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SUMMARY

Since the beginning of electron microscopy, resolu-
tion has been a critical parameter. In this article, we
propose a fully automatic, accurate method for
determining the local resolution of a 3D map
(MonoRes). The foundation of this algorithm is an
extension of the concept of analytic signal, termed
monogenic signal. The map is filtered at different fre-
quencies and the amplitude of the monogenic signal
is calculated, after which a criterion is applied to
determine the resolution at each voxel. MonoRes is
fully automatic without compulsory user parameters,
with great accuracy in all tests, and is computation-
ally more rapid than existing methods in the field.
In addition, MonoRes offers the option of local
filtering of the original map based on the calculated
local resolution.

INTRODUCTION

Thegeneral goal of cryoelectronmicroscopy (cryo-EM) using sin-

gle particle analysis (SPA) is to obtain the electron density map of

a macromolecule or assembled complex, a crucial step in its

characterization. The map thus obtained (a three-dimensional

[3D] volume) is analyzed to assess its quality, for which resolution

plays a central role since, in simple terms, resolution can be un-

derstood as the size of the smallest reliable detail in the map. A

number of studies have addressed the issue of how to estimate

map resolution, such as Fourier shell correlation (FSC) (Saxton,

1978; Saxton and Baumeister, 1982; Harauz and van Heel,

1986), spectral signal-to-noise ratio (Unser et al., 1987, 2005;

Penczek, 2002), Fourier neighbor correlation (Sousa and Grigor-

ieff, 2007), and differential phase residual, among others (for a

thorough review of these methods, see Sorzano et al., 2017).

Themost common approach to estimating resolution in SPA is

the FSC, which calculates the normalized cross-correlation

between two maps at different frequencies (maps are normally

reconstructed using two halves of the data). The FSC is thus a
self-consistency measurement, although it is usually quoted as

a resolution estimation. SPA reconstruction ideally considers

that all images are projections of the same complex (in the

absence of flexibility) and that the angular projection space is

well covered. A perfect reconstruction should therefore present

the same degree of detail for any direction and any location.

Reality is nonetheless different. Particles might not be exactly

the same, for example, since there can be some heterogeneity

in the macromolecules being imaged, due to radiation damage,

or even the flexibility of the structure. Moreover, the angular

orientation and in-plane alignment of the particles used for the

reconstruction might be identified incorrectly, or the data might

have a non-uniform orientation distribution pattern (Sorzano

et al., 2001). The result is an electron density map in which

different regions can differ markedly in quality. Most methods

for determining map resolution are global and do not take into

account such local or orientation-related differences.

One of the first attempts to define a local resolution estimation

was blocres (Cardone et al., 2013), in which the FSC between

twomapswas calculated by extracting small patches from these

volumes. The method uses a moving window and computes the

FSC within it. Its main drawbacks are the need to adjust window

size and to use two half-maps.

The state of the art in local resolution estimation is currently

dominated by ResMap (Kucukelbir et al., 2014). It is founded on

detection of a 3D sinusoidal wave above the noise level for

each map point, an approach that a large body of experience

in cryo-EM-SPA has certainly validated, at least in general

terms. A number of ResMap limitations motivated our work,

such as the need for an initial step in which the user must

manually find a frequency transformation that produces a flat

spectrum within a given frequency region; in addition, the

method lacks a structural map output locally filtered to the esti-

mated local resolution. It is also difficult to conduct certain

defined accuracy tests with fine resolution discrimination that

would allow analysis of possible over- or underestimation.

Moreover, we wanted to develop a more rapid, computationally

less-demanding approach that, coupled with full automation

and the ability to produce a locally filtered map, could lead to

new uses and possibilities, for instance, by forming part of iter-

ative approaches to refinement or fitting/modeling.
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Figure 1. Signal Decomposition

From an Original Signal s(t) (continuous), the Hilbert Transform is calculated

(dotted) and the Amplitude or Envelope of the Analytic Signal is shown

(dashed).

Figure 2. MonoRes Workflow

Input volumes, the algorithm (middle box blocks), and the result (i.e., the

resolution map - down block). HPF, high-pass filter; LPF, low-pass filter.
Here, we present a fully automatic method for measuring local

resolution. Our algorithm, MonoRes, is based on the use of

monogenic signals, a mathematical generalization to several di-

mensions of the 1D analytic signals (Gabor, 1946). This kind of

signal has special utility in those problems for which there is a

need to decompose a function instantaneously (locally) into en-

velope and phase terms (Figure 1), for example, in signal pro-

cessing (Potamianos and Maragos, 1994) or polarimetry

(Gil, 2007).

