÞ ¼ 1
 PM
i ¼ 1

BinFi

�2$XM
i ¼ 1

Bi
2nFi

2
GiðtÞ (15)
where nFi is the average number of fluorescent particles in
the observation volume. The index i identifies the diffusing

species, with 1 referring to proteins freely diffusing in solu-
tion and 2 to protein-loaded vesicles. When the amount of
free dye present in solution is so small that can be neglected,
only free protein and protein-loaded vesicles need to be
considered, and the upper bound of the summation is
M ¼ 2; otherwise, free dye in solution will be referred to
as index 3 (with M ¼ 3).

The molecular brightness is a key parameter in FCS
experiments. It defines the number of photons emitted by
molecules of different species as they traverse the observa-
tion volume (Fig. 1 B). Equation 15 highlights the critical
role this parameter plays as the contribution of each species
to the ACF is not linear with brightness, but depends,
instead, on the square of the brightness parameter. This
implies that, relative to a vesicle carrying a single copy of
the protein, a vesicle carrying two protein copies will have
a fourfold contribution to the measured ACF, a vesicle car-
rying three protein copies will have a ninefold contribution,
and so on. In this system, protein-loaded vesicles each have
different brightness according to the distribution of protein
on vesicles and will, therefore, contribute differently to
the ACF.

It is highly advantageous to formulate Eq. 15 in terms of
the relative molecular brightness, q:

qi ¼ Bi

BP
aq

(16)
where the index refers to the species and BP
aq is the absolute

molecular brightness of free proteins in solution. Thus, B1h

BP
aq. As a consequence, q1 ¼ 1 and q2 is proportional to the

number of fluorescent protein copies carried by the vesicle.
Since vesicle brightness is proportional to the number of
proteins associated to it, the relative molecular brightness
follows the probability distribution of proteins on vesicles
(Eq. 10). Eq. 15 can now be formulated in terms of q:
6 Biophysical Journal 122, 1–16, March 2, 2023
GðtÞ ¼ 1P
i

CqiDnFi

X
i

AigiðtÞ (17)

where <> denotes average value, and Ai are the absolute
amplitudes of each species contributing to the ACF:

Ai ¼ Cqi2D nFiP
i

CqiDnFi
(18)

and giðtÞ is the non-normalized ACF corresponding to each
species:
giðtÞ ¼
�
1þ t

tDi

	� 1�
1þ t

S2tDi

	� 1
2

(19)

Determination of the partitioned protein fraction

It is often convenient to formulate Eq. 17 in terms of frac-
tional amplitudes, fi, contributing to the ACF:

GðtÞ ¼ 1

CnFD

X
i

fi$giðtÞ (20)

where CnFD is the brightness-weighted average number of
fluorescent particles (proteins in solution and protein-car-
rying vesicles) in the observation volume: CnFD ¼�P
i

CqiDnFi

	2

=
P
i

Cqi2DnFi , and fi is the contribution of each

fluorescent species to the ACF:

fi ¼ AiP
i

Ai

¼ Cqi2DnFiP
i

Cqi2DnFi
(21)

with
P
i

fi ¼ 1. For the sake of clarity, we will refer to the
fractional ACF amplitudes fi as FCS fractions.
As stated above, index 1 refers to the free protein in solu-

tion and index 2 to protein-loaded vesicles. Thus, q1 ¼ 1.
Without loss of generality, we will assume that protein asso-
ciation to the membrane does not modify the probe’s quan-
tum yield, and thus q2 is directly the number of protein
copies on protein-carrying vesicles, which is governed by
the probability distribution of protein on vesicles. Equation
21 does not presume any particular distribution of proteins
on vesicles. In the case of reversible association, the pmf
of protein on vesicles is given by Eq. 10. Importantly, how-
ever, although Eq. 10 is defined for all the vesicles in solu-
tion irrespective of whether or not they carry protein,
vesicles that do not carry proteins are not fluorescent, and
thus are not accounted for in the ACF calculation (Eq.
20). We can therefore compute the average quantities Cq2D
and Cq22D in Eq. 21 as the overall quantity divided by the
number of protein-carrying vesicles. Recalling Eqs. 9
and 11,
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Cq2D ¼ E½N�nVTot
nF2

¼ lnVTot
nF2

(22)

Cq2
2D ¼ E

�
N2


nVTot

nF2
¼

�
lðlþ 1Þ þ l2

�
nVTot

nF2
(23)

where nVTot is the total number of vesicles.
The FCS fractions f and f in Eq. 21 can now be calcu-
1 2

lated and endowed with a clearer physical meaning. Inter-
pretation of the FCS fraction f1 is straightforward as f1 is
the contribution of protein in the aqueous buffer to the

ACF. Following the notation above, f FCSaq hf1. To understand

the physical meaning of f2, we again take into account that
vesicles that do not carry proteins do not contribute to the
ACF. As a consequence, the contribution of protein-carrying
vesicles to the ACF is strictly determined by the proteins
bound to the membrane. This implies that f2 fully carries
the information for the membrane-bound protein and can
be interpreted as the partitioned protein FCS fraction.
Following the notation above, f2 can now be termed as

f FCSmem . Using Eqs. 22 and 23,

f FCSaq ¼ nPaq
nPaq þ lð2lþ 1Þ$nVTot

(24)

and
f FCSmem ¼ lð2lþ 1Þ$nVTot
nPaq þ lð2lþ 1Þ$nVTot

(25)

where we have assumed that the number of non-fluorescent
protein copies is negligible and thus nF is equal to the num-
1

ber of proteins in aqueous solution nPaq.
If the probe quantum yield changes upon membrane bind-

ing, q2 would be linearly proportional to the number of pro-
teins on the vesicle and a proportionality constant would
have to be introduced in Eqs. 22 and 23.

