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A B S T R A C T

The cryo-Electron Microscopy (cryoem) addressed to the elucidation of macro-
molecular complexes has suffered a revolution in the last years. Single Particle
Analysis SPA and electron tomography are the two main branches responsible of
this revolution. In both cases, the result is a 3D structure of the specimen. How-
ever, it is critical to determine the degree of reliability of the reconstructed struc-
ture, problem which is solved with resolution measurements. Resolution can be
determined as a global parameter of the structure, or as a local property that can
spatially vary.
The main objective of the present thesis is the study of the local resolution and
its applications for the validation of the reconstructed 3D structure and for lo-
cal sharpening. For that, a mathematical method named MonoRes was developed,
which measures the local resolution of reconstructed density maps and its algo-
rithm represents the cornerstone of this thesis. Hence, MonoDir was designed for
identifying reconstructions problems like the existence of preferred directions, or
alignment errors. Note that the current state of the art does not provide an imme-
diate and simultaneous response to both questions, in particular to the second one,
which can be due to a systematic error of reconstruction. The proposed method
does it by analyzing local-resolution anisotropy using the information of only the
reconstructed map.
Moreover, the measurement and analysis of the local resolution for map sharpen-
ing can be also used to enhance the visualization of the protein structure keeping
its structure factor. For that, method LocalDeBlur was developed, which modifies
the local amplitudes of the different frequencies according to the local resolution
values.
Apart from that, other methods were developed using slight variations of MonoRes
algorithmic core. One of these methods is MonoTomo, which has been developed
as the first method of local resolution in Electron Tomography. The estimation of
the local resolution in electron tomograms involves work with spatially dependent
noise and very large maps, so the core of MonoRes was extended in that direction,
resulting in method MonoTomo, which solves those drawbacks.
These other MonoRes core-derived methods extend the concept of resolution in a
local manner. However, resolution is not only a local parameter, but it must be
considered a tensor and, therefore, it depends on the position (voxel) and the di-
rection. Thus, the concept of local resolution is then enriched with the notion of
directionality.
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Part I

O N T H I S T H E S I S





1
I N T R O D U C T I O N O N T H I S T H E S I S

Structural biology has as objective the elucidation and analysis of the 3D struc-
ture of macromolecular complexes to then understand their action mechanism
and function inside cells. Many conclusions and applications about the complexes
can be obtained from the structure, for instance, their biological behaviour, action
mechanisms, drugs development, or design of new structural complexes, among
other. For that purpose, structural biology makes use of different imaging tech-
niques, for example: the nuclear magnetic resonance (Nuclear Magnetic Resonance
(NMR)), x-ray crystallography, or electron microscopy (Electron Microscopy (EM))
among others. The first one measures the changes in the orientation of the spin
angular momentum experienced by atomic nucleus as response to intense mag-
netic fields, recovering the structure from it. The x-ray crystallography uses the
x-ray scattering, due to the light-sample interaction to get diffraction patterns and
to infer the structure from them. Finally, electron microscopy considers the use of
electrons as lighting source to get the image projections of the specimen. This last
technique, applied to the reconstruction of biological complexes via image process-
ing techniques, will be the topic of this thesis.

The history of electron microscopy begins with the development of the first mi-
croscope by Ernst Ruska in 1925. For that milestone he was awarded with the
Nobel prize in 1986[137]. The imaging capabilities of this new kind of microscope
were quickly adopted in the study of biological specimens [103]. However, leav-
ing out some works, structural biology suffered a first revolution with the work
of Aaron Klug [7] who combined the x-ray diffraction and electron microscopy to
introduce the electron crystallography as a technique to elucidate the 3D structure
of macromolecular complexes. For this technique, he was awarded with the No-
bel prize in 1982 [88]. Although, x-ray and electron crystallography requires the
growing of a crystal that contains the protein in a periodic arrangement, which
represents an important drawback. Note that some complexes can be difficult or
even impossible to be crystallized, and many others lack of high symmetries and
periodicity.
The capability of distinguishing details in an image is given by the image contrast,
in particular, in a transmission electron microscopy (Transmission Electron Micro-
scope (TEM)), imaging is obtained by phase contrast which is increased with the
difference of the atomic number of the atoms that compose the sample. Unfortu-
nately, most of the elements that constitute the biological complexes present low
atomic number (H, C, N, O,...), moreover, they are usually diluted in their native
state in aqueous solution. As a consequence, the contrast of biological elements
will be poor. To solve that issue, the exposure time can be increased, but the prize
to pay is the risk of burning the sample [49]. As possible solution, R.M. Glaeser
proposed the average of multiple images [49], this concept is one of the roots of
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the current workflow in Single Particle Analysis, i.e. noise suppression by multiple
averaging. Thus, a few years later and following this idea and making use of the
electron crystallography, N. Unwin and R. Henderson (Nobel awarded in 2017)
were able to elucidate the structure of the bacteriorhodopsin at a resolution of 7

Å[182]. Two decades later that structure was refined achieving an atomic resolu-
tion of 3 Å[73].
It was also observed that if the crystal is frozen, then the radiation damage is allevi-
ated [175]. Hence, the use of cryo-samples was introduced in electron microscopy
[176] and also adopted in x-ray crystallography. However, it took a few years more
to get one of the most considerable step forward: the vitreous ice samples. The idea
was the plunge-freezing method. Since the water is frozen in a thin film so quickly
that it has no time to form crystals [5, 31]. For this development Jacques Dubochet
was awarded with the Nobel prize in 2017, and Cryo-Electron Microscopy (cryoEM)
was named as the field that came in from the cold [34]. It is specially interesting,
even in nowadays, the article of J. Dubochet [32] about the state of the art of elec-
tron microscopy in the 80’s decade, with special incidence on vitreous ice sample
preparation. Hence, the acquisition of isolated particles became possible. Unfor-
tunately, the contrast in cryo-samples represents an important limitation. As an
alternative, even though they were developed a few decades before, heavy-metal-
stained samples were simultaneously used. They provided a good contrast and
allowed to analyze non-symmetrical samples (symmetry can be exploited for mul-
tiple averaging), but with the disadvantage of dehydrating and, as a consequence,
shrinking the sample.
The current workflow of Single Particle Analysis (SPA) began to be established with
the first softwares, SPIDER [43] and IMAGIC [65, 68] thanks to Joachim Frank (No-
bel prize in 2017) and Marin van Heel respectively in 80’s decade. They were
focused in increasing the signal to noise ratio by 2D averaging and classification
[44, 67] as well as the measurement of resolution. In this last topic, three methods
should be highlighted, Q-factor [64], differential phase residual [45], and the cur-
rent standard, the Fourier Shell correlation (Fourier Shell Correlation (FSC)) [183].
Moreover, in those years it was raised the random conical tilt method (Random
Conical Tilt (RCT)), that helps in the reconstruction process by providing prior
information about the geometry [128]. Also, it was introduced the idea of reassign-
ing/correcting particle orientation once the first 3D reconstruction is determined
[66] can be considered as the first iterative refinement method in 3D-reconstruction.
However, for the taking off of SPA and to become what it is now, the field had to
wait for the proper combination of three pillars [42]: good sample preparation
(which has already been explained), better microscopes, and enough computa-
tional power along with mathematical methods. It took a few decades (around
2012) to achieve the convergence of these three subjects.
From the microscope point of view (first pillar), the instrument was improved
since the Ruska design, and many manufacturing companies (FEI, JEOL, Gatan,
Phylips, Hitachi or Carl Zeiss among many others) worked on this device provid-
ing more improvements. Despite that the microscope is the sum of its parts, the
main responsible of the imaging improvements were [191], the column stability,
Field Emission Electron Guns, new detectors, and microscope automation. The col-
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umn stability was enhanced thanks to better magnetic lenses, and vacuum and
isolation systems. The introduction of Field Emission Guns along with the use
of higher acceleration voltages (100-300 keV), represented a critical step. The new
kind of guns made possible to improve the brightness, the coherence, chromaticity
of the electron beam, and to avoid the evaporation of cathode material[63]. De-
tectors played also a special role, at the beginning film plates with silver halides
were used as sensor. However, the evolution of technology brought a new sort
of sensors: the Charge Coupled Device (CCD) (Charge Coupled devices, William
Boyle and George Smith were awarded with the Nobel prize in 2009). These sen-
sors speeded up the data acquisition in 90’s decade, and cast digitized data for a
later computational process. The disadvantage is that the high energy of electron
damages the sensor, shortening its life time. As countermeasure, an intermedia
phosphorous layer or a scintillator was placed to protect the detector [36, 170]. The
final boosting that determined the push forward of microscope hardware since
2010 was the use of Complementary Metal Oxide Semiconductor (CMOS) technol-
ogy with the direct detectors. The speed of CMOS joined to a separation between
the detection of electrons and the reading of the produced signal shown a consid-
erable improvement in the Detective quantum efficiency (DQE) [108], and a new
kind of detectors were developed, direct detectors (Direct Detector Device (DDD))
[107]. In particular, the high acquisition speed changed the acquisition process al-
lowing to record movies instead of just getting a single image. It confirmed that,
as a consequence of the interaction radiation-matter, the particles embedded in the
ice present a motion frame by frame named beam induce a movement [51, 97]. The
movie acquisition increased the demand of high performance computation, note
that the raw data of a current microscope session can perfectly reach 1 Tb/day.
The development of computational methods and a robust theoretical background
behind imaging were the last responsible of the named resolution revolution [92]
and they constitute the third pillar defined by J. Frank. Meanwhile the theory of
imaging was devised time ago with the optical microscopy, it needed to be slightly
adapted to the electron lighting due to the interaction electron-sample. Thus, as-
suming a set of considerations like thin sample, inelastic scattering, and weak inter-
action electron-matter, the so-called weak phase object approximation is the proper
model to describe the image formation [63]. However, these conditions make the
sample to be almost transparent under the electron illumination. The microscope
is characterized by a transfer function, the named Contrast Transfer Function (CTF),
that convoluted with the object results in the measured image. Remark that aber-
rations and defocus are considered in the CTF. The CTF was deeply analyzed up
to be standardized to correct aberrations and achieve high resolution reconstruc-
tions. However, a question emerges about the lighter macromolecule that can be
elucidated with electron microscopy when image acquisition is perfect and the
unique limiting factor is radiation damage [71]. Thus, using first principles and
only 12000 particle resolution of 33 Å was achieved. It is in this 90’s decade when
the reconstruction method of projection matching [123] and maximum likelihood
[155] were established. They have currently become the core of many SPA methods.
A few years later, in an amazing article from P. Rosenthal and R. Henderson [135]
three concepts were introduced: the idea of map sharpening by B-factor correction,
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the threshold of 0.143 or 0.5 for computing the FSC resolution, and the determina-
tion of particle orientation (that was the preambule for a later publication about
tilt-pair validation [74]). Although it was in 80s decade when the first EM-softwares
appeared, the real revolution in methods began around the year 2000 up to nowa-
days. Perhaps due to informatics experimented a new age with the boosting of
the computational power as predicted by the Moore’s law, the software design
became a common practice in companies, as so as the implementation of distribut-
ing systems and parallel computation, and more recently the usage of Graphics
Processing Unit (GPU). Thus, new EM-image processing packages were released
by different laboratories such as Electron Micrograph ANalysis (Software) (EMAN)
[98, 174], Frealign [58], X-windows based microscopy image processing package
(Software) (Xmipp) [134, 162], Bsoft, [76, 77] and more recently REgularised LIke-
lihood OptimisatioN (Software) (RELION) [84, 205, 206], or Cryosparc [126]. They
only work with the acquired images and via image processing attempt to obtain
the 3D structure of the macromolecule measured. To do that those packages in-
clude many algorithms able to carry out the full pipeline of SPA, for instance:
boxer-EMAN for particle picking, CL2D-Xmipp for 2D Classification, AutoRefine-
Relion to refine reconstructions. The large number of packages caused a need of
integrating and unifying all of them in a single framework. Hence, integration soft-
wares as Appion [46] and Scipion [207] were developed. However, there also exist
independent developers that have released some algorithms like MotionCor for
correcting the blurring appeared as a consequence of the beam induce a motion
[97, 202], ResMap, for calculating the local resolution in 3D EM-maps [90], cryolo for
particle picking using a deep learning approach [194], gautomatch also for particle
picking but using a reference [80], ctffind for CTF estimation [110, 133] or LocScale
for map sharpening [81] among many others.
cryoEM has progressed a lot since its origin, a proof of that can be seen in Fig. 1

where the number of structures deposited in databases is shown. A complement
analysis is the temporal evolution of the resolution of the deposited maps, cur-
rently, to achieve a resolution close to the atomic ones is almost common, see Fig.
1. Despite this progress it remains a long way to walk, the three pillars described
by J. Frank. In the pillar of the microscope hardware, perhaps the most impor-
tant issue is to reduce the high cost of electron microscopes, which represent a
non-affordable barrier for many laboratories and institutions. Note that an elec-
tron microscope can cost 5M€ leaving out the maintenance cost close to 200k-300

k€ per year. The development of better detectors with a higher DQE have repre-
sented and still represents a a critical step in hardware development. Thanks to
new and better detectors, the signal to noise ratio might be decreased, and the
associated uncertain, that complicates the alignment and therefore the elucidation
of the macromolecule may be minimized. It also helps in the beam induce motion
corrections to reduce the blurring effect. The improvement of phase plates and its
phase stability, may also help. Regarding with the microscope and image acquisi-
tion, the automation of microscope session; although the state of the art has been
considerably enhanced with software like serialEM [104, 105], leginon [23] or EPU
from the company Thermo Fisher Scientific; the acquisition requires a previous
analysis of the sample and the grid region to be imaged is an issue that should be
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improved.
In the pillar of sample preparation, cryoEM started to be increased with better
biochemistry purification method. Many of them came in from crystallography.
Nowadays, the efforts on microscope theory and acquisition are focused on the
development of grid samples preparation to avoid the charging the sample [140],
the existence of preferred directions [111, 173], or the minimization of the interface
effect in the interaction macromolecular-interface [141, 142], among others.
In the third column, image processing, the field of cryoEM points to speed up the
computational time to elucidate the macromolecule structure in less than a day.
For that, two main ideas are on the table, the use of GPU computing and streaming
approaches. The second one considers the processing of next the steps of the SPA

workflow before the end of the previous ones, for instance, the 2D-classifications
starts while the particle picking is on going. This approach is the first attempt
towards the high throughput in the microscope session, thus some automatized
workflows based on streaming were already proposed [53]. Other hotspot to be
solved from the image processing block are the measurement of high order aber-
ration as can be the trefoil or the tilt correction that are currently neglected. The
beam induced movement correction was critical to increase the obtained resolution.
Thus, the use of frames information by particle polishing could be a promising
tool. Another hot topic is the use of map sharpening for refining the obtained 3D-
structure, concerning that, this thesis proposes a solution. Finally, the need of new
approaches to solve the heterogeneity problem is also an important requirement in
the field, in particular, when the heterogeneity is conformational and there exists
a continuous number of states.

Figure 1: (left) Number of deposited density maps in the Electron Microscopy Data Base
(EMDB) obtained by electron microscopy. (right) Temporal evolution of the highest
and average resolution of the deposited electron microscopy maps.

1.1 motivation of this thesis

This thesis is devoted to the third pillar of the resolution revolution, i.e. mathe-
matical/computational methods, in particular, on the quality analysis in a local
manner of the reconstructions, i.e. the local resolution analysis and its applications
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on macromolecular complexes reconstructed with SPA techniques.
Resolution has traditionally understood as the size of smallest detail, that can be
elucidated in the reconstructed map, it is given by a number. In recent times, this
concept was extended in a local manner by considering that the quality of a map
is spatially variant. Thus, blocres [22] was born as the first local resolution method,
calculating a local FSC using a mobile window with two half maps. Curiously, local
resolution measures were standardized as part of the SPA workflow with the pub-
lication of other method, ResMap. [90]. Despite both methods work properly, they
present drawbacks that we wanted to solve, as they are: first, to achieve a fully auto-
matic method that avoid the user intervention and second, to design an algorithm
computational enough fast to deal with large maps in short computational times.
To do that, the use of monogenic signal was considered. This kind of signals, re-
cently introduced [39], extend the concept of analytic signal to several dimensions
allowing a local decomposition in phase and amplitude. The local energy of the
reconstructed map can be then obtained by determining the monogenic amplitude.
Thus, using this local approach a simple and computationally easy algorithm of
local resolution was design. The method, that was named MonoRes, performs a
frequency sweep from low to high, and determines if the local monogenic ampli-
tude is statistically higher than the amplitude of noise (at that frequency). It allows
to assign resolution values when the energy of signal is lesser than the energy of
noise.
In electron tomography, the measurement of resolution as a global parameter to
define the quality is not widely used. Despite that, there exist method to defined it,
for instance: the FSC even-odd and the Noise-compensated Leave One Out (Noise-
compensated Leave One Out (NLOO)) [21]. The first one is conceptually simple
and keeps the standard global resolution measurement of SPA to electron tomog-
raphy. It is done by splitting the set of images in two sets (odd and even) to then
reconstruct two independent tomograms that allows to compute the FSC as two
half maps (in SPA). Unfortunately, it remains its cons as it is the mask dependency.
The second one is more accurate but computationally hard. However, there no ex-
ist any method for estimating the local resolution in electron tomography. Thus,
MonoTomo was developed to cover this need of the field. This was done following
the MonoRes algorithm, but adapting it to deal with the problems that tomography
presents, as they are the spatially variant noise, and the large size of the tomo-
grams.
Recently, it was To finish with the local resolution measurements, it rests to ana-
lyze if resolution presents a dependence on the direction. Recently, a few works
were addressed to cast light on this topic [111, 172] but in a global manner. In
other words, they analyze how the global resolution varies with the direction with
the aim of study the existence of preferred directions. Thus, by means of MonoRes
core, and adding directional filter, it is possible to determine a local-directional res-
olution measurement. When all possible directions are analyzed, then an analysis
on local resolution anisotropy can be carried out. To do this an algorithm, named
MonoDir was developed. Up to our knowledge, it is the first local-directional reso-
lution method in cryoEM. Surprisingly, this analysis provides very rich information
as validation quality map tool. It informs about: the existence of preferred direc-
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tions, angular assignment errors, good coverage of the projection sphere, as well
as of course, the local resolution anisotropy.
Since local resolution was introduced in the field, it was applied to understand the
behaviour of macromolecules, for instance, flexibility, heterogeneity are usually
identified as low resolution areas in the density map. However, and leaving out
local resolution filters, local resolution has no find more applications. Understand-
ing local resolution as a measurement of Signal to Noise Ratio (SNR), a very useful
application is found in sharpening. Currently, the sharpening techniques consid-
ers a global transformation that boosts the high frequencies that map presents
weighting them by a merit function. The most representative technique is the b-
factor correction, that recover the high frequencies by making flat the structure
factor (spectrum) of the macromolecule, being the merit function the FSC. In other
words, the global SNR is considered. Thus, we explore the theory behind this trans-
formation under the physics scope, in particular the scattering theory. The result
is that despite the good results in the visualization of the sharpened map, this
transformation is not supported by physics. Taking this into account, a sharpening
technique that restores the high frequency components weighing by local values
of SNR (local resolution) was designed. The algorithm, called LocalDeBlur, keeps
the structure factors compatible with scattering theory and considerably helps in
the understanding of the macromolecule for a later atomic modelling.

1.2 structure of contents

This thesis is structured in two main parts:
Part I, named Fundamentals of electron microscopy and Single particle analysis should
be understood as an introductory block to the field of SPA. It contains the back-
ground in Physics to understand the image formation in the electron microscope
and the image processing methods of SPA, which allow to elucidate the 3D struc-
ture of the study complex. Finally, the last chapter is addressed to introduce the
subject of this thesis, i.e. resolution measurements, showing the traditional con-
cept of resolution. However, despite this chapter is an introduction, it also contains
many comments and original reasoning introduced in this thesis. In particular, to
be more specific the contents are briefly described:

• In chapter 2 the fundamentals of the electron microscope are introduced. The
chapter provides a quick and consistent explanation but enough detailed
about the physics of the microscope and its use in imaging. Hence, it starts
by identifying the imaging needs and how the use of electrons pushes the
size limit of the imaged elements. Then, the electron microscope is described
piece by pieces starting with the physics of the electron guns based on the
Fermi-Dirac statistic to derive the Richardson law and the emission field.
Next, the mechanism to focus electron are described and how the aberration
affects the image. Then, the electron-specimen interaction is explained, and
the weak phase object approximation is introduced. Finally, the physics of
detectors is also introduced, with special incidence on the direct electron
detectors, which have been responsible of the resolution revolution [92] at
the field of cryoEM.
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• In chapter 3 the key concepts of SPA are carefully explained, i.e, the hypothesis
that allows the reconstruction as they are the projection assumption and that
particles are identical copies of the same macromolecule. Then, the central
slice theorem, which is the main responsible of most of the reconstruction
methods. Once the basis of SPA is established, the general workflow of SPA
and the image processing techniques involved are described. Thus, all steps
of the workflow are briefly explained: the movies, the frame alignment, the
gain correction, CTF estimation, particle picking, 2D classes, initial volume,
3D classes, refinement methods, and validation and analysis methods.

• In chapter 4 a brief review of the global resolution concept in cryoEM is intro-
duced. This chapter attempt to complete the introduction to SPA by provid-
ing specific information about the topic of this thesis, resolution, and how
it is currently treated in the SPA workflow. The aim is to provide the back-
ground required to understand the part II, in which the developed methods
about resolution are described.

Part II, named Developments and results, contains the novelty that this thesis intro-
duces in the field of cryoEM, in particular in the local resolution measurement and
its applications. Hence, following the previous structure, the contents are briefly
summarized.

• In chapter 5 the concept of local resolution and its origin is introduced. Then, a
fully automatic method for computing the local resolution of macromolecular
complexes, named MonoRes is proposed. It might be considered the central
chapter of this thesis, due to the core of many other methods, that will be
explained later, is MonoRes algorithm. Despite this thesis is focused on SPA,
MonoRes was also adapted to be able to work in other cryoEM techniques as
it is the case of electron tomography. Hence, a method of local resolution
in electron tomography, called MonoTomo, was designed. Both methods were
tested with experimental datasets to show their capabilities.

• In chapter 6 the study of local resolution continues but now the concept of di-
rectionality is introduced to measure local-directional resolution. The idea is
that resolution is not a only single number for each position (local resolution),
it is determined by a tensor. The component analysis of local-directional reso-
lution will determine the anisotropy of resolution. This analysis provides re-
ally useful information about the quality of the reconstructed macromolecule
because it allows to detect if the reconstructed structure owns angular assign-
ment error, the possible existence of preferred directions, or the existence of
anisotropy. For that, MonoDir algorithm was developed, and the theoretical
results are supported with experimental tests.

• In chapter 7 the B-factor correction is analyzed. To do that, the structure fac-
tor is derived from the scattering theory. In particular, the Guinier and Porod
laws. Theoretical results point out that B-factor corrections are not supported
in the scattering theory. To check that, a set of experiments with atomic mod-
els from different macromolecules are carried out. Results are in agreement
with the theory, concluding that the b-factor correction should be revisited.



1.3 objectives 11

• In chapter 8 a sharpening method is proposed. The algorithm named LocalDe-
Blur, provides a fully automatic method for local sharpening based on local
resolution measurements. Thus, an alternative sharpening method to the tra-
ditional B-factor correction (that was studied in the previous chapter) is sug-
gested. Finally, LocalDeBlur is applied to several experimental structures, and
compared with other sharpening methods which belong to the current state
of the art.

• In chapter 9 the conclusions of this thesis are exposed. They summarized the
conceptual essence of each method and development.

1.3 objectives

To summarize the objectives of this thesis are:

1. Develop a fully automatic method for measuring local resolution in SPA. This
method, MonoRes, is described in Chapter 5.

2. Extend the local resolution measurements of SPA to of a method able to mea-
sure local resolution in SPA. The method, MonoTomo is described in Chapter
5.

3. Develop a local-directional resolution method, MonoDir, and how its anisotropy
analysis allows to validate the reconstructed structure by identifying angular
errors and preferred directions. This objective is explain in chapter 6.

4. Analyze the B-factor correction and its use for sharpening from the physics
point of view making use of the scattering theory. This analysis is carried out
in Chapter 7.

5. Develop a local sharpening method, LocalDeBlur, based on local resolution
measurements avoiding B-factor correction. This method is explain in chapter
8.

6. Provide a good and concise but complete introduction to the physics of the
electron microscope and SPA workflow. These tasks are shown in chapter 2, 3

and 4.
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2
T H E E L E C T R O N M I C R O S C O P E

The beginning of electron microscopy is fuzzy with its origin between 1920-1935

when many advances were carried out in electron optics. The most spread date
is the year 1931 when the first electron microscope was built by Erst Ruska [138]
awarded for it with Nobel prize in 1986. However, its birth was only possible
thanks to the development of magnetic lenses a few years early by Hans Busch
in 1926. Since then, and despite a beginning without funding in which E. Ruska
was working for free [137], many technological improvements were addressed to
achieve higher resolutions solving details beyond than the optical microscope al-
lows [30]. Thus, electron microscopy raised as a new field of study in physics with
special applications in the study of materials or biological sciences among many
other.
The objective of this chapter is to provide the overall concepts and elements which
describe the transmission electron microscope (TEM) and its capabilities for imag-
ing. The starting point will be a definition of the microscope describing its limita-
tions. The use of electrons as illuminating source represents the main differences
between optical an electron microscopes, hence the beginning is to understand the
advantages that it involves. However, to substitute light by electrons implies many
experimental drawbacks. Thus, electron microscope will be analyzed element by
element.

The sections marked with an asterisk, *, in title are out of the scope of the thesis intro-
duction. They were included to complete physics of the microscope, therefore, they can be
omitted

2.1 on the microscope and its description *

A radiation microscope (electromagnetic or particles) can be coarsely defined as
every device capable of getting a magnified image of an object/sample. The term
radiation ought to be highlighted. There are other kinds of microscopes as the
Atomic Force Microscope (Atomic Force Microscope (AFM)) or the Scanning Tun-
neling Microscope (Scanning Tunneling Microscope (STM)) that work without a
source of radiation; the radiation term makes reference to every kind of energy
which fulfills the duality wave-particle. In particular, this thesis is focused on the
transmission electron microscope.
Modern microscopes are constituted by many optical elements. First an illumina-
tion system is required, i.e. source of radiation and a collimator or condenser lens
are responsible of lighting the sample. Next, the radiation will interact with the
specimen to finally reach an imaging system composed by an objective and an
ocular that will capture the scattered radiation to record an image. The objective
essentially is the microscope and the main lens. It is the closest element to the ob-
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ject/sample and its function is to collect the light or radiation and get a magnified
projected imaged for in a second step to be more magnified by the ocular system,
see Fig. 2.

Figure 2: Scheme of the electron microscope showing all its components: the electron gun,
collimating lenses, sample, objective lens, eyepiece and detector.

A suitable theoretical framework to describe the microscope relies on the de-
gree of details that the theory is able to reach accordingly with the experimental
needs. The choice of one or another description depends then on two factors: wave-
length of the radiation and the interaction radiation-measure equipment. The first
approach is the geometrical optics, it is fulfilled when the wavelength and energy
of the radiation can be neglected in comparison with the dimensions and energy
of the microscope elements. In this sense, geometrical optics represents a corpus-
cular treatment of the radiation, so that, the image can be obtained as impacts of
the particle on the detector. The second approach is the electromagnetic theory or
physical optics, in which the wavelength of the radiation are comparable to the
elements involved in the systems, but the energy of the radiation is not able to
interact due to the small energy of the radiation. These two models represent the
framework of most kinds of microscopes, in particular, of the electron microscopy.
The last description would be the quantum theory, taking into account the interac-
tion radiation-matter when the radiation energy is comparable with the energy of
the system. Quantum theory does not apply to the purpose of this study.

Geometrical optics describes the microscope from a macroscopic point of view.
Radiation is treated as an idealization of reality called rays. A ray is a unidimen-
sional line defined by the trajectory of the radiation, the direction of a ray can only
change if a property of the propagation medium changes. When electromagnetic
radiation is used, that optical property is called refractive index, in the case of
an electron microscope the propagation medium is the vacuum and the change
of direction is achieved by modifying the electromagnetic fields using magnetic
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lenses. Thus, geometrical optics describes the microscope in terms of distances
object-image, the explanation about why radiation changes its direction or how
interacts with matter requires the electromagnetic theory or, to be more precise,
scattering theory of waves and particles.

The performance of the microscopes as imaging systems should be as good
as possible. Geometrical optics defines an imaging system as perfect, also called
stigmatic, if it fulfills the called Maxwell conditions or Maxwell optical theorems: [106]

1. There exists a relation one-to-one between object and image, i.e, the image of
a single point is a single point.

2. There is a similarity relationship between object and image, being the magni-
fication the similarity ratio.

3. If the object is on a plane, its image lies on another plane.

If an optical system does not fulfill any of these conditions, then the optical sys-
tem will present aberrations, being an aberration any deviation of perfect imaging.

2.2 use of electrons

Before examining the need of using electrons let us to analyze the limits of any op-
tical system, to finally conclude that the use of electrons will extend the imaging
capability for measuring smaller details.