Here, we provide a brief mathematical introduction for readers

unfamiliar with Riesz and Hilbert transforms (Table 1). The algo-

rithm starts by filtering the input map at a given frequency and

then computes the monogenic signal, allowing extraction of

the monogenic amplitude at this frequency, which is then

compared with the monogenic amplitude distribution of noise

at that resolution (Figures 2 and 3). This allows assessment

whether, at that resolution and location, the monogenic ampli-

tude observed is significantly higher than that expected from

noise. Noise can be estimated by two volumes calculated from

two halves of the data, or by considering voxels within a user-

defined mask (as in ResMap). A deep explanation of the method
Table 1. Comparison between Hilbert and Riesz (sH – sR) Transform

Concept 1D-Signal

Transform HilbertbsHðuÞ= � u

juj bsðuÞ
Transformed signal analytic signal sa(t)

sa = sðtÞ+ i sHðtÞ

Amplitude AðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðtÞ+ s2HðtÞ

q

338 Structure 26, 337–344, February 6, 2018
is included in the STAR Methods. Results using MonoRes in a

variety of situations confirm that (1) it is fully automatic and

more rapid than existing approaches, (2) it is an accurate estima-

tion as confirmed on structural maps with known resolutions,

and (3) it provides a locally filtered map in addition to the local

resolution estimation.

RESULTS

To test MonoRes performance, the method was applied to two

computer-simulated maps and to four experimental maps.

Analysis of computer-generated maps allowed us to confirm

MonoRes performance in controlled situations for which the

correct resolution was known, including local resolution

changes. In the study of experimental maps, selected as

examples of different use cases, we compared MonoRes with
s and between Analytic and Monogenic Signals

3D-Signal

RieszbsRðu!Þ= �
 

ux

ku!k2
bsðu!Þ; uy

ku!k2
bsðu!Þ uz

ku!k2
bsðu!Þ

!

monogenic signal

sMGð r!ÞsMGð r!Þ= sð r!Þ+ i sRxð r!Þ+ j sRyð r!Þ+ k sRzð r!Þ

Að r!Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ð r!Þ+ s2Rð r!Þ

q



Figure 3. Filtered Signals at different fre-

quencies and their Monogenic Amplitudes

Frequencies are shown on the left and amplitudes

on the right. The monogenic amplitude of noise is

indicated in green, signal or monogenic amplitude

with added noise in blue, and without noise in red.
resolution results reported in the original publications, as well as

with our own execution of ResMap and blocres (note that

although the ResMap manual prewhitening step was performed

to the best of our knowledge, its manual nature introduces vari-

ability that is intrinsically difficult to document; for blocres,

default parameters were used). In all cases, we used a simple
S

computational configuration, a single

CPU core 2x-Xeon E5-2630 v3 2.40 GHz

work station with 64 GB RAM.

MonoRes has been carefully integrated

in Xmipp (de la Rosa-Trevı́n et al., 2013)

and the image processing framework Sci-

pion (de la Rosa-Trevı́n et al., 2016), with a

simple interface and visualization options.

Moreover, MonoRes is integrated into

Scipion Web Tools (Conesa et al., 2017),

a simple image processing website

centered on specific workflows and ad-

dressed to non-expert users. In this way,

MonoRes can be compared with other

methods such as ResMap or blocres with

no requirement for Scipion installation.

The inputs for the method are the

original volume (or two half-volumes), a
mask, and the resolution range to be evaluated. Other options

can nonetheless be provided, such as a user request for output

volume filtering at the local resolution filter, or the original map

premasked inside a sphere. The output produces a resolution

map that can be analyzed in Scipion v1.1. Different visualiza-

tion options are provided for analyzing results (a resolution
Figure 4. MonoRes Results for Synthetic

Maps

(A) Glutamate dehydrogenase filtered at 2, 4, and

6 Å from the PDB: 5K12 atomic model.

(B) The synthetic large map (1,000 3 1,000 3

1,000) from the PDB: 3JC9 filtered at 10 Å. For

(A and B)MonoRes resolution map (left), resolution

slices obtained by MonoRes (right).
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Figure 5. MonoRes Resolution Map,

MonoRes and ResMap Resolution Slices,

and Histograms for the Experimental Maps

(A–C) (A) b-galactosidase (EMDB-2984), (B) pro-

teosome (EMDB-6287) and (C) TRPV1 (EMDB:

EMD-5778). Resolution maps are on the left,

MonoRes and ResMap resolution slices are in the

middle, and histograms on the right.
histogram, the resolution map, colored slices of the resolution

map, or the possibility of opening Chimera with the original

map colored with the resolution values).