FCS fractions f FCSaq and f FCSmem represent the contribution of
the freely diffusing protein and membrane-bound protein to
the ACF curve, which is the mole fraction weighted by the
species brightness considering the distribution of proteins
on vesicles. The mole fraction of bound protein, fmem, can
be determined from either f FCSaq or f FCSmem , recalling that the
average value of membrane-associated protein, l, is just
the ratio of membrane-bound protein to total vesicle concen-
tration (Eq. 8), and thus

fmem ¼ l
½V�

½P�total
(26)

with
½V� ¼ 2$½L�acc
m

(27)
where ½V� is the concentration of vesicles in solution, [L]acc
is the concentration of protein-accessible lipid, and m is the
number of lipids per vesicle.
Determination of the molar partition coefficient Kx

The molar partition coefficient Kx is determined from the
FCS fractions f FCSaq and f FCSmem obtained titrating the protein
in solution with an increasing concentration of lipid. The
observed f FCSaq and f FCSmem can be expressed in terms of the
experimentally accessible concentrations of protein and
lipid dividing numerator and denominator by the total vol-
ume and substituting l as a function of Kx and f satmem using
Eqs. 4, 26, and 27:

f FCSaq ¼
�
1 � f satmem

�
K2

x ½L�2acc þ
�
2 � f satmem

�½W�Kx½L�acc þ ½W�2

Kx
2½L�acc2 þ

�
2½W�Kx þ f satmem

2Kx
2½P�Totm

�
½L�acc þ ½W�2

(28)

and
f FCSmem ¼

f satmemK
2

x½L�
2

acc
þ
�
fsatmem½W�Kx þ f satmem

2Kx
2½P�Totm

�
½L�acc

Kx
2½L�acc2 þ

�
2½W�Kx þ f satmem

2Kx
2½P�Totm

�
½L�acc þ ½W�2

(29)

Finally, Kx (and f
sat
mem) can now be determined fitting Eqs. 28

or 29 to f FCS or f FCS empirically obtained from the FCS
aq mem

titration curve.
MATERIALS AND METHODS

Modeling protein-membrane association/
dissociation dynamics

We modeled protein-membrane partitioning as a reaction-diffusion process

described by the reaction-diffusion master equation (RDME), which deter-

mines the probability of a reaction or a diffusion event. We used a represen-

tation that does not make any assumption on the binding stoichiometry and

that does not limit the number of proteins associating to the vesicle. As a

consequence, the number of free sites does not decrease upon protein

binding.

We simulated stochastic reaction-diffusion trajectories, which is

equivalent to numerically solving the RDME (30,31). We used a group

of computational methods to simulate the trajectories of the stochastic

protein membranes system: linked-list cells for the spatial description

of particles in boxes (32,33), periodic boundary conditions for positions,

next reaction method for simulating the reactions (31), and next subvo-

lume method (34–37) for simulating diffusion events. The detailed

description of the method and the pseudo-code algorithm can be found

in the section ‘‘extended methods’’ in the Supporting material accompa-

nying this paper.
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Computational microscopy

Brownian dynamics simulations

We used Brownian molecular dynamics to simulate the diffusion of proteins

and vesicles with enough spatial and temporal resolution to perform a

computational microscopy experiment (38). Proteins and vesicles were

simulated in Gromacs as spherical particles. To calibrate the friction coef-

ficient for each type of particle, we initially set the Gromacs-parametrized

friction coefficient to 0, and then modified independently the thermostat

time constant for each type of particle to obtain a friction coefficient so

that the particles Brownian diffusion coefficient D ¼ Cr2D=4t matched

the empirical one obtained by FCS experiments. A detailed description of

the method can be found in the section ‘‘extended methods’’ in the Support-

ing material.

Computational FCS

To perform a computational FCS experiment, we simulated the excitation/

detection process of diffusing fluorescent particles as they traverse a

confocal volume. To this end we used the finely sampled trajectories

obtained using Gromacs and simulated the emission/detection process.

The excitation/detection process was simulated assuming a spatially

Gaussian-distributed excitation probability that matches the empirical

point spread function (PSF) for every molecule located within the excita-

tion/detection volume (see section ‘‘materials and methods’’). Poisson sta-

tistics were assumed for the detection process. The detailed description of

the method and a pseudo-code algorithm can be found in the section

‘‘extended methods’’ in the Supporting material. We finally performed

the same FCS analysis on the simulated data as on the empirical data

(see below).
Estimation of the CRB for Kx determination using
FCS

The minimal variance of an unbiased estimator bq for a parameter q is

determined by the reciprocal Fisher information matrix (FIM), I ðqÞ,
var½bq�RI ðqÞ� 1, where the function 1=I ðqÞ the CRB on the variance

of the unbiased estimator of q. For this study, the parameters that we

have estimated are Kx and f satmem, the independent variables are [P]Tot and

[L]acc, and the experimental observations are either f FCSaq or f FCSmem , modeled

by Eq. 24 and Eq. 25, respectively. We have derived the functional form of

the CRB on the variance of Kx and f satmem, where the FIM is obtained taking

the partial derivatives of f FCSaq or f FCSmem with respect to Kx and f satmem. A

detailed description of the derivation of the FIM and the exact functional

form for the CRB on the variance of Kx and f satmem is given in the Supporting

material.
Materials

1-Palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-

oleoyl-sn-glycero-3-phospho-L-serine (POPS), and cholesterol (Chol)

were purchased from Avanti Polar Lipids (Birmingham, AL, USA). Phos-

pholipid stock concentrations were determined by the Fiske and Subbarow

phosphate assay method. 10E8-3R Fabs were labeled with Abberior KK114

(Abberior, Göttingen).
Sample preparation

Antibody purification and labeling

The purified KK114-labeled 10E8-3R Fab was kindly provided by Prof.