2.2.1 Limit of the optical systems

Leaving out external agents, there are two issues responsible of breaking the Maxwell
conditions (section 2.1) in all optical systems: the aberrations which depend on the
system, and the diffraction which is an intrinsic property of radiation (electrons
/ light / ions, ...) that interacts with matter. Aberrations are defined as any de-
viation of a perfect image, they can be corrected by introducing new lenses or if
they are enough small, by image processing. In contrast, diffraction as an intrinsic
behaviour of the interaction radiation-matter cannot be avoided. This means that
even an aberration-free system will present deviation from the perfect image by
diffraction effects, i.e. all optical systems are limited by diffraction. It is notewor-
thy that electrons and light photons interact in a different manner with matter,
and therefore, they will differ in their diffractive behaviour. Diffraction breaks the
Maxwell conditions doing the image of a point object will be a spot instead of
another point, the spot is called Point Spread Function (PSF), and it characterizes
the optical system. The smaller the PSF is, the higher quality has the optical sys-
tem, in particular, the microscope. As will be shown, the use of electrons instead of
light reduces the dimensions of the PSF, and as a consequence, higher details can
observed. To do that, the PSF shape under diffractive effects ought to be analyzed.



18 the electron microscope

Consider a circular aperture with dimensions around the wavelength of the ra-
diation. The choice of this kind of aperture is because in most of optical systems
like tubes, lenses, diaphragms, and other optical elements usually present circular
shape. To define the smallest detail of an object that can be recorded, a circular
diagram can placed in contact with the sample, such as reducing the diaphragm
area, smaller area of the sample can be recorded, see Fig. 3. This diaphragm limits
the amount of radiation that passes through the system, and therefore will be the
aperture diaphragm.

Figure 3: An incident collimated beam reach the sample and is scattered. A circular di-
aphragm of diameter 2a at the exit reduces sample imaged area in a screen.
When the diameter of the diaphragm is around the wavelength radiation, and
interference pattern called Airy disc is imaged. P represents a far point on the
screen and ∆ the optical path difference between the marginal scattered rays and
the central one.

Under these conditions, a perfectly collimated and coherent beam illuminates
the sample and the radiation will be diffracted by the diaphragm casting an in-
terferogram called Airy disc in a far screen. The mathematical shape of the Airy
disc can be obtained by means of the Fraunhofer diffraction. Nevertheless, we are
interested in the overall shape of this pattern instead of the exact solution, taking
a shortcut and avoiding mathematical calculus. First, the intensity pattern will de-
pend on the difference of optical path between rays. Given two marginal rays, the
optical path difference, ∆ with respect to the central ray, see Fig. 3 will be given by

∆ = kδs =
2π

λ
a sin θ, (1)

where k = 2π/λ is the norm of the wave vector, λ, the wavelength of the incident ra-
diation, 2a the aperture diameter. Second, due to the circular aperture, the problem
of finding the intensity pattern in a far screen will present cylindrical symmetry.
It is well known that Bessel functions commonly appear in problems with such
symmetry. Hence, it is plausible to consider that the intensity pattern, I, will be in
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somehow proportional to a Bessel function, J1(∆), with dependence on the optical
path difference, ∆,

I ∝ J1(∆). (2)

This function presents zero values of intensity for those values, ∆, such as J1(∆) =
0, taking the first zero place at ∆ = 3.8317, then

2π

λ
a sin θ = 3.8317 ⇒ sin θ = 1.22

λ

2a
. (3)

Note that θ is the angular distance between the center of the screen, called maxi-
mum of order 0, and each zero of the Airy disc, in particular the distance to the
first zero is named size of the Airy disc. Despite the zeros of Bessel function and
the Airy disc are in same position, they are different functions, being the Airy disc
given by J1(x)/x, where x is the argument of the function.
Eq. (3) is the starting point for defining the Rayleigh Criterion [17] and the resolu-
tion concept of an optical system as will be shown in Chapter 4. However, leaving
the issue of resolution out, what Eq. (3) implies is that as the angular separation
between the first zero and the center of the Airy disc directly depends on the wave-
length and inversely on the size of the object (aperture). Due to the finite size of
the aperture, the wavelength determines the separation of the first zero. For this
reason, the wavelengths in the visible spectrum (400 - 700 nm) limit the capability
of the optical system for solving very small details. To solve this problem requires
the use of lower wavelengths, thus, the use of electrons with enough energy (short
wavelength) allows to record smaller details. Finally, it is necessary to determine
the wavelength of electrons.

2.2.2 Wavelength of the electrons *

Louis De Broglie pointed out that any particle with momentum, p, can interact as
a wave with associated wavelength

λ =
h

p
, (4)

where, h is the Planck constant. This asset is known as De Broglie Hypothesis [10].
The momentum, p, of the electrons determines the wavelength and it is related
with the acceleration voltage, φ, of the electron gun. Electrons are then accelerated
by a potential difference, acquiring kinetic energy,

T = eφ, (5)

where e is the electron charge. The high energy provided, around 200 keV −

300 keV implies electrons speeds, v as high as the speed of light, c (only if a
classical approach is considered). Relativistic corrections are then required to cal-
culated the speed of electrons. To do that the energy conservation law can be used,
(mec

2 + T) = mc2, where T is the kinetic energy given by

T = (γ− 1)mec
2, (6)
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with γ = 1/
√
(1 − v2/c2), me the electron rest mass and m the electron mass.

Therefore, by making use of Eq. (5) and Eq. (6),

v

c
=

√
1−

m2ec
4

(mec2 + eφ)2
, (7)

gives and idea about speed of electrons in terms of c, in particular, for a potential
of φ = 300 kV , the velocity is v = 0.77c. Finally taking into account Eq. (4) and
explicit expression for the wavelength can be obtained, for convenience and it is
better to use its inverse doing 1/λ = p/h = pc/hc, to get the ratio v/c due to the
momentum p = meγv, resulting

1

λ
=
meγc

h

√
1−

m2ec
4

(mec2 + eφ)2
, (8)

or removing the γ dependence as

1

λ
=
1

hc

√
eφ(2mec2 + eφ). (9)

Again, for an usual potential of 300 kV , electrons will present an associated wave-
length of 0.0197pm

2.2.3 Experimental problems derived of the use of electrons

The use of electrons pushes the diffraction limit beyond the limit of the optical
microscopy. Unfortunately, to use electrons is a challenge from an experimental
point of view:

1. There are no natural electron sources, that requires the design of an electron
gun that provides enough energy to accelerate electrons toward the sample
without interacting.

2. Electrons present a strong interaction with matter, and therefore, the need to
work in vacuum. In the case of TEM, the electrons should pass through the
sample without too much deviation, meaning a weak interaction electron-
matter, which is achieved with high-energy electrons.

3. Radiation can damage the sample. It might ionize the sample, heat it and
degrade it, hence, radiation must be as low as possible, compromising the
contrast.

4. The challenge of focusing electrons: TEM works in vacuum and imaging
electrons requires of devices that act as lenses, electron lenses. Moreover,
these lenses must deal with electrons of high energy which makes focusing
more difficult.

5. Radiation damages the sensors. The high energy of electrons reduces the
life time of sensors or compromises the contrast and quality [49, 71]. A new
generation of sensors called direct detectors has opened new possibilities in
imaging [107].
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2.3 electron sources : electron guns *

2.3.1 General considerations *

All imaging systems require an illuminating source to acquire images, there is no
image without a radiation source. The most general definition of electron source
is every physical configuration able to release electrons from it. Unfortunately, the
imaging needs in electron microscopy impose some constrains, which can be sum-
marized as high energy and stability. First condition is required to allow electrons
transmission through the sample under a weak interaction or even without inter-
action. However, stability is most critical because it involves three experimental
challenges: monochromaticity, coherence and collimation.
Monochromaticity means that the energy beam is always the same without suffering
fluctuations in energy, or alternatively that the electron wavelength is constant -see
Eq. (9); this is allowed by very stable currents.
Coherence makes reference to a known phase relation. The coherence is a necessary
condition in TEM because the image is obtained by interference of phase contrast.
There are two types of coherence, spatial and temporal, when a beam presents
both it is called coherent (for a deep study see [54, 102]). The spatial coherence is
defined as a well defined phase difference between two different emitters (usually
in the transverse section of the beam). Meanwhile, a beam presents temporal coher-
ence if there is a well defined phase difference between two instants of time. Note
that, temporal coherence is related to monochromaticity, a single electron with a
specific energy (monochromatic) will present temporal coherence. However, when
a beam of many monochromatic electrons is considered, the temporal coherence
can be broken despite the monochromaticity.
Collimation: The emitted electrons from the gun should be as parallel as possible
to the microscope axis avoiding the divergence of electrons. A beam is named
collimated if its wavefront is plane or alternatively if the trajectories of all their
electrons are parallel to each other.

2.3.2 On the electron gun *

The material that emits electrons should be a metal conductor. The charges or elec-
trons in a conductor lays on its surface, otherwise there would exist an internal
electric field in the conductor that generates currents (movements of electrons). It
is plausible that those regions of the metal with higher electron density present
higher probability to emit electrons under certain conditions. Thus, describing the
shape of the emitter, means to analyze the charge density on the surface under
different curvature radius. It is known that the electric field E in the surface of a
conductor is proportional to the superficial charge density, σ, i.e. E = σ/ε, with
ε the dielectric permittivity constant. So, there will be more charges for those re-
gions with higher electric fields. The conductor surface is equipotential (note that
the metal and the equi-potential surface have the same shape), and because of re-
lation E = −∇φ, with φ the scalar potential, the electric field will be higher in
those regions with smaller curvature radius. In other words, the electric field and,
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therefore, the electron density will be higher in sharpened regions. This means,
that the shape of the electron gun should be as sharpened as possible in order to
maximize the charge density and the electric field.
The reason of using sharp shapes of metal as electron guns can also be supported
with arguments of spatial coherence. If all electrons are emitted from the end of
the tip, the phase difference in frontwave will be close to each other presenting
spatial coherence.
Regarding the structure of the electron gun, it is composed by three main compo-
nents in the following order: the cathode or filament or cathode, the Wehnelt cylinder
or grid, and the anode, see Fig. 4. The Wehnelt is a metal hollow cylinder that con-
tains the cathode/tip, and presents a hole in its basis. A high differential voltage
is applied between the anode and the cathode in order to guide and allow the elec-
tron current, thus, by modifying the potential of the Wehnelt cylinder, the electrons
can be focused increasing the directionality.

Figure 4: Electron gun structure with all elements.

2.3.3 Types of electron guns *

Despite the sharp shape helps to concentrate the charges, electrons ought to break
a potential barrier, φwork to exit from the metal towards the sample. To overcome
this potential two physical mechanisms can be used: thermionic emission and field
emission. In the first case, the energy required to leave the tip needs to be greater
than the work function, while in the field emission, electrons escape by tunneling
effect.

1. Thermionic Electron Guns: This kind of device achieves the electron emission
by heating the tip of the metal. Thus, by thermal energy the electrons acquire
enough energy to overcome the potential barrier. A rigorous explanation of
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this kind of effect requires the use of the Sommerfeld-Bethe or Drude model
[87]. However a shortcut can be taken via definition of intensity, I as the
flux of charges, q per time unit, t. The goal will be then to determine the
electron current. If n represents the number of electrons per volume unit
e · n = dq/dV and the volume element is decomposed as product dV = Sdz

where, z is the electron movement direction and S the area of the transverse
surface, then the mean current

Ī =
dq

dt
= en

dx

dt
S = env̄, (10)

being v̄ the mean speed of electrons. Determining v̄ requires the knowledge
of the density function, for high energies larger than Fermi energy (last
occupied energy level) the Boltzmann statistics can be applied [116]. As a
consequence, the density function for electrons with energy E is given by
ρ(E) = e−βE, with β = 1/kBT , being T the temperature and kB the Boltz-
mann constant 1.

Ī = enSv̄ = enS

∫∞
vmin

ve−βE. (11)

By considering a classical approach, the electrons with energy greater or
equal to the potential barrier can escape from the metal gun. It means that
the kinetic energy K = 1/2mev̄

2, determines the minimum speed of the exit
electrons v̄in >

√
2eφwork/m, due to K = eφwork. This allows to write an

explicit expression for the intensity

I = enS

(
2kBT

me

)2
e
−
φwork
kBT , (12)

which is known as Richardson’s law [63]. The key point of this law is the
dependence on the temperature, the higher temperature, the higher currents
are achieved. By heating the metal, the thermionic guns make use of this fact.
However, the metal ought to resist temperatures higher than 1000 K. Only
a few material as the Tungsten or lanthanum hexaboride LaB6 with shape
of hairpin can work at temperatures of 2, 500− 3, 000 K and 1, 400− 2, 000 K
respectively without melting [130].

2. Field Electron Emission Guns: To leave the tip, the electrons ought to overcome
the potential barrier, φwork. Electrons cannot be localized with precision lay-
ing on space region under certain probability given by modulus square their
wavefunction, ψ. This gives to electron an opportunity to be out the tip when
its energy is smaller than the work function, in other words electrons might
leave out the tip by tunnelling effect. Field Electron Emission Guns try to sup-
port the tunnelling effect by an electric field. Finally, a classical explanation
of this kind of gun can be carried out by considering the time-independent
Schrodinger equation for the electrons, thus,[

 h

2me
∇2 + (E− V)

]
ψ = 0, (13)

1 This is just an approximation because a rigorous proof should use Fermi-Dirac approximation
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with  h = h/2π, E the electron energy and V the potential. To solve this equa-
tion requires the knowledge of the potential function, V which is modelled
by a more realistic barrier called Schottky-Norheim[115, 151] given

V = eφwork −
q

8πεz
− eEz, (14)

being z the distance along the microscope column to the electron gun. Note
that this barrier presents a singularity at z = 0 and a straight behaviour at
far distances, see Fig. 5. The wavefunction solution of Eq. (13) will determine
the probability of the electron to be in or of the tip.

3. Schottky Emission Guns: Modern electrons guns makes use of this effect, which
can be considered as a combination of the thermionic and field emission ef-
fect. The fundamental idea is to heat the cathode to reduce the potential
barrier working out well the emission field. This is the technology employed
by FEI Titan Transmission Electron Microscope series.

Figure 5: The tip is a metal which electrons occupy the Fermi level. To exit the tip a poten-
tial barrier must be overcome, the Schottky-Norheim and the work function are
shown.

2.4 electron lenses . magnetic lenses *

A lens is every element that makes a collimated radiation beam converge towards
a fixed point. In light optics, the working mechanism is a local variation of the
refractive index of the material in which the radiation is propagated. The electron
microscope works in vacuum, so that, there is no change of material medium, in
which the interaction electron-matter deflects the electrons. As a consequence, the
mechanism of focusing electrons must be different. The main difference between
light and electrons is mass and electric charge. Lorentz equation shows how a
particle with charge, e, and speed v in an electromagnetic field, E and B suffers the
action of a force F given by

F = e [E + v×B] . (15)
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Then, electromagnetic fields can be used to change electron trajectories, which
cast two possible mechanisms to get electron lenses: electrostatic and magnetic
lenses, being last one the most common and the ones explained in this section.
The starting point to define magnetic lenses will be the paraxial approach, and the
lenses geometry.
Despite that there are many kind of lenses with different geometries as they can be
spheric, aspheric, cylindric, or toric among many other, the most general approach
will consider them as rotationally symmetric. This constrain is critical because it
imposes a restriction in the shape of the magnetic field, it also must be rotationally
symmetric. Moreover, it should mainly depend on the distance to the center of the
lens, B = B(z) be confined with a maximum at the center z = 0 and a smooth decay
as the distance from the center is increased, see Fig. 6. However, the dependence
B = B(z), is slightly incorrect. Consider a given plane z = constant, an electron
travelling along the z axis will pass trough the lens without suffering any deviation,
meanwhile, an electron that passes at a given distance r from the z axis will suffer
a Lorentz force to be focused that must be higher as higher is the distance to the
z axis. It means that the magnetic field must also present a radial component, Br.
Cylindrical coordinates seems to be the most suitable frame reference, thus B =

(Br, 0,Bz). To determine how strong the radial component is and the relation with
the component Bz the flux of magnetic field casts a simple answer [130], see Fig.
6. Maxwell equations impose ∇B = 0 and, therefore, the flux of the magnetic field
through a cylinder of radius r and height ∆z, φl will be φl = Bzπr2 −Bz(∆z)∆z+
Br2πr∆z = 0, casting

Br = −
r

2

dBz

dz
. (16)

To obtain this magnetic field coils are used which are almost encapsulated with
an iron box except for a small aperture. The encapsulation aims of confine the
field increasing its intensity in the aperture area, see Fig. 6. Note that the magnetic
field ought to be enough intense to achieve a significative change of the movement
direction in a short space.
Regarding to the electron trajectory it is expected a helicoidal movement. The helix
pitch is related to the intensity of the magnetic field, so that the shortest pitch will
take place in the lens place, getting larger steps as the electron goes away of the
center. The paraxial approximation and the high energy of electrons make that the
speed along the z-axis, v ≈ vz = constant, and therefore the azimuthal speed
must be increased with the magnetic field, being maximum in the plane of the
lens. Under all above considerations the Lorentz law Eq. (15) can be applied to
determine the behaviour of the electron, in cylindrical coordinates results

Fr = mr̈−mrθ̇
2 = −eBzrθ̇, (17)

Fθ = 2mrṙθ̇+mr2θ̈ = eBzrṙ− erBrż, (18)

Fz = mz̈ = eBrrθ̇. (19)

The assumption of paraxial approximation joint to vz = cte verifies Eq. (19). In
addition, this equation system allows to quantitatively describe the electron move-
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ment, by substitution of Eq. (16) into Eq. (18), d/dt(mr2θ̇) = d/dt(er2Bz/2), which
results in the Larmor frequency [63]

θ̇ = ωL =
e

2m
Bz. (20)

Note that the frequency reaches the maximum value when Bz(z) is maximum. The
helix pitch will be s = v/ω, being minimum when frequency is maximum, as it
was predicted. Finally, Eq. (20) can be substituted in Eq. (17) to get

mr̈ = −
e2

4m
Bz. (21)

This equation describe the radial electron movement, the right side is always neg-
ative and the left side is a second derivative, therefore, it shows that the radial
behaviour should be concave function with maximum in the lens plane. The exact
trajectory of the electron can be calculated although it involves a long calculus for
dealing and solving with Eq. (21) that is out of the scope of this introduction.

Figure 6: Magnetic lens composed by an iron (gray) encapsulated with a coil inside it
(orange circles). The magnetic field, B presents cylindrical symmetry. And the
flux of magnetic field thought a closed surface, in this case a cylinder of height
∆z and radius r is shown.

2.4.1 Aberrations

An aberration is every deviation from the ideal behaviour of an optical system. An
ideal lens produces spherical wavefront at its exit, the deviations of this sphericity
is known as aberration, and the result is that the image of a single point will not
be a single image point. The optical design tries to avoid them, unfortunately they
remain despite these design efforts, in that case they must be characterized and
corrected in the image. In the case of TEM applied to biological samples aberration
take critical importance, due to the use of thin specimens and a weak interaction
with the sample implies that the sample is coarsely understood as almost transpar-
ent to the electrons, and imaging transparent object present some drawbacks due
to the absence of contrast. There are many solutions to this problem. However, the
most spread and the used in the field is to introduced a defocus to increase the
contrast, nevertheless the use of aberrations can be also considered, Section 2.6.
It is assumed mono-energetic radiation, therefore all considered aberrations will
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take place at a given wavelength. To describe them it is necessary to determine
the phase difference δ between the spherical wavefront produced by an ideal lens
(paraxial approximation) and real optical system wavefront. The natural way in
optics to express phase differences is by means of Zernike polynomial [101]. If the
Zernike polynomial is truncated up to forth order and assuming rotational symme-
try, then only the even coefficients of the polynomial are non zero. Those terms are
the defocus (second order), spherical aberration (forth order), and eventually the
phase shift (zero order). Each term of the Zernike polynomial represent a specific
type of aberration. In most microscopes the most representative term are defocus
and spherical aberration, thus, the introduced phase shift is given by in Fourier
space with frequency k, as

ξ(k) =
2π

λ

(
1

4
Csλ

4k4 −
1

2
∆zλ2k2

)
, (22)

where Cs and ∆z are called spherical aberration and defocus. It is noteworthy that
defocus is not properly an aberration because it is produced by a wrong position of
the screen or sensor. However, it is considered as an aberration because it implies
a phase deviation.

2.5 the sample *

The sample is placed on a metallic grid which is introduced in the microscope.
Each hole of the grid is also composed by a deposited carbon grating for which
each hole will be analyzed by the microscope. After a set of biochemistry processes
the complex under study is gotten in pure state in aqueous solution. The main
drawback is the incompatibility of the high vacuum of the electron microscope
with liquid samples. As an alternative, the water solution is dropped on the grating
and a treatment to get a solid sample is applied. This can be carried out by the
following methods

1. Negative stain: The macromolecules are in aqueous suspension and a small
concentration of uranyl acetate is diluted [2]. This solution is settled out on a
carbon grid removing the excess of solution to achieve a thin as possible plate.
The uranyl effect dries and wraps the sample. Due to the high density differ-
ence between the uranyl salt and the macromolecular complex, the contrast
in the image is achieved. Note that in the micrograph particles looks white
on a black background. However, what is imaged is the interface uranyl-
complex, meaning that it only allows to reconstruct the overall shape of the
complex and high resolution information is lost. Note that if the uranyl salt
does not cover the whole macromolecule, information about the non-covered
part will be lost, this is a problem for large particles. Despite this technique
has been substituted by vitreous ice techniques, it remains as first check of
the sample or when an initial volume (structure at low resolution) is needed
due to its high contrast.

2. Vitreous ice: It was introduced by Taylor and Dubochet [31, 177] and its
concept consists in freezing the sample as quick as possible to get a non-
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crystalline structure called vitreous ice. The fast freezing process allows to
get the macromolecular complexes in their native state (avoiding drying, flat-
tening effect, guarantying the full particle is embedded and artifacts). In ad-
dition to this biological benefit, the use of ice embedded specimens keeps
the high resolution information. Note that now the densities of ice and com-
plex are similar which means that micrographs will present low contrast
and not only the interface is imaged. Moreover, considering that the proba-
bility of scattering is increased with the atomic number, the conditions for
the weak phase object approximation that will be shown in next section are
more properly fulfilled. Finally, in terms of image, looking the particles in
the micrograph look as black on a white background. The use of this kind of
samples joint to development of direct detector has represented a revolution
of cryo-electron microscopy in last years.

Figure 7: (left) cryo samples and (right) Negative stain, with their corresponding micro-
graphs (down).

2.6 image formation

Despite electron lenses allows to treat the electron microscope in the framework of
the geometrical optics, the imaging process requires to go in depth with electron
matter interaction. As starting point consider an object u(r), the objective will be
to determine the output image v(r).
To do that, it is known that in real systems Maxwell conditions are broken due to
aberrations and diffraction limit. This means that the image of a point-object will
not be a point (correspondence one to one object-image), instead of that it will be
a spot the called Point Spread Function - Point Spread Function (PSF). In other words,
the PSF is the image of a point object under the optical system. Electrons only can
impact in a single position, as a consequence, the PSF is the probability distribution
to hit the screen at a specific position. The spatial distribution is obtained on the
screen when many electrons are used, getting many impacts and mapping the
shape of the probability function i.e. the PSF. If an object is a set of points, it is
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possible to know its image by applying the PSF to all of them. This suggests the
simplest imaging model in which 2D-object an 2D-image are related by a linear
relation as

v(r) = h(r) ∗ u(r) = PSF ∗ u(r), (23)

being h(r) the PSF of the system and the symbol ∗ denoting the convolution op-
eration. Therefore, the PSF models the behaviour of the microscope. If Eq. (23) is
translated to Fourier space it results

V(k) = H(k) ·U(k) = OTF ·U(k), (24)

where k is the frequency vector and the capital letters are the Fourier transforms,
F[·], of the corresponding lower case functions, V(k) = F[v((r)], U(k) = F[u((r)],
H(k) = OTF = F[h((r)]. Last function is called Optical Transfer Function or Optical
Transfer Function (OTF) and has the same information than the PSF, but in this case
in frequency terms. This function is a key element in the analysis of optical system,
for a deep study of these function see [17, 54, 79]. Unfortunately, because of the OTF

is defined in Fourier space, it usually is a complex function which makes difficult
its understanding. To avoid this pitfall the modulus of the OTF is defined,

OTF = |OTF|ei arg(OTF) =MTFei arg(OTF), (25)

it is called Modulation Transfer Function or MTF(k) = |OTF(k)|, and arg denotes the
argument function. Note that the Modulation Transfer Function (MTF) is a real pos-
itive function and gives information about how the microscope or optical system
attenuates each frequency. In electron microscopy the OTF function is named as
Contrast Transfer Function2 or CTF and since this moment the OTF will be referred
as CTF.
Up to now the imaging mechanism is a linear model given by Eqs. (23) and (24),
being the microscope reduced to a single function, the PSF or OTF. In this epigraph
the underlying physics to describe this function will be exposed, see [86, 193]. To
do that it is necessary determine the electron interaction with the sample and its be-
haviour; Schrodinger equation, gives information about the electron wavefunction,
ϕ, under a potential interaction, V . Hence, if an incoming electron is propagated
along z-axis with energy E, then the solutions of[

 h

2me
∇2 + (E− V)

]
ϕ = 0, (26)

will determine the electron wavefunction. To solve it, some assumptions must be
done.

1. Small angle approximation: the propagation direction of the electrons is al-
ways close to the optical axis (paraxial approximation). This condition can
be written in terms of the wave vector k with k = 2π

λ , such as k2/k2z =

1+ (k2x + k
2
y)/k

2
z ≈ 1.

2 It should be highlighted that in optics the CTF is function that measures the contrast at different
frequencies, but it different than the MTF and OTF.
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2. Classical approach: relativistic corrections are left out, otherwise Dirac equa-
tion should be considered which complicates the solution. This means that
the wave-vector will present modulus k = 2π

λ =
√
2mE/ h.

3. Slow varying wavefunction: The sample should not perturb to much the elec-
tron wavefunction, and coherence in their propagation should be desired,
thus, it is plausible that the wavefunction will be the productϕ = ψ(x,y, z)eikz

with ψ(x,y, z) a slow variation function, |∂2ψ/∂z2|� |k∂ψ/∂z|.

As a consequence, the Schrodinger equation can be written as

∂ψ

∂z
=

[
iλ

4π
∇2x,y + iσV

]
ψ, (27)

with ∇2x,y = ∂2/∂x2 + ∂2/∂y2 and σ = 2πmλ/h2.

2.6.1 Weak phase object approximation and projection assumption. The contrast transfer
function

In addition to the conditions enumerated to solve Eq. (26), two more hypotheses
must to be done, that are included in this subsection due to their importance: the
weak phase object approximation and projection assumption.

1. Projection assumption: It considers that the sample is thin enough to approxi-
mate the potential of the sample as uniform. This allows to neglect the kinetic
term iλ

4π∇
2
x,y, leaving ∂ψ/∂z = iσψ and the wavefunction as

ψ = ψ0e
iσ
∫
Vdz = ψ0e

iσVz, (28)

where ψ0 represents the incoming electron wavefunction. What the projec-
tion assumption implies is a huge simplification of Eq. (26) because it neglects
the x,y dependence, assuming ϕ = ϕ(z) as a slow varying function.

Now the wavefunction at the output of the sample is known, however, the
effect of aberrations ought to be added. They can be introduced consider-
ing that the wavefunction at the output of the microscope, ψout will be the
convolution of the transmitted wavefunction, ψ convolved by the a transfer
function, ψout = ψ ∗ h. Introducing aberrations can be carried out taking
into account that they only affect on the phase. It means a complex unitary
function that modifies the wavefronts, it means that

H(k) = F[h] = eiξ(k). (29)

2. Weak phase object approximation: It states that the interaction electron-matter is
weak. The nature of biological and the small thickness of the specimens sup-
port this hypothesis. The result is that some electrons pass through the sam-
ple without interacting with it and the rest with a weak interaction. Hence,
the image is formed in the sensor by phase contrast between scattered and
unscattered electrons. The weak interaction allows to approximate the wave-
function by its Taylor expansion to first order as

ψ = ψ0e
iσVz ≈ ψ0(1+ iσVz). (30)
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which is the called weak phase approximation. Note that the first term, 1,
of Eq. (30), represents the unscattered wavefunction, meanwhile the second
one is the wavefunction of those scatters that suffer a weak interaction. The
explicit form of the wavefunction allows to get the image. Note that the image
is an intensity pattern as the probability distribution of the wavefunction, i.e.
square modulus of the amplitude,

I(x,y) = ||ψout|| = ||ψ ∗ h||2 = ||ψ0||
2||(1+ iσVz) ∗ h||2. (31)

Without loss of generality and because it represents a global scale factor it is
set ||ψ0||2 = 1. Taking into account that the weak phase object approximation
implies small values of σVz in (31) will only accepted term of first order in
σVz, therefore,

I(x,y) ≈ 1+ 2σVz ∗ (Im(h)), (32)

Finally, if this expression is translated to Fourier space

F[I] ≈ δ(q) + 2σVz(q)Im(H). (33)

Note that the term 1 in Eq. (32) or δ(q) in Eq. (33) represents a reference
intensity level in the image, so that it can be neglected, and thereby

F[I] ∝ 2σVz(q) sin(ξ(q)). (34)

This expression is the most common equation in electron microscopy, just
naming sin(ξ(k)) = CTF thus, the linear model (23) is verified.