Tests with Computer-Simulated Data
Computer-Simulated Map 1: Glutamate Dehydrogenase

The first test case was based on thework of Merk et al. (2016). on

glutamate dehydrogenase, starting from the PDB: 5K12 atomic

model and generating a map with a sampling rate of 1 Å/pixel

using xmipp_volume_from_pdb (Sorzano et al., 2015). This

map is composed of six chains that were first grouped into pairs

using Chimera (Pettersen et al., 2004) and then low-pass filtered

at frequencies of 2, 4, and 6 Å with a raised cosine of 0.02
340 Structure 26, 337–344, February 6, 2018
(in normalized units) before addition of

Gaussian noise with zero mean and 0.08

SD. This implies that each pair of chains

cannot show frequencies above 1.9, 3.6,

and 5.0 Å, respectively.

The result of MonoRes application in

Figure 4 shows how themethod produces

a resolution map with values near the

expected cutoff frequencies of 2, 4, and

6 Å. As expected, the median of the local

resolution estimations for each pair of

chains corresponded to the value of the

frequency filter applied to each chain,

considering the filter transition band. The

median values were thus 2.5, 4.0, and

6.5 Å, with SDs of 0.8, 0.6, and 0.6 Å,

respectively. MonoRes is therefore very

accurate, with local resolution values

very similar to the expected theoretical

values. Run time in our configuration

was 30 s. The output exploration capa-

bilities of MonoRes are very rich, and

include direct visualization of the local

resolution 3D map using Chimera as a

result of its integration in Scipion.

Computer-Simulated Map 2: Type

IVa Pilus

The second simulated case considered

the atomic model of the type IVa pilus ma-

chine (PDB: 3JC9) (Chang et al., 2016),

converted from the atomic model into a

volume density map as before, specifying

a sampling rate of 0.5 Å/pixel, which re-

sulted in a large map of 1,000 3 1,000 3

1,000 voxels. This map was then low-

pass filtered to 10 Å applying a transition
band of 0.008 width (frequency units normalized to 0.5), i.e.,

Fourier coefficients are multiplied by 1 up to 10 Å, and the filter

falls smoothly to 0 at 8.6 Å resolution. Finally, Gaussian noise

was added to the map with zero mean and 0.08 SD.

The goal of this test was 2-fold: first to confirm that MonoRes

reproduced the known resolution limit of the maps, and sec-

ond, to assess the ability of the method to deal with large

maps. Since the synthetic map was low-pass filtered at 10 Å,

we expected the distribution of local resolution estimations to

center around this value. This is clearly the case, as seen in Fig-

ure 4, where most voxel values are blueish, in accordance with

the fact that the map was low-pass filtered to 10 Å. Quantitative

analysis showed a median resolution value of 9.7 Å, with 0.5 Å



Figure 6. Local Resolution Results

MonoRes resolution map (left), and MonoRes,

ResMap, and blocres resolution slices (center) and

histograms (right) for the experimental half-maps

of (A) b-galactosidase (EMDB: EMD-2984) and (B)

proteosome (EMDB: EMD-6287).
SD. Macromolecule borders are very challenging sites for esti-

mation of local resolution, since signal voxels are adjacent to

noise voxels. This effect is especially pronounced at low reso-

lution, at which there is inherently more intervoxel crosstalk,

and tends to disappear at high resolution. MonoRes is in gen-

eral very robust, but in this low-resolution example, with the

map filtered to 10 Å, some voxels in the local map appear to

indicate a resolution lower than 10 Å. While we cannot rule

out that this is the case, we simply note that frontier voxels at

low resolution can be problematic. This situation tends to

resolve itself at high resolution, which reduces the practical

importance of this issue. In computational time, MonoRes

required 137 min for this large map.

Tests with Experimental Data
Experimental Map 1: b-galactosidase

The first experimental map used corresponds to the cryo-EM

structure of b-galactosidase in complex with a cell-permeant

inhibitor (EMDB: EMD-2984) (Bartesaghi et al., 2015). This

map presents the highest resolution obtained in any cryo-EM

study in 2015. It measures 292 3 292 3 292 voxels with a

sampling rate of 0.637 Å/pixel. The original publication re-

ported a resolution of 2.2 Å (gold standard FSC at 0.143).

We calculated local resolution maps with MonoRes and

ResMap, using the combination of final map plus a mask or

two half-maps; blocres was also applied in the case of the

two half-maps. The mask used was always the same, and

was constructed by thresholding the macromolecular map.

The results with the single and the two half-maps are shown

in Figures 5A and 6, respectively.

When a single map is considered (Figure 5A), MonoRes local

resolution ranges from 2.0 Å to 4.8 Å, with median at 3.3 Å and

0.6 Å SD. ResMap in turn reports a resolution range from 2.2 Å

to 5 Å, with median at 2.6 Å and 0.6 Å SD. We also calculated

the resolution difference between these two methods, and the

results cast a median difference of 1.1 Å and an SD of 0.6 Å,

with MonoRes reporting a lower resolution than ResMap; the

histogram of this resolution difference is shown in Figure S1.