Jose Luis Nieva (University of the Basque Country, Spain). Purification

and labeling procedures have been previously described elsewhere (22).
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Preparation of model membranes (LUVs)

Large unilamellar vesicles (LUVs) made of a lipid mixture of POPC,

Chol, and POPS were produced following the extrusion method. The lipid

mixtures were mixed from chloroform lipid stocks and dried under vac-

uum conditions. They were re-suspended in HEPES buffer at 50�C and

vortexed, forming multi-lamellar vesicles (MLVs). Subsequently, 10

freeze-thaw cycles were performed to the suspension of MLVs. The solu-

tion was extruded 10 times through two stacked polycarbonate membranes

with a nominal pore-size of 0.1 mm to obtain 100-nm LUVs. It was esti-

mated that there were approximately 105 lipid molecules per vesicle,

calculated assuming the average area per lipid is 65 Å2 (39) and that

both leaflets of the vesicle bilayer accommodate the same number of lipid

molecules.
FCS

Optical setup

A detailed description of the optical set up can be found in (40). In brief,

excitation and detection were performed through a water immersion objec-

tive HCX PL APO 63�/1.20 W CORR Lbd Bl (Leica) on a confocal Leica

SP5. KK114-labeled samples were excited at 633 nm, and their fluorescent

emission was registered on the Avalanche Photodiodes (APD) through a

BP647-703 filter. The average power density at the sample plane was

50 kW/cm2. Photon arrival times were recorded using a SPC830 TCSPC

card (Becker & Hickl, Berlin), which also registered the pixel, line, and

frame signals from the microscope scanner. The whole system was exter-

nally clocked at 20 MHz. The SPC830 binary output files were decoded us-

ing an in-house developed Matlab routine.

FCS titration experiment

A 25 nM solution of fluorescently labeled Fab was titrated with increasing

lipid concentration (from 10�12 M to 2 � 10�7 M). For every lipid con-

centration, an FCS autocorrelation trace was calculated. The effect of

bright aggregates was minimized by applying an intensity threshold on

the time-photon trace and a variance filter on the autocorrelation trace

(see Supporting material). f FCSmem was determined as explained below. For

every lipid concentration, three FCS measurements (45 s each) were car-

ried out. Measurements were repeated three times with independent

samples.

Determination of the partition coefficient by FCS

The experimental procedure to determine Kx and f
sat
mem can be summarised in

five steps: 1) Determine the diffusion coefficient of free protein in solution

(D1) using a sample with no lipid; determine the diffusion coefficient of ves-

icles in solution (D2) using a sample with no protein. Vesicles can be labeled

with a hydrophobic probe (in this work we used DOPE-KK114) incorpo-

rated during LUV reconstitution, so that it distributes homogeneously

through the vesicles. 2) Vesicle fusion or fission should be ruled out at

this point: perform FCS to determine vesicle concentration and vesicle

diffusion coefficient at different points in time. In the absence of vesicle

fusion or fission, both parameters remain constant over time. Proteins

may promote vesicle fusion, so this test should be performed in the presence

of proteins. 3) Titrate the protein solution with different lipid (LUV) con-

centrations and perform FCS at each one. 4) Fit Eq. 20 to the experimental

ACF obtained for different LUV concentrations to compute f FCSmem . Use D1

and D2 obtained above to reduce the number of fitting parameters. 5) Fit

Eq. 29 to the obtained f FCSmem as a function of accessible lipid concentration

with fitting parameters Kx (and f
sat
mem if required). 6) Compute the uncertainty

for the fitting parameters Kx and f
sat
mem either by support plane analysis (SPA)

(41) or repetition of experiments. Fitting software was developed in the lab-

oratory in Matlab and is available at https://github.com/cnbbiophot/

fitting-gui

https://github.com/cnbbiophot/fitting-gui
https://github.com/cnbbiophot/fitting-gui
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FIGURE 2 Proteins and vesicles dynamics as they associate, dissociate,

and reassociate. (A) Association a(t) and dissociation d(t) events per vesicle

as a function of time. Phase equilibrium is reached when both curves have

equal slope. (B) Mean number of membrane-bound proteins per vesicle,

l(t) ¼ a(t)-d(t). The solid blue line is l(t), obtained from the simulation

ensemble (sample mean). The dashed green line is the expected mem-

brane-bound particles per vesicle in equilibrium E[Nmem] as calculated

from the pmf derived in this work (Eq. 9). In equilibrium, l(t) computed

from the simulation matches E[Nmem]. The out-of-equilibrium l(t) (light

line) can be approximated by the Skellam distribution (Eq. 12). (C) Vari-

ance of the distribution of membrane-bound proteins on vesicles. The solid

blue line is the sample variance computed from the simulated data; the

dashed green line is the variance derived from the pmf (Eq. 11). Statistical

equilibrium is defined by stationary sample average and variance. The pmf

variance and the sample variance match in statistical equilibrium. The out-

of-equilibrium variance can be approximated by the Skellam distribution

(light line). To see this figure in color, go online.
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RESULTS

Probability distribution of proteins on vesicles

Having derived the theoretical pmf for proteins that revers-
ibly associate to lipid vesicles, we first validated it through
an in silico experiment. To this end, we modeled the
dynamics of proteins and vesicles in solution using a reac-
tion-diffusion (RD) stochastic simulation. Our RDmodeling
does not presume any particular probability distribution of
proteins on vesicles (see section ‘‘materials and methods’’).
Instead, it simulates Brownian diffusion and association and
dissociation events given the diffusion coefficient of both
vesicles and proteins and the microscopic association and
dissociation rate constants. The diffusion coefficients of
the vesicles and proteins were previously experimentally
characterized by FCS on independent solutions (D1 ¼ 90
mm2 s�1, DVes ¼ 5 mm2 s�1). Given that the diameter of
the lipid vesicles (z100 nm) is more than one order of
magnitude larger than that of proteins, we assumed that
protein-loaded vesicles diffused with the same diffusion
coefficient as naked vesicles (and thus DVes ¼ D2). The
association rate constant (kon ¼ 109 M�1s�1) was chosen
so that the reaction rate was diffusion limited and the
dissociation rate koff was chosen to reproduce different
physiological Kx.