2.7 detectors

Imaging detectors/sensors are responsible of registering the intensity pattern ob-
tained at the output of the microscope. It is remarkable that the obtainment of a
good image is a combination of a good optical system (microscope setup) and de-
tector. The sensor by itself lacks of sense without a good optics. Moreover, taking
into account that images will present very low contrast due to long exposure times
can burn the sample, thus detectors ought to have a high sensitivity along with
high resolution, dynamic range, among other.
In the past, detectors were plates sensitives to radiation and had to be developed.
Finally, the information was extracted by inspection of the developed and digitized
film. Currently the use of sensitive-radiation plates is almost obsolete and they
have been substituted by digital sensors. Their introduction, in particular, the CCD-
charge couple device was carried out by Roberts and Chapman in 1980 using a sim-
ple sensor of 100× 100 pixels [132]. However it is more known the work of Spence
& Zuo as one of the first uses of CCD sensors for TEM applications, where combin-
ing the CCD with an electron scintillator and an optical coupler they avoided the
direct measurement [36, 170]. Later the scintillator was replaced by a phosphorus
screen. Also CMOS technology (complementary metal oxid semiconductor) sensors
started to be used in the same way as CCD in early 90 year but exhibiting a worse
performance than CCDs. They had to wait more than one decade to undertake a



32 the electron microscope

revolution in the detection field.
The main advantage of digital sensors in comparison to the old photographic
plates is their automatic digitization and computerization of micrographs in real
time without the need of plate replacement. In contrast, radiation damage limits
the life time of these devices.
The technological advances focused on the improvement of detection capabilities
implied to get better the main requirements of a sensor [37, 61] as they are: effi-
ciency (high DQE), resolution, noise level and durability or radiation resistance. The
result was a new generation of detector the Direct Detector Devices (DDD) or Direct
Electron Detectors (Direct Electron Detector (DED)). In fact, the development of this
new kind of sensors is considered one of the mains reasons of the boost of electron
microscopy in last years [29]. The DDD success key is the direct measurement of
radiation avoiding the conversion of the electron beam into light using a phospho-
rous layer which produces a blurring of the image. For this reason, it is common to
classify the detectors as direct or indirect. Moreover, the use of active pixel sensors
based on CMOS technology allows a quick reading of the acquired information, as
a consequence, they can acquire movies and observe the movement induced by the
electron beam. Thus, in terms of imaging DDD increases the resolution with less
magnification, and also allows the tracking and movement correction of particles,
the result is a better MTF of the system.

2.7.1 Detectors characterization*

Sensors are complex devices and their performance is calibrated under specific
working conditions, thereby their behaviour depends on many variables external
variables, a few examples are: energy of the incident radiation, temperature, tilt
beam, exposure time, among other. The most known property of a detector is the
resolution, however, resolution does not fit all external variables, thus they are
characterized by a set of parameters. Next are only a few are the most important
of them

• Pixel size: An imaging sensor is a matrix of identical elements called pixels
(acronym of picture element). Each pixel is an individual sensor that mea-
sures the amount of radiation (light/electrons) that reach its surface, in par-
ticular, they measures the irradiance of the beam. Usually pixel geometry is
square, the dimension of the edge of a pixel is named pixel size. The detec-
tion area of the pixel is smaller than whole pixel area; and the ratio between
them is called fill factor. Moreover, manufacturing processes imposes a nar-
row, but non negligible separation between a pixel and its neighbours, this
separation is called pixel pitch, see Fig. 8. Usually the smaller pixel pitch, the
higher defined and sharpened the images can be.

• Resolution: Coarsely speaking is the capability of a system to discriminate
two different points. It is the highest spatial resolution what can be solved.
In the field of imaging detectors this discrimination is carried out by the
total number of pixels, being the sensor resolution, the number of horizontal
and vertical pixel. It is denoted as N×M, where N and M are the number
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Figure 8: Sensor scheme with resolution 2× 3 in which the pixel size, effective pixel area
and pixel pitch are shown.

of horizontal and vertical pixel respectively. Thus, the sensor introduces a
discretization of the image, with a sampling rate determined by the pixel
size.
From an optical point of view resolution is given by the size of the Airy disc.
However, the pixel size introduces a second limitation, the pixel size must
be smaller than the Airy disc to be limited by diffraction, in other words,
the Nyquist sampling limit (twice sampling rate) ought also to be taken into
account.

• Analog to digital converter (Analog to Digital Converter (ADC)): The intensity
registered in each pixels ought to be digitized as discrete values for its later
processing. The ADC is responsible of carrying out this task. Its performance
is measured in bits; an ADC or a sensor of N bits will convert the intensity into
2N different gray level. The result of this element is a second discretization
in the image. If the sensor matrix introduces a first spatial discretization,
the ADC action implies a discretization of intensity levels. The ADC is closely
related to the called linearity, a sensor is linear when the read intensity is
proportional to the incident intensity on each pixel.

• Dynamic range: The ratio measured between the maximum value of signal/in-
tensity, I(r), and the Root Mean Square (Root Mean Square (RMS)) of the
noise, Nrms. It is measured in decibels

DR =
max I(r)
Nrms

or DR = 20 log
max I(r)
Nrms

dB, (35)

some authors also considers the dynamic range has the distance peak to
peak between largest and smallest value of signal and noise respectively [79].
It shows the length of the measurement interval, but it lacks of sense without
the ADC value. Usually, the dark noise or also called floor noise is taken as
reference value, being the all values measured as the distance from it.

• Gain: The simplest explanation, the gain, G, is the ratio between the recorded
intensity Irec and theoretical intensity, Itheo [168],

G =
Irec

Itheo
. (36)
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A perfect sensor would present a gain equal 1. Reality is different, detectors
are composed by many pixels each of them with a slight differences in their
gain values, but non neglected if high detailed images are required.

• Detective Quantum Efficiency (DQE): It is measurement of the detector perfor-
mance in term of how an input signal is preserved in the measurement pro-
cess. An ideal sensor should keep the signal to Noise ratio of an input signal,
however, real detectors might introduce noise and as a consequence of the
conversion process. Thus the quality image can be degraded. This degrada-
tion occurs at different frequencies. The DQE measure how the performance
of the detector can deteriorate the image in frequency terms. In particular,
DQE is defined as the amount of noise called Noise equivalent quanta, Noise
Equivalent Quanta (NEQ) ,to compensate certain amount of quanta (energy),
it means

DQE =
NEQ

Q
(37)

Note how the closer DQE to 1, the better detector performance. In Fig. 9 a
performance comparison of different sensors is shown.

Figure 9: DQE curves for different detectors as they are: a film, and the cameras Falcon II,
DE-20, and K2. (Image taken from [107])

2.7.2 Direct detectors - DED or DDD

The way of recording image in a detector can coarsely be classified in two ways:
indirect, or direct. Classic detectors, film and CCD are representatives of the first
ones, which requires the conversion of electron into signal by means of a scintillator
or a phosphorus plate, transfer the signal to the sensor, and then detect and read
the signal. The second class, the called DED avoids the first two steps, recording
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in real time the signal without previous conversion. This is achieved by means of
CMOS technology which has suffered a high boost in the last decade. In particular,
they present the following advantages with respect to CCD sensors:

1. Low electric consumption: They remove the actives charges, it means, that if
they are not active they only present parasitic current.

2. Pixel independence: Every pixel is autonomous and independent from the
other. The CMOS sensor lacks of an external control board. Each pixel has
its own control gates. As a consequence of this independence, the blooming
effect is removed.

3. Robustness to noise: If the digitized input signal is slightly perturbed, then the
action of the CMOS over it will recover the original signal.

4. Reading Speed: This is the most important item for EM applications. The inde-
pendence of each pixels with its own electronics, and the absence of converter
speed up the reading process allowing a reading in real time. Thus, the limit
is given by the shutter method.

These points summarize the main performance differences between CCD and
CMOS based sensors, at least in terms of architecture. In particular, robustness to
noise and the quick reading time have special impact on the recorded image image.
Thus, the image can keep its quality under random perturbations, and second, it
allows the acquisition of movies instead of single images. This last point has been
critical to reach high resolution. It is due to the high sensitivity and NEQ of the
DDDs imply enough contrast in the image under less incident radiation than in
a CCD camera. Finally, DDD are more resistant to radiation damage, even without
any treatment of radiation hardness, being its life time around a year [38].

2.7.2.1 Hybrid pixel detectors - DDD *

Hybrid Pixel Detector (HPD) were originally developed in Conseil Europeen pour
la Recherche Nucleaire (CERN) laboratories with high succeed and the third genera-
tion of them Medipix3 currently is available , (previously Medipix1, and Medipix2).
The goal was to minimize radiation damage by means of a separation of the en-
capsulated form the detection and reading region of the sensor. but keeping the
concept of embedded CMOS. In Fig. 10 a scheme of the device is shown. Thus,
the first encapsulated device or also called sensor consists in a silicon waffle. It
is applied over it a potential difference. When an incident electron goes through
the silicon layer a pair electron-gap is generated, the applied voltage produces a
charge shift or current of electrons and gaps towards the electrodes of the sensor.
This sensor is coupled to a second encapsulated (responsible of reading) by means
of a contact soldering which also acts as separation piece sensor-reading. This sec-
ond encapsulate is the chip or pixel matrix to pick charges from the soldering and
determines the position of the incident electrons. The first encapsulated, i.e. the
silicon layer is wide enough to protect the pixel matrix from radiation, in other
words most electrons are absorbed by the silicon, and only and small amount can
reach the pixel matrix, allowing a long durability of the sensor.
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2.7.2.2 Monolythic active pixels sensor - DDD *

Monolythic Active Pixels Sensors (MAPS) were in their initia addressed to spatial
applications as a consequence they present an excellent robustness and resistance
to radiation damage [16]. Its structure is simpler than HPD, being only composed
by a single encapsulated of semiconductor layer, but always keeping the CMOS con-
cept. Again, the thickness of the layer is wide enough to prevent radiation damage.
The physical working principle is the liberation of charge in the semiconductor
layer when a charge hits on. The use of a single layer requires a pixel matrix on
it, but in this case the responsible of picking charges is a diode to finally convert
them in voltage using a transistor. (See Fig. 10).

Figure 10: Working mechanism of (a) HPD and (b) MAPS. Image taken from [37]
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S I N G L E PA RT I C L E A N A LY S I S W O R K F L O W

The use of electron microscopy to elucidate the structure of macromolecular com-
plexes has become a highlighted technique due to its ability to reconstruct the
complexes in their native state. The set of image processing techniques that allows
to determine the structure of the macromolecule are called Single Particle Analysis
- SPA. Hence, in this chapter, the standard workflow of SPA is explained step by
step. Each step performs a very specific task. However, there are several methods
and algorithms that provide solutions to that specific task. Due to the complexity
and variety of them, it is out of this thesis an explanation in depth. So that, the aim
will be to provide the overall idea of each step avoiding the mathematical details
behind them.

3.1 general consideration of single particle analysis

The objective of SPA is to obtain the 3D structure and if it is possible the atomic
model of macromolecular complexes via electron microscopy imaging. To do that,
SPA is based on two main hypotheses:

1. Homogeneous sample: All or most of the specimens in the sample are identical
copies of the same macromolecular complex in the same state but present-
ing different orientations. When this identity condition (identical copies) is
broken it is said that the sample present heterogeneity. Dealing and recon-
structing heterogeneous samples is currently a challenge in SPA.

2. Projection assumption: The image called micrograph can be considered a pro-
jection of the sample under a given magnification of the microscope. This
hypothesis was mentioned in image formation, see Chapter 2 and Fig. 6, but
its importance is critical.

The first one establishes an identity condition while the second is a scale condition.
Both hypotheses represent the basis of reconstruction methods. It is important
to remark that the identity condition is weaker than the scale condition, because
slightly different specimens might cast almost the same projections. In other words,
certain heterogeneity is allowed. The heterogeneity effect will be observed as a
blurring in the reconstructed map around the heterogeneous area.

3.1.1 Central Slice theorem

To reconstruct the structure, it is first necessary to select each projection of the
macromolecule, called particle from the micrographs and combine all of them prop-
erly. The set of all possible directions is named projection sphere, and the projection
direction of a particle is called angular orientation. Assuming that the sample does

37
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not present preferred orientations, a higher number of particles will allow to ob-
tain more information, because the projection sphere will present a better coverage
and as it will be shown the Signal to Noise Ratio (SNR - ratio between the powers of
signal and noise) is increased.
The reconstruction problem is the following: given a set of particles with a deter-
mined angular orientation, is it possible to recover a 3D structure of the complex
compatible with all particles?. There are many ways to solve this question (see
[165]), however the Central slice theorem [183, 201] provides a remarkable answer
by establishing a relationship between particles and the 3D structure via Fourier
Space. It can be enunciated as it follows: Given a 3D structure defined by a function
S(x,y, z) and Pα(S) a projection (particle) of the structure under certain direction α, where
P denotes a projection operator along, α, then,

Dα[F(S)] = F(Pα(S)). (38)

where Dα is the plane defined by the normal vector with direction α that passes through
the origin of the Fourier Space. In Fig. 11 the theorem is graphically explained, to re-
construct an object, given a set of particles, is it necessary to determine the Fourier
transform of those particles and use them to fill the Fourier space with the pro-
jection direction. Finally to recover the structure the Fourier inverse transform is
applied. Note that the absence of particles with specific angular assignment, will
be reflected as gaps with zero values in Fourier Space. If the lack of angular as-
signment is large enough to cover a cone or a wedge, the uncertainty is named
missing cone or missing wedges, respectively, and the structure will be elongated in
real space.

Figure 11: Explanation of the central slice theorem.
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3.1.2 The SPA workflow

Even though the reconstruction method given by the central slice theorem shows
how the structure can be obtained from particles, their orientation is unknown.
This is one of the main problems to solve in SPA, but there are still some other
remarkable problems which need to be solved too. The set of steps to solve them
define the SPA workflow. In Fig. 12 an scheme of these steps is shown.
The workflow starts with the acquired images named micrographs or movies. If
they are movies, a movie alignment is required. Next, the CTF of the microscope
should be estimated to correct possible image aberrations. Nevertheless, the re-
construction requires to select and extract the particles in the micrograph, this
process is named picking step. Then, the particles are corrected by the CTF estima-
tion, and classified in the called 2D Classes grouping similar particles. The idea is
that all particles of the same class should be projections under close directions of
the macromolecule. Thus, by averaging them, the SNR is increased, helping to the
determination of an initial volume in next step, i.e. a first and coarse estimation of
the macromolecule structure. However, it must be remarked that classification can
also help as screening step to remove bad particles, and check the quality of the
data. Finally, by means of the initial volume, particles can be reclassified by trying
to find different conformations of the same volume and refining the map by better
angular assignments.

Figure 12: Main steps of the basic workflow of SPA.

3.2 movies and micrographs

The structural information about the macromolecule is given by the contrast be-
tween the ice (background) and the complex [55] (signal), the higher contrast the
better structural details can be observed. The use of vitreous ice samples limits the
contrast due to the small differences in density/atomic number between ice and
specimen. Alternatively, electron dose can be incremented, unfortunately, radia-
tion damage limits the applicable electron dose [49, 71]. The development of Direct
Detectors allowed to alleviate this problem opening new horizons. Thus, instead of
acquiring a single image called micrograph under an electron dose, new detectors
register a set of frames creating a movie under the same electron dose. Electron dose
means number of electrons per surface unit. Note that along the movie record, first
and last frames are exposed to different radiation doses, being the first one lowly
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radiated and the last one highly radiated. However, the electron dose per frame is
globally reduced.

3.2.1 Beam induced movement. Movie alignment

The electron beam induced movement (BIM) in the sample is a consequence of the
electron-matter interaction. However, the underlying physical mechanism of this
movement is currently unknown. Nevertheless, there are some hypothesis like: in-
elastic scattering, charge sample, relief stresses, or deformation of the ice layer
among others [50]. The high acquiring speed of DED allows to track the macro-
molecule movement in the movie, i.e. particles exhibit a displacement with respect
to the previous frame.
The contrast in the frames is very poor because they present a low SNR, consider-
ing the ice as noise due to its lack of structure. Since this moment noise will make
reference to the ice. Hence, instead of working with frames as starting point of the
structure reconstruction process, first step consists in increasing the SNR by combin-
ing all the frames of the movie by correcting the motion induced by the beam. This
task is called motion correction or movie alignment, and the resulting image presents
higher contrast than the frames and by language extension it is named micrograph.
Note that a micrograph is the single image resulted of a single measurement in
the microscope. However, when the microscope acquires movies, the term micro-
graph makes reference to the result of combining all the movie frames into a single
image.

3.2.2 Movie alignment:

The blurring that appears as a consequence of beam induced motion has the effect
of limiting the resolution or level of detail that can be achieved in the reconstruc-
tion [97]. To correct the particle movement due to the induced motion by the beam
and increase the contrast, a characterization of the movement is required. The lack
of awareness about the physical mechanism of the BIM entails two possibles correc-
tion strategies.

1. Global: The BIM is produced along the same direction for the whole frame.
This approach is used by MotionCor [97]. The idea of this algorithm is to
estimate the relative shift between two frames using correlations. Once the
displacements are known the movie alignment is carried out. Despite Mo-
tionCor can be considered as the first alignment method, the corresponding
measures show that this motion is local, involving a shift and a particle rota-
tion [18].

2. Local: The motion induced by the beam is local and different particles may
present different movements. The methods of Optical Flow[4], alignframes_lmbfgs
and alignparts_lmbfgs [136], Unblurr and Summovie[55] or MotionCor2[202] be-
long to this group.

For a deeper explanation of all these methods, a movie alignment review can
be found in [131]. The common approach to movie alignment is to perform an



3.2 movies and micrographs 41

alignment of the whole frame with MotionCor, and then a local alignment. This
is somehow the strategy of MotionCor2, in particular, a physical model of sample
behaviour is proposed and validated with the alignment. An alternative to the
use of these methods is the particle polishing[146], in which the macromolecule is
reconstructed using the averages of the movies, and then, the 3D structure is used
to correct in the frames the inaccuracies introduced by the BIM effect reconstructing
again the structure. In Fig. 13 the difference between micrographs, movies and the
objective of the alignment is shown.

Figure 13: (A) Old measurement, the image/micrograph is obtained. (b) A movie recorder
as a set of frames. The BIM and particles are shifted. As a consequence an align-
ment should be carried out to correct the movement. Image taken from [9].

3.2.3 Gain correction

The behaviour of all pixels in the detector might differ presenting slight differ-
ences in their radiation sensitivity. The physical origin of these differences may
be due to many reasons like: the surface of all pixels is not the same, or presents
a slight tilt, thickness, or doping differences in the semiconductor layers, current
un-stability, or temperature, among others. The result is a different response under
the same input radiation, some pixel will measure stronger signal than others, or
even might be dead with lack of response at all. To correct these possible slight but
non-negligible differences, a gain correction is carried out, where the gain concept
models these deviations from the ideal behaviour of the sensor. Rigorously, the
gain is defined as the ratio between the recorded image, Irec and the theoretical
one Itheo, for the pixel r, it means

Irec(r) = G(r) · Itheo(r). (39)

Note that an ideal sensor should present unit gain, G = 1, being the acquired im-
age equals to the ideal image, Itheo = Irec. To give an idea about the deviation due
to non-ideal behaviour, the gain error in DED is normally lower than 1%. The gain
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correction depends on the application, and normally in commercial applications
such as photographic cameras it is not necessary or it is automatically corrected by
the own device. Usually, the sensor manufacturer provides information about the
sensor gain. In Fig. 14 a gain image, matrix G(r), is shown, note how the gain is
not uniform.
In the field of cryoEM, the first correction of these effects was proposed to obtain
the same statistics for all pixels [6]. To do that, the whole set of acquired movies
is used to determine the average and the variance, performing then an intensity
normalization. It was observed how the gain is susceptible to change along a mi-
croscope session. Thus, a dynamic measurement of the camera gain was proposed
[168]. This measurement also helps as quality control and refinement of an initial
gain estimation[168] along the measurement process. The main idea is to estimate
the statistical differences in the histograms of gray levels for rows and columns.
Note how these distributions are sensitive to gain variations.

Figure 14: Experimental gain image for (left) the dataset of the EMPIAR entry 10010 using
as a detector DE12 and (right) the dataset of the EMPIAR entry 10025 using as a
K2 detector. Image taken from [168]

3.3 ctf estimation

The performance of the microscope in terms of imaging is modelled by the CTF.
Despite some information about the microscope is known, acquiring conditions
might change so that the CTF must be determined in the image processing step.
The objective of CTF estimation is to quantify the effects that deviate the image
formation from the ideal image. In other words, the CTF is estimated to correct
the aberrations, this should increase the SNR and the quality of the reconstructed
macromolecule. In the previous section, it was explained that the recorded image is
the convolution product of the Coulomb potential and the CTF function, and there-
fore, in Fourier Space the Fourier transform of the Coulomb potential is multiplied
by a sinusoidal function, the CTF. F[I] ∝ 2σVz(q) sin(ξ(q)). Thus, to determine the
CTF it is necessary to explore the Fourier transform of the acquired image. From
this point different approaches emerge to determine the expression of ξ(q). How-
ever, it is remarkable that the CTF expression is only valid for monochromatic and
coherent illumination, under the weak phase object approximation and projection
assumption, and as a consequence, the analytic expression of the CTF may vary as



3.3 ctf estimation 43

it can be found in many publications, [179]. The most common approach begins by
calculating the power spectral density (PSD). i.e. the squared modulus of the image
Fourier transform PSD = |2σVz(q) sin(ξ(q))|2, This function represent a pattern of
concentric fringes also known as Thon rings, see Fig. 15. Note how the zeros of
the PSD coincide with the zeros of the CTF. This constrain allows to determine the
argument of the sinusoidal function, i.e the CTF.
The use of Volta phase plates affects the CTF by introducing a phase shift, δ, whose
value is ideally δ = π/2 turning the sine function, sin(ξ(q)), that defines the CTF,
into a cosine function, sin(ξ(q)+π/2) = cos(ξ(q)). This shift should be considered
as an extra parameter in the CTF estimation methods. Thus, the analytic expression
of the function ξ(q) given in previous chapter, see section 2.4.1, can be rewritten
as

ξ(k) =
2π

λ

(
1

4
Csλ

4k4 −
1

2
∆zλ2k2 + δ

)
, (40)

There are many and different methods to compute the CTF. However, here there
will be only highlighted those ones which belong to the current state of art. Per-
haps the most known is CTFFIND in its version 3 [110] and 4 [133], which performs
a fitting between the coefficients of the theoretical polynomial from the PSD, in par-
ticular, spherical, aberration, astigmatism, defocus, and eventually phase shift if a
phase plate is used. Other approach, named FASTDEF [163, 184] is carried out by
performing a fitting to the Zernike polynomial, which should be able to determine
(if exist) higher order aberrations. The current trend of using GPU for image pro-
cessing computing shows alternative methods, as it is the case of gCTF[199] which
also allows a local defocus correction per particle.

Figure 15: PSD calculated from a micrograph, the image show the Thon rings that are used
to estimate the CTF.
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3.4 particle picking

The projection assumption considers that all particles in the micrograph are projec-
tions under different points of view of the same macromolecule. Particle picking
is the step in which all those particles are selected and cropped from the micro-
graph to undertake the reconstruction process. In other words, particle picking is
the step in which particles are identified in micrographs. An example is shown
in Fig. 16. This is a critical step in the SPA workflow because it determines the
first raw particles to reconstruct the macromolecule. In terms of image processing,
the identification/pattern recognition problem has been broadly solved, unfortu-
nately, micrographs present a very low SNR, and therefore, the particle identifica-
tion is more complicated. Since the beginning of SPA, particle picking has been
and still is a critical point in the SPA workflow, so many methods were developed
addressed. According to Nicholson et. al. [113] they can be classified, according
to their identification algorithm, in: Template matching, edge detection, intensity
comparison, texture-based method, or neural networks. However, many methods
cannot be strictly assigned to an specific group, due to they make use of several
features. As a consequence, it might be convenient to establish a classification in
terms of usability. Hence, the methods can be coarsely classify as

1. Manual methods: This kind of picking is included only for completeness. The
user must identify with his/her bare eyes the particles in the micrograph and
select them one by one. It implies long picking times and possible bias as a
consequence of user subjectivity.

2. Semi-Automatic methods: Previous user interaction is required to guide the
picking process. The information can be the particle size, the sensitivity of
the method, or a variance value, among many other parameters depending
on the algorithm. However, a distinguished place in this group is occupied
by template-matching and feature-template methods, in which the goal is to
determine an image called template which presents similar shape or features
with the particles to be picked. Next, by means of correlations (or other simi-
larity metrics) between micrograph and template can be detected. Note that
a template is every pattern that allows to identify the particles, thus, simple
templates can be a disk or a Gaussian. However, more complex templates can
be considered, as it is the case of [3, 174] were the user manually picks a small
set of particles and the algorithm learns about the picked particles creating
its own template. Alternatively to this template-learning technique, the user
can provide one or multiple templates to identify particles in micrographs
via cross-correlation [85, 149]. Moreover, GPU computational resources have
been used to speed up the process. Thus, other approaches to the picking
problem which make use of GPU under the concept of template-matching are
available as it is the case of gEMpicker [78] or Gautomatch [80]. Alternative
semi-automatic solutions out the scope of template-matching also exist: gen-
erally they work applying a transformation to the micrograph, that allows
to extract the particle positions. A representative example of this group DoG-
Picker, which computes differences of gaussians followed by thresholding
[192].
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3. Automatic methods: This kind of algorithms has been recently introduced and
avoid the introduction of a bias as a consequence of human action or the
type of selected template. There are some algorithms from the classical im-
age processing methods like APPLE Picker [70], in which the template is au-
tomatically chosen by the algorithm. However, most of the automatic meth-
ods are based on deep learning solutions making use of convolutional neu-
ral networks (Convolutional Neural Network (CNN)). These methods, like
DeepPicker [195] or DeepEM [204], define a CNN model as classifier, which
is trained with several data sets. Thus, by means of a moving window, the
model is able to discriminate particles from noise when a new micrograph
is provided. A different solution is proposed by crYOLO [194] which makes
used of the classification framework "you only look once´´ [129] as alternative
to the moving window.

Once particles have been selected on the micrographs and they are extracted.
However, picking methods works properly but there are many false positive like:
artifacts, wrong picked particles or simply noise picked as particles. To get a true
set of particles or at least to minimize the impact of those false positives a screening
step is usually carried out. In this step, particles can be sorted by a z-score, consid-
ering similarity metrics based on morphology or SNR, among other, [185].
In the screening step of the SPA workflow it is also common the usage of denoising
and image restoration techniques to get cleaner particles. Hence, Wiener filters or
more sophisticated techniques like Covariance Wiener Filtering[15] are used. Simi-
larly to picking algorithms deep learning approaches are also proposed REF.

Figure 16: A beta-galactosidase micrograph fully picked. All particles were selected on the
micrograph to be extracted in a later step.
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3.5 2d classification

A common SPA project contains from several thousands of particles to a few mil-
lions. Remind that the purpose is to recover the 3D structure of the macromolecule
from all these particles. Unfortunately, it presents three drawbacks: 1) all picked
particles exhibit a very low SNR, which makes it difficult to determine their angu-
lar assignment. 2) Moreover, the lack of information about the angular assignment,
along with the large number of particles, implies a huge computational effort to
elucidate a 3D structure. 3) Taking into account the condition of Homogeneous sam-
ple, all particles should be copies of the same macromolecule, nevertheless, despite
the usage of screening methods to prune false particles in the picking step, many
artifact particles are picked (empty particles, contaminants or undesired particles
among others), and the homogeneous sample condition is broken as well as the
projection assumption. To solve these problems particles are grouped in the so-
called 2D-classes. A 2D class is defined as the subset of particles with similar char-
acteristics under certain error tolerance. Ideally, in SPA workflow the characteristic
is the same angular assignment. The mean of all particles inside the same class
is named class average, class representative, or 2D averages. In Fig. 17 the concept of
class is graphically shown.
Grouping particles in classes simplifies the problem, because it allows to work

Figure 17: Set of classes obtained with CL2D [158], each image is the class representative
or class average of a set of particle that define each class.

with a small set of images (class averages) instead of a large number of particles.
Moreover, class averages will present higher SNR than isolated particles because
the averaging operation reinforces the particle structure increasing its signal and
smoothing the noise by reducing its means and increasing the variance. The re-
sult is a detailed image taken as the class representative. Commonly to speed up
and help in the search of classes particles are downsampled by scaling the box size
even though their SNR is increased. The downsampling process looses the high
frequency components of the particle, but, the goal is to prepare a set of classes for
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creating a coarse 3D estimation of the macromolecule structure, that will present
very low resolution, so that the loose of high resolution components lacks of im-
portance for the initival volume problem, in contrast with the later refinement step.
The use of classes is also useful to undertake a second pruning step. Note that if
a class is composed by a set of particles with similar characteristic, many empty
particles, artifacts or others will cluster in the same class, and therefore they can be
removed from the data set. In addition, other issues as the existence of preferred
directions, bad angular cover of the projection sphere or the heterogeneity in the
sample can be identified in the classification step. It should be remarked that in
addition to the classification task an alignment task is also carried out. Note that
many particles might present the same orientation (longitude and latitude) but be
rotated in the plane. Moreover, they can be slightly shifted because of the picking
step. Both effect, rotation in plane and shift are solved with the alignment.
The effect known as Einstein from noise [72, 75, 153, 208] can be identified in 2D av-
erages. The high noise present in the micrographs presents might introduce a bias
if the picking step is not properly performed. Due to most of the picking methods
works with similarity measurement with a template (as cross-correlation), some
features of the noise might randomly correlate with the template, and therefore a
particle defined just by noise can be picked up. This particle will exhibit features
of the template. Thus, when several images are averaged the aligned noise features
are reinforced and a bias is introduced. The result will be an wrong reconstructed
structure in the subsequent step, and the need of validation tools emerges. In Fig.
18 this effect is shown.
There are many classification algorithms to create sets of classes. The Multivariate
statistical analysis (Multivariate Statistical Analysis (MSA)) tries to perform data
dimensionality reduction. To do that, it is considered that a particle with n×m px
is represented as a vector u with mn components in a nm-dimensional space Rnm.
However, the information contained in many components lacks of sense to the clas-
sification task and complicate it. Hence, a dimensionality reduction can be carried
out, the idea is to find a vector, v, in a subspace, Rp of Rnm, so that v will be the
best approximation of u in Rp. In common words, if we have a 3D structure (im-
age), we look for a plane object (dimensionality reduced) such as the plane object
is the best approximation to the 3D structure. The shadow of an object is the best
approximation, and it is less complex in terms of dimensionality. Thus, the prob-
lem is reduced to find similarities between "shadows´´. A deep explanation about
these techniques can be found in [69]. Another approach is the Multi-reference
classification (Multi-reference classification (MRC)), where several class representa-
tive are defined (for instance by means of random subsets of the set of particles),
and particles are classified by comparison with those representatives using a sim-
ilarity metric. The most representative methods of this group are ML2D - RELION

[148, 150] and CL2D - Xmipp [158, 162]. Other methods based on k-means exploits
the advantages of stochastic hill climbing to speed up computational time. How-
ever, another solution also exists, for instance, CryoSparc uses branch and bound
solution to avoid falling in local minima and it reduces computational times [126].
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Figure 18: 1000 particles were picked from a white noise image by aligning an image of
Einstein chosen as reference. (a) when the 1000 picked particles are averaged,
the image of Einstein appears, (b) white noise image used for picking. Images
were taken from [153].