The computational times were 3.0 and 5.3 min for MonoRes

and ResMap, respectively.

The case involving two half-maps is shown in Figure 6A. Re-

sults are consistent with the local resolution maps using a single

volume. MonoRes achieved a median resolution of 3.2 Å with

0.4 Å SD. ResMap reported a median resolution of 2.7 Å with

0.6 Å SD, and blocres determined a median resolution of 2.6 Å

with 0.1 Å SD with a criterion of FSC at 0.5. The resolution

difference was also calculated between MonoRes and these
St
methods. The MonoRes-blocres differ-

ence presented a median value of 1 Å

with 0.6 Å SD, while the MonoRes-

ResMap difference shows amedian value
1 Å of with 0.4 Å SD; the histograms of the resolution differences

are shown in Figure S1. The reported median values of 2.6 Å or

2.7 Å imply that there are resolutions above and below the me-

dian. When a high-pass filter was applied below 2.6 Å (median

value), hardly any structure was found, see Figure S2.MonoRes

better identified this situation, as the percentage of voxels with

resolution better than 2.6 Å was much smaller than for the other

two algorithms, which implies that the other two algorithms

might be incurring resolution inflation. The computational times

were 6.3, 8.5, and 22.6 min for MonoRes, ResMap, and blocres,

respectively.

In both figures (Figures 5 and 6), the areaswith relatively higher

and lower resolution are shown on the MonoRes volume on the

left and on a representative slice through the volume in the center

(for MonoRes, colored voxels are exclusively those inside the

user-supplied mask), and correspond to the inside and outside

of the macromolecule, as anticipated.

The absolute resolution estimation value for this map is not

known, at difference from our study on computer-simulated

data, and might be difficult to extrapolate from one resolution

determination approach to another (Sorzano et al., 2017). We

nonetheless note that MonoRes provides a simple-shaped,

well-centered histogram of values that is easy to interpret, as

is the local resolution map.

Experimental Map 2: Proteasome

The second experimental data example analyzed the map of

the proteasome in the study reported as EMDB: EMD-6287

(Campbell et al., 2015). This volume is 300 3 300 3 300 voxels

with a sampling rate of 0.982 Å/pixel. The reported resolution

for this map was 2.8 Å (gold standard FSC at 0.143). Local res-

olution maps were determined using a single final map as well

as two half-maps, and are shown in Figures 5B and 6B,

respectively.

For the single final map, MonoRes estimated the resolution

range to be from 2.0 Å to 4.6 Å, with median at 2.8 Å and a

0.5 Å SD, again with simple-shaped, well-centered value distri-

bution. ResMap cast a resolution range from 2.2 Å to 6.0 Å,

with median at 2.7 Å and 1.0 Å SD. The distribution of the

resolution difference between the two methods had a median

value of 0.4 Å and SD of 0.5 Å; the histograms of the resolution

differences are shown in Figure S1. The computational

times were 1.5 and 13.75 min for MonoRes and ResMap,

respectively.

Results were similar when two half-maps were considered, as

shown in Figure 5B.MonoRes determined amedian resolution of

2.9 Å with 0.5 Å SD, ResMap had the same median resolution of

2.9 Å with 1.0 Å SD, and blocres achieved amedian value of 3.0 Å
ructure 26, 337–344, February 6, 2018 341



Figure 7. Local Filtering Results

(A) Original volume (top) and slice (bottom) of the

TRPV1 (EMDB: EMD-5778).

(B) Volume locally filtered by its local resolution

values.
(FSC criterion at 0.5) with 0.2 Å SD. Computational times were

2.75, 14.5, and 123.5 min for MonoRes, ResMap, and blocres,

respectively. The resolution difference between MonoRes and

ResMap was a median value of 0.6 Å with SD of 0.6 Å, whereas

the difference betweenMonoRes and blocres showed a median

of �0.03 Å and SD of 0.5 Å. Resolution differences are indicated

in Figure S1. The result shows considerable similarity between

MonoRes and blocres for this example. This map was also

high-pass-filtered at 2.8 Å, the value of the median resolution re-

ported by MonoRes and ResMap. The result shows structure at

that resolution (Figure S2). This result explains the marked inter-

method similarity in measurement for the proteasome.
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Experimental Map 3: Capsaicin

Receptor TRPV1

The third experimental case is the capsa-

icin receptor TRPV1 (EMDB: EMD-5778)

(Liao et al., 2013). Images were acquired

with sampling rate of 1.1 Å/pixel and a

boxsizeof 25632563256voxels for par-

ticle picking, reporting an FSC value of

3.8 Å at 0.143gold standard. Local resolu-

tion was determined using a single map

with MonoRes and ResMap; results are

shown in Figure 5. Local resolution was

computed in the interval from 2.0 Å to

8.0 Å. MonoRes yielded a median resolu-

tion of 4.2 Å with 1.1 Å SD, while ResMap

reported a median local resolution of

4.0 Å with 0.8 Å SD. Themedian resolution

differencewas0.8 Åwith andSDof 0.95 Å.