We first showed that the protein-vesicle mixture reached
both phase and statistical equilibria. Fig. 2 shows the dy-
namics of proteins and vesicles as they diffuse in a 3D vol-
ume, associate, and dissociate, eventually reaching phase
and statistical equilibria. Initially (t¼ 0 s), proteins and ves-
icles are randomly distributed; they are not associated, and
they diffuse freely within the simulation 3D volume. Upon
a protein-vesicle encounter, successful association can
occur, determined by kon. Given that, initially, all proteins
are free, associations must start building up before any
dissociation can occur (Fig. 2 A, dotted blue line). In turn,
dissociations will occur at a rate determined by koff (Fig. 2
A, solid red line). Phase equilibrium is achieved when the
rate of association and dissociation are equal (the solid
and dotted lines in Fig. 2 A have equal slope) and the frac-
tion of free protein remains stationary from approximately
10 s onward after the onset of protein and vesicle diffusion
(inset). At this point, the population of vesicle-associated
protein does not increase any further and fluctuates around
its average value determined by Kx.

Statistical equilibrium is achieved when the mean and
the variance of the distribution of proteins on vesicles are
stationary. This is illustrated in Fig. 2 B and C. The average
number of vesicle-bound proteins per vesicle (l) reaches a
stationary value (dashed green line) at about 10 s into the
simulation (Fig. 2 B), consistent with the phase equilibrium
dynamics. Interestingly, even when phase equilibrium has
been reached, membrane-bound proteins keep dissociating
and re-associating to the same or a different vesicle, so that
the distribution of protein on vesicles evolves in time
until the system reaches statistical equilibrium. This means
that the shape of the distribution continues evolving, as
proved by the increasing variance (Fig. 2 C), until the vari-
ance reaches the value given by Eq. 11 (dashed green line).
Fig. 2 shows that the dynamics of protein binding to the
membrane and the distribution of proteins on vesicles are
different, since any given number of proteins can be
distributed differently on the vesicles. Although the time
it takes to reach phase equilibrium essentially depends on
the concentration of protein and vesicles and their diffusion
coefficients, the time it takes to reach statistical equilib-
rium is highly dependent on the initial localization of pro-
teins and vesicles within the solution volume. Fig. 2 B and
C also shows that the out-of-equilibrium distribution of
Biophysical Journal 122, 1–16, March 2, 2023 9
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vesicle-bound proteins can be approximated by Eq. 12
(gray line).

Having shown that the RD simulation reproduced the dy-
namic behavior of proteins associating and dissociating
from lipid vesicles predicted in the theory section (Eqs. 10
and 12), we studied the effect of reversible association on
the distribution of protein on lipid vesicles in equilibrium.
To this end, we compared the distribution of proteins on ves-
icles for three cases that mimic physiological protein-mem-
brane dissociation using their characteristic koff. First we
studied the case of a reversible interaction subject to strong
dissociation (koffz5 s�1), such as that of an HIV antibody
with a viral membrane, which is mainly driven by electro-
static attraction and weak hydrophobic anchoring (4);
then, we studied an interaction subject to weak dissociation
(koffz5 � 10�3 s�1), such as the highly specific association
of an HIVantibody with its epitope, with koff in the order of
10�5 to 10�2 s�1(42–44). Finally, we studied the case of
non-reversible association (koffz0 s�1). Fig. 3 A shows
the dynamics of the fraction of partitioned protein in the
protein-vesicle mixture as it reaches equilibrium. In equilib-
rium, a larger koff results in a smaller fraction of protein
associated to the membrane (solid blue line, koffz5 s�1),
whereas, as expected, all the protein is associated to the
membrane when the association is not reversible (dotted
green line, koffz0 s�1). For weak dissociation (dashed red
line, koffz5 � 10�3 s�1), the association dynamics are
reasonably similar to the case of irreversible partitioning
and virtually all the protein is associated to the membrane
when the system is given enough time. For all cases, the
average number of protein copies per vesicle is l ¼ 2.
Significantly, not only does koff determine the presence of
free protein in the aqueous phase in equilibrium but it also
A B

C D

equals two in both cases. In all cases, kon ¼ 10�9 M�1 s�1; protein concentrati

online.
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determines the distribution of protein on the vesicles consti-
tuting the lipid phase. Fig. 3 B–D show the distribution of
the protein on the vesicles. Fig. 3 B and C demonstrate
that, when the protein is allowed to dissociate and reassoci-
ate (non-zero koff), it distributes on the vesicles following
the probability distribution derived in the section ‘‘theory’’
(Eq. 10). It is only when the association is not reversible
(Fig. 3 D) that the behavior is Poissonian. Fig. 3 C and D
demonstrate that, although the average number of proteins
per vesicle is virtually the same for weak dissociation
(Fig. 3 C) and no dissociation (Fig. 3 D), the distribution
of proteins on vesicles is radically different.
Determination of Kx of reversible protein-
membrane association using FCS titration
experiments

Once we had established the probability distribution for
the reversible association of proteins on lipid vesicles, we
accurately quantified the Kx of the association using FCS.
Using FCS, the partition coefficient, Kx, and the fraction
of membrane-bound protein at lipid saturation, f satmem, can
be determined from a titration experiment (Fig. 1 B and
C). FCS has previously been used to quantify Kx with
high accuracy in the case of non-reversible association
(11,13,17,18,20). Still, to our best knowledge, reversibility
of the association has never been considered for Kx determi-
nation using FCS.