3.6 initial volume

As it was mentioned in the last section, the large number of particles, the absence
of angular assignment and their low SNR are the main problems to estimate the
structure of the macromolecule. However, thanks to the classes, the complexity of
the problem is reduced: just a few classes with enough SNR are used to determine a
first and coarse estimation of the 3D structure, i.e. a low resolution structure. In the
next steps this initial map will be refined up to achieve a detailed structure at high
resolution. However, it should be highlighted that, this first estimation is a key-
point for the subsequent refinement, because wrong or poor initial maps might
introduce bias in the final map, or in the best cases it makes slower to achieve the
convergence.
The map reconstruction from projections, or in this case classes, makes use of the
Central Slice Theorem, see Section 3.1.1. There are many initial volume methods
around this theorem. One framework is to considers pairs of different projections
of the macromolecule, their Fourier transforms will intersect in a common line,
therefore the problem of determining the angular assignment of the classes is
reduced to find the common lines. Next methods will follow this idea [56, 125,
154, 183, 196]. Unfortunately, these kind of methods might detect false common
lines. Alternatively, a statistical approach can be used by optimizing the align-
ment variables i.e. shift and Euler angles (particle orientation). Significant [159]
and PRIME[35] belong to this approach. Normally, they start with the called ball,
which is a reconstruction considering random orientation of the classes, then an
iterative procedure of variable optimization make the ball evolve towards a more
realistic map compatible with the classes. In Fig. 19 the evolution of a ball using
Significant is shown. The cons of statistical methods are the first estimation of the
initial volume (ball) for the iterative process, making it susceptible to get stuck in
local minima. Another original way of estimating an initial volume is the RANSAC
approach [186] which considers random reconstructions and tries to maximize the
number of inliers/classes compatible with the reconstruction, then the best recon-
structions are refined with a projection matching approach.
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Figure 19: Evolution of the reconstruction obtained by an iterative process of reconstruc-
tion (in this case Significant [159]) to get an initial volume.

Recently, a novel approach to the initial problem was introduced [169] by con-
sidering as input the whole set of particle and several initial volume solutions
obtained from different algorithms. Note that the set of initial volume methods
might cast slightly or in some cases totally different solutions to the initial volume
problem. All solutions are valid as initial map, but some features of the real map
might be contained in some of them and not in the other. By using particle swarm
optimization method, this method tries to merge and evolve those initial volume
to a better one.

It is not common but in some projects the estimation of an initial volume fails
with the current methods. In those cases, an alternative is to turn to negative stain
samples and use tilt pair measurements with the aim of performing a reconstruc-
tion via Random Conical Tilt (RCT) [127, 160] or Orthogonal Tilt Reconstruction
(OTR) [96]. The use of tilt pairs consists in performing two measurements per sam-
ple: the first with the sample untilted and the second tilting it. This experimental
mechanism introduces geometrical information about the angular orientation of
particles, which is squeezed to determine an initial volume. As it was mentioned
(see sample preparation section 2.5), the use of negative stain dries the sample
producing elongated maps at medium-low-resolution. Currently, the use of this
procedure is marginal due to the initial volume problem has been overcome by the
methods cited in this section.

3.7 3d classification

The initial volume provides a first approach to the real structure of the macro-
molecule, which will be obtained in a later refinement step. To undertake a recon-
struction and the SPA workflow two conditions were established, see section 3.1
In particular, it was assumed that all particles are projections under different point
of view of the same macromolecular complex. This condition can be broken be-
cause of the heterogeneity problem, which is considered as one of the main open
problems in cryoEM [114]. According to the heterogeneity origin, it can be classified
as conformational heterogeneity, which considers that the macromolecular complexes
are not rigid and present certain degree of flexibility; or it can be structural hetero-
geneity because, despite the purification efforts, some proteins present slight but
non negligible differences in their structure. Note that radiation damage can also
be responsible of structural heterogeneity. In both cases, the identical copies as-
sumption is broken, and therefore, if a refinement is going to be carried out, it is
necessary to classify the set particles in groups such as all particle that belong to
the same group are projections of the same macromolecule, this step is called 3D
classification.
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Although the heterogeneity problem is still open, there are many methods that
solve the problem under certain conditions. From a physical point of view, the in-
formation about vibrational modes of the macromolecule and its dynamic can be
used to define a phase space in which all the possible conformations are contained
[28, 60, 93]. Alternatively, the use of statistical approaches can be undertaken, by
means of Bayesian marginalization algorithms [126], Principal Components Analy-
sis (PCA) (Principal components analysis) [62] or analysis of covariance matrix [164].
However, the most spread solution is the method of ML3D a maximum likelihood
approach integrated in RELION[147, 156, 206].

3.8 refinement

Once it is possible to guarantee that the set of particles is composed of a homo-
geneous population of projections of the same macromolecular complex, the elu-
cidation of a high resolution map can be undertaken. The goal of the refinement
step consist on using the initial volume or the reconstructions from 3D classes as
initial maps to by means of an iterative search converge to a detailed structure of
the macromolecule compatible with the particles. Rigorously the problem can be
defined as it follows: Given an homogeneous set of N particles (images, Ii with
i = 1, ...,N) that can be considered as projections of the same structure V from
different points of view, the goal is to determine the Euler angles and shifts, such
as the distance between the image and the projection of the structure, PθV , which
under the direction θ, is minima. Pθ is the projector along the direction θ. Note that
the problem is equivalent to solve the linear equation Ax = b, with A the projector,
Pθ , b the particle images, and x the structure to be determined, i.e. V. For a deeper
explanation on reconstruction algorithms see [165]. To solve the problem several
approaches can be considered, like maximum likelihood [126, 147, 150, 206], max-
imum a posteriori [206] (this is the RELION approach) or the traditional projection
matching [122, 123, 167] . The maximum likelihood problem can be reduced to the
optimization problem

(θ∗i ,V
∗) = argminθi,V ||Ii − PθV ||

2
W , (41)

where W is a given weight. This method represented a revolution in the field con-
sidering that a single experimental image/particle can be understood as the projec-
tion of the structure from many directions each of them with different probability.
Thus, the goal is to, by means of an iterative process, collapse the probabilities
up to reduce the possible directions. In contrast, maximum a posteriori adds in-
formation about the structure by introducing an extra term f(V), that penalizes
undesired reconstructions

(θ∗i ,V
∗) = argminθi,V ||Ii − PθV ||

2
W + f(V), (42)

Finally, the projection matching approach splits the maximum likelihood in two
simpler problems

θ∗i = argminθi ||Ii − PθVk−1||
2
W , (43)

V∗ = argminθi ||Ii − PθV ||
2
W . (44)
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The first problem considers an initial map, Vk−1 and aims to assign angles to
the particles, and then in the second problem the assigned angles are used to
reconstruct a new structure and measure its compatibility with the experimental
images. In Fig. 20 the result of the refinement can be observed.

Figure 20: The initial volume or a map from the 3D classes is refined to achieve a high
resolution structure. The image shows the refined beta-galactosidase structure.

3.9 validation and analysis

Many steps in the SPA workflow require user decisions, being some of them based
on user-subjectivity criteria which might introduced a bias, or bad quality maps.
This,along with the dealing with very noisy images (low SNR) makes that, despite
the user takes good decisions, methods are susceptible to elucidate wrong struc-
tures or fall in local minima. Hence, quantitative tools to validate the reconstructed
map and assess its quality are required.
To guarantee the validity of a structure information several approaches can be con-
sidered. First, the use of external reconstruction tools from X-ray crystallography,
NMR, or any other technique that allows to recover the 3D structure of the macro-
molecule under study. This sort of validation is a kind of blind test, by using two
independent tools, however, budgets or resources does not usually allow the use
of other techniques. An alternative is to check if similar structures were solved
looking up in databases as Protein Data Bank (PDB) [13] or EMDB [95].
Leaving external techniques out as validation tools, the alternative is to seek the
compatibility of the elucidated map with the set of particles that comes from it.
The first method introduced with this purpose considers the use of tilt pairs [74,
135, 197]. Note that the geometrical constrain introduced by the tilt angle must be
kept when the particle tilt pairs are aligned with the reconstructed map. Statistical
analysis of all particle tilt pairs will determine the validity of the map [139]. How-
ever, the use of tilt pairs is currently in disuse, so that, other validation methods
were developed. In particular, many reconstructed structured suffer overfitting. De-
spite the attempts of avoiding it by splitting the set of particles in two halves, the
named gold standard, it might appear in many reconstructions. Therefore, a tool
for overfitting detection is needed. To do that, a subset of particles can be replaced
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by random noisy particles and then the resolution of the reconstructed map with
the original set of particles and the replaced set is analyzed [75]. A quality mea-
surement called FSC that will be introduced later should notice this replacement
in presence of overfitting. The last group of methods performs alignability valida-
tion [187, 188], by considering the projection assumption each particle should be
a projection of the reconstructed map. Therefore, the angular assignment should
cast the most probable directions of each particle close to each other, in contrast to
a noisy particle.

Once the map has been validated, it should be reported a quality parameter that
allows to measure the reliability in spatial term of the reconstructed map. Thus,
the resolution concept arises as the smallest detail presented in the map. Despite
there are no consensus about an universal definition of resolution, this one is the
most spread. Note that resolution is the main topic of this thesis, being treated in
depth in Chapter 4.
The main problem of cryo-EM images is the high noise present in the data and
in the reconstructed volume. Thus, resolution measurements are focused on dis-
tinguishing signal and noise at different frequencies. To undertake that task there
are different metrics like: the Fourier Shell Correlation (FSC) [143], Differential Phase
Residual (DPR) [45, 123], or the Spectral Signal to Noise Ratio (Spectral Signal to Noise
Ratio (SSNR)) [119, 181]. For a deep review of these metrics see [166]. Currently, FSC
can be considered as the standard one in the field. It is defined as the normalized
cross correlation between two maps at different frequencies. In this sense, the FSC

measures self-consistency instead of being quality measurement. The frequency de-
pendence determines the resolution value as the frequency at which the FSC curve
crosses a certain threshold that ought to be properly chosen. For a deep discussion
about threshold criteria see [135, 166, 209]. The FSC is defined in Fourier Space, so
that concept of locality is lost, and as a consequence, the map background might
induces resolution errors. To avoid that the map ought to be masked, enhancing
the resolution measurement [8].
The FSC and other resolution measurements are global, reducing to only one num-
ber the whole macromolecule information. However, the degree of quality of the
reconstructed map can be spatially variant. Thus, methods for computing the local
resolution were developed, each of them under its own resolution definition. The
origin of this spatially variation of the resolution obeys to many fact as they are:
radiation damage, sample heterogeneity, the existence of preferred directions, or
a non-uniform coverage of the projection sphere. The first method to undertake
a local resolution estimation was Blocres [22], which uses two half maps to deter-
mine the local FSC resolution values by means of a local moving window. However,
the most extended method up to nowadays is ResMap [90], that, using a steerable
basis, calculates the best detection of local sinusoidal above the noise level. Thus,
resolution is defined as the measurement of sinusoidal features above the noise
level. Finally, the last resolution method called MonoRes, and it is one of the results
of this thesis [189]. It computes the local amplitude/energy of the density map at
many frequencies determining the highest frequency at which the energy can be
measured above the energy of noise.



4
O N T H E G L O B A L R E S O L U T I O N C O N C E P T A N D I T S
M E A S U R E M E N T

The main objective of the reconstruction workflow in electron microscopy is to get
the best possible density map of the macromolecular complex. It requires a metric
or a set of them to quantify what is understood by best possible map. This metric
can also be used for guiding the reconstruction process as well as for measuring
the quality. Resolution is one of them, unfortunately, this is a controversial concept
and the field of EM lacks of consensus about its definition [120]. Despite that, there
are different metrics focused on answering how much quality of degree of detail a
map has, they share a common point, resolution clearly is a spatial concept.
From the field of Optics/Physics, resolution has a single definition as the capability
of an imaging system for distinguishing two different objects/points. This defini-
tion makes resolution a property of the imaging system. Note that every imaging
system is limited by diffraction and, therefore, resolution will be too. Thus consid-
ering circular apertures, resolution be measured by the Airy disk and the Rayleigh
criterion [17]. This criterion can be considered as the standard resolution measure-
ment in optics. However, there also exist other criteria, as it is the case of Johnson
criterion [83], among others.
In EM the most widespread definition of resolution is the size of the smallest reli-
able detail in the map. The misunderstanding with this definition is to determine
a criterion to assess the smallest reliable detail. Thus many approaches to this
problem have been proposed, most important are: Q-factor [64], Fourier Shell Cor-
relation (FSC) [66, 144, 145], the Spectral Signal-to-Noise Ratio (SSNR) [119, 181]
or the Differential Phase Residual (DPR) [45, 123]. A review of all of them and
their relation each other can be found in [166]. In this chapter a brief review of the
resolution concept and its standard measurement is cryo-EM.

4.1 resolution concept from physics

Resolution describes the degree of detail that an optical system is able to discrimi-
nate, the higher resolution the higher quality and details can be seen in the image.
Resolution is then characterized by performance of the imaging system and as a
consequence, the natural approach to undertake the study of resolution concept is
analyzing the imaging optical systems.
An image of the object is acquired by an optical system, as it is the case of the
electron microscope. Maxwell conditions, given in Chapter 2, establish the require-
ments for getting a perfect optical system, i.e. with infinity resolution. Unfortu-
nately, these systems do not exist in the real world, and resolution is limited due
to the existence of aberrations (imperfections of the optical system) or by diffrac-
tion. Assuming that the instrument is aberration-free, then, resolution is limited
by the wavefunction of electrons (the geometry defines the shape of the wavefunc-
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tion), i.e. by diffraction, under this scenario resolution will be analyzed.
Consider a point source and an optical system with circular apertures that pro-
duces their image on a screen. Several configurations can be thought, the point-
source can be locate in a far point or near the to lenses. In Chapter 2 was demon-
strated that when the object is in a far point, the image is the Airy disc. Now it
will shown that the Airy disc is obtained with independence of the optical system.
In Fig. 21 an scheme of the two possible systems is shown. In (a), the source is
enough far from the lenses to be considered at infinity distance, that the image is
obtained at the focal plane, F ′; in (b) the object, O is relatively close to the lenses.
However the imaging lenses of the last scenario can be decomposed as two lenses,
as it is shown in (c), where the first image the object at infinity distance and the
second one is responsible of map the Airy disc is its focal plane. Hence, the Airy
disc, i.e the PSF is always obtained with independence of the system. Remind that
the Airy disc was defined as J1(x)/x, and the size of the Airy disc were determined
by the first zero of the Bessel function J1(x) (see chapter 2) casting

sin θ = 1.22
λ

2a
. (45)

Coming back to the resolution problem, consider two point sources separated each
other a distance 2a and located in the same plane orthogonal to the optical axis
of imaging instrument. Their image will be two Airy discs. Because the image
of a point is not a point, the Airy discs can overlap and perhaps the two point
sources might not be distinguished. Lord Rayleigh established a criterion to solve
this issue, Two point sources imaged by an optical system with circular apertures can be
distinguished if the distance between the center of their absolutes intensity peaks is smaller
than the radius of the Airy disc [17]. In Fig. 21 the criterion is graphically explained
with the overlapping of two Airy discs.

The criterion defines a resolution limit, but this limit is a property of the instru-
ment as well as an angular measurement, note that Eq. (45) relates the angular
accuracy of the instrument, which is the term sinθ, for imaging two sources sepa-
rated a distance 2a. It can also be transformed into linear distance by considering
paraxial approximation and multiplying Eq. (45) by the distance sources-lenses s,

s sin θ ≈ sθ = 0.61
s

a
λ, (46)

Note that the quotient as ≈ sinσ in paraxial approximation, where sigma is the
semi-acceptance angle of the optical system, i.e. NA = sinσ is the numerical aper-
ture of the instrument. What has been derived is the named Abbe criterion, that
related the linear resolution limit, r of the and instrument with its numerical aper-
ture NA,

r = 0.61
λ

NA
. (47)

According to Eq. (47) there are two ways of increasing the resolution limit, by de-
creasing the wavelength of the illumination source, or reducing the numerical aper-
ture of the imaging system, but again, resolution is a property of the instrument
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Figure 21: (left) Equivalence between several optical system with the object located at dif-
ferent distances from the optical system (a) at the infinity, (b) close to the lenses.
Note that (b) and (c) are equivalent systems. (right) Rayleigh criterion explained,
(d) two point sources can be distinguished because the distance between their
Airy is greater than the Airy radius, (e) the distance is exactly the Airy radius,
i.e resolution limit.

(dependence on NA). Note, that in the back focal plane, the Fourier transform of
the object is obtained, thus, by reducing the numerical aperture, the high frequency
information in the focal plane is removed, and therefore the resolution gets lower.
Let us finally summarize the Rayleigh criterion in a different manner as follows:
Consider the image of a point-object by a perfect optical system that is limited by
diffraction is a certain probability distribution named PSF; then two different point-
objects separated a distance smaller than the PSF size will not be distinguished.
This criterion only considers the measured intensity of the PSF, and therefore it is
incomplete because it neglects the phase information. If the phase is added assum-
ing that the wavefunction of the two emitter sources presents and entanglement
(i.e. they are not fully independent), then the resolution limited given by Rayleigh
can be surpassed [117, 118]. However, this new step forward is currently under
investigation being a hot topic in quantum optics, in contrast electron microscopy
is still far of the Rayleigh criterion.

Alternatively to the analysis of the instrument, it also possible to analyze only
the image to report a quality value. This is the idea behind the Johnson criterion
[83]. Despite it was born with a military purpose and is not too much widespread
it is very illustrative of the resolution concept. Johnson’s approach is focused on
the recognition of targets in acquired images. To do that, it makes use of a Ronchi
test, i.e. a fringe pattern composed by white and black lines (a white line followed
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by a black one is named pair of lines). Thus, the Johnson criterion determines
the threshold that gives the minimum number of pairs of lines to first detect, sec-
ond identify and third recognize a given target. In Fig. 22 the Johnson criterion
is graphically shown. Thus, in a very simple manner and considering a given dis-
tance object-instrument, the resolution that allows to detect/identify is obtained by
overlapping a fringe pattern (on the display/screen) along the smallest dimension
of the image, and then counting pair lines. Note that the Ronchi test introduces the
notion of frequency, and the contrast of the pattern is of course related with the
SNR which will be seen it is close related with the standard resolution measure-
ment in electron microscopy.

Figure 22: Scheme of the Johnson criteria, a fringe pattern is overlapped with the image in
the display, the resolution that allows to detect/identify/recognize is obtained
by counting the number of pair lines along the smallest dimension. (Image taken
from [83])

4.2 resolution in electron microscopy

As it was shown in the previous chapter, in electron microscopy applied to struc-
tural biology an structure is reconstructed from a set of images. There are many
kinds of electron microscopes that can used to acquire images. Note that from an
optical point of view the resolution is a property of the instrument and therefore
because of this variety the application of optical resolution criteria to EM-maps is
unfeasible. Moreover, at the end of the the reconstruction workflow a 3D structure
instead of an image is obtained, meanwhile in optics the two points to be distin-
guished lay on the same plane. However, by establishing an analogy with optics
but leaving the instrument out, the resolution of a complex can be defined as the
smallest detail/information that can be distinguished in the structure. Thus, it is
necessary to provide a metric, independent of the instrument, that reports this
smallest dimension. As well as it occurred with optics criterion, the problem is the
arbitrariness of this definition. In particular, how it is established a size threshold
that determines if a detail of the complex is reliable or not. To cast more light on
this issue, consider instead of a complex structure, a single atom, and we won-
der about the resolution of a single atom. This is a fuzzy question to ask, physics
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lacks of a unique answer; electrons present an uncertain in their position being
the orbitals the probability regions. If the bond of atoms is considered hybrid or-
bital appear, and again probability regions in which electron can be found in are
defined, but their limit is undefined. This fact is even worse when the effect of
temperature is included, i.e. atomic vibrations of atoms also make fuzzy the atoms
limits. Summarizing, from physics there is no criteria to define the limits of atoms
or bonds or complexes, and therefore, coming back to electron microscopy, to find
a unique resolution definition will be impossible.
In cryoem several resolution metrics were developed but each of them involves
different criteria, in this chapter only the most important will be explained, the
FSC. For a deep review of resolution measures see [166].

4.3 fourier shell correlation - fsc

The macromolecule is modelled by a function, x(r), depends on the position r.
The macromolecule is embedded in ice, and its reconstruction is susceptible to
present certain kind of noise modelled by n(r). Thus, the reconstructed structure
is modeled as f(r) = x+n or equivalently in Fourier Space,

F(ω) = X(ω) +N(ω), (48)

where ω represents the frequency in Fourier space and the capital letters F,X and
N are the Fourier transforms of their respective functions in small letter, f, x and
n.
The FSC is defined as the normalized cross-correlation at difference frequencies
between two maps, f1(r), f2(r). This metric is perform in Fourier Space as

FSC(r,∆r) =
∑
r∈ F1(r)F

∗
2(r)√(∑

r∈∆r |F1(r)|
2
)(∑

r∈∆r |F2(r)|
2
) , (49)

where F1 and F2 are the Fourier transform of the respective maps f1 and f2, and ∆r
is the thickness of a Fourier shell. Note that FSC presents a frequency dependence,
the resolution value is determined as the frequency at which the FSC crosses a
given threshold that ought to be chosen properly. The most used, as they are 0.5,
0.143 and 1/3will be briefly discussed taking advantage of mathematical shortcuts.
However, for rigorous mathematical proofs see [166, 209].

4.3.1 On the FSC measurements

Currently, the FSC has become the standard resolution measurement in the field.
For this reason its meaning and properties must be analyzed.

1. Self-consistency measurement: The FSC is calculated as a cross-correlation, that
measures the self-consistency at different frequencies between to functions f1
and f2. Thus, the FSC is a self-consistency measurement more than a quality
metric. It does not take into account systematic errors in the reconstruction
process, on contrary, it rewards them.
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2. Global measurement: Resolution can locally vary, as a consequence of the exis-
tence of heterogeneity, flexibility, angular assignment problems, or radiation
damage. The FSC does not consider these effects, it reports one number as
resolution of the whole map.

3. Threshold dependence: There exist different criteria to establish a resolution
limit that defines the global resolution of the structure. Below, several thresh-
olds are discussed.

4. Mask dependence: As a cross-correlation measurement it depends on the shape
of the functions involved in the cross correlation. When they are masked to
remove the background (noise) the cross-correlation is affected and therefore
the FSC. Or alternatively, the FSC is defined in Fourier Space, as a conse-
quence, concept of locality is lost and the map background might induce
resolution errors. To avoid that the map ought to be masked [8].

5. Invariant under global linear transformations: Linear transformations as it is the
case of B-factor correction (see, Chapter 7) leaves invariant the FSC. The FSC
enhancement that the a sharpening post-processing using a global B-factor it
is due to a tight mask.

6. Measurement of SNR: Considering the FSC as the normalized cross-correlation
between two maps, f1 and f2, then it can be proved the following relation [14,
166]

SNR =
NCC

1−NCC
=

FSC

1− FSC
. (50)

In this sense, the FSC is an alternative but equivalent measurement of the
SNR.

4.3.2 FSC-threshold of 0.5

This threshold appears when it is assumed that there is the same amount of noise
and signal, i.e. SNR = 1. Under this assumption by substituting in, Eq. (50) a value
FSC = 0.5 is obtained.
The named Gold Standard that was introduced in Chapter 3 suggests a method
for map validation and prevents the existence of overfitting. It considers two in-
dependent reconstructions by splitting the original set of data (set of particles in
the case of SPA) in two halves [57, 148]. Of course, both reconstructions should be
similar, and ideally the same. Thus, to quantify the degree of self-consistency be-
tween them the FSC curve is calculated, and the proper threshold for this scenario
is justified to be set as 0.5, i.e. SNR = 1. However, this threshold underestimates
the resolution because it only consider the half number of particle to perform the
reconstructions.
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4.3.3 FSC-threshold of 1/3

This threshold considers the whole set of data to properly estimate the resolution.
To double the data implies to reduce the amount of noise in a factor two, rewritting
Eq. (50) and substituting SNR→ SNR/2,

FSC =
SNR

1+ SNR
→ FSC =

SNR

2+ SNR
, (51)

And considering again a value of SNR = 1 the resolution for the whole data set will
correspond with and FSC threshold of FSC = 1/3. Unfortunately, despite being a
very straight forward derivation this threshold is not commonly used.

4.3.4 FSC-threshold of 0.143

In many cases, it is known the atomic model of the structure under study. Hence,
it is possible to calculate the FSC between the reconstructed map considering the
whole set of particles and the reference, i.e. the atomic model converted into den-
sity map. Note that reconstructed map will sum of a perfect map s and noise n,
therefore, in Fourier space it can be written as F1 = S+N where S and N are the
Fourier transforms of the perfect map and noise, respectively. In the case of the
reference, it is noise-free and thereby F2 = S. Then the FSC with the reference will
be

FSCref =

∑
r∈∆r(S+N/

√
2)S∗√(∑

r∈∆r

∣∣∣S+N/√2∣∣∣2)(∑r∈∆r |S|2)
= (52)

=

√√√√ ∑
r∈∆r |S|

2∑
r∈∆r |S|

2 + |N/2|2
=

√
2FSC

1+ FSC
. (53)

Note that if FSC = 1/7, then FSCref = 0.5. In other words, when the of the re-
construction considering the whole set of particles is SNR = 1, then, it correspond
with and FSC value half-half FSC = 1/7 = 0.143.

Despite these three derivations of FSC threshold consider an exact result [135],
a rigorous proof must take into account the distribution of noise and signal by
calculating the expected value of the FSC as it is done in [166]. However, for sake
of simplicity the original derivation is kept in this introduction.
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5
L O C A L R E S O L U T I O N

In electron microscopy, the resolution concept is frequently a global parameter that
describes the degree of detail that can be detected in density maps. However, as
G. Cardone pointed out in his article entitled One number does not fit all [22], reso-
lution presents a spatial dependence. It means that the quality of the volume may
vary usually from one region to another, thus the resolution concept ought to be
extended as a local measurement. The explanation of these resolution differences
lays on the structure shape, existence of heterogeneity and the reconstruction pro-
cess among others.
In contrast to the overall resolution, where the FSC is the most spread method
and currently could be considered the standard one, the measurement of local
resolution maps is relatively recent. It was first introduced in 2013, with the ar-
ticle by G. Cardone et. al [22] when the blocres method was proposed. The idea
is simple, it computes a local FSC by means of two half volumes and a moving
window wherein the FSC is calculated. The main pitfall and inconvenience is to
determine properly the window size. Moreover, all problems related with FSC are
inherited, like the background sensitivity (mask dependency) or its invariance un-
der isotropic transformations. The second method for estimating local resolution is
ResMap [90], and it is currently the most widely used method. Briefly, it considers
that one point can be measured at certain resolution, 1/λ, by checking if a local
sinusoid of wavelength λ is statistically detectable above the noise level. The main
advantage is its simplicity, requiring only the user interaction for the prewhitening
step. Moreover, it can work with a single volume or two half maps which increase
the versatility.
Despite blocres and ResMap provide good results they present drawbacks that we
wanted to solve: first, to achieve a fully automatic method that avoid the user
intervention and second, to design an algorithm computational enough fast to
deal with large maps in short computational times. Thus, in this chapter, two new
methods addressed to estimate local resolution in density maps called MonoRes
and MonoTomo, are explained. They share the mathematical algorithm under slight
modifications that make it suitable to be applied in SPA or electron tomography
reconstructions. To do that, MonoRes and MonoTomo make use of an extension of
the concept of analytic signal, called monogenic signal. Then, making a frequency
sweep and calculating the correspondent monogenic signal at each frequency, a de-
composition in phase and amplitude is achieved. The resolution is assigned voxel
by voxel by means of hypothesis tests. If the amplitude of the voxel is significantly
higher than the amplitude of the noise, then that voxel can be measured at the fil-
tering resolution. To our knowledge, MonoTomo is the first local resolution method
in electron tomography up to nowadays, which may open new horizons and ap-
plications in the field.