Histogramsof these resolutiondifferences

are shown in Figure S1. This map repre-

sents an experimental case in which a

wide range is expected. This wide range

is clearly found in both methods and is re-

flected in thehistogramofvoxel resolution.

In the case of MonoRes, however, the

spread of local resolution voxel values is

slightly larger and the overall results more

conservative. We can use this example to

introduce another degree of flexibility pro-

vided byMonoRes, that is, calculation of a

map in which each pixel is filtered to its

significant local resolution; this choice is

presented in Figure 7. The computation

time for MonoRes was approximately

2 min, and 9 min for ResMap.

Experimental Map 4: Aquareovirus

The fourth test case corresponds to an

Aquareovirus (EMDB: EMD-5160) (Zhang

et al., 2010). This map has a sampling
rate of 1.1 Å/pixel, the size was 7403 7403 740 voxels, and the

resolution reported by FSC at 0.143 gold standard was 3.2 Å.

TheMonoRes results shown in Figure 8 provide an easy-to-inter-

pret map and representative slice, with a higher resolution core

and a lower resolution periphery. The range of values for local res-

olution estimation ranged from 3.0 Å to 5.6 Å, withmedian at 4.2 Å

and0.6 ÅSD, againwitha simplehistogramof values. Thecompu-

tation time forMonoReswas 13min,whileResMap, in our compu-

tational platform, could not compute this volume due to its large

size (ResMap results are therefore not shown in this case).

Table 2 summarizes the results of MonoRes and ResMap for

the four experimental cases analyzed.



Figure 8. MonoResResolutionMap, Resolu-

tion Slice, and Histogram Obtained for the

Aquareovirus (EMDB: EMD-5160)
DISCUSSION

Here, we present a fully automatic method for determining local

resolution of electron microscopy density maps. It is based on a

conceptually simple approach, the estimation of signal amplitude

onapervoxelbasiscoupledwithhypothesis testing thatevaluates

whether the local energies observed differ significantly from those

observed in noise. This approach naturally allows acquisition of a

map in which each voxel is filtered to its significant resolution.

Wepresent the results for computer-simulateddata andexper-

imental maps. The work on synthetic data is particularly relevant

for a study that deals with the complex topic of resolution, which

has been defined in many different ways in many different con-

texts (for a thorough recent review, see Sorzano et al., 2017).

Probably, it may not be realistic to get all these different defini-

tions of resolution to provide exactly the same values (see

Table 2). For this reason, we undertook this study with in-depth

analyses of somevery clear, defined situations inwhich a specific

valuecouldbestated for ‘‘resolution.’’MonoResexcelled in these
Table 2. Summary of Local Resolution for the Experimental Cases

Volume FSC (Å) MonoRes Range (Å) ResMap

b-Galactosidase 2.2 [2.0, 4.8] (3.3) [2.2 5.0]

(Using halves) 2.2 [1.6, 4.0] (3.2) [2.0 5.0]

Proteasome 2.8 [2.0, 4.6] (2.8) [2.2, 6.0]

(Using halves) 2.8 [2.0, 4.1] (2.9) [2.2, 6.0]

TRPV1 3.3 [3.5, 6.8] (4.2) [2.7, 5.2]

Aquareovirus 3.6 [3.0, 5.6] (4.2) –

The number in parentheses is the local resolution median.

S

tests, and proved to be a very accurate

approach thatprovided results very similar

to those that known a priori. In addition,

MonoRes is fully automatic, in that no

user intervention is required, which avoids

a possible source of result discrepancy

linked intrinsically to manual interven-

tions such as a prewhitening step (in

fact, MonoRes is invariant in this case).

An added convenience with regard to

computational performance is thatMono-

Res allows calculation of the local resolu-

tion in large maps (as large as 1,000 3

1,000 3 1,000), more rapidly and with

less memory consumption than current

approaches.

As a local resolution estimation

approach that is automatic, accurate,

rapid, and able to provide locally filtered

maps, MonoRes has the potential to

open new fields of application, such as

the consideration of local resolution in iter-
ative refinement, in classification, and in fitting approaches.