To test the suitability of FCS titration experiments for Kx

determination of reversible protein-membrane association
using the pmf of proteins on vesicles derived in the previous
section (Eq. 10), we performed computational FCS experi-
ments, which involved 1) the simulation of the diffusion
FIGURE 3 Effect of protein-vesicle dissociation

and reassociation on the distribution of protein on

vesicles. (A) Mole fraction of membrane-associ-

ated protein in equilibrium (fmem) for different

koff (5 s�1, 5 � 10�3 s�1 and 0 s�1). A larger koff
implies a higher dissociation probability. In equi-

librium, all proteins are associated to the vesicles

for koff 5� 10�3 s�1 and 0 s�1 (fmem¼ 1), whereas,

for koff¼ 5 s�1, the equilibrium fmem is 0.73. (B–D)

Distribution of protein on vesicles in statistical

equilibrium for (B) strong dissociation koff ¼ 5

s�1; (C) weak dissociation koff ¼ 5 � 10�3 s�1,

and (D) no dissociation koff ¼ 0 s�1. The bars

show the frequency of vesicles carrying a certain

number of proteins obtained from the simulation

data at statistical equilibrium. The lines show the

pmf derived in Eq. 10 (B and C) and a Poisson

pmf (D). The difference between the theory pmf

(Eq. 10 or Poisson) and the simulated distribution

is shown below. Note the striking different protein

distribution in (C) and (D) even though the mean

number of proteins per vesicle in equilibrium

on, 6.64 nM; lipid concentration, 0.17 mM. To see this figure in color, go
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of proteins, vesicles, and protein-loaded vesicles distributed
in phase and statistical equilibria according to Eq. 10, and 2)
the simulation of photon statistics followed by FCS compu-
tation with detection parameters analogous to a bench
experiment. Simulations were performed at different lipid
concentrations, and an f FCSmem value was determined for every
lipid concentration fitting Eq. 20 to the ACF. This allowed
the calculation of a titration curve, which was correspond-
ingly used to retrieve Kx fitting Eq. 29 to it (Fig. 4 A).
Computational FCS experiments require fine temporal and
spatial resolution. Given the diameter of the vesicles
(100 nm), the limited spatial resolution precluded the use
of lattice-based methods such as the next subvolume method
that we had previously used to study the association/dissoci-
ation dynamics. For this reason, particle trajectories were
computed using Brownian molecular dynamics, integrating
A

B

C

FIGURE 4 FCS titration experiment. (A) Empirical (diamonds, solid red

line) and computational FCS (squares, dashed black line) titration experi-

ments of a 48-kDa protein (10E8-3Rb Fab) that diffuses at 90 mm2s�1

with different amounts of lipid that assemble in 100-nm LUV diffusing at

5 mm2s�1. The experimental data were used as ground truth for the compu-

tational FCS titration experiment. The simulation fully matched the exper-

imental data, demonstrating the suitability of FCS titration experiments to

quantify Kx. (B) The membrane-bound protein FCS fraction, f FCSmem , carries

more information than the mole fraction, fmem. In addition to the fraction

of partitioned protein, f FCSmem also contains information on the distribution

of protein on vesicles. Both quantities converge when lipid vesicles carry,

on average, only one protein. (C) Mean number of proteins per vesicle, l,

and mean number of proteins per protein-carrying vesicle, <q2>. As the

accessible lipid concentration increases and, as a consequence, so does

the number of vesicles, both l and <q2> decrease. However, although l

converges to 0 for a large number of vesicles, <q2> converges to 1. To

see this figure in color, go online.
the Langevin equation with a 10-ns time step and saving tra-
jectories every 1 ms. This ensured adequate temporal and
spatial sampling. (see sections ‘‘materials and methods’’
and ‘‘extended methods’’ in the Supporting material).

The computational FCS experiment confirmed the suit-
ability of FCS titration experiments to quantify protein-
membrane Kx in the case of reversible association using
the pmf derived in Eq. 10. Fig. 4 A shows (diamonds, solid
red line) the f FCSmem values for an actual titration experiment
of a 48-kDa protein (the 10E8 Fab) with different concen-
trations of lipid assembled in 100-nm LUV. Eq. 29 was fit
to the experimental data, yielding Kx ¼ 4.0 � 105 5
0.6 � 105 and f satmem ¼ 0.69 5 0.09. Fig. 4 also shows
(squares, dashed black line) the corresponding data
retrieved from a computational FCS experiment using the
empirically obtained quantities as the ground truth. Every
point in the curve is the average of 30 5-s computational
FCS experiments, which were also used to calculate the un-
certainty of the simulated data FCS fractions. Fig. 4 A
shows that the simulation matches the actual experiment,
yielding the same values for Kx and f satmem within the uncer-
tainty (Kx ¼ 3.6 � 105 5 0.8 � 105 and f satmem ¼ 0.69 5
0.07) as those obtained in the actual experiment. The un-
certainty for Kx and f satmem for both actual and simulated
data was calculated using support plane analysis
(SPA) (41).