63
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5.1 on local resolution and its origin in spa

As was pointed out in Chapter 4, it is broadly accepted that the resolution repre-
sents the smallest detail that can be distinguished in an object seen by an optical
system. In the case of electron microscopy resolution is a property of the recon-
structed structure and defines the smallest feature that can be identified. However,
when different regions of the same the map are studied, it is noticed that the small-
est measurable feature size in each region may be different. This suggests that
resolution is a local measurement. It is then useful to quantify these resolution
gradients as a resolution map that provides the spatial degree of reliability of the
reconstruction. To do that, the spatial variability of the SNR can be used, which
allows to reinterpret resolution in a local manner as the highest local frequency
above the noise level. It avoids the over-interpretation of the map. Regarding with
the origin of local resolution, the spatial dependence seems to be very plausible.

Regarding with the origin of the physical and mathematical mechanisms respon-
sible of different local resolution values. The reconstruction process in SPA ideally
considers that all images are projections of the same complex (in the absence of
flexibility) and that the angular projection space is well covered. Thus, a perfect
reconstruction should present the same degree of detail for any direction and any
location. However, reality is different. For example, particles might not be exactly
the same since there can be some heterogeneity in the macromolecules being im-
aged. Radiation damage can also be responsible of this fact, or even the flexibility
of the structure. Moreover, the angular orientation and in-plane alignment of the
particles used for the reconstruction can be incorrectly identified or, instead, a pat-
tern of uneven orientation distribution may be present in the data [157]. The result
is an electron density map in which different regions may significantly differ in
their quality. Most methods for determining the resolution of a map are global
and do not take into account these local or orientation differences.

5.2 dealing with locality. analytic and monogenic signals

Images or volumes are composed by signals defined by multiple frequencies. Im-
age features are the direct consequence of this spatial-varying frequencies. The
access to local properties, as a decomposition in terms of phase and amplitude,
allows to characterize image anomalies. The mathematical background to measure
local and directional resolution is based on that decomposition, in concrete, in the
amplitude term. This task is carried out by means of the analytic signals which
were introduced by the laureate Nobel prize Denis Gabor [47] and have and found
many applications in a broad kind of fields [48, 124]. Its extension to images is
called monogenic signal [39]. In the case of density maps, the concept needs to be
redefined due the extra dimension-3D, thus, for this purpose it was extrapolated.
In the appendix at the end of this chapter deeper mathematical details are shown.
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5.2.1 Analytic signal

Analytic signals constitute a mathematical formalism that allows decomposing a
function into an envelope and phase terms. Given a 1D signal, s(t), its analytic
signal, sa(t), is defined as the complex representation given by

sa(t) = s(t) + isH(t), (54)

where i is the complex unity and the function sH(t) is the Hilbert transform of the
signal s(t), defined as the convolution between the original signal and the kernel
h(t) = 1/(πt) as follows

sH(t) = (s ∗ h)(t) = 1

π

∫∞
−∞

s(τ)

t− τ
dτ. (55)

This expression gets simpler defining the Hilbert transform in Fourier space

ŝH(ω) = −isign(ω)ŝ(ω) = −isign(ω)ŝ(ω), (56)

being ω the frequency variable, ŝ the Fourier transform of the signal s(t) and
sign(ω), the sign of the frequency, ω. This means, that the Hilbert transform ap-
plied to the Fourier transform, performs a phase shift of the original signal of
+π/2 to the negatives frequencies and a shift of −π/2 to the positive frequencies.
A very simple example to illustrate the Hilbert transform is a sinusoidal function,
f(t) = cos(ωt); its Hilbert transform will be the function H [f(t)] = sin(ωt), which
exactly presents a shift of ±π/2 for negative and positive frequencies respectively.
So that, considering a function that can be expressed in a Fourier series, the Hilbert
transform will be such that the sines are swapped for negative cosines and the
cosines term are changed to sines.

The analytic, sa(t), can be then decomposed as the product of an instantaneous
amplitude,

A(t) =
√
s2(t) + s2H(t), (57)

and an exponential phase factor, φ(t) = arg(sa(t)) = atan(sH(t)/s(t)), such that

sa(t) = A(t)e
iφ(t). (58)

In Fig. 23 an example of the decomposition that allows to perform analytic sig-
nals is plotted. The original function was s(t) = cos(3t)e−(t−8)2/10, thus, Eq. (56)
that defines the Hilbert transform introduces a phase shift of π/2, which can be
seen in the figure as a displacement of the maxima/minima. Finally, note that
the amplitude calculated with Eq. (57) defines the envelope of s(t) signal and the
Hilbert Transform performs a phase shift from the original signal.
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Figure 23: Signal decomposition. A signal s(t) (continuous-black) its amplitude (red-
dashed) and its Hilbert transform (blue-dotted).

5.2.2 Monogenic Signals in 3D:

It would useful to take advantage of the virtues of the analytic signals for ex-
tracting amplitude and phase but applied to 3D-signals. One of the extensions of
this kind of signals to 2D, called monogenic signal, is the wide used Spiral Phase
Transform [94, 184, 185]. There have been several extensions of the Hilbert trans-
form to dimensions higher than 2, unfortunately, with absence of consensus by the
mathematical community. Here, it is used an extension from 2D to 3D via Riesz
transform and based on previous 2D-applications [39, 180]. The Riesz transform is
defined in the 3D-Fourier domain a

ŝR(ω) = −i
ω

||ω||
ŝ(ω) = −i

(
ωx

||ω||
ŝ(ω),

ωy

||ω||
ŝ(ω),

ωz

||ω||
ŝ(ω)

)
, (59)

where ŝ denotes the Fourier transform of the signal s,ω is the 3D-vector frequency
variable, and ωj is its x,y, z component. Note the resemblance between the Fourier
definition of the Hilbert transform Eq. (56) and the Fourier definition of the Riesz
transform Eq. (59).

The monogenic signal is then defined by next quaternion

sMG(r) = s(r) + isR,x(r) + jsR,y(r) + ksR,z(r), (60)

where i, j,k are the quaternion complex unities. Equivalently, considering the Riesz
vector, sR = (sR,x(r), sR,y(r), sR,z(r)) and σ = (i, j,k),

sMG(r) = s(r) +σ · sR(r). (61)

The generalization to higher dimension makes use of a Clifford algebra defining
N “imaginary units” (complex numbers and quaternions are particular cases of a
Clifford algebra for N = 1 and N = 3, respectively). Note that i2 = j2 = k2 = −1,
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ij = k, jk = i, and ki = j (complex numbers and quaternions are particular cases
of a Clifford algebra for N = 1 and N = 3, respectively).

We now calculate the monogenic amplitude as

A(r) =
√
s2(r) + s2R,x(r) + s

2
R,y(r) + s

2
R,z(r). (62)

As in the 1D case, this variable quantifies the local amplitude/envelope of the
input signal (the macromolecule map, in our case) and it can be understood as
local energy . For sake of clarifying the concept of monogenic signal a correspon-
dence between 1D and 3D expressions between analytic a monogenic signals is
established in Table. 1.

Concept Unidimensional-Signal Multidimensional signals

Transform Hilbert Riesz

ŝH(ω) = −isign(ω)ŝ(ω) ŝR(ω) = −i ω
||ω||

ŝ(ω)

Transformed Signal Analytic Signal, sa(x) Monogenic Signal, sMG(r)

s(x) + isH(x) s(r) + isRx(r) + jsRy(r) + ksRz(r)

Amplitude A(x) =
√
s2(x) + s2H(x) A(r) =

√
s2(r) + ||sR(r)||r

Table 1: Comparison between parameter derived from 1D and 3D signals, i.e. between
analytic-monogenic signals.

5.3 monores algorithm . measuring local resolution in spa

This section explains the details of the proposed algorithm, named MonoRes, for
computing the local resolution of elucidated structures. The problem to solve is as
it follows: Given a density map, the objective is to obtain another map in which the
intensity of each voxel represents the local resolution of that voxel in the original
density map. This map is named local resolution map.
The concept of resolution as a measurement of SNR is considered but in a local
sense. The locality is achieved by using monogenic signals, in particular, the mono-
genic amplitude. However, the key point is the measurement of noise. A mask can
be used to establish a frontier between structure and background (noise) and then
to analyze them separately. However, it must be highlighted that this separation
structure-noise by means of a mask is only an approximation, because the region
with structure also contains noise. Note that, macromolecular complexes are em-
bedded in ice, and the projection assumption implies the ice projection. Thus, two
approaches can be carried out to characterize the noise, and they will determine
the two possible inputs of MonoRes:

1. Single map: This kind of input assumes that the is no signal outside the mask,
i.e. there is only noise outside the mask. The input map will be denoted as
V(r).
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2. Two half maps: This approach allows to determine the noise that is mixed with
the structure, i.e, the noise inside the mask. If V1(r) and V2(r) are both halves,
then, two maps are computed, the mean volume,

V(r) =
1

2
(V1(r) + V1(r)) , (63)

and a noisy map, N(r), that can be obtained the difference,

N(r) =
1

2
(V2(r) − V1(r)) , (64)

where, the factor 1/2 is used to set the variance of the difference map and
make it comparable with the mean volume, V(r), as a consequence of the
addition of two random variables as it is the case of V1(r) and V2(r).

Note that in both cases, the density map to analyze its local resolution with MonoRes
is denoted by V(r), which in the two half maps will be the mean of them.
Regarding to the details of MonoRes algorithm, it is based on two pillars: 1) high-
pass filter the volume and compute its local monogenic amplitude, and 2) noise
characterization and hypothesis tests at that frequency to determine if the local
energy of a voxel is significantly greater than the energy of noise at the filtering
frequency. Although, these two pillars coarsely summarize the MonoRes algorithm,
it is obviously more complex. Thus, a detailed enumeration with all specific steps
is given below, moreover, in Fig. 24 a scheme are shown.

1. High pass filter: The original map (or the mean map using two halves), V(r),
is high pass filtered at a specific frequency, ω0. The result is a filtered map,
VHP,ω0(r). It is noteworthy that filtering may cause a ripple known as Gibbs
effect. To alleviate it, the high pass filter implements a raised cosine.

2. Monogenic amplitude: Using the filtered map, VHP,ω0(r), the monogenic am-
plitude, AMG,ω0 , at the filtering frequency is obtained as (see Appendix)

AMG =

√
VHP,ω0(r)2 +

∑
j=x,y,z

VαHPR,ω0
(r), (65)

where VjHPR,ω0
(r) are the Riesz components of the high pass filtered map

V
j
R,ω0

(r) = F−1

[
−
ωj

||ω||
F[VHP,ω0(r)]

]
(66)

3. Low pass filter: The monogenic amplitude is susceptible to show some ripples
of high frequency due to the non-linear character of Eq. (65). To avoid them,
it is smoothed with a low pass filter at the same frequency ω0.

4. Noise and energy threshold: In this step the noise distribution is characterized.
When the input of MonoRes is a single volume, the noise distribution is ob-
tained from all voxels outside the mask, as was mentioned above. In contrast,
if the input are two half maps, the noise map N(r) = 1

2
(V2(r) − V1(r)) is

used to compute the noise distribution inside the mask. In both cases, noise
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distribution is characterized by its respective mean and standard deviation,
µn and σn. It allows to establish a threshold (an hypothesis test) to deter-
mine if statistically a given voxel can be distinguished from the noise (with
significance 1−α)

ε = CDF−1(1−α), (67)

where CDF is the cumulative distribution function of monogenic amplitudes
of noise. Note that, in the particular case in which the noise is gaussian, the
threshold can be written as

ε = µn +CDF−1
N(0,1)(1−α)σn, (68)

beging CDFN(0,1) the cumulative distribution function of a normal distribu-
tion. In MonoRes implementation the significance is set to 0.95 (default value).

5. Determining resolution: For each voxel of the structure (inside the masked vol-
ume), it is checked if the local energy is greater than the calculated threshold,
ε. If it is the local structure can be measured at the filtering frequency, ω0.
This set of steps is repeated from low to high frequencies, i.e. it is repeated
at a new frequency ω1 > ω0 and the resolution of each voxel will be the last
measured resolution with local energy greater than the calculated threshold.
To avoid the existence of false negatives in the hypothesis test, the resolution
is assigned when the hypothesis test fails two consecutive frequencies.

Before showing MonoRes results and with the aim of really understanding the
method, an unidimensional example is shown. Thus, in Fig. 25 (left-top) a uni-
dimensional signal is composed by 3 frequencies (resolutions) of 1/20, 1/10, and
1/5 a.u (red-line). The signal is perfectly defined in a compact region, that in the
case of 3D-maps is defined by the mask. Finally, gaussian noise was added with
standard deviation of 0.2 a.u. (blue line). The monogenic amplitude (amplitude
of the analytic signal) was calculated, it is represented in Fig. 25 (right-top). The
blue, red and green lines are the amplitude of the noise-free signal, noisy signal,
and only noise respectively. Note how the amplitude has non-zero value only in
the finite region in which the signal is located. When the original signal is high
pass filtered (second, third and fourth rows in Fig. 25) the monogenic amplitude
is affected, but it still keeps energy in the region with higher frequencies than the
frequency filter. Note that the moment for which the amplitude cannot be distin-
guished from noise, defines the resolution value (leaving out false positive that
are not described in this simple explanatory example). Finally, in the last row, the
amplitudes of the noise and signal cannot be statistically distinguished. This is the
idea behind MonoRes, to perform a frequency sweep of high pass filters at different
frequencies, determining if the local energy is statistically higher than noise.

5.4 local filtering

Once a structure is reconstructed, it is common to low pass filter the obtained
map at its resolution value with the aim of removing noise and enhancing the
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Figure 24: Scheme of MonoRes algorithm. HPF and LPF means high pass and low pass
filter respectively.

visualization of the macromolecule. The knowledge of local resolution suggests
to do this postprocess filtering in a local manner. Additionally to the local reso-
lution map, MonoRes is able to provide a local filtered map, thanks to it imple-
ments this filtering taking advantage of the high pass filter. Note that, when the
map is high pass filter, a low pass filtered map is also obtained by computing
VLP,ω0(r) = V(r) − VHP,ω0(r). Thus, the voxels at resolution ω0 are taken from
the low pass filtered map (at the same frequency) creating the local filtered map,
taking advantage of the frequency sweep that MonoRes uses.

5.5 monores results

To analyze MonoRes, it was tested with synthetic maps as well as experimental re-
constructions showing a good performance in both scenarios. Synthetic data were
produced with atomic models taken from the PDB [13] database and, converted
then into density map. In contrast, the experimental maps were directly taken
from EMDB [95].

5.5.1 Tests with synthetic maps

The aim of the tests was to check the capabilities of MonoRes in maps with known
resolution. Despite the fact that in most of cases the use of synthetic volumes is far
from reality, the tests represent necessary conditions for resolution measurement,
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Figure 25: Explanatory unidimensional example of MonoRes algorithm. (left) a signal com-
posed by several frequencies is high pass filtered. (right) The monogenic ampli-
tude detects the loos of energy as a consequence of the high pass filter. Original
signal and its amplitude in red. Noisy signal and its corresponding monogenic
amplitude in blue, the green line defines the monogenic amplitude of the noise.

and therefore, they serve to calibrate the algorithm and determine its accuracy.

5.5.1.1 Tests with low pass filtered map

This first test was addressed to: 1) check if MonoRes is able to recover the highest
frequency of a map when it is low pass filtered at a given resolution; 2) validate
the use of two halves and, 3) determine the computational capabilities of MonoRes
dealing with large maps. To do that, a synthetic map was created from the atomic
model of type IVa pilus machine (PDB-3JC9) [24] by converting the atomic model
into a density map using xmipp_volume_from_pdb [161], which has proved to pro-
duce accurate simulations of atomic structures.

1. Map 1 - Regular size map, filtered at 10Å: The conversion from the atomic model
to the density map was performed specifying a sampling rate of 1 Å/pixel,
resulting in a volume of 500× 500× 500 voxels. This map was then low pass
filtered to 10 Å; meaning that Fourier coefficients are multiplied by 1 up to
10 Å , and then the filter smoothly falls to 0 at a resolution of 8.3 Å. Finally,
gaussian noise was added with standard deviation of 0.08.

2. Half Maps, filtered at 10 Å: This is essentially the same case as Map 1, but
we now wanted to test the MonoRes capability for accepting as input to half
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maps and correctly estimate the noise map from them. The first half map
was Map 1, meanwhile the second half map was created as the Map 1, but
making sure that the noise realization was different.

3. Map 2 - Large size map, filtered at 10 Å: A large size map was created in order
to test how MonoRes deals with large volumes. In this case, the synthetic elec-
tron density map was calculated specifying a sampling rate of 0.5 Å/pixels,
yielding a map of size 1, 000× 1, 000× 1, 000 voxels. This map was again fil-
tered at 10 Å with a transition band of 0.02 (normalized frequency units) in
width. The filtering process makes that frequencies higher than 7.1 Å should
not be part of the filtered map. The noise added was gaussian with standard
deviation of 0.08 a.u.

In the three examples the effect of the low pass filter was to remove all resolu-
tions higher than 10 Å. Therefore, the expected value of local resolution should
not be higher than the cutoff frequency at 10 Å. The results of local resolution
estimation can be seen in Fig. 26 where the local resolution maps and resolution
histograms for the Map 1 and the two half maps are shown. The third synthetic
map that consider the large map with size 1, 000× 1, 000× 1, 000 voxels was not in-
cluded in the figure, because it casts essentially the same histogram and map that
the synthetic Map 1. In all cases, it must be highlighted that as it was expected,
MonoRes was not able to find resolutions beyond the transition band and most of
the resolution are around the cutoff frequency of 10 Å. The resolution histograms
are very useful for identifying this fact, see Fig. 26.

Figure 26: Results of MonoRes showing the colored map by local resolution values, a repre-
sentative slice and the histogram of resolution for (A) Map 1 - Regular size map
filtered at 10Åand (B) using half maps, filtered at 10Å.
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5.5.2 Test with multiple low-pass filtered regions

The previous tests are necessary conditions of a local resolution method, however,
density maps present a broad range frequencies. In this test, Monores deals with
this situation. Hence, the atomic model of the glutamate dehydrogenase (PDB-5k12)
[109] was converted into density map using xmipp_volume_from_pdb [161]. The
converted map was then segmented in the regions that were independently low
pass filtered at 2, 4 and 6 Å respectively. Finally, gaussian noise was added with
zero mean and standard deviation of 0.08 a.u. The local resolution of this map
was estimated with MonoRes which was able to correctly determine the filtering
frequency of each region as it is shown in Fig. 27.

Figure 27: Local resolution map and a representative slice calculated with MonoRes for
the the map obtained from the atomic model of the glutamate dehydrogenase
filtered by segment at frequencies of 2, 4 and 6 Å.

5.5.3 Tests with experimental maps

Once the performance of MonoRes was checked in controlled scenarios, it was
applied to determined the local resolution of experimental maps deposited in
EMDB [95]. In particular, the following maps were considered: the β-galactosidase
[1] (EMDB-6287), the proteasome 20S (EMDB-6287) [20], capsaicin receptor TRPV1

(EMDB-5778) [99], an aquareovirus (EMDB-5160) [200], and Nucleosome (EMDB-5160)
[26]. In these cases, it is not possible to predict the results for the local resolution
values. However, it is expected that they will be close to the FSC resolution re-
ported by the authors of these maps. In addition, other local resolution methods,
as they are blocres and ResMap were also used to establish a comparison. Note that
they compute the local resolution with different algorithms, and therefore their
definition of local resolution is different, that makes that the calculated local reso-
lution maps are susceptible of presenting slight differences.
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5.5.3.1 Experimental Map 1: β-galactosidase

The experimental map of the β-galactosidase in complex with a cell-permeant in-
hibitor (EMD-2984)[1] was considered as first experimental example to estimate its
local resolution map. It presents a pixel size of 0.637Å/pixel and box dimensions
of 292× 292× 292 voxels. The reported FSC gold standard at 0.143 was 2.2 Å, so
that, it represents a very high resolution map. The EMDB entry 2984 contains the
full map as well as the two half maps. Thus, the local resolution map was calcu-
lated using both approaches: 1) a mask and the full map or 2) the mask and two
half maps. The mask was created preserving the structural information by thresh-
olding the map, and applying a small dilation. In addition, it was provided for
computing the local resolution of this experimental example by different methods
(MonoRes, ResMap and blocres). The results can be observed in Fig. 28.

1. A mask and the full map: The local resolution map was computed using MonoRes
and ResMap. The obtained local resolution values were in the range [2.0,4.8]
Å, with median at 3.3 Å and standard deviation of 0.6 Å for MonoRes and
in the range [2.2,5.0] Å, with median at 2.6 Å and standard deviation of 0.6
Å for ResMap. The respectives resolution histograms and a representative
slice of the local resolution map are shown in Fig. 28. It is noteworthy the
resolution difference between the median that both methods report. To ana-
lyze this fact, the histogram of the resolution difference was calculated, they
present a difference of 1.1 Å and a standard deviation of 0.6 Å. This fact will
be explained below.

2. A mask and two half maps: In this case, the local resolution map was computed
using MonoRes, ResMap and blocres. The obtained local resolution values were
in agreement with the previously obtained for the full map. Thus, MonoRes
got a median resolution of 3.2 Å with a standard deviation of 0.4 Å, ResMap
cast a median resolution of 2.7 Å with standard deviation of 0.6 Å and fi-
nally blocres reported a median resolution of 2.6 Å with standard deviation
of 0.1 Å using the criterion of FSC at 0.5. Regarding to the histogram of reso-
lution difference between the three methods, the results are almost identical
to the full map. The difference Monores-blocres shown a median value of 1

Å with standard deviation of 0.6 Å, and the difference MonoRes-ResMap cast
a difference median value of 1 Å and a standard deviation of 0.4 Å. This
result points out that the resolution measurement is robust using a single or
two half maps.

To analyze the resolution disagreement around 1 Å in the median local reso-
lution between MonoRes and the other resolution methods, we decided to analyze
the map of the β-galactosidase. In particular, we use the definition of median, thus,
a median reported by ResMap and blocres around 2.6-2.7 Å, means that the half of
the voxel present resolutions higher than 2.6-2.7 Å. As a consequence, if a high
pass filter at 2.6 Å is applied, the half of the structure should be preserved, or
at least structural information should be observed. In Fig. 29 this experiment was
carried out, thus, it shows the central slice of the high pass filtered map. Note the
absence of structural information, this fact is reported by MonoRes and is the origin
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of the discrepancy between these methods.
It also should be remarked that MonoRes uses the mask for locate the points in
which the local resolution will be computed. Thus, the MonoRes map is very tight
in contrast with the reported by ResMap that uses another algorithm.

Figure 28: (left) Local resolution map of the β-galactosidase (EMDB entry 2984) obtained
with MonoRes, (center) a representative slice calculated with MonoRes or ResMap,
and their local resolution (right). (a) Results if a single full map, and (b) consid-
ering two half maps.

5.5.3.2 Experimental Map 2: Proteasome 20S

The second case of use considers an experimental map of the Proteasome 20S taken
from EMDB (EMDB entry-6287)[20]. It presents a pixel size of 0.982 Å/pixel with box
dimensions of 300× 300× 300 voxels. The reported FSC gold standard at 0.143 was
2.8 Å. As well as it happened with the previous example, this EMDB entry provides
the full maps and two half maps. The local resolution map will be then calculated
using both, i.e. the full map and a mask, and the two halves and the same mask.
Again, the mask was carefully created by thresholding the map avoiding the loose
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Figure 29: Central slice of the β-galactosidase, when the map is high pass filtered at 2.6 Å.

of structural details. Hence, the local resolution map was calculated with MonoRes,
ResMap and blocres (with two halves). The results can be observed in Fig. 30

1. A mask and the full map: MonoRes and ResMap were used to estimate the local
resolution of this map. MonoRes reported resolution in the interval [2.0, 4.6]
Å with median of 2.8 Å and standard deviation of 0.5 Å. ResMap got similar
results, its resolution range was [2.2, 6.0] with median at 2.7 Å and standard
deviation of 1.0 Å. As a consequence, both methods cast essentially the same
result. The histogram of local resolution difference between MonoRes and
ResMap supported this result with a median of 0.4 Å and standard deviation
of 0.5 Å. The results can be observed in Fig. 30

2. A mask and two half maps: In this case, the local resolution estimation was
carried out considered MonoRes, ResMap and blocres. The results are sum-
marized in Fig. 30. Hence, MonoRes got a median resolution of 2.9 Å with
standard deviation, of 0.5 Å, ResMap determined a median resolution of 2.9
Å with standard deviation of 1.0 Å, meanwhile blocres reported a median
of 3.0 Å with a standard deviation of 0.2 Åmeasured with the FSC criterion
at 0.5. In essence the three methods got the same results and spectral range.
To check that, the histograms of resolution difference were calculated. Thus,
the difference between MonoRes and ResMap exhibits a median of 0.6 Å with
standard deviation of 0.6 Å, and the difference between MonoRes and blocres
reports a median of -0.03 Å and with standard deviation of 0.5 Å. This result
points out that there is, in this case, a high similarity between MonoRes and
blocres.

5.5.3.3 Experimental Map 3: Aquareovirus

To test MonoRes with large maps the reconstruction of an Aquareovirus (EMDB

entry 5160) [200] was considered. It presents a size of 740× 740× 740 voxels with
a pixel size of 1.1 Å/pixel. The reported FSC-resolution for this map was 3.2 Å.
In the tests involving synthetics maps MonoRes was able to deal with larger maps
than this one. However, now the real resolution is unknown, but must be close to
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Figure 30: (left) Local resolution map of the Proteasome 20S (EMDB entry 6287) obtained
with MonoRes, (center) a representative slice calculated with MonoRes or ResMap,
and their local resolution (right). (a) Results if a single full map, and (b) consid-
ering two half maps.

the FSC value.
The dimensions of this large maps considerably increase the computational time
requires by other algorithms involves to a point of making them impractical. For
that reason, only MonoRes algorithm was used to compute the local resolution. The
results are summarized in Fig. 31. MonoRes pointed out a median resolution of 4.2
Å with standard deviation of 0.6 Å, being the resolution range from 3.0 Å to 5.6
Å. It can be observed in Fig. 31 that the inner structure of the virus presents higher
resolution than the outer part.

5.5.3.4 Experimental Map 4: capsaicin receptor TRPV1

The fourth experimental example considers the capsaicin receptor TRPV1 (EMDB
entry 5778) [99]. This map is specially of interest because it is a membrane pro-
tein that presents a wide range of resolutions. The map has a dimension of 256×
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Figure 31: (left) Local resolution map of the Aquareovirus (EMDB entry 5160), (center) a
representative slice, and (right) the local resolution histogram.

256× 256 voxels and a pixel size of 1.1 Å/pixel. The reported resolution was reso-
lution 3.8 Å calculated via FSC at 0.143 with gold standard procedure. The mask
was again created by thresholding the map, and then the local resolution was calcu-
lated, in this case only considering the full map. MonoRes and ResMap were applied
to estimate the local resolution map. The results, that can be seen in Fig. 32, show
a resolution range from 2.0 Å to 8.0 Å. Monores obtained a median resolution of
4.2 Å with standard deviation of 1.1 Å. In contrast, ResMap got a median local
resolution of 4.0 Å with standard deviation of 0.8 Å. These results are very similar,
however, MonoRes presents a wider dispersion than ResMap. It is noteworthy that
in both cases, the dispersion is higher than in the previous examples, in agreement
with the broad resolution range that this map presents. However, MonoRes seems
to be slightly more conservative in the resolution measurement than ResMap, the
histogram of resolution difference support this fact with a median resolution of 0.8
Å and standard deviation of 0.95 Å.
Finally, the use of the local filter that MonoRes provides was used. This reconstruc-
tion is a good candidate to show this filter, because the broad resolution range that
it presents. The results of the local filter are shown in Fig. 32, exhibiting a clear
map as a consequence of the local noise suppression.

Experimental Map 5: Nucleosome

This last experimental example will illustrate how MonoRes is able to work even
at low resolution as it usually occurs when the structure is obtained via subto-
mogram averaging. Thus, the nucleosome particles decorating chromatin plates
from metaphase chromosomes (EMDB-0117) were analyzed [26]. This map presents
a pixel size of 4.21 Å/pixel and very small dimensions 50× 50× 50 voxel. This
structure was reported with a FSC-resolution value (at 0.143) of 30 Å.
The local resolution map was computed with MonoRes which casts as result the
map shown in Fig. 33. Note that the FSC reported is in the resolution range pro-
vided by MonoRes. The low resolution of this map complicates to trace an atomic
model. However, the local resolution map enriches the reconstruction, the very low
resolution regions support the hypothesis that the DNA wraps the core (in red).
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Figure 32: Results of the local resolution analysis with MonoRes, ResMap and blocres. (left)
Local resolution map of the capsaicin receptor TRPV1 with MonoRes (EMDB
entry 5778), (center) a representative slice, and (right) the local resolution his-
togram.

Moreover, the histones regions present a higher resolution (blue color) than the
rest of the map, meanwhile the membrane also exhibits a very low resolution (in
red).

Table 2 summarizes the results of MonoRes, ResMap and blocres for the analyzed
experimental cases.

5.6 discussion of monores results

A new algorithm, named MonoRes, for estimating the local resolution of SPA den-
sity maps has been proposed. The method is based on a local decomposition in
phase and amplitude of the density map at different frequencies, analyzing if the
local amplitude of the signal is significantly higher than the amplitude of noise.
In this sense, MonoRes can be understood as a local measurement of SNR, being
the local resolution value as the limit in which noise and signal cannot be distin-
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Figure 33: Local resolution map under different points of view of the nucleosome structure
obtained via subtomogram averaging from chromatin plates from metaphase
chromosomes.