Moreover, the distributions of resolution differences show that

MonoRes offers more conservative local resolution values than

other methods, but coincides with test filtered maps, and avoids

the background sensitivity of the FSC, renderingMonoRes an un-

biased method. The algorithm is publicly available from Xmipp

(http://xmipp.cnb.csic.es) and has been integrated into Scipion

(http://scipion.cnb.csic.es) and the Scipion Web Tools (http://

scipion.cnb.csic.es/m/services/).

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENTS AND RESOURCE SHARING

d METHOD DETAILS
B A Brief Introduction to Analytic and Monogenic Signals
Range (Å) Blocres Range (Å)

(2.6) –

(2.7) [2.2, 4.2] (2.6)

(2.7) –

(2.9) [2.8, 4.0] (3.0)

(4.0) –

–
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METHOD DETAILS

A Brief Introduction to Analytic and Monogenic Signals
The basis ofMonoRes is to transform the original electron density map into another map that expresses signal strength at that loca-

tion. This new map is termed a monogenic amplitude map; the transformation needed to obtain it is the Riesz transform (or Hilbert

transform for 1D signals) (Unser and Van De Ville, 2010).

On the Hilbert and Riesz Transform
The Riesz transform can be understood as the generalization to multiple dimensions (N-D) of the Hilbert transform, which is only

defined for 1D signals. One of the best approaches to understanding the Hilbert transform is perhaps via its relationship with the

Fourier transform. Consider an arbitrary 1D function f(t), the Fourier transform, bfðuÞ = FT½fðtÞ�, allows the original function to be

decomposed as a combination of waves with different frequencies, u. The Hilbert transform applied to the Fourier transform

performs a shift of +p/2 to the negative frequencies and of -p/2 to the positive frequencies, or mathematically expressed,

FT ½HðfðtÞÞ�= � i$signðuÞbf ðuÞ; (Equation 1)

where i is the imaginary unit. A very simple case is a sinusoidal function, f(t) = cos(u$t), whose Hilbert transform will be the function

H[f(t)] = sin(u$t), which exactly presents a shift of ±p/2 for negative and positive frequencies, respectively. Considering a function that

can be expressed in a Fourier series, the Hilbert transformwill thus be such that the sines are exchanged for negative cosines and the

cosines are changed to sines.

We would like to use in N-dimensional signals the advantages of the analytic signal to extract amplitude and phase in 1D. There is

nonetheless no unique generalization of the Hilbert transform. One of the 2D extensions of this kind of signal is strongly connected

to the spiral phase transform (Larkin et al., 2001; Vargas et al., 2013a, 2013b), and there are several extensions of theHilbert transform

to higher dimensions. Here we used the Riesz transform (Felsberg and Sommer, 2001; Unser and Van De Ville, 2010; Unser et al.,

2009), which is found by solving a Cauchy problem for the Poisson equation (Felsberg and Sommer, 2001). The Riesz transform

is defined in the Fourier domain as

bsRðuÞ= � u

ku!k bsðu!Þ= �
�

u1

ku!k bsðu!Þ; u2

ku!k bsðu!Þ;.;
uN

ku!k bsðu!Þ
�
; (Equation 2)
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where bs denotes the Fourier transform of the signal s,u is the multidimensional frequency variable, anduj is its j-th component. Note

the resemblance between the Fourier definition of the Hilbert transform and of the Riesz transform.

On the Analytic and Monogenic Signals
An analytic signal is defined as a complex signal without negative frequencies and with the real part equal to the original signal.

Analytic signals, sa(t), are constructed from a given function, f(t), via the Hilbert transform as follows,

saðtÞ= sðtÞ+ isHðtÞÞ; (Equation 3)

where sH(t) is the Hilbert transform of the original signal. The Hilbert transform thus allows a quadrature amplitude modulation of s(t).

Note that this complex function can be rewritten in an exponential form, using the Euler formula, sa(t)=A(t)$exp[ɸ(t)], where A(t) is

termed amplitude of the analytic signal, and ɸ(t) is a phase term, specifically,

AðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðtÞ+ s2HðtÞ

q
: (Equation 4)

An example of this decomposition is shown in Figure 1. The monogenic signal similarly constitutes the generalization to N-D of the

unidimensional concept of analytic signals.

Let us illustrate the concept of analytic signal with some examples.

1. Consider the signal s(t) = A cos(u$t), with u>0 and A is a real number, its Hilbert transform is sH(t) = A sin(u$t); therefore,

the analytic signal is given by sa(t) = A [cos(u$t) +i sin(u$t)] = A exp[iu$t]. As a consequence, the original signal, s(t), has

been decomposed into two factors, an envelope or amplitude, A, and a term that contains only the phase, exp[iut]. Note

that the imaginary part of sa(t) is the original function with a phase shift of p/2.