Fig. 4 also illustrates the role protein distribution plays
in FCS. As the accessible lipid concentration increased, so
did f FCSmem until, instead of saturating, it reached a maximum
at around 1.2 � 10�4 M before decreasing to f satmem (Fig. 4
B). The presence of a maximum is just the reflection of a
non-homogeneous distribution of proteins on vesicles.
This maximum is explained considering that f FCSmem is the
contribution of vesicle-bound protein to the ACF, and
the shape of the curve just reflects the number of vesicles
carrying one or more proteins in relation to the number of
proteins in solution. Fig. 4 B shows the relation of f FCSmem

with fmem. Both the FCS fraction (f FCSmem ) and the mole
fraction (fmem) of membrane-bound protein carry the in-
formation on the fraction of partitioned protein. In addi-
tion, f FCSmem also contains information on the distribution
of protein on vesicles. For this reason, they only overlap
at high lipid concentrations, when occupied vesicles carry
only one protein, <q2> ¼ 1 (dashed red line, Fig. 4 C).

Fig. 4 C shows that the average number of proteins per
vesicle (l, solid blue line) used to determine Kx by FCS titra-
tion is very low. For this particular experiment, the highest l
corresponded to theminimum lipid concentration used (10�8

M), and it was just 6.3 protein copies per lipid vesicle,
whereas, at the maximum experimentally accessible lipid
concentration (10�3 M, Fig. 4 A), the vesicles only carried
0.7 protein copies on average. A consequence of the low
number of protein copies per vesicle is that protein coopera-
tivity or steric effects at the surface of the vesicles are ex-
pected to be minimal.
Biophysical Journal 122, 1–16, March 2, 2023 11
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Optimal determination of the partition coefficient
for reversible association using FCS

Once we had validated the use of FCS titration experiments
and the pmf of proteins on vesicles (Eq. 10) for Kx determi-
nation, we set out to evaluate the accuracy of FCS for the
determination of the parameters that describe the associa-
tion. With this aim, we estimated the CRB on the variance
of Kx and f satmem. The CRB establishes the minimal possible
variance of an empirically determined quantity, allowing
the experimental interval for optimal Kx estimation to be
determined. Thus, we calculated the CRB on Kx and f satmem

within an empirically relevant interval of accessible lipid
concentrations (from 10�1 to 103 mM) taking into account
that FCS observations are normally distributed (see section
‘‘materials and methods’’).

Fig. 5A shows that theKx interval where the uncertainty for
Kx determination is minimal spans three orders of magnitude
(Kx between 10

4 and 106) irrespective of f satmem. For Kx smaller
than 2 � 103 and larger than 2 � 106, the uncertainty of the
determined Kx increases asymptotically. Lower or larger Kx

values can, in principle, be determined with non-infinite un-
certainty titrating the protein to a different lipid concentration
interval. However, this approach is limited by experimental
constraints, such as the solubility and concentration of vesicles
at high lipid concentration or the appearance of electrostatic
screening due to the large number of proteins that populate
A

B

FIGURE 5 Accuracy and limits to Kx determination by FCS titration. (A)

CRB on Kx variance determined from FCS titration experiments and calcu-

lated for different f satmem: (B) CRB on f satmem variance for different Kx. (A) and

(B)computed using 11 log-spaced points. To see this figure in color, go

online.
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vesicles at low lipid concentrations. Fig. 5 B shows that the
CRBon f satmem variance is roughlyflat for all possible f

sat
mem values

([0,1] interval), although its absolute value is dependent onKx.
This implies that the overall uncertainty in Kx determination
using FCS majorly depends on the value of Kx itself, and not
f satmem. We note that the absolute value of the CRB on the vari-
ance ofKx and f

sat
mem depends on the uncertainty in the determi-

nationof theFCS fractionof freeorpartitionedprotein (f FCSaq or
f FCSmem ) at every lipid concentration used for titration. Since FCS
measurements are independent, this quantity is normally
distributed, and its variance can be decreased by repetition
or by increasing the number of points used to determine Kx.
A larger or smaller uncertainty in the determination of the
fraction of partitioned protein may modify the absolute CRB
estimation, but it does not alter the shape of the curve. As a
consequence, the optimal interval for Kx and f

max
mem determina-

tion is the same irrespective of the value of the uncertainty
of the observed FCS fraction. For this reason, Fig. 5 A and B
have been calculated using empirical representative estimates
on f FCSmem variance.

Kx and f satmem can be determined from FCS titration exper-
iments using as a readout either f FCSaq or f FCSmem . The use of f

FCS
mem

as a function of accessible lipid produces an increasing
curve given by Eq. 29, such as those shown in Fig. 4,
whereas f FCSaq results in a decreasing curve (Eq. 28) with
less intuitive interpretation. Notwithstanding, the CRB anal-
ysis shows that Kx determination using Eq. 28 or Eq. 29 is
equivalent in terms of uncertainty (Fig. S1).
10E8-3R association to the membrane

Having determined the optimal region for the quantification
of reversible protein-membrane association, we set out to
explore the capabilities of our approach on a relevant
biomedical application. Anti-HIV broadly neutralizing
Abs can neutralize genetically diverse HIV strains, usually
targeting conserved regions of the Env protein close to the
viral membrane. One peculiarity of most broadly neutral-
izing Abs, including 10E8 (21), is their functional associa-
tion with the viral membrane: epitope binding and viral
neutralization rely on Ab-lipid interactions (45,46). This
has prompted the investigation of ways to improve Ab po-
tency through engineering Ab-membrane interactions,
stressing the relevance of quantitative understanding Ab-
membrane partition mechanisms. 10E8-3R is an engineered
anti-HIV1 broadly neutralizing Ab that attains increased
potency through the enhancement of the electrostatic mem-
brane interactions (22).