Volume FSC (Å) MonoRes range (Å) ResMap range (Å) blocres range (Å)

β-Galactosidase 2.2 [2.0, 4.8] (3.3) [2.2, 5.0] (2.6) –

(using halves) 2.2 [1.6, 4.0] (3.2) [2.0, 5.0] (2.7) [2.2, 4.2] (2.6)

Proteasome 2.8 [2.0, 4.6] (2.8) [2.2, 6.0] (2.7) –

(using halves) 2.8 [2.0, 4.1] (2.9) [2.2, 6.0] (2.9) [2.8, 4.0] (3.0)

Aquareovirus 3.6 [3.0, 5.6] (4.2) – –

Nucleosome 30.0 [19.0, 80.0] (–) – –

Table 2: Summary of local resolution for the experimental cases. The number in parenthesis
is the local resolution median.

guished.
The set of tests involving synthetic maps provide a very rich understanding of the
local resolution concept. When a map is low pass filtered, the higher resolution
information beyond the cutoff frequency is completely destroyed. This simple test
is, therefore, a proof of concept of the local resolution measurement. MonoRes was
able to pass these tests with success. Moreover, it can deal with very large maps,
in short computational times.
The examples with experimental maps allowed to check the MonoRes performance
with real data, and to establish a comparison with other methods of the state of the
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art, as they are blocres and ResMap. The comparison showed that MonoRes seems
to be a more conservative local resolution measurement.

5.7 on the resolution concept and the origin of local resolution

for electron tomography

Resolution as a global measurement was explained in Chapter 4, in particular, the
FSC as the standard metric in SPA. In electron tomography, the resolution measure-
ment is not broadly used, despite that there are a few methods to compute it. The
most spread is an extension of the FSC metric. However, it requires two indepen-
dent tomograms, that are named odd and even because they are reconstructed
with the half of the tilt series images, i.e. the odd and even images are used to
reconstruct their respective tomograms. Due to this slight difference, this FSC is de-
noted as FSCe/o [21]. Alternative to this method, the so-called Noise-compensated
Leave One Out (NLOO) can be applied [21]. In this approach, the tomogram is
reconstructed with all images except one, and then it is re-projected along the ori-
entation of the orientation of the image that was left out to finally compute the FSC

between the re-projection and the image. This alternative is more robust than the
FSCe/o because it keeps the angular sampling, but less used due to its higher com-
plexity. Other metrics were also proposed as the use of FSC under conical filtering
[121]. For a deep review on resolution measures in electron tomography see [40,
91].
The need of a local resolution measurement was discussed in section 5.1. However,
the physical and mathematical origins that produce it are different in SPA and elec-
tron tomography. It is obvious that the sample geometry and the image quality
will determine the local resolution, but there are external aspects that produce res-
olution loses.
The main difference between SPA and electron tomography is the measurement and
reconstruction processes. While in SPA the conditions of homogeneous sample and
projection assumptions were considered (see Chapter, 3, section 3.1) in electron
tomography the first one does not apply because, there is only one complex to be
imaged. Thus, the 3D information is obtained by tilting the specimen and acquir-
ing images at different tilt angles, the set of tilt images is named as a tilt series. In
SPA, the homogeneous sample condition can be slightly broken as a consequence of
sample flexibility, or conformational changes. Note that these two factors explains
the loss of resolution in certain regions of the macromolecule. However, because in
electron tomography there is only one complex, local resolution cannot be caused
by effect of flexibility or heterogeneity and, it must be produced by other factors.
Electron tomography samples are usually larger and thicker than SPA ones. These
two facts along with the tilting process represent sources of local resolution vari-
ations in electron tomography. Note that a point close to the tilt axis are better
resolved in the tomogram than the further ones. By tilting, the sample suffers a
spatially variant defocus in the acquired images. This introduces a blurring that
reduces the resolution. The ice thickness is also important, note that the large
dimension of the specimen makes that the ice thickness depends on the sample
position. These fact imply a spatially variant SNR. Finally, regarding to the recon-
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struction process, an image alignment is required (tilting the sample introduces
an image misalignment), thus, the quality of the reconstruction depends on the
goodness of this alignment, which has also impact on the local resolution.

5.8 monotomo - a local resolution method for electron tomog-
raphy

The use of MonoRes for measuring local resolution has no more limitations than
the noise characterization. However, its application to electron tomograms instead
of SPA reconstructions imply the following two important problems:

1. Dealing with very large maps: In contrast to SPA in which a single macro-
molecule is reconstructed, electron tomography considers the reconstruction
of big structures of assemblies of macromolecular complexes, making that
the reconstructed tomogram presents large dimensions. It represents a com-
putational challenge in terms of computation and memory. It implies that
MonoRes algorithm must be modified in terms of computational speed.

2. Noise characterization: This is the main problem that for sake of simplicity it
will be split in two:

a) Access to a noise model: The use of a mask gives access to the noise dis-
tribution (this happens with a single or two half maps). In the case of
electron tomography, the use of a mask is also possible. The very low
SNR that tomograms present difficult in many cases the structure dis-
tinction, and therefore, the mask creation. Thus, the mask requirement
should be avoided, making necessary another method to get a model of
noise.

b) Spatially variant noise: One of MonoRes assumptions is that noise is spa-
tially homogeneous. This hypothesis is not necessary true in electron
tomography. In the previous section, two facts were mentioned, the spa-
tial dependence of the ice thickness and defocus, which might produce
a spatially variant noise. Thus, MonoRes algorithm must be adapted to
deal with this new kind of noise.

A fully automatic algorithm, named MonoTomo, was proposed as a MonoRes
adaptation to overcome these two drawbacks.
The first problem is least important, and it was easily solved by a careful re-
implementation of MonoRes algorithm. However, the second one completely mod-
ifies the way of measuring. The following solutions were proposed:

1. Solution to the access to a noise model: It considers the approach introduced
in Section 5.3 in which a map of noise is calculated by the difference of
two half maps, see Eq. (64). Thus, a tomogram of noise can be obtained by
the difference of two tomograms reconstructed with the half of the acquired
images. These two half tomograms, named odd and even, can be obtained
following one of the next two methods that are graphically explained in Fig.
34:
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a) Splitting the set of micrographs: This approach was suggested in [21]. The
images that define the tilt series (set of micrograph acquired at a dif-
ferent tilt sample angles) is split in two independent subsets of images.
They are created by assigning alternatively the images of the tilt series,
i.e. the images corresponding to odd and even angles will define the
odd and even set of images respectively. Hence, the so called odd and
even tomograms are reconstructed. It must be highlighted that if ∆θ is
the angular step of the whole tilt series, the odd and even set of images
will present a step of 2∆θ.

b) Splitting the set of frames: Alternatively to the previous approach, we sug-
gest to split the set of frames that define acquired movie at each tilt
angle of the tilt series. Thus, the set of frames is split in two subsets
of frame, that by language extension will be also named odd and even.
They allow to carry out two independent tomograms again named odd
and even. The previous alignment step is carried out with all images,
once they have been aligned, the frame spitting is undertaken. It is note-
worthy that using this approach, the angular step of the tilt series is kept
in the odd and even tomograms. It will be shown that this concept can
take advantage specially when the tilt series was acquired with a high
angular step.

As it occurred in SPA with half maps, a mean tomogram is calculated, i.e. if
To(r) and Te(r) are the odd and even tomograms, then, the mean tomogram
is calculated as,

T(r) =
1

2
(To(r) + Te(r)) , (69)

and the noise as

N(r) =
1

2
(To(r) − Te(r)) . (70)

Note, that due to the noise model is obtained via difference (odd and even),
the angular sampling of the tilt series affects to the model, in particular, when
it is high. In this sense, by splitting frames has the advantage of better de-
termination of the noise model because it keeps the angular step of the tilt
series. This is the reason why, we observed that when the angular sampling
of the tilt series is greater than 2 degrees, the estimation of local resolution
by splitting in odd and even micrographs might present drawbacks as a con-
sequence of the 2∆θ angular step of the odd and even images, in contrast to
the approach of splitting the set of frames. This problem will be explained in
the discussion section.

2. Solution to spatially variant noise: MonoTomo solves it by means of a moving
window of size 100× 100× 100 pixels. The noise distribution in each win-
dow is then calculated, which allows to determine the noise threshold for
performing the corresponding hypothesis test. It is reminded that the thresh-
old is calculated from the CDF of the noise distribution with a significance
of 1−α = 0.95, as was pointed out in Eq. (67)
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Figure 34: Set of images is split in odd and even images to reconstruct the odd and even
tomograms respectively.

Once the noise model is obtained with its spatial dependence, it is possible to
carry out the MonoTomo algorithm to determine the local resolution of the calcu-
lated mean tomogram. The idea is essentially the same as on MonoRes, MonoTomo
will perform a frequency sweep from low to high resolutions, high-pass filtering
the tomogram (step 1 - MonoRes), T(r), calculating the monogenic amplitude (step
2 - MonoRes) and then low-pass filtering it (step 3 - MonoRes). Finally, an hypothesis
test is performed with the voxels of the filtered monogenic amplitude obtained in
the step 3. However, this hypothesis test must be considered in a local manner, due
to the noise distribution might be spatially dependent. For this reason, MonoTomo
calculates the spatially variant thresholds. If the filtered monogenic amplitude of
a specific voxel if statistically greater than noise in a local sense (hypothesis test),
that voxel can be measured at the filtering frequency. Finally, regarding to the pos-
sibility of false positives in the hypothesis test, the MonoRes criterion of failing
consecutively twice the test, is kept in MonoTomo.

5.9 monotomo results

MonoTomo was tested on experimental Cryo-Electron Tomography (cryoET) data
taken from EMPIAR (entries 10110[25], 10115[171], 10027[82] and 10164 [152]). In
contrast to MonoRes results were the maps can be directly computed once they are
taken from the data base, these data sets provide the raw data as a tilt series which
implies to carry out the alignment step before reconstructing the tomogram. This
process was common to all data sets.
The alignment step was based on fiducials and performed with IMOD [89]. Thus,
the splitting step was undertaken. In the cases of EMPIAR entries 10110, 10115,
10027 the raw data set only contains images, and therefore, they were split into
odd and even micrograph. In contrast, the EMPIAR entry 10164, that has movies,
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was split following the frames approach. Independently of the splitting method,
the two subsets odd and even were aligned by considering the parameters of the
alignment of the full set. Hence, the odd and even tomograms were reconstructed
and these reconstructions are the MonoTomo input.
MonoTomo result is a local resolution map in which each voxel represent the local
resolution of the same voxel in the mean tomogram computed from the two halves.
With the aim of determining the validity of MonoTomo results, the FSCe/o was
also calculated, with and without a mask to remove the background. Results are
summarized in Table. 3.

EMPIAR entry 10110 10115 10027 10164

Tilting Range (0) [-60.00,60.00] [-64.00,64.00] [-60.00,60.00] [-60.00,60.00]

Angular step (0) 1.0 1.0 1.5 3.0

Pixel Size (Å) 4.04 9.46 3.3 0.675

Binning (a.u.) 4x Å 2x 4x 2x

Tomogram Size 928× 960× 400 1016× 1096× 200 960× 928× 200 960× 928× 400
Splitting Micrographs Micrographs Micrographs Frames

MonoTomo (Å) [40,120] Å [40,120] [30,110] [15,45]

FSCe/o (Å) 121 Å 128 Å 98 Å 32 Å

FSCe/o masked 43 Å 45 Å 31 Å 30Å

Table 3: Experiments summary. The FSCe/o threshold was (0.143).

5.9.0.1 Experimental Case 1: EMPIAR entry 10110

The data set was a tilt series taken from the EMPIAR entry 10110 [25], which contains
Vibrio cholerae cells imaged. The angular step of the tilt series was of 1 degree with
tilt angles from -60.00 to +60.00 degrees and a pixel size of 4.04 Å. With the aim
of reducing the computational effort, the images were binned by a factor 4 that
implied an increment of a pixel size to 16.16 Å/pixel. Once the set of images
was aligned (with IMOD), it was split (micrograph splitting) in the odd and even
subsets to reconstruct the odd and even tomograms, each of them with 928× 960×
400 voxel. MonoTomo computed the local resolution. In Fig. 35 slices under different
view of the local resolution map as well as the original tomogram are shown.
Looking at Fig. 35 MonoTomo points out that resolution is achieved in regions with
biological information or structures like fiducials or borders, and they are in a
range between 40− 120 Å. In addition, MonoTomo assigns the lowest resolution to
the structure free regions, note that also there is a smooth transition in resolution
range between structure content and background. Finally, the FSCe/o (at 0.143)
was 121 Å. This value that is in the limit of MonoTomo resolution range is explained
because of the absence of the mask. However, when a mask is provided, the FSCe/o
(at 0.143) achieves a value of 43Å, in agreement with MonoTomo resolution range.
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Figure 35: Tomogram (a) of the data set entry from EMPIAR 10110 and (b) its corresponding
local resolution slices.

5.9.0.2 Experimental Case 2: EMPIAR entry 10115

A tilt series corresponding to imaged Escherichia coli cells at tilt angles from -64.00

to +64.00 degrees with an angular sampling of 1 degree were taken from EMPIAR

entry 10115 [171]. In this case the pixel size was 9.46 Å/pixel. Again to speed
up the computational time and reducing the computational charge, images were
binned by a factor 2 which changed the pixel size to 18.92 Å/pixel. The images
were aligned with IMOD and split (micrograph splitting) in the odd and even
subsets to reconstructed the odd and even tomograms with size 1016× 1096× 200
voxels. MonoTomo used them to calculate the local resolution map, see Fig. 36. In
this case, MonoTomo cast resolution in the range from 40-120 Å for region with
structural information, meanwhile the FSCe/o was 128 Å(at 0.143). Again, this
value in the border of MonoTomo resolutions range is increased to 45 Å when a
mask is provided.

5.9.0.3 Experimental Case 3: EMPIAR entry 10027

The tilt series taken from EMPIAR 10027 [82] contains images of the structure of
intact bovine F1Fo ATP synthase in 2D membrane crystals. They were acquired
with an angular sampling of 1.5 degrees with a tilt angle from -60.00 to +60.00

and a pixel size was 3.3 Å per pixel. The binning factor was 4 getting turning
the pixel size into 13.2 Å per pixel. The alignment step (with IMOD) was carried
out and the set of images was split (micrograph splitting) in odd and even sets
to reconstruct the odd and even tomograms with dimensions of 960× 928× 200
voxels. The local resolution was then calculated with MonoTomo showing a range
from 30 to 110 Å for regions with structural information, see Fig. 37. Finally the
Fourier Shell Correlation eve odd (FSCe/o) reported a value of 98 Å (at 0.143) when
it is computed without mask and 31 Å if a mask is used. These values are both in
MonoTomo resolutions range.
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Figure 36: Tomogram (a) of the data set entry from EMPIAR 10115 and (b) its corresponding
local resolution slices.

Figure 37: Tomogram (a) of the data set entry from EMPIAR 10027 and (b) its corresponding
local resolution slices.

5.9.0.4 Experimental Case 4: EMPIAR entry 10164

This experimental example made use of the EMPIAR entry 10164 in which movies
of the HIV-1 virus were acquired. It must be highlighted that in this case, the
dataset is composed by movies, in contrast to the previous three examples. The
angular sampling was 3 degrees from -60.00 to +60.00 degrees of tilt and the pixel
size 0.675 Å. The movies of the tilt series were aligned with MotionCor2 [203] to
get a tilt series of images. Thus, the set of frames at each tilt angle was split in
two subsets (odd and even), and they were aligned using the parameter obtained
parameters by MotionCor2. The result was two tilt series that keep the angular
step of the original tilt series. Hence, both tilt series (odd and even) were finally
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used to reconstruct the odd and even tomograms. Finally, MonoTomo was used to
computed the local resolution map, which cast values in the range from 15 to 45

Å for regions structural information. The FSCe/o value was also calculated being
32Å (at 0.143) without mask, and 30 Å when a mask is provided. These values
are in the MonoTomo range.
For this dataset it is remarkable that the angular step is the highest of the four
examples shown in this thesis. It implies that if instead of splitting in frames, the
splitting is carried out in micrographs, the angular sampling of each half would
be 6 degrees, which represent a considerable lack of information causing problems
in the detection of local resolution measurement. In fact, that test was carried
out, and the result was that the local resolution map could not be determined.
Therefore, splitting in frames is a worthy solution to compute the local resolution
in tomograms that presents a high angular step.

Figure 38: Tomogram (a) of the data set entry from EMPIAR 10164 and (b) its corresponding
local resolution slices.

5.10 discussion of monotomo results

A new and fully automatic method, named MonoTomo, for estimating the local res-
olution was proposed. Up to our knowledge it represents the first local resolution
method in the field in electron tomography. Its fundamental are the MonoRes algo-
rithm with an adaptation to deal is spatially variant noise.
The measurement of resolution in electron tomography is not widely used, the
most spread methods are global and they are the FSCe/o and the NLOO [21]. The
first one has problems when the angular sampling is low. However, it is the most
used. The FSC computes the cross-correlation between two independent reconstruc-
tions, however, as a cross-correlation measurement, it is mask dependent. It implies
an added drawback for the resolution measurement, because the very low SNR in
electron tomography makes the mask creation difficult, and also it may introduce
a bias due to the subjectivity of the user when a mask is created. A proof of the
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mask dependency can be observed in the results of FSCe/o values with and with-
out mask for the experimental tomograms. MonoTomo is mask independent and
only report resolution values in those voxels with structural information. As a con-
sequence, it avoids the user bias of mask creation by an accurate statistical analysis
of local SNR. Moreover, the reported resolution range that MonoTomo provides is
in agreement with the FSCe/o with the advantage of being a local result that also
informs about the resolution variation along the different tomogram regions.
To estimate the local resolution MonoTomo makes use of the monogenic amplitude.
In our test we saw that for angular sampling lower than 3 degrees the reliability
of MonoTomo is compromised, as a consequence of the very low SNR that compli-
cates the proper estimation of the monogenic amplitude and the model of noise.
For this reason the splitting frames approach that allows to keep the angular sam-
pling gives good results with a low angular sampling of 3 degrees.
The analysis of local resolution in electron tomography has not been explored
yet, being MonoTomo the first approach to this need. It obviously opens new hori-
zons with impact in critical steps of electron tomography workflow, as they are
the guidance of tilt-series alignment, particle picking for subtomogram averaging,
local sharpening and local filtering, or as segmentation tool.

5.11 conclusions

1. A new and fully algorithm, MonoRes, for computing the local resolution in
SPA reconstructions has been proposed.

2. MonoRes assigns a resolution value when the local amplitude of the signal
cannot be statistically distinguished (hypothesis test) from the amplitude of
noise, i.e. it represents a local measurement of SNR.

3. MonoRes is invariant under B-factor correction and linear global transforma-
tions.

4. Results using synthetic data provides a high accuracy of the resolution esti-
mation.

5. MonoRes design and its implementation allows to estimate the local resolu-
tion of large maps in short computational times.

6. The proposed method is also able to locally filter map by the local resolution
values.

7. Up to our knowledge the first algorithm, MonoTomo, for computing the local
resolution in electron tomography has been proposed.

8. MonoTomo is based on MonoRes considering that the noise is spatially depen-
dent.

9. The splitting frames approach is introduced as a new method of splitting
datasets.
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10. As a first algorithm of local resolution, MonoTomo opens new possibilities in
the field like: subtomogram averaging, alignment, segmentation, sharpening
or local filtering.

5.12 appendix : fundamentals of monogenic signals

The analytic and monogenic signal in 2D mathematically well defined. Neverthe-
less, up to our knowledge, the community lacks of a consensus about the gener-
alization of analytic signals to N-dimensions. In this appendix, it is suggested an
extension to N-dimensions of the concept of Monogenic signal based on a general-
ization o the Riesz transform.

5.12.1 Monogenic Signal in N-dimension

In this appendix, a justification about the generalization to the advantages of an-
alytic signal for extracting amplitude an phase in 1D signal are extrapolated to
N-dimensional euclidean spaces. Unlikely, the Hilbert transform ought to be gen-
eralized to higher dimensions. The Riesz transform can be somehow considered
that generalization. Following the same way as the Hilbert transform, the Riesz
transform is derived in 2D in [39], a generalization to N dimensions is carried out.
At the end using this generalization a definition of N-dimensional monogenic sig-
nal is proposed.

5.12.1.1 Riesz Transform

Considering an orthonormal basis, {e1, e2..., eN}, of RN, an arbitrary point with
coordinates (x1, ..., xN) will be represented by a position vector, r. Thus, let us
solve the Cauchy problem defined by the partial differential equation under next
contour condition

g(r) = ∇ρ(r), (71)

gN(r, 0) = f(rN−1), (72)

∇× g(r) = 0, (73)

∇ · g(r) = 0. (74)

Where an an harmonic potential ρ(r), implies an harmonic vectorial field g with
coordinates gj(r) for j = 1, ...,N. Conditions given by Eqs. (73) and (74) defines
g(r) as a conservative field and the energy is therefore conserved. Due to N is an
arbitrary number the vectorial notation rN−1 = (x1, ..., xN−1), has been used in Eq.
(72). By taking Fourier transforms in (71), F {g} = F {∇ρ}, results

G(x1, x2, ...,uj, ..., xN) = 2πiujP(x1, x2, ...,uj, ..., xN) (75)
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where G(x1, x2, ...,uj, ..., xN) and P(x1, x2, ...,uj, ..., xN) are the Fourier transforms
along dimension j of g(r) and ρ(r) respectively. The condition of harmonic poten-
tial, F

{
∇2ρ
}
= 0 derives in the new differential equation

−4π2q2P(u1, ...,uN−1, xN) +
∂2

∂x2N
P(u1, ...,uN, xN) = 0 (76)

being q2 = ||u|| =
∑N−1
i=1 u

2
i . The solution of Eq. (76) is

P = C(uN−1)e
2πqxN (77)

where uN−1 = (u1,u2, ...,uN−1) and C(uN−1) is an arbitrary function defined by
initial conditions, that do not concern. Once the function P has been calculated, it
will be introduced in the original Partial Differential Equation (PDE), Eq. (71); then
by taking Fourier transform, the following set of N equation is obtained

Gj(uN−1, xN) = 2πiujP(uN−1, xN), j = 1, ...,N− 1. (78)

GN(uN−1, xN) = 2πqP(uN−1, xN), j = N. (79)

If Eq. (79) is introduced in (78),

Gj(uN−1, xN) = i
uj

q
GN(uN−1, xN) (80)

Making now use of the contour condition Eq. (72), the limit xN → 0 will be per-
formed, thus, Eqs. (80) is rewritten as it follows

Gj(uN−1, 0) = i
uj

q
F(uN−1) (81)

where F(uN−1) = F {f(rN−1)}. The set of Fourier transformations Gj(uN−1, 0) with
j = 1, ...,N− 1 can be grouped as a

FR(uN−1) = (G1(uN−1, 0),G2(uN−1, 0), ...,GN−1(uN−1, 0)) . (82)

The Riesz transform is thus defined in the Fourier domain:

FR(u) = i
u
||u||

F(u), (83)

which can be expressed in the real space

fR(u) = F−1

{
i

u
||u||

F {f(r)}
}

. (84)

being fR(u) = F−1(FR(u)) the Riesz transformation of a function f(r).

5.12.1.2 Monogenic Signal

Using the Riesz transformation a generalization of the concept of analytic signal
can be defined by means of a Clifford algebra of M dimensions. An arbitrary ele-
ment z of this kind of associative algebra is represented as

z = z0 + i1z1 + i2z2 + ... + iMzM, (85)
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where, zj ∈ R for all j, and ij for j = 1, ...M are called imaginary units and verify
next properties: i2j = −1, ijik = −ikij. The particular cases where M = 1 and
M = 3 derive the fields of complex numbers and quarternions.
Given an integrable real signal f(r with Riesz transform, fR(r) = (fR1(r), ..., fRN(r)),
the monogenic signal, fMG(r), is defined as

fMG = f(r) −
N∑
α=1

iαfRα(r). (86)

This definition allows to define an amplitude AMG(r) as

AMG(r) =

√√√√f(r)2 + N∑
α=1

fRα(r)2. (87)

The amplitude of the monogenic signal contains all the information about local
energy in a particular point of the space r.



6
L O C A L - D I R E C T I O N A L R E S O L U T I O N A N D A N I S O T R O P Y
M E A S U R E M E N T

A complementary analysis to the resolution measurement is to determine the ex-
istence of anisotropies. The concept is simple, it aims to elucidate if the obtained
structure presents directions in which the quality is better than in others. That is
the case of tomograms: they exhibit better resolution in the XY plane than along
the Z axis as a consequence of the missing wedge produced in their measurement
procedure. The measurement of the resolution anisotropy was recently introduced
in electron microscopy, with the simultaneous and independent publications of
two methods addressing this issue as they are the 3DFSC [172] and the efficiency
[111]. The first one consists on a directional FSC, which is the natural extension
to the standard FSC. The difference between them is the use of a cone along the
direction under study in the Fourier domain to compute the cross correlation be-
tween two half volumes, i.e. it represents a self-consistency measurement. When
all the directions in the projection sphere are considered, it is possible to construct
a 3DFSC. Using the 3DFSC, Tan et. al, [172] defines the spherericity parameter to
determine the degree of anisotropy of a volume. However, this approach is global,
leaving unsolved possible local anisotropies. The second method measures a PSF

from the fall of the signal power along all the possible directions of the projection
sphere. Then, it computes the efficiency parameter to model the shape of the cal-
culated PSF.
Hence, both measurements are global and leave unsolved the existence of local
anisotropies. Considering this, a new method named MonoDir was developed to
measure the local anisotropy and provide local directional resolution maps. The
core of this method is MonoRes algorithm, in which the high pass filtered is re-
placed by a high pass directional filter via Fourier cones. The result is a map of
local resolutions along the selected direction. When this approach is carried out
covering all the directions in the projection sphere, the directional resolution infor-
mation of each voxel is obtained, and then, the local resolution anisotropy can be
determined. In particular, it is reported as the interquartile range of the distribution
of directional resolutions for each voxel. Surprisingly, the local anisotropy is less
relevant than the information that can be derived from directional local resolution
measurements. Hence, it is possible to analyze the quality of the reconstruction via
a set of indicators as they are: the Average Directional Resolution map, the local
directional interquartile resolution dispersion map, the radial average resolution
and the highest resolution angular plot. In this chapter, these indicators will be
carefully explained. Briefly and in advance, it is essential to remark that they allow
to infer the existence of preferred directions and bad angular coverage of the pro-
jection sphere, as well as angular assignment errors. Note that MonoDir provides
very enriched information about quality reconstruction, without using the set of
particles, it means with the only knowledge of the reconstructed map. In addition,
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to our knowledge, MonoDir is the first local directional resolution method in the
field.

6.1 on the anisotropy and resolution by direction

Firstly, the term isotropy has to be defined. The term makes reference to a geomet-
rical property or a transformation which is directionally preserved with indepen-
dence of the direction. Mathematically, it can be defined as an invariant property or
feature under the rotation group (SO(2) for images or SO(3) for volumes). When
an image/volume lacks of isotropy, it is called anisotropic, i.e. the studied property
changes in at least two different directions.
The chosen property to analyze its anisotropy was the resolution. However, it was
shown in the Chapter 5 that it can be measured via two approaches: global (FSC-
SSNR) or local (MonoRes, ResMap or blocres). Similarly to the resolution, the 3DFSC

[172] and the efficiency[111] are global resolution anisotropy metrics that inform
about the coverage of the projection sphere. Here, a local anisotropy measurement
is introduced with the Monodir algorithm.
Leaving out how to calculate it, resolution by direction means that, it is possible to
assign unidimensional sinusoidal waves along the analyzed direction, with wave-
length up to the directional resolution value. The set of all resolutions by direction
can be represented by the named resolution surface, where the distance from a point
to the center of the resolution surface is the resolution value along the direction
defined by these two points. Because of the symmetry of the projection sphere, this
surface must be symmetric and its shape will determine the degree of anisotropy.
Resolution will be isotropic if the resolution value is directionally invariant. The
anisotropy are then the deviations of this invariance. This means that when a vol-
ume is isotropic, the directional resolution surface will be a sphere. Therefore, to
measure the anisotropy requires estimating the deviation to this sphere i.e. to char-
acterize the resolution surface shape. Note that this interpretation of anisotropy is
valid in a global or a local sense. Thus, the global approaches as the 3DFSC [172]
and the efficiency[111] define a surface from directional measurements, and then
characterize the shape of the surface as anisotropy measurement. In the local ap-
proach that Monodir algorithm provides occurs exactly the same, but in a local
manner.

6.1.1 Anisotropy causes

There are many reasons causing an anisotropic reconstructed volume, however the
common motif of them is the lack of information at certain frequencies in a particu-
lar direction. A clear example is a random conical tilt volume or a tomogram. They
have no information in the missing cone/wedge and the result is an elongated
volume along the missing direction and therefore an anisotropy of resolution in
such a direction. Other causes are shared with local resolution as it is the case of
preferred directions. Even when the angular projection space is well covered some
directions can be better resolved due to the quality or the number of projections in
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that direction. The last cause is the existence of heterogeneity or mobile element,
they introduce a blurring effect, and therefore a low resolution region.

6.2 measuring local directional resolution and resolution anisotropy

- monodir

To characterize the local resolution anisotropy it is necessary to analyze the local
resolution variation along the all possible directions. The knowledge of this local
resolution variation allows to extract local information and from them infer global
characteristics about the density map.
The basis of MonoDir is MonoRes, with the introduction of addional directional
filters. As a consequence, the input will be the original electron density map and
a mask. The mask establishes a frontier allowing to determine the distributions
of noise and signal (particle), which are used in MonoRes to assign the resolution
values. The algorithm starts uniformly covering the angular projection sphere, and
for each direction MonoRes is applied with a directional high pass filter along the
chosen direction. The result is a map of local resolution by direction. Once all
directions have been analyzed, a set of resolution maps as large as the number of
directions is obtained. Then, all these maps are analyzed to determine the highest
and lowest local-directional maps, the Average Directional Resolution map and its
local resolution interquartile range map (local dispersion map), the angular plot
and the radial average plot. The meaning of these outputs will be explained below.
The details of the algorithm are explained step by step as follows, and in Fig. 39 a
scheme is shown.