2. Consider now the signal s(t) = cos(3t)exp[-(t-8)2/10]. The signal, its Hilbert transform (note the p/2 phase-shift with respect to

the signal, as above), and its amplitude are shown in Figure 1.Note how the amplitude coincides with the envelope of the orig-

inal function. Hence, the signal has been successfully decomposed into phase and amplitude.

We can extend these ideas to N dimensions through the concept of the monogenic signal, which is defined as

sMGð r!Þ= sð r!Þ+
XN
j = 1

ij

h
ðsRÞjð r!Þ

i
; (Equation 5)

where ij is the N-dimensional generalization of the complex unity. This generalization uses a Clifford algebra with N ‘‘imaginary

units’’, ij, that verify the properties ij
2 = -1, ijik = -ikij (complex numbers and quaternions are particular cases of a Clifford algebra

for N = 1 and N = 3, respectively).

We now calculate the monogenic amplitude as

Að r!Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ð r!Þ+

XN
j = 1

s2R;jð r!Þ
vuut : (Equation 6)

Comparison Summary between Analytic/Hilbert and Monogenic/Riesz Terms
To better illustrate the extrapolation from unidimensional concepts to several dimensions, a comparison of 1D and 3D is summarized

in Table 1. The spatial location is represented by r and the frequency vector byu = (ux, uy, uz), where the subindex x, y, or z defines

the direction along which the frequency is measured.

MonoRes Method
The objectives of MonoRes were to produce a map, as large as the original map, in which each voxel provides an estimate of local

resolution, and to render a structural map locally filtered to the estimated local resolution. A mask determines where the particle is,

allowing separation of the particle (inside the mask) and the noise (outside the mask). The input volume is thus high pass-filtered at

many frequencies, followed by computation of the local monogenic amplitude at each frequency. The statistical distributions of

monogenic amplitudes of noise and signal can be determined using the mask. For all points inside the mask, a hypothesis test is

then used to verify whether the null hypothesis is satisfied (i.e., that the local monogenic amplitude at a given voxel/location and

frequency arises from the noise distribution and not the signal distribution). Finally, the resolution value for each position/voxel will

be given by the highest frequency at which the test determines that the local amplitude arises from the signal and not from the noise.

The false positive rate is also controlled. A hypothesis test is performed for each voxel; when a voxel does not pass the test, the al-

gorithm allows its resolution to be computed in the next iteration, i.e., for a higher frequency. To assign a resolution value, a voxel

must thus fail the hypothesis test twice, which considerably reduces the false positive rate.
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Local Resolution Estimation
The algorithmic inputs toMonoRes are two, a signal map and a noise map. The signal map is considered to be the original map of the

macromolecule, V(r), inside a user-specified mask. The noise map, in turn, can be specified in two ways, either as those voxels of the

macromolecular map outside themask or, better still, by providing two half-maps of themacromolecule, V1(r) and V2(r), in the context

of the so-called ‘‘gold standard’’ approach for resolution estimation (Scheres and Chen, 2012).

The basis of the algorithm is a frequency sweep from low to high. At each frequency, we determine whether the local monogenic

amplitude at a voxel is significantly different from the monogenic amplitude observed for the noise. To do this, we establish a

threshold from the noise distribution for all the hypothesis tests performed within the mask at this frequency value. Local resolution

is defined as the reciprocal of the first frequency for which the voxel amplitude of the macromolecule fails to be significantly above

noise. The algorithmic steps of our method are given below and shown in Figure 2.

1. High pass filter. The original map is high pass-filtered at a specific frequency,u0, and a filtered map, VHPF,u0(r) is then obtained

(HPF, high pass-filtered) (see Figure 2 legend). Once the true resolution of the map at a given point is passed, a voxel within the

structure should not be distinguishable from a background voxel.

2. Monogenic amplitude. With the high pass-filtered map, the monogenic signal is calculated via the Riesz transform
�

VR;u0

ðrÞ=FT�1 � u

ku!k
bVHPF;u0

ðu!Þ
�
; (Equation 7)
where VR,u0(r) is the Riesz transform of VHPF,u0(r); note that VR,u0(r) is a vectorial function, with components Vj
R,u0(r) for j = 1,...,3 (num-

ber of dimensions). From the Riesz transform, the monogenic amplitude, AMG,u0, is therefore obtained as

AMG;u0
ð r!Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
VHPF;u0

�2ð r!Þ+
X3
j= 1

	
Vj
R;u0


2
ð r!Þ

vuut : (Equation 8)
The advantage of monogenic signals is the possibility of writing them as complex exponentials, i.e., in a wave form. It allows

amplitude and phase terms to be separated. The amplitude of the wave is called the monogenic amplitude; its expression is shown

in Table 1. Note that the input high pass filter allows selection of the wave frequencies.