To investigate the partitional behavior of 10E8-3R onto
the membrane, we performed FCS titration experiments
using POPC:Chol:POPS membranes with varying concen-
trations of POPS and Chol. To this end, 10E8-3R was
labeled with the fluorescent probe Abberior KK114 in its
heavy chain. This position was chosen for its flexibility
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and location away from the membrane, ensuring that the flu-
orophore would not perturb the partitional behavior onto the
membrane. Fig. 6 A shows the effect of the different lipid
compositions in 10E8-3R partitional behavior. Increasing
Chol content in the membrane resulted in an almost propor-
tional increase in Fab-membrane affinity (Kx¼ 1.4� 1055
0.5 � 105 for the 50:40:10 mixture, dotted blue line, and
Kx¼ 4.4� 1045 0.3� 104 for the 80:10:10 mixture, green
dashed line). Maximal Kx enhancement was attained
increasing the negatively charged lipid POPS (Kx ¼
4.0 � 105 5 0.1 � 105 for the 80:0:20 mixture, solid red
A

B

FIGURE 6 10E8-3R Kx determined by FCS titration. (A) 10E8-3R parti-

tion coefficient for POPC:Chol:POPS membranes with varying ratios of

Chol and POPS. Kx ¼ 4.0�105 5 0.1 � 105 for the 80:0:20 membrane (di-

amonds, solid red line); Kx ¼ 1.44 � 105 5 0.05 � 105 for 50:40:10 (cir-

cles, dotted blue line) and Kx ¼ 4.43 � 104 5 0.03 � 104 for 80:10:10

(squares, dashed green line). The graph shows that, even at maximal Kx

(80:20:20), the titration curve does not reach 1, indicating the presence of

Fab that remains in solution. In addition, f satmem is very similar for all three

compositions (f satmem ¼ 0.69 5 0.02 for the 80:0:20 membrane, 0.72 5

0.02 for 50:40:10, and 0.725 0.03 for 80:10:10). (B) Kx for 10E8-3R deter-

mined by FCS titration using a KK114-tagged 10E8-3R Fab on 90:0:10 and

80:0:20 membranes (squares) and by steady-state fluorescence spectros-

copy exploiting the quantum-yield change upon membrane incorporation

of an NBD-tagged 10E8-3R Fab (circles), previously reported in (22).

The solid line is the linear regression of the Kx series determined by

steady-state fluorescence spectroscopy (22), and the dotted line indicates

the regression 68% prediction band. The Kx measured at 10% PS by both

techniques overlap. The Kx determined at 20% PS by FCS titration falls

within the 68% prediction band of previously reported Kx. This demon-

strates that Kx determined by FCS titration are fully consistent with previ-

ous measurements using different techniques. The prediction band was

calculated using SPA (41). To see this figure in color, go online.
line), highlighting the relevance of electrostatic interactions
in 10E8-3R partition to the membrane (see also Fig. S2).
Association to 100% POPC membranes was negligible or
very low even at high lipid concentration, reflecting a
substantially lower Kx than in the presence of either Chol
or POPS (Fig. S2). Consistent with the CRB analysis
(Fig. 5), Kx for POPC-only membranes could not be reliably
determined since its value laid at the leftmost edge of the
optimal interval for Kx determination. Interestingly f satmem re-
mained at around 0.70 irrespective of the content of Chol or
POPS in the mixture for all Chol- or POPS-containing mix-
tures. f satmem smaller than 1 indicates either the presence of
free fluorescent dye in solution (13) or incomplete pro-
tein-membrane binding at large lipid concentrations, which
has been previously ascribed to the presence of a protein
conformer that is not membrane-competent (27). 10E8-3R
fully associated to 80:0:20 vesicles that carried a small
quantity of its antigen (Fig. S3), ruling out a significant ef-
fect of free dye or membrane-incompetent conformers and
hinting, instead, at a rapid turnover of Fab on the vesicles
as the underlying reason for the incomplete binding at large
lipid concentrations.

Our results using FCS and a reversible association model
are entirely consistent with previous studies on 10E8-3R
partitional behavior (Fig. 6 B). 10E8-3R Kx for membranes
that contain 10% and 20% POPS (squares) measured in this
work (Fig. S2) follow the same trend observed for mem-
branes containing 10%, 25%, and 50% POPS (circles), pre-
viously reported using 7-nitrobenz-2-oxa-1,3-diazol-4-yl
(NBD) steady-state fluorescence spectroscopy (22). These
results not only validate the use of FCS to determine Kx

and the reversible association model but also confirm the
validity of previous results on partitioning behavior
using NBD.
DISCUSSION

In the present study, we have established the probability dis-
tribution of proteins reversibly associating to lipid vesicles
and validated it using RD simulations. We have demon-
strated the importance of considering the uneven distribu-
tion of protein on vesicles to quantify the lipid-membrane
partition coefficient using FCS. We have also established
the optimal range to determine Kx studying the CRB and
performing computational FCS experiments. Finally, we
have demonstrated the application of our work to the spe-
cific biological problem of antibody-membrane interactions.

Determination of Kx by fluorescence spectroscopy is ad-
vantageous since fluorescence-based methodologies are
highly sensitive and do not require physical separation of
the aqueous and lipid phases, resulting in a minimal pertur-
bation of the system (9,10). In particular, FCS is especially
well suited for Kx determination since, although some fluo-
rescence-based methods rely on the use of probes that incor-
porate into the membrane and have a different quantum
Biophysical Journal 122, 1–16, March 2, 2023 13
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yield in the aqueous phase and lipid phase, FCS has the
advantage that the protein can be labeled at any residue
located away from the protein-membrane interaction region,
therefore reducing the risk of perturbing the protein parti-
tional behavior.