1. Generate directions: The projection sphere is uniformly discretized in a set of
N directions. This is a well known problem named point picking. It presents
many solutions, the chosen one was considers a dome built from an icosahe-
dron [12].

2. Directional filter: For each angular direction, the map is directionally filtered.
This kind of filter is defined in the Fourier space as a cone such as only the
frequencies inside it are kept, the rest are removed. The cone axis is defined
by the filtering direction, and a cone angle 15 degrees, see Fig. 39 (the cone
angle was empirically set). When the original density map is directionally
filtered, the result will be a fringe pattern oriented along the perpendicular
direction to filtering one. Note that this is the concept of Fourier transform,
a decomposition of a function as a sum of independent waves with different
frequency.

3. MonoRes - Local directional Map: In this step MonoRes is used to determine
the local resolution of the directional filtered map. Unfortunately, this task is
not so simple and MonoRes must be considerably adapted to deal with two
problems that appears in the monogenic amplitude

a) Gibbs effect: This is a well known effect that occurs when the Fourier
transform of a function with a non-evitable discontinuity is performed.
It is characterized by a high frequency ripple at the extremes of the
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Figure 39: MonoDir scheme. A set of directions are generated uniformly covering the pro-
jection sphere, the map is then directionally filtered, and by means of MonoRes,
its local resolution is calculated. When all directions are computed, the result is
a set of local resolution maps that allows to measure local resolution anisotropy,
angular alignment errors and the existence of preferred directions.

function domain. To avoid it, the monogenic amplitude is masked with
a spherical mask smoothed by a raised cosine, this task is performed
before applying the low pass filter, see MonoRes workflow in Chapter 5.

b) Noise anisotropy: The mask established a border between signal and
noise. However, the effect of directional filtering might introduce anoma-
lies in the noise region that perturb the noise estimation. To avoid them,
the noise is determined in the intersection of a cone with axis along the
filtering direction and a spherical crown defined by the largest macro-
molecular radius and the half of the box size. See Fig. 40.

This fine modification of MonoRes to determine local-directional resolution
maps is critical to properly estimate the resolution.

Points 2 and 3 are repeated until all the generated directions in the Step 1 are
analyzed. The result is a set of local resolution by direction maps as large as the
number of directions (Note, that at the end a resolution tensor is calculated). This
set contains a lot of information about the original volume, that will be analyzed
in next sections.
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Figure 40: Region considered for noise estimation. The filtering direction is represented
by the green arrow. In blue the noise estimation region, it is defined as the the
intersection of a cone along the filtering direction with a spherical shell. In red
appears the part of the spherical shell that is neglected in the noise estimation.

6.3 local information provided by monodir

As a consequence of the local-directional analysis a set of local maps are calculated:

1. Local highest and lowest resolution maps: For all voxels their lowest and high-
est resolution can be determined, producing two output volumes: the local
highest and lowest resolution maps. These maps establish a resolution bound
and loose the directionality, note that given two voxel their highest/lowest
resolutions can be achieved along different directions. It must be highlighted
that for a given voxel, the highest and lowest local-directional resolution val-
ues are determined in an statistically robust manner, it means taking the
percentiles 0.05 and 0.95 of the local-directional resolution distribution.

2. Radial and tangential local resolution maps: Assuming a reference system in the
center of the map, the position of each voxel is defined by three coordinates
(i, j,k). If spherical coordinates are considered, then, the vector (i, j,k) deter-
mines the radial direction. Thus, for each voxel a radial and tangential de-
composition can be carried out. We define the radial resolution of the voxel
(i, j,k) as the local-directional resolution of that voxel along the direction
(i, j,k). Similarly, we define the tangential local-directional resolution as the
average of the direction in the orthogonal plane to the direction (i, j,k). Note
that the resolution of these maps must be between the highest and lowest
local-directional resolution volumes.

3. Average Directional Resolution map: A voxel located in r will present a directional-
resolution distribution as a consequence of measuring its resolution along all
possible directions. The Average Directional Resolution map is defined as

ADR(r) =
Lr(r) +Hr(r)

2
, (88)
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where the subindex r specifies the highest and lowest resolution of the voxel
r considering robust statistics, i.e. Hr(r) and Lr(r) are the percentiles 0.05

and 0.95 the directional-resolution distribution. For a perfect reconstruction,
ADR = Hr(r) = Lr(r), and therefore the structure will be isotropic. The exis-
tence of anisotropy will increase the ADR value with respect to Lr(r). Ideally,
the ADR should be equal to the local resolution estimated by MonoRes.

4. Half Inter-quartile Range Map: This map provides a complementary informa-
tion to the ADR map measuring the ADR dispersion. For a given voxel and
its directional-resolution distribution the half inter-quartile range is defined
as the half distance between the percentiles 0.17 and 0.83. Thus, when the
directional-resolution distribution is normal, the half inter-quartile range is
equivalent to the standard deviation. A good reconstruction should present
a inter-quartile range close to zero, large deviations from zero put the relia-
bility of the volume in question.

6.4 global information provided by monodir

The local analysis also allows to infer the existence of global anisotropy. Note that
in general, every global measurement can be understood as a collective local mea-
surements in a statistical sense. The set of all local directional resolutions will de-
fine global distributions and the expected value usually coincides with the global
measurement. This is exactly what MonoDir does to predict orientation errors. In
particular, the following global properties are can be identified (see result section
figures to fully understand the plots)

1. Orientation errors: To identify the existence of angular assignment errors, the
radial average of the local-directional resolution maps are performed. The
loss of resolution as a consequence of angular errors must increase as the
radius increase. When the radial averages exhibit a non-zero slope, then an-
gular errors are presented. Nevertheless, if the map is perfectly reconstructed,
this loss of resolution is not present, and the radial averages show a flat pro-
file. Finally, if a good angular assignment is performed but there are present
translation alignment errors, the whole radial average profile is shifted up re-
sulting in an homogeneous loss of resolution. To do this, any local-directional
resolution map can be used. However, since the radial and tangential direc-
tions define a simple basis, they were chosen to be analyzed.
Moreover, looking at the radial average curve it is observed that radial and
tangential diverge at some point that we called, divergence radius rd, defined
as follows. If n̄θ,φ,r is the average the number of voxels along a direction
(θ,φ) (the pair denotes the latitude and longitude on the sphere) inside a
sphere of radius r, then, rd is defined as the highest radius of the macro-
molecule such as n̄θ,φ,r = n̄θ ′,φ ′,r for θ 6= θ′ φ 6= φ′. It implies that the slope
of the radial averages should be measured for r < rd. This phenomenon
is also responsible of the sudden change in the slope of radius close to the
border of the macromolecule.
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2. Existence of preferred directions: With the only knowledge of the reconstruc-
tion, it is complicated to infer the existence of preferred directions. However,
they have an impact on the reconstruction and the resolution by direction. A
given voxel will take its highest resolution along a direction defined by two
angles (θ,φ). Hence, a histogram on a polar plot can be used to represent
the number of voxels that have their highest resolution along a given direc-
tion (θ,φ). When the polar plot shows a uniform coverage of the projection
sphere, then the reconstruction is globally isotropic, otherwise, the sample
may have preferred directions resulting in a global anisotropy.

6.5 monodir results :

The MonoDir was applied under different scenarios considering: (1) synthetic data
to validate and measure the accuracy of the method. (2) Experimental data with
the aim of evaluate the performance of the algorithm in real maps taken from
EMDB [95].

6.5.1 Tests with synthetic data

6.5.1.1 Test example: Introducing orientation errors

This test is addressed to understand how the directional resolution is affected by
errors in the angular assignment or the absence of information in the projection
sphere. To do that, the atomic model of β-galactosidase (PDB entry 3j7h [11]) was
taken and converted into density map using xmipp_volume_from_pdb [161] with a
sampling rate of 1Å/pixel. The map was uniformly projected to obtain 500 pro-
jections and then Gaussian noise with zero mean and standard deviation of 2 a.u.
was added to each projection. Thus, it is possible to simulate particle with correct
and known angular assignment. Using this set of particles the following recon-
structions were carried out:

1. Error-free map: The map is reconstructed with the correct angular assignment.
This reconstruction should be perfect. MonoDir was used to check the quality
of the map. The results can be seen in Fig. 41. First, it is noted that the ADR

map resolution is very homogeneous. The angular plot is well covered and
the radial resolution averages curves are completely flat (leaving the extremes
out). Thus, it can be concluded that this map presents a high quality, as was
expected because it is a synthetic map without errors.

2. Missing directions: All particle with tilt angle smaller than 40 degrees were
removed from the data set. Then, a map was reconstructed with this new set
of particles. Note that the experiment simulates a random conical tilt recon-
struction, and the structure will be affected by a missing cone of 40 degrees,
and resolution anisotropy. MonoDir was used to analyze this map. The result
can be observed in Fig. 41. It is recommended to compare them with the
ones obtained in the case of the error-free map (also in Fig. 41). Firstly, the
existence of the missing cone is reported by MonoDir in the angular plot, in
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which a bold area of exactly 40 degrees is shown in the center of the plot. It
is remarkable the difference in the ADR map between this case for which the
ADR shows very low resolution and the error-free map in which high reso-
lution values are shown. Finally, because of the angular orientations of each
particle is kept, the radial average of local resolution maps show present flat
curves, as reported by MonoDir, but the effect of the missing cone shifts the
curves towards low resolutions.

3. Angular errors: In this test, the orientation of each particle was randomly mod-
ified by introducing a random Gaussian error with zero mean and 1.2 degrees
of standard deviation and then a map was reconstructed. Because each direc-
tion of the projection sphere is defined by two angles, possible combinations
of angular errors were tested casting similar results. In Fig. 41 the MonoDir re-
sults are shown. The angular plots were similar to the obtained for the error-
free map, i.e. they present a good coverage of the projection sphere. It was
expected because all directions are presented with approximately the same
number of particles. In contrast, the radial average plot shows a slope, which
is particularly clear for the radial and tangential local directional resolution
maps. It was verified, that the slope of these curve increases as the introduced
error is increased. This experiment allows a method for identifying angular
assignment error without no more information than the reconstructed map.

4. Shift errors: Similarly to the previous test, a shift Gaussian error (with zero
mean and standard deviation of 1.2 pixels) in the orientation assignment of
each particle was introduced keeping its angular orientation and then a map
was reconstructed. In Fig. 41 the MonoDir results are shown. The angular plot
is omitted because it is essentially the same one obtained by the error-free
map. The radial average of radial and local directional tangential resolutions
cast a flat profile, but the resolution gets lower than the obtained by the error-
free map, as a consequence of the shift errors.

6.5.2 Test with experimental data

Once MonoDir was tested to ensure the reliability of the directional and anisotropy
measurements, it was applied to analyze the quality of experimental maps de-
posited in EMDB [95]. In concrete, the following maps were studied: the Proteo-
some 20S (EMD-6287) [20], the Ribosome 80S (EMD-2275) [8], and two maps of In-
fluenza Hemagglutinin (HA) trimer [173] taken from EMPIAR (entries 10196, 10197).
These maps have been deeply analyzed, thus Proteosome 20S and the Ribosome
80S are good examples of very good and problematic angular assignment respec-
tively [111]. Finally, the Hemagglutinin (HA) trimer maps are excellent examples
about how MonoDir can be used to identified reconstruction in a case for which
the same macromolecule presents two reconstructions with different angular as-
signment coverage.
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Figure 41: MonoDir results for the β-galactosidase obtained from synthetic particles: (a)
ADR map for two reconstructions first with an uniform coverage of the projection
sphere and then removing particles, (b) their respective angular plots, and (c)
radial average of local resolution maps when random errors are introduced in
particle orientation (in Euler angles and shift) in all cases considering a uniform
coverage of the projection sphere.

.

6.5.2.1 Experimental Map 1: Proteasome 20S

The first experimental case makes use of the experimental map of the Proteasome
20S taken from EMDB (EMDB entry-6287)[20]. Note that it was previously analyzed
with MonoRes in Chapter 5. Remind that its reported resolution was 2.8 Å (mea-
sured as a FSC gold standard at 0.143).
This map is a well known example of reconstruction with good angular assignment
[111]. MonoDir was applied to check it, the results can be observed in Fig. 42. The
local conclusions provided by MonoDir: the highest and lowest local-directional
resolution maps present values very close each other, in the range [2.2,4.9] Å. The
ADR values were between [2.7,3.9] Å, a range close to the interval of [2.0, 4.6]
Å reported by MonoRes (see Fig. 30). In addition, the half interquartile range map
shows a very low resolution dispersion. As a consequence, the results imply a
high isotropy in terms of local directional resolution. The global conclusions of
MonoDir are extracted from the polar plot and the radial average curves. The polar
plot points out a good coverage of the projection sphere in the center of the plot
with a worse coverage of top views. It implies the existence of preferred directions
(side view). This conclusion is in agreement with the reality, most of particles are
side views [111]. Note that it is possible to reconstruct only with side views be-
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cause the Fourier space is fully covered. Finally, the radial average plot casts very
flat curves, it is an indicator of a good angular assignment, in particular, for the
radial and tangential curves.
The 3DFSC that provides information about global resolution anisotropy, was also
calculated. The results can be seen in Fig. 45. They are in agreement to the ones
obtained by MonoDir. In particular, it is noteworthy the very low dispersion that
the resolution presents.

Figure 42: Results for Proteasome 20S: (a) Average Directional Resolution (ADR) and its
half interquartile range, (b) radial average of local tangential (pink points) and
radial (blue circles) directions plotted along radii, together with the highest,
lowest and MonoRes local resolution estimations and polar plot, (c) highest and
lowest local directional resolution maps.
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6.5.2.2 Experimental Map 2: Ribosome 80S

The second experimental case considers the experimental map of the Ribosome
80S taken from EMDB (entry-2275) [8]. The map has a pixel size of 1.22 Å and box
dimensions of 240× 240× 240 voxels with reported resolution FSC gold standard
resolution at 0.143 of 4.5 Å.
Despite the map allows a good understanding of the macromolecule, it was shown
that it had problems in the angular assignment and the coverage of the projection
sphere [111]. It is highlighted that this ribosome is assembled and presents hetero-
geneity, which complicates the alignment and decreases the resolution. MonoDir
was applied to estimate the map quality, determine the existence of resolution
anisotropy, and check the angular assignment. In Fig. 43 the results are shown. In
this case the measurement of highest an lowest local-directional resolution map
is omitted, the ADR map provides enough information with values in the range
of [2.7,3.9] Å and the half interquartile range shows dispersion from 1 to 6 Å,
which indicates a high variability in the directional resolution. In contrast, when
global parameters are analyzed, the angular plot shows a non-uniform coverage of
the projection sphere, this fact is in agreement with previous studies of this map
[111]. Finally, the radial average curves present a high slope and therefore, there is
a problem in the angular assignment. However, the identification of this error al-
lows to solve it by assigning angles again up to achieve the flatter the better radial
average curve.

6.5.2.3 Experimental Map 3: Influenza Hemagglutinin (HA) trimer

The third experimental example considers the structure of the Influenza Hemag-
glutinin (HA) trimer. This case is of special interest for MonoDir, because there are
two reported maps of this structures acquired under different acquisition condi-
tions with a tilt sample of 0 and 40 degrees and a pixel size of 1.49 Å. These data
can be found in the EMPIAR entries 10196, 10197 [173]. When the sample is untilted,
the sample presents preferred directions and the reconstruction with this dataset
presents anisotropy and a bad coverage of the projection sphere. This effect can
be alleviated by tilting the sample, it was experimentally checked that a tilt of 40

degrees was enough to that purpose [173]. The result was a better angular assign-
ment and coverage of the projection sphere. To check this two facts, the 3DFSC was
calculated and it is shown in Fig. 45. Note how the dispersion in FSC curve is
reduced when the sample is tilted.
These hypotheses were confirmed by MonoDir, the results can be found in Fig. 44.
Both maps present similar ADR maps, it is noted that the tilted map cast slightly
lower ADR values. However, the ADR map must be complemented with the half
interquartile range map, that clears up the debate about which map is better. The
untilted map shows higher directional resolution dispersion than the tilted one.
This fact support a better quality but is not the only one. The global results are in
agreement with this conclusion, the angular plot, shows differences in the cover-
age of the projection sphere, the map obtained by tilting the sample shows a better
coverage of the angular plot than the map obtained at 0o tilt. It means that by
tilting the sample the global anisotropy is reduced. Finally, the radial average plot
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Figure 43: Results for Ribosome 80S: (a) Average Directional Resolution (ADR) and its half
interquartile range, (b) radial average of local tangential (pink points) and radial
(blue circles) directions plotted along radii, together with the highest, lowest and
MonoRes local resolution estimations and the polar plot.

to indicates the existence of angular alignment errors, showing that the map recon-
structed at 0o tilt presents higher slopes in the radial average resolution curves, in
contrast to the map obtained at 40o tilt with flatter curves.

6.6 discussion of monodir results

The measurement of local resolution has been expanded by introducing the direc-
tionality concept to measure local-directional resolution map. In this sense, resolu-
tion results in a tensor rather than a local value. Local resolution is the combination
of many factors that were commented in Chapter 5. Unfortunately, it is not possi-
ble to isolate them. The method that was proposed in this chapter is an attempt
to do it in a local manner. When local-directional resolution is measured along
set of directions that uniformly covers the projection sphere, then very rich infor-
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Figure 44: Results for Influenza Hemagglutinin (HA) trimer when the sample is untilted
and tilted: (a) ADR and the half interquartile range, (b) angular plot, and (c)
radial averages.
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Figure 45: Results of the 3DFSC method for Influenza Hemagglutinin (HA) trimer when the
sample is (a) untilted, (b) tilted. Results of the 3DFSC method for the Proteasome
20S.

mation about the reconstruction process can be extracted. To analyze that, a new
algorithm named MonoDir was proposed. Up to our knowledge, it is the first local-
directional resolution algorithm in cryoEM. Hence, with no more information than
the reconstruction, MonoDir is able to determine the existence of preferred direc-
tions, global anisotropies, angular assignment errors, and local-directional resolu-
tion anisotropies. This measures are only a few possible applications. As a pioneer
method, it is expected that it opens new horizons in the field. Thus, the measure-
ment of local-anisotropy might be used to perform local-anisopropic sharpening
or filters, map validation, or chain tracing among others.
Results with experimental data confirm the performance of MonoDir as validation
map quality method. The examples with synthetic data illustrate how the angular
alignment errors leave a fingerprint in the resolution. Hence, thanks to them it was
possible to identify angular assignment errors in experimental data sets. The ribo-
some and the reconstruction of the Influenza hemagglutinin trimer without tilting
the sample are two good experimental confirmations. The synthetic example in
which some particles were removed to artificially produce a missing cone helps
in the understanding of the maximum resolution angular plot. In that case, the
missing cone can be clearly observed. Similarly to what happen with the Influenza
hemagglutinin trimer, in which the existence of preferred direction can be clearly
observed. In addition, the introduced error in the synthetic map are taken into
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account by the ADR map. In particular, the loss of resolution is specially significant
in the case of the missing cone, that casts a very low resolution ADR map.

6.7 conclusions

1. The concept of local resolution has been generalized adding directionality,
resolution is then a tensor instead of a scalar.

2. A fully algorithm, MonoDir, for computing the local-directional resolution
and existence of anisotropy in SPA reconstructions has been proposed.

3. The resolution anisotropy informs about the local and global map quality
with no more information than the reconstructed map.

4. Angular assignment error can be identified as a slope in the radial average
of the local resolution maps, in particular in the radial and tangential.

5. Existence of preferred directions and global anisotropy are shown as a non
uniform coverage of the angular plot.





7
O N T H E B - FA C T O R A N D I T S C O R R E C T I O N

This chapter should be understood as a transition chapter. In Chapter 5 the estima-
tion of local resolution maps in SPA was exposed. In the following chapter it will
be shown the LocalDeBlur algorithm that by means of local resolution information,
it allows to enhance locally the visualization of the reconstructed density map as a
post-processing step, this enhancement is known as sharpening. However, before
introducing the sharpening algorithm proposed in this thesis, the current state of
the art will be exposed.
The tendency nowadays is to sharpen the reconstructed density map using a kind
of transformation called B-factor correction. This transformation is applied to the
structure to alleviate the low of contrast (in particular at high frequency) as a con-
sequence of many factors, for example: heterogeneity, flexibility, beam induced
movement, inelastic scattering, charging or radiation damage among others. To do
that, what B-factor correction does is a boosting of high frequencies by flattening
the spectrum of the reconstructed structure.
Despite the good results that B-factor correction provides, it will be shown that its
use is not supported by the scattering theory. Hence, the aim of this chapter is to
provide a clear, theoretical and experimental proofs about why the B-factor correc-
tion should be revisited. To do that the scattering theory is considered obtaining
the called Guinier law for which its validity range and connection with the B-factor
flattening will be analyzed. To be more specific, this chapter can be summarized
in the following items:

1. The Guinier approximation is valid only at very low frequency and it is
basically related to the overall shape of the macromolecule.

2. The amplitude spectrum of a macromolecule has, in general, a non-flat slope
at all frequency ranges of interest.

3. 3D reconstruction algorithms do not always over-dampen the spectrum of
the macromolecule.

In the following chapter an alternative to B-factor correction based on local res-
olution will be proposed. Because of the theoretical nature of this chapter, many
similarities can be found in our own publication [190]. However, here they are
deeply explained adding many proofs to support the theoretical results which are
out of that publication.

7.1 global sharpening . b-factor correction

The sharpening technique known as B-factor correction is a global transformation
that has its origin with the publication of P.B. Rosenthal and R. Henderson [135].
Usually, the high frequency information is hidden by the low frequency terms, the
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idea is to boost the high frequencies to get better the map visualization, but avoid-
ing the noise amplification.
The method begins by calculating the structure factor of the macromolecular com-
plex. The structure factor will be rigorously defined in the following section, but it
essentially represents the radial average of the power spectra of the macromolecule.
Thus, it is assumed a Gaussian decay of the Fourier coefficients with the frequency
given by

|F(q)|2 = |F(0)|2e−
1
3R
2
gq
2

. (89)

where, F(q) represents the structure factor at the frequency q, and Rg the gyration
radius (it will be derived in next section). The exponential term e−

1
3R
2
gq
2

is respon-
sible of reducing the contrast at high frequencies and therefore it complicates the
interpretability of the map. What B-factor correction does, it to remove this expo-
nential term by making a flat spectra. It is achieved by linearizing Eq. (89) as it
follows

log |F(q)|2 = log |F(0)|2 −
1

3
R2gq

2. (90)

Then, the slope of the fitted line, B = −13R
2
g is estimated to multiply the structure

factor by C(q)eBq
2
, where C(q) is a weight factor explained below. It pretends to

be a flat structure factor i.e. the decay term, e−
1
3R
2
gq
2
, is removed. Regarding to the

frequency range in which the linear fitting is fulfilled, the most spread criterion
considers a the fitting in the interval, [FSC, 10− 15] Å, see [41]. The weight, C(q),
is responsible of avoiding the noise amplification, by considering the SNR at the
given frequency, or alternatively the FSC as

C(q) =
2FSC

1+ FSC
. (91)

7.2 scattering theory

Consider an electron beam lighting a macromolecule composed by N atoms. The
beam direction is defined by the the unitary vector s0 and incident electrons will
be scattered as a consequence of their interaction with the charge density of the
macromolecule. Let scattering direction be defined by other unitary vector s, which
forms an angle 2θ with respect to the incident direction, s0. In Fig. 46 a simplified
scheme of the experiment is shown. This scenario represents the electron-sample
interaction inside the electron microscope. Thus, the objective will be to calculate
the intensity of the scattered beam which is the measured.

The scattering process is a consequence of the electron matter interaction. Thus,
each atom of the macromolecule can be understood as an scatterer element. Hence,
the macromolecule can be described by its electronic density ρ(r). Therefore, the
problem turns into calculating the intensity of the scattered beam by a set of
N small scatterer elements defined by their positions rk, with k = 1, ...,N. The
electron-matter interaction mainly depends on the atomic number of atoms in the
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Figure 46: Scheme of the system under study. An incident electron beam is scattered as
a consequence of the interaction with an scatterer element. The incident beam
with direction s0 and the scattered one with direction, s, forms an angle 2θ .

sample, sample thickness, and the energy of the incident electrons [112]. Note that
the scattering/interaction probability is directly proportional to the atomic number
and inversely proportional to the atomic number. Moreover, the thicker samples,
the higher probabilities of interaction. The electron energies provided by the elec-
tron guns for measuring biological samples are fixed in TEM between 100 keV to
1 MeV . Moreover, the thin sample and the low atomic number of atoms that com-
pose the biological samples make the probability of interaction very low. Thus, it
is considered that the electron beam passes through the sample without suffer-
ing any interaction at all or it interacts once. It is assumed that the interaction is
elastic, being the electron energy and momentum conserved magnitudes. Despite
these assumptions, reality is slightly different, in all electron-matter interactions
some inelastic processes occur. A proof of that is the measurement of X-rays in the
microscope column as Brehmstralung or characteristic radiation. However, in the
sake of simplicity these inelastic interactions are neglected.
The intensity of the scattered beam will be measured in a far point P, where the
set of N scattered plane waves from the N scatterer elements will interfere. The
interference is characterized by the the optical path length between scattered rays.
Assuming the reference system in the center of the macromolecule, the optical path
difference between an incident electron and any scattered electron will be given by

s · rk − s0 · rk = (s − s0) · rk (92)

Note that the optical path length only depends on the scattering direction but it
is independent of the distance to the scatterer element (assuming that the point
P is enough far, i.e. Fraunhofer regime). Electrons with energy E or alternatively
(see Eq. (9)) after interact elastically with the sample will be characterized by the
scattering vector, q, defined as

q =
2π

λ
(s − s0). (93)



112 on the b-factor and its correction

It is noteworthy that the magnitude, q, of the scattering vector present frequency
(1/Å) units because of its dependence on the wavelength,

q =
4π

λ
sin θ. (94)

Each electron will be modeled by a wave function, with amplitude A and frequency
2π/λ. In particular, the incident electron at the position rk,λ will present wave
function

Ψin = Aei
2π
λ s0·rk . (95)

Note that the amplitude of the scattered electron will be kept after the scattering
process (for being elastic the energy is kept, which is contained in the amplitude
term). The far point P along the scattering direction, s, is defined by the position
vector, l with origin in the scatterer element rk, see Fig. 46. The relation between
the incident, Ψin and scattered wave, Ψk(s) is given by the linear relation

Ψk(s) = Ψinfk,λe
−i 2πλ s·(rk+l)

= Aei
2π
λ s0·rkfk,λe

−i 2πλ s·(rk+l)
(96)

where fk,λ is the electron atomic scattering factor at wavelength λ. It is remarkable
that the optical path difference, (s − s0) · rk allows to rewrite the last expression in
terms of the scattering vector, q as

Ψk(q) = Afk(q)e−iq·rke−i
2π
λ sl. (97)

To work with scattering vectors instead of scattering directions is convenient as will
be shown in next calculus. Moreover, a change of variable in the electron atomic
scattering factor was performed, writing now its dependence on q instead on the
wavelength, Eq. (94) allows this duality.
The aim is to calculate the intensity of the electron scattered beam in the far point
P. Thus, the intensity will be the interference of all scattered waves. Thus, the
amplitude in the point P can be calculated by applying the superposition principle,

Ψ(q) =
N∑
k=1

Ψk(q) = Ae−i
2π
λ sl

N∑
k=1

fk(q)e
−iq·rk , (98)

where the sum is extended up to the number N of scatterers, i.e. atoms in the
macromolecule. This equation is directly related with the electron density, ρ(r), of
the macromolecule. There are two ways to establish this relationship. First, it can be
assumed a probabilistic model under the hypothesis that the scattering amplitudes
are proportional to the local charge, dfk(r) = CdQ(r) = Cρ(r)dV , [52], where C is
the proportionality constant. Moreover, assuming that the phase of the scattered
waves, is essentially the same between neighboring atoms, i.e. qrk ≈ qrj for j 6= k,
then, (98) the sum can be converted into an integral

A(q) =
∑
k

Ψk = A

N∑
k

fke
iqrk → A(q) = AC

∫
ρ(r)eiqrdV . (99)
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Leaving out proportionality the constant, the amplitude is essentially given by
structure factor which is defined as

F(q) =
∫
ρ(rk)eiqrkdV . (100)

The second approach is to consider the definition of electron density from the
superposition of electron scattering form factors

ρ(r) =
N∑
k=1

bk(r − rk) =
N∑
k=1

bk(r) ? δ(r − rk), (101)

where bk(r) is the function resulting from the inverse Fourier transform of the
fk(q) coefficients:

bk(r) =
∫
fk(q)eiq·rdq (102)

then by performing the Fourier transform of Eq. (102) a variable F is obtained
which squared is named structure factor

F(q) =
∫
ρ(r)e−iqrdr =

N∑
k=1

fk(q)e−iq·rk (103)

As a consequence, Eq. (98) con be rewritten in term of F as

Ψ(q) = Ae−i
2π
λ slF(q) (104)

However, it should be noteworthy that, detectors record intensity, and therefore, it
is preferred to work is measurable magnitudes, i.e. intensity,

I(q) = |Ψ(q)|2 = A2|F(q)|2 = A2
∫ ∫
ρ(r ′)ρ(r)e−iq·r

′
eiq·rdrdr ′. (105)

7.3 structure factor

The structure factor defined in Eq. (103) is directly related to the charge density
via Fourier transform. In particular, at zero frequency q = 0, the structure factor
represents the total charge, Q, of the macromolecule and the number of charges M

Q = F(0) =
∫
ρ(r)dV ⇒ M =

F(0)
e

(106)

where, e is the electron charge. However, instead of working with the structure
factor it is more common to work with its squared modulus, |F(q)|2, which for
language extension is also referred as structure factor

|F(q)|2 =
∫ ∫
ρ(r ′)ρ(r)e−iq·r

′
eiq·rdrdr ′. (107)
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Just by performing the simple variable change, r̂ = r ′ − r, Eq. (107) is considerably
simplified

|F(q)|2 =
∫ ∫
ρ(r)ρ(r̂ + r)e−iq·r̂drdr̂. (108)

It should be remarked that |F(q)|2 is an even function, because |F(−q)|2 = |F∗(q)|2 =
|F(q)|2. The integral is determined by the autocorrelation function of the electron
density, denoted by

γ(r̂) =
∫2R
0

ρ(r)ρ(r̂ + r)dr. (109)

The integral limits are bounded by the maximum distance of the macromolecular,
thus, considering that the macromolecule is tight to the interior of a sphere, then,
the sphere radius will be the maximum radius of the macromolecular. Therefore
the autocorrelation function is limited to 2R. Introducing the autocorrelation func-
tion into Eq. (108), then, the modulus squared of the structure factor results as the
Fourier Transform of the autocorrelation function,

|F(q)|2 =
∫
γ(r̂)e−iq·r̂dr̂. (110)

The expression of the structure factor as Fourier transform of the autocorrelation
function of the electron density map shows how the structure factor is determined
by the particle geometry, it means by the electron density. Unfortunately, the struc-
ture factor of only a few geometries can be calculated analytically. The goal will
then be to provide a general expression for integrating the structure factor under
specific conditions. To do that, firstly it is rewritten in spherical coordinates, being
β the angle between r̂ and q

|F(q)|2 =
∫ ∫ ∫

γ(r̂ sinβ cosφ, r̂ sinβ sinφ, r̂ cosβ)e−iqr̂ cosβr̂2 sinβdr̂dβdφ. (111)

Here, an assumption of the autocorrelation function is performed, we assume that
it presents radial symmetry or alternatively calculating the radial average along a
given frequency. Then, the structure factor can be calculated as

|F(q)|2 =
∫ ∫ ∫

γ(r̂)e−iqr̂ cosβr̂2 sinβdr̂dβdφ

= 4π
∫
r̂2γ(r̂)sinc(qr̂)dr̂

(112)

As a consequence, the radial average of the structure factor at zero frequency will
be

|F(0)|2 = 4π
∫
r̂2γ(r̂)dr̂ (113)

which simplifies the structure factor expression

|F(q)|2 = |F(0)|2
∫
r̂2γ(r̂)sinc(qr̂)dr̂∫

r̂2γ(r̂)dr̂
. (114)
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7.4 guinier approximation. guinier law

The structure factor given by Eq. (114) can hardly ever be integrated in terms
of elemental functions, and usually requires numerical integration. The electron
density determines the shape of the macromolecule. Therefore, the structure factor
of only a few geometries can be calculated analytically. To avoid that, the small
angle scattering approximation can be used. Thus, the Guinier idea was to expand
the sinc function in Taylor series up to third order [59]

sinc(qr̂) ≈ 1− 1

3!
(qr̂)2 +O((qr̂)4). (115)

It allows to integrate Eq. (114) to get a simple the simpler linear expression

|F(q)|2 ≈ |F(0)|2
(
1− 1

3!