3. Low pass-filtering the monogenic amplitude. The monogenic amplitude is low pass-filtered to the frequency u0. This step

smooths the monogenic amplitude, which due to the non-linear nature of the square root, has high-frequency components

not of interest for our purposes.

4. Estimation of the distribution of the monogenic amplitude in noise. This step is to determine the distribution of the monogenic

amplitudes of noise voxels. Themethod for estimating this distribution depends on the input, i.e., whether there is a single den-

sity map or if two half-maps are provided.
a) Single volume: When a background mask is provided, it defines a frontier that separates the map background (noise) from

the macromolecule (signal). The noise histogram is then determined using all voxels outside the mask.

b) Two half-maps: This method requires that both halves be aligned. A noise volume is estimated as ðV1ð r!Þ�V2ð r!ÞÞ= ffiffiffi
2

p
(the

ffiffiffi
2

p
factor guarantees that the power of the estimated noise volume is the same as the noise power in each of the in-

dividual volumes). In this noise volume, we are not restricted to the background mask, and can use the whole volume

instead.

5. Determination of local resolution. For each voxel inside the masked volume, we compute whether its local monogenic ampli-

tude is larger than the 1-a percentile of the distribution ofmonogenic amplitudes in noise, i.e., a hypothesis test. In this case, the

signal is detectable in that voxel at the filtering frequency. A resolution map is thus created, and that frequency is assigned to

the voxel. The noise threshold, 3, for the hypothesis test is defined as the mean noise plus the semi-length of the confidence

interval as
�

3=CDF 1

AN
ð1� aÞ;
where CDFAN is the cumulative distribution function of the monogenic amplitudes of noise and we are considering a significance of

1-a (typically, 1-a = 0.95 is used). This step can be accelerated by approaching the noise distribution by a Gaussian distribution:

3=mn +CDF�1
Nð0;1Þð1� aÞsn;

where mn is themean of themonogenic amplitudes of noise, sn its standard deviation, and CDFN(0,1) is the cumulative density function

of the standardized normal distribution.
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Note that MonoRes is invariant with respect to radially symmetric filters, and there is thus no need for a pre-processing step like

power spectral whitening. Another consequence is that the local resolution estimated by MonoRes is invariant to B-factor

corrections.

Computing time is related to particle size rather than the size of the box in which the particle is found. The mask determines the

number of voxels where there is signal. In terms of memory use, MonoRes requires approximately five copies of the volumes: the

Fourier transform of the original volume, mask, resolution volume, monogenic amplitude, and an auxiliary volume.

An Explanatory Unidimensional Example
To illustrate the method clearly in a simple case, we generated a one-dimensional signal. The signal was composed by three sinu-

soidal functions at frequencies of 1/20, 1/10 and 1/5 a.u. (arbitrary units), assembled one after the other. This guarantees three re-

gions at resolutions of 20, 10 and 5 a.u. Gaussian noise with a standard deviation of 0.2 was then added. The MonoRes algorithm

consists of a high pass-filter frequency sweep and calculation of the corresponding monogenic amplitude of the filtered signal;

the filtered signals are shown (Figure 3, left) with their respective monogenic amplitudes (Figure 3, right). In thi illustrative example,

the monogenic amplitude of noise (green line) was obtained from the added signal of noise, computed with volumes only outside the

mask. The monogenic amplitude is related to the signal energy; thus, in the top row in Figure 3, the monogenic amplitude has the

shape of a rectangular window, the same length as the signal. The monogenic amplitude of the noise is also plotted (green). As

expected, the amplitude of the noise is constant and lower than the signal (note that the amplitude range has been modified to

improve visibility in Figure 3, bottom row). When a high pass filter at 1/20 a.u. is applied, however, the first, lowest frequency of

the signal disappears; as a result, it can be measured in the monogenic amplitude. The monogenic amplitude of the signal in the re-

gion of the filtered frequency cannot be distinguished from noise (hypothesis test), and the resolution value of the last filter frequency

can be assigned to that region. This procedure can be repeated until the monogenic signal cannot be distinguished from noise.

Local Filtering
Noise is usually one of the main drawbacks in the analysis of electron density maps. A global low pass filter at the FSC value is there-

fore commonly applied at the end of the reconstruction process, although a better alternativewould be to use the local resolutionmap

to define local filters adapted to each voxel.

MonoRes implements local filtering in a very straightforward manner by taking advantage of high pass filtering to compute the

monogenic amplitude at each frequency. The locally filtered map uses the intermediate volumes VLPF,u0(r) = V(r)-VHPF,u0(r). Finally,

the locally filtered volume at each location r is equal to VLPF,u0(r), being u0(r) the resolution estimated for that location.
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