Our work has established the probability distribution of
proteins on vesicles for the case when proteins can sponta-
neously associate, dissociate, and reassociate to the mem-
brane. There are many instances when the shape of the
distribution of proteins on vesicles, and not only its average
value, can be critical to the outcome of the experiment. We
have shown that accurate quantification of Kx is one of these
cases. Other relevant examples include the estimation of the
number of Ab on virions (e.g., (47)), required to understand
viral neutralization, and the design of drug delivery systems
that make use of lipid vesicles or metallic nanoparticles
when the biological molecule is adsorbed onto the vesicle
membrane or the nanoparticle surface (e.g., (3) and refer-
ences therein). We have shown that the way proteins
distribute on lipid vesicles is markedly different when disso-
ciation and reassociation events are considered compared
with when dissociation is negligible. This is the case even
when the probability of dissociation is very small (Fig. 3).
Importantly, we have noticed that most scientific reports
overlook the uneven distribution of protein on particles, or
assume a Poisson distribution, which is only adequate
when dissociation is negligible (Fig. 3 D). One of the rea-
sons why this might be the case is that, both when the asso-
ciation is not reversible and when dissociation and
reassociation events must be considered, the average num-
ber of proteins on vesicles, l, is the same (Eq. 8). However,
the shape of the distribution of proteins on vesicles is very
different. When the association is not reversible, proteins
are Poisson distributed on vesicles with a variance equal
to l. On the other hand, when dissociation and reassociation
are considered, the pmf is given by Eq. 10 with a much
larger variance equal to lðlþ1Þ (Eq. 11). Another conse-
quence of the specific distribution of proteins on vesicles
for reversible association is that the fraction of vesicles
that do not carry any protein is not negligible (e.g., Fig. 3
B and C). This is in stark contrast to the case when the pro-
tein irreversibly binds to the vesicle, as, in the latter case, the
distribution is Poissonian and the fraction of unloaded ves-
icles is much smaller and steeply decreases when l increases
(e.g., Fig. 3 D). Although we have focused on rigorous pro-
tein-membrane Kx quantification, the probability distribu-
tion derived in this work also describes the distribution of
biomolecules adsorbed on a carrier particle when dissocia-
tion and reassociation are not negligible. In this regard,
the wide spread of molecules on particles and the large num-
ber of unloaded particles may also have implications for
biological and biotechnological applications that require
quantification of the molecules carried by a particle.

Our work presents an extension and improvement of
previous methodologies used to compute Kx using FCS
14 Biophysical Journal 122, 1–16, March 2, 2023
(13,17,18). We introduce a new formalism to account for
protein-membrane dissociation and reassociation events
and formulate a probability distribution that describes the
distribution of proteins on vesicles that undergo reversible
association (Eq. 10). This allows the effects of the unequal
distribution of protein on vesicles (11) and the different lipo-
some brightness in the determination of bound protein frac-
tion (13) to be rigorously considered. Reversible association
with a highly dynamic turnover (determined by koff) may
also account for the frequent observation that the fraction
of partitioned protein does not reach one asymptotically
(Fig. 6 A), giving a different physical meaning to the f satmem

parameter in Eq. 4.
One straightforward simplification of the method occurs

when the infinite protein dilution regime can be achieved.
In this regime, the average number of protein copies per
vesicle, l, is l% 1. In this case, almost all vesicles detected
by FCS carry just one protein (<q2> ¼ 1) and thus the FCS

fraction of partitioned protein, f FCSmem , is equal to the mole

fraction, fmem (Fig. 4 B). Another advantage of working at
the infinite dilution regime is that both proteins and pro-
tein-loaded vesicles have the same brightness. This regime
has already been addressed (17). However, on most occa-
sions, the infinite dilution regime is not experimentally
accessible due to the high concentration of lipid required
to reach it. Therefore, the method described in this work
is particularly suited to quantitatively describe protein-
membrane association by titration when the infinite protein
dilution regime is not experimentally attainable.

Labeling the lipid vesicles as well as the protein has
recently been proved to be advantageous to retrieve Kx using
FCCS (18) since the number of protein-loaded vesicles, nF2 ,
in Eq. 21 can be directly estimated from the cross-correla-
tion of the emission of the free protein and the vesicles.
This way, information on the average number of protein
copies per loaded vesicle <q2> can be obtained without
the need to choose a specific statistical distribution of pro-
teins on vesicles. In turn, this requires precise determination
of the ACF value at time 0. Our method complements the
information obtained by FCCS, since FCCS already pro-
vides the ACF for the tagged protein and its analysis using
our approach comes at no additional experimental cost. In
our work we have formulated the statistical distribution
for non-stoichiometric binding. Using the statistical distri-
bution matching the association problem under study pro-
vides information that is independent from the one
obtained using cross-correlation, giving more profound
insight into the protein-membrane binding mechanism.
CONCLUSIONS

In conclusion, we have established that FCS is a suitable
technique for quantifying membrane-protein reversible as-
sociation when the distribution of proteins on vesicles is
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considered. Due to the random and non-homogeneous
distribution of proteins on vesicles, the membrane-bound
protein fraction observed by FCS carries information on
both the membrane-bound protein mole fraction and the
distribution of proteins on vesicles. We have derived the
probability distribution of proteins on lipid vesicles when
proteins can spontaneously associate, dissociate, and reasso-
ciate to the membrane and applied it to accurately determine
Kx using FCS. The method presented in this work is partic-
ularly suitable for quantifying the affinity of functionally
significant, although weak, interactions of proteins with
membranes during many biology and physiology events,
such as signaling or antigen recognition. Our work further
extends the methodological spectrum of techniques
available to study membrane-mediated biological events, al-
lowing rigorous quantitative study of proteins that spontane-
ously dissociate and reassociate from and to the membrane.
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