∫
r̂4γ(r̂)dr̂∫
r̂2γ(r̂)dr̂

q2
)

, (116)

we may define Rg as the radius of gyration

R2g =
1

2

∫
r̂4γ(r̂)dr̂∫
r̂2γ(r̂)dr̂

. (117)

Note that the gyration radius can be understood as the ratio between moments of
fourth and second order. Introducing this in the structure factor it results

|F(q)|2 ≈ |F(0)|2

(
1−

R2g

3
q2

)
. (118)

The last polynomial coincides with the Taylor expansion of third order of an expo-
nential function, and therefore it will be substituted by the exponential. Note how,
the use of Taylor polynomial can be applied in both directions, i.e. to approximate
a function by a polynomial, or to approximate a polynomial by a function. The
essence of Taylor expansion is that the function and polynomial are locally equal
around the point chosen to expand in Taylor series. Thus, the second Guinier step
consisting in substituting Eq. (118) by the exponential is justified casting

|F(q)|2 ≈ |F(0)|2e−
R2g
3 q

2
. (119)

The exponent defines the so-called B-factor, B = 1
3R
2
g. The negative exponent im-

plies a decay of the structure factor F(q). As it was commented in Section 7.1, the
sharpening process consists in determining B, to get a flat structure factor curve.

7.5 range of guinier approximation

There are two facts about Guinier approximation that ought to be discussed. The
first one is the Taylor expansion of the sinc function in Eq. (115). The second one
is the Guinier approximation of the sinc function by an exponential in the Guinier
Law, see Eq. (118) and Eq. (119). These two approximations constrain the frequency
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range in which the Guinier law is verified.
The Taylor expansion in Eq. (114) is traditionally justified considering very low
scattering angles. However, a rigorous proof should take into account the product
qr̂ → 0. To check the validity of the range of the Taylor expansion, the relative
error, ε, between the sinc function and its Taylor series up to third order can be
calculated

ε = |
sincqr̂− (1− 1

6(qr̂)
2)

sincqr̂
| (120)

If it is assumed a 10% of relative error, then,

qr̂ 6
5

3
(121)

Despite that this inequality provides a criterion for the product, what it really of
interest is the frequency range. Thus, considering that r̂ is limited by the particle
radius, R, then, qR 6 5/3, or equivalently, for resolutions 1/q > 3R/5. A simple
numerical example is given, for a macromolecule with radius R = 100Å the sinc ap-
proximation by a polynomial will be valid for resolutions lower than 60Å(assuming
a relative error of 10%). A graphical solution by plotting relative error between the
sinc function and its Taylor expansion to first order was also performed, see Fig.
47.
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Figure 47: (a) Relative error between the sinc function and its Taylor expansion up to third
order. (b) sinc function (continuous - red) and Taylor approximation up to third
order (dashed - blue). (c). Relative error ξ derived from the Guinier approxima-
tion is carried out, i.e. when the polynomial is approximated by an exponential.
(d) exponential function (continuous - red) and Taylor approximation up to
third order (dashed - blue).

The second item to be discussed is the Guinier approximation, i.e. the conversion
step from the Taylor expansion (Eq. (115)) into the exponential (Eq. (119)). The
validity of this Guinier step means to evaluate the difference between the exact
expression and the performed approximation

ε =

∣∣∣∣∣1− 1
3R
2
gq
2 − e−

1
3R
2
gq
2

1− 1
3R
2
gq
2

∣∣∣∣∣ . (122)
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The goal will be then to assume an error ε, and then to solve the equation for
analyzing the range of validity of Guinier approximation. The W-Lambert [27]
function allows to calculate that solution, in particular, the solution of

e−cz = a0(z− r) ⇒ z = r+
1

c
W

(
c

a0
e−cr

)
. (123)

Eq. (122) is rewritten to establish a direct comparison to Eq. (123), thus,

e−
1
3R
2
gq
2

= −(1+ ε)

(
1

3
R2gq

2 − 1

)
(124)

which cast, as solution

1

3
R2gq

2 = 1+W

(
−

1

(1+ ε)e

)
(125)

This relationship allows knowing the value of the product R2gq2 for a given
error ε. An alternative is to plot Eq. (47), see Fig. ??. In particular, it shows how the
committed error is less than 10% when

1

3
R2gq

2 6 0.3755 ⇒ Rgq 6 1.06 (126)

As a consequence, a criterion can be approximately established as Rgq 6 1. Note
that this solution is independent of the scatterer shape. Finally, as well as it was per-
formed with the approximation of the sinc function by the polynomial, if a particle
with gyration radius, Rg = 100Å is considered, then, the Guinier approximation is
only valid for frequencies lower than 94 Å. In Fig. 122 the relative error given by
Eq. (122) is plotted in terms of the product 1/3R2gq2, in agreement with analytic
results. It is noteworthy that the gyration radius is usually around the macromolec-
ular radius. As a consequence, the Guinier approximation is only valid at very low
frequencies. If higher error are assumed, for instance, ε = 0.2, the frequency range
is increased being the Guinier approximation only valid for frequencies lower than
77 Å.

7.6 porod approximation. high frequencies

Guinier approximation is limited to a range of low frequencies, constrained to the
inequality qRg 6 1. In this section the structure factor will be analyzed for higher
frequencies, in particular at high frequencies giving as result the Porod invariant.
The general expression for the structure factor is given by (114), if Eq. (113) is
substituted

|F(q)|2 = |F(0)|2
∫
r̂2γ(r̂)sinc(qr̂)dr̂∫

r̂2γ(r̂)dr̂
= 4π

∫2R
0

r̂2γ(r̂)sinc(qr̂)dr̂ =

4π

q

∫2R
0

r̂γ(r̂) sin(qr̂)dr̂,
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Figure 48: (a) Relative error between the exp function and its Taylor expansion.. (b) expo-
nential function (continuous - red) and Taylor approximation (dashed - blue).
(c). Relative error ξ derived from the Guinier approximation is carried out, i.e.
when the polynomial is approximated by an exponential. (d) exponential func-
tion (continuous - red) and Taylor approximation up to third order (dashed -
blue).

Hence, the structure factor can be integrated twice by parts, first integration casts

=
4π

q

[
−
1

q
r̂γ(r̂) cosqr̂

]2R
0

+
4π

q

1

q

∫2R
0

(r̂γ(r̂)) ′ cosqr̂ =

and the second integration gives

=
4π

q

[
−
1

q
r̂γ(r̂) cosqr̂+

1

q2
(r̂γ(r̂)) ′ sinqr̂

]2R
0

−
4π

q

1

q2

∫2R
0

(r̂γ(r̂)) ′′ sinqr̂

Reminding that, γ(2R) = 0, then

=
4π

q3

[
2Rγ ′(2R) sin 2qR−

∫2R
0

(r̂γ(r̂)) ′′ sinqr̂

]
,

which integrating once more time

=
4π

q3

[
2Rγ ′(2R) sin 2qR+

[
1

q
(r̂γ(r̂)) ′′ cosqr̂

]2R
0

−
1

q

∫2R
0

(r̂γ(r̂)) ′′′ cosqr̂

]
=

=
4π

q3

[
2Rγ ′(2R) sin 2qR+

[
1

q
(2γ ′(r̂) + r̂γ ′′(r̂) cosqr̂

]2R
0

−
1

q

∫2R
0

(r̂γ(r̂)) ′′′ cosqr̂

]
=

=
4π

q3

[
2Rγ ′(2R) sin 2qR+

1

q
(2γ ′(2R) + 2Rγ ′′(2R)) cos 2qR+

−
1

q
2γ ′(0) −

1

q

∫2R
0

(r̂γ(r̂)) ′′′ cosqr̂

]



7.7 structure factor of experimental data 119

Assuming that γ is a smooth and differentiable function, there is only one term
non oscillating that therefore at high scattering q-values the structure factor can be
approximated by the Porod law

|F(q)|2 = −
8π

q4
γ ′(0). (127)

The Porod law implies than even at very high frequencies the structure factor will
present a decay.

conclusion from analytic expressions

In the last two sections it was calculated the shape of the structure factor at two
different spectral ranges. It was found that the Guinier law is only valid at very low
frequencies, meanwhile at high frequencies the behaviour of the structure factor is
given by the Porod law. In both cases, the expression of the structure factor decays
with the frequency. The consequence, is that the flattening spectra that B-factor
does, is not supported by the scattering theory, (at least in the spectral range given
by the Guinier and Porod law), i.e. the structure factor must decrease with the
frequency.

7.7 structure factor of experimental data

To analyze the validity of the exposed theoretical results, a set of tests with exper-
imental data were carried out. These experiments involve two kinds of data: first,
by making use macromolecular atomic models (converted into density maps), and
second by considering the reconstructed 3D density map. In both cases the profile
of the structure factor is analyzed.

7.7.1 Experimental validation of the Guinier law

The aim of this section is to validate the interval of frequencies in which the
Guinier law is valid. To do that, the atomic model of the β−galactosidase [1]
(PDB-3j7h) is considered. The model was converted into density map by means of
xmipp_volume_from_PDB [161] with a sampling rate of 1 Å/pixel. Then, the struc-
ture factor was calculated and represented in the Guinier plot, see Fig. 49. For sake
of simplicity, it was normalized, it means |F(q)|2/|F(0)|2.
The plot shows exactly what the theory predicts. The structure factors shows a lin-
ear behaviour up to about 100 Å. In Fig. 49, this breakpoint was highlighted with
a vertical line. From this breakpoint, the Guinier law cannot be applied anymore,
and another approach should be used to analyze the structure factor. However, it
is observed that the curve does not present a flat profile. Hence, the B-factor cor-
rection is not justified beyond visualization purposes. In other words, the B-factor
correction enhance the visualization, but the obtained map does not represent a
real protein.
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Figure 49: Guinier plot for the atomic model PDB 3j7h converted into density map, on

the low frequency range up to 30 Å. The Guinier law is verified for resolutions
lower than 100Å.

7.7.2 Experiments with secondary structure elements

This second experiment is addressed to show the dependence of the structure
factor on the secondary structure elements. To do that, the following atomic mod-
els were considered: the structure of β-galactosidase [1] (PDB-3j7h), TRPV1 [99]
(PDB-3j9j), a triple mutant of the NHAA dimer [19] (PDB-4atv) and the Yeast
20S proteasome in complex with Ac-PAE-ep [33] (PDB-4y6v) were used. They
were converted into into density maps with a sampling rate of 1Å/pixel using
xmipp_volume_from_PDB [161]. Then, the structure factor was calculated, normal-
ized, and plotted log(|F(q)|2/|F(0)|2) − q. In Fig. 50 these plots were represented.
To understand how the elements of secondary structure affect to the structure fac-
tor curve, a set of experiments were performed by modifying the atomic model

1. Experiment 1. Relationship to the atom description: In this experiment it is ob-
tained a less accurate density map by considering as atom descriptors gaus-
sian functions with variance proportional to the atomic numbers. This trans-
formation should not have too much impact in the structure, as can be seen
in Fig. 50, green-continuous-dotted.

2. Experiment 2. Relationship to the atom nature: A more dramatic scenario is con-
sidered by substituting all carbon atoms in the atomic model to iron atoms.
This transformation casts a heavy macromolecule with the same shape. The
results on the structure factor can be seen in Fig. 50, blue dashed line. It is
noted that the structure factor profile is essentially the same but shifted up,
because iron scatters more than carbon.

3. Experiment 3. Relationship to the overall macromolecule shape: In this test, the
internal structure of the macromolecule is completely change, keeping its
overall shape. The density map was binarized and then the structure factor
was calculated. Note that, this transformation keeps overall shape of macro-
molecule but completely destroys the atomic information. The results can be
observed in Fig. 50, red triangles line. The result shows that the structure
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factor curve is kept and shifted slight slight differences in particular at high
resolution.

4. Experiment 4. Relationship to the relative atomic positions: In this last test, the sec-
ondary structure of the macromolecule was destroyed. The atomic positions
were randomly displaced from their original positions. It was performed by
modifying the pdb. Thus, it was considered a uniform distribution with max-
imum shift of 6Å which implies movements from -6 to 6 Å in all directions.
The radius of an α-helix is 6Å, and the sideway distance between α carbons in
a β sheet is around 5Å, the proposed displacements completely destroys the
secondary structure. The results on the structure factor are shown in Fig. 50,
cyan dots. Again, the structure factor profile keeps the shape of the original
one, with an slight shift.

In all these experiments the structure factor of the atomic models converted into
density maps, presents a non flat profile. As a consequence, the structure factor
must decay with the frequency as it was pointed out in the theory.

7.7.3 B-factor correction to compensate the overdampened spectra

In Fig. 51 we show the structure factor profile for β-galactosidase obtained by pro-
cessing with Relion the data from EMPIAR entry 10013, and the structure factor
profile of the corresponding PDB entry 3j7h. As can be seen from the figure, the
structure factor of the PDB falls faster (implying a larger B-factor) than the one of
the Relion reconstruction. Although, this is not necessarily the case for all recon-
structions, this means that the purpose of the B-factor correction normally applied
to 3D reconstructions cannot be to compensate for an extra filtering allegedly in-
troduced by the reconstruction algorithm.

7.7.4 B-factor correction on atomic models

All theoretical results and experiments are in agreement with the theory, how-
ever, the biological understanding of the results can also be affected. To show
that, the atomic model of a structure of the β-galactosidase (PDB-3j7h) [1] was
converted into density map using xmipp_volume_from_pdb [161]. The B-factor cor-
rection was then applied. Note that this density map represents the perfect shape
of the macromolecule, and therefore it should be invariant under sharpening cor-
rections because it cannot be enhanced. In Fig. 52 a comparison in the density map
of the same region of the β-galactosidase are shown. It is noted a slight but sig-
nificant density variation between both maps. This simple experiment shows that
the global B-factor correction might be not the best sharpening strategy, and in
agreement with the scattering theory, it should be revisited.

7.8 conclusions

1. Guinier law is only valid at very low frequencies, the theory predicts an
exponential decay of the structure factor.
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Figure 50: Normalized structure factors up to high resolution for (up-left) PDB 3j7h, (up-
right) 3j9j, (down-left) PDB 4atv and (down-right) PDB4 y6v. a) (Continuous-
black) original converted density map. b) (blue-dashed) Substituted C atoms
by Fe atoms. c) (red-triangles) Binarized density map. d) (green-continuous-
dotted) Map converted from PDB substituting atoms by Gaussian functions.
e) (cyan-dotted) Random displacement of atoms. The vertical lines determine
resolutions of 10 and 5 Å.
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Figure 51: Normalized structure factor from a) (Continuous-black) Relion map. b) (red-
dashed) atomic model (pdb entry 3j7h) converted into electron density map.
The vertical lines determines the frequencies of 10 and 5 Å.

2. Up to our knowledge, the first derivation of its validity range has been de-
rived.

3. The Porod low is only valid at high resolution range, and also predicts a
decay of the structure factor.

4. The structure factor of a macromolecule has a non-flat slope with indepen-
dence of the spectral range.

5. The B-factor correction helps in the visualization of the macromolecular com-
plex but it does not represent the macromolecular complex. It is not justified
by the scattering theory.

6. 3D Reconstruction algorithms do not always over-dampen the spectrum of
the macromolecule.
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Figure 52: (left) Map converted into electron density map. (right) B-factor corrected map.



8
L O C A L S H A R P E N I N G B A S E D O N L O C A L R E S O L U T I O N
M E A S U R E S

Once an electron density map is obtained, the final purpose is to create an atomic
model. The reliability of the atomic model is higher as the resolution of the map
increases. In this sense resolution plays the role of quality parameter of the map.
Thus, it is wished to get high resolution maps, unfortunately it involves some
drawbacks, which, leaving out measurement errors (as they are radiation damage,
microscope aberrations, or defocus among others), can be mainly summarized in:
sample heterogeneity, computational accuracy or alignment. They are responsible
of the low contrast at high frequencies. This fact affects to the reconstructed map
introducing a blurring effect that low weights the high resolution content. Tradi-
tionally this lose of contrast at high resolution has been compensated by the so-
called sharpening techniques, where B-factor correction is the most spread as was
shown in the previous chapter. However, despite the good results can be obtained
with the B-factor correction, its use is not supported by the scattering theory. In
addition, to the best of our knowledge, sharpening methods neglect the local reso-
lution of the map. For that reason, in this chapter the local resolution information
is used as an aggregated value to enrich the degree of detail of the reconstructed
structure by means of a local sharpening procedure. Hence, a new local sharpening
method, named LocalDeBlur, is proposed as an application of the local resolution
measurement. It is a map restoration method based on a Wiener filter based on lo-
cal resolutions. Hence, the structure factor flattening is avoided. The results show
a significant improvement in the interpretability of the sharpened map, which
has special impact in the biological understanding of the macromolecule and the
tracing of the atomic model. In particular, in maps with a broad local resolution
variation, for instance membrane proteins.

8.1 current local sharpening methods

In the previous chapter, the B-factor correction was introduced with the aim of
increasing interpretability of density maps. It consists in a global transformation
that boosts the high frequencies, depending on the algorithm certain constrains are
applied [135, 178]. However, as local resolution shows, density maps might present
different degree of detail, which suggests local sharpening tools. The current state
of the art is dominated by LocScale [81] that is briefly introduced in this section
before proposing our alternative named localDeBlur.

8.1.1 Local sharpening - LocScale

The fundamentals of LocScale [81] is the search of similarity between the structure
factor (amplitude values of Fourier components) of the reconstructed density map

125
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and its corresponding atomic model (converted into density map) in a local sense.
It is achieved by means of correcting the structure of the protein to improve the
reconstructed density map, but according to the atomic model. Thus, the flattening
spectra is avoided. To do that, a prior information is required, in this case an atomic
model that is converted into density map. A moving window is used to determine
the radial average of the structure factor inside it. Then, the ratio between the radial
averaged of the structure factor of model, Fmodel, and map, Fobs, is calculated.

k(ω) =

√∑
ω±∆ω |Fmodel|2∑
ω±∆ω |Fobs|2

. (128)

Now, it is possible to use this scale factor to enhance the contrast of the measured
map by locally scaling its structure to be similar to the converted map, it means

Fcorr(ω) = k(ω)Fobs(ω), (129)

where Fcorr(ω) is the corrected structure factor. By doing this process iteratively,
the map is refined in terms of contrast but keeping the same resolution.

8.2 sharpening based on local resolution information - localde-
blur

The sharpening process tries to restore the high resolution information contained
by modifying the map contrast at different frequencies. In this section, a fully au-
tomatic method, named LocalDeBlur, that performs that adjustment of map in a
local manner is proposed. The objective LocalDeBlur is then to enhance the map vi-
sualization which increases the biological understanding of the macromolecule. To
do that, the local resolution information can be exploited. Each voxel of the recon-
structed map will be the superposition with different weights (lineal combination)
of many waves of different frequencies. Note that local resolution represents the
highest frequency statistically measurable above the noise level. Coarsely talking
LocalDeBlur will try to increase the weight of the limit frequency wave with respect
to the rest waves. This mechanism is mathematically modelled as it follows: Given
a reconstructed map V(r), and its local resolution map, H(r) is it possible to find a
new map Vsh(r), named sharpened map, such as

V(r) = Ω(H(r)) ∗ Vsh(r), (130)

where the symbol * represents the convolution operation, and Ω(H(r)) is a local
filter such as it filters the voxel in position r of Vsh(r) at the frequency given by
H(r). In other words, the operator Ω(H(r)) is a local filter defined by the local
resolution values.
To really understand the effect of the local filter, the original reconstructed map
can be decomposed as sum of band pass filtered maps,

V(r) =
∑
ω

VBP,ω(r). (131)
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The effect of the local filter on the map V(r) is to assign resolution and spatially
dependent weights in the volume decomposition as it follows

Ω(H(r)) ∗ Vsh(r) =
∑
ωwω(r)VBP,ω(r)∑

ωwω(r)
, (132)

where wω(r) is a spatially dependent weight at resolution ω, and the denominator
just represents a normalization factor. In particular, the weight factor is a Gaussian
function that measured the distance between the filtering frequency, ω and the
local resolution, ωloc of the voxel in position r,

wω(r) = e−K(ωloc−ω)2 , (133)

being K = 0.025 a constant obtained empirically.
Once all elements of Eq. (130) have been defined, it rests to find the sharpened
map Vsh(r). It can be obtained in an iterative way via steepest descent approach
[100]

V
(i+1)
sh = V

(i)
sh + λ

[
ΩT

(
V −ΩV

(i)
sh

)
−

1

SNR
V
(i)
sh

]
, (134)

where the spatial dependence has been omitted for sake of simplicity. It is note-
worthy that, when the SNR is enough high, the term 1/SNR V

(i)
sh can be neglected,

and therefore, a simpler iterative expression is obtained,

V
(i+1)
sh = V

(i)
sh + λΩT

(
V −ΩV

(i)
sh

)
. (135)

Because the sharpening process is usually, carried out once a reconstruction is ob-
tained, the SNR term can be neglected and therefore, this last equation can be
used as iterative solution of the ill posed problem, Eq. (130). The convergence of
the algorithm depends on the λ parameter, the greater λ, the faster convergence.
Unfortunately, there exists a compromise between convergence speed and sharp-
ening. In the performed test, it was found that

λ =
||V(r)||

10||Ω(V(r))||
. (136)

The criterion used to stop the iterative process considers a good convergence when
the norm of the difference, ||Vi+1 − Vi|| 6 ||Vi||/100, between the current iteration
and the previous one is smaller or equal to 1%.

8.3 results

LocalDeBlur was tested with experimental data sets taken from EMDB [95] and
atomic models from PDB [13]. In particular, the the capsaicin receptor TRPV1

(EMDB-5778, PDB-3j5p) [99] and the Plasmodium falciparum 80S ribosome [198]. The
local resolution map of the first one was estimated in Chapter 5. It was pointed out
that it presents a broad local resolution range, which makes it a good candidate
for a local sharpening approach.
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To test the validity of the algorithm, their atomic model is known, and therefore,
the ground-truth will be better matching between map and model. To measure
the performance of LocalDeBlur and to establish a comparison with other sharp-
ening algorithms, the following methods were also applied: the postprocessing -
RELION [206] and Autosharpen - Phenix [178] as global methods, and LocScale [81]
as local sharpening method.

8.3.1 Experimental Map 1: capsaicin receptor TRPV1

The first experimental example considers the capsaicin receptor TRPV1 (EMDB en-
try 5778) [99]. This volume has a dimensions of 256× 256× 256 voxels, a pixel size
of 1.1 Å/pixel, and the reported FSC resolution at 0.143 was 3.8 Å. The correspond-
ing atomic model was taken from PDB (entry 3j5p). The local resolution map of
this macromolecule was calculated in Chapter 5, and it can be observed in Fig. 32.
Note that, the EMDB entry 5778 provides the original reconstruction and a B-factor
corrected map.
LocalDeBlur was applied to sharpen the raw map, its results can be observed in Fig.
53. The global sharpening methods of postprocessing - RELION and Autosharpen
- Phenix, were applied, as well as the local one, LocScale. In Fig. 53 the sharp-
ened map with all methods and its comparison with the original reconstruction is
shown. To expose the sharpening effect on the map of each method, an α-helix and
its corresponding atomic model was overlapped, they can also be observed in Fig.
53. All methods exhibit a considerably improvement respect to the original recon-
struction, and allow a better understanding of the structure. This improvement is
specially observed in the represented α-helix, note how the post-processing is able
to recover the real shape, but most of the elements of the side chain are out of the
sharpened map. The Autosharpen of Phenix, could restore the α-helix and most of
the side chain elements. the local methods of LocalDeBlur and LocScale, cast similar
results. However, the LocalDeBlur map is slightly tighter to the atomic model than
LocScale.
Finally, a combination of LocalDeBlur and LocScale was performed. The objective
of this test was to: first with LocalDeBlur restore the high resolution components
based on local resolution, and then with LocScale, to adjust the contrast to be as
similar as possible to the atomic model. This combination seems to be the most
properly sharpening method.
It remains to analyze the Guinier plot of these maps. They are represented in
Fig. 54, where the dashed line represents the structure factor of the atomic model
converted into density map using xmipp_volume_from_pdb [161]. Note how the
structure factor of the converted map presents a decay with the frequency, as it
was pointed out in Chapter 7. The global sharpening methods of postprocessing
- RELION and Autosharpen of Phenix attempts to flatten this sprectrum, and the
result is a divergence between the structure factor of the converted map and the
sharpened map. Local approaches, LocalDeBlur and LocScale, keep the strucuture
factor, in particular, the decay, in agreement with the scattering theory. As well
as it occurs with the combination LocalDeBlur and LocScale. However, it must be



8.4 discussion 129

highlighted that LocalDeBlur achieves that without prior knowledge of the atomic
model.

8.3.2 Experimental Map 2: Plasmodium falciparum 80S ribosome

The second experimental case of use considers map of the Plasmodium falciparum
80S ribosome taken from EMDB (EMDB entry-2660) [198]. This volume has a dimen-
sions of 360× 360× 360 voxels, a pixel size of 1.34 Å/pixel, and the reported FSC

resolution at 0.143 was 3.2 Å. The corresponding atomic model was taken from
PDB (entry 3j79). As it happened with the previous example, this entry of EMDB

provides the half maps, and the full map. The local resolution map of this macro-
molecule was calculated with MonoRes using a single volume, the result can be
observed in Fig. 55. The original map was then sharpened with LocalDeBlur using
as input the obtained local resolution map. Other sharpening methods were also
applied, as postprocessing - RELION and Autosharpen - Phenix and LocScale, all
results are summarized in Fig. 55. To cast more light on the sharpening effect, a
region of interest was magnified and overlapped with the atomic model. As it oc-
curred with the TRPV1, the ribosome presents a broad resolution range, however,
the differences between sharpened maps is clearer in this case of use. It indicates
that sharpening methods seems to be map dependent. In particular, the global
method of Autosharpen of Phenix was able to restore even better than the local
method of LocScale the secondary structure. However, LocalDeBlur got again an ex-
cellent result in comparison to their alternatives, its results show an almost perfect
matching with the atomic model, it is highlighted how much tight is the density
map with the side chains. In particular, in this case the combination LocalDeBlur
with LocScale considerably enriched the elucidation of the protein structure.
Finally, the structure factor of these sharpened maps was calculated, and repre-
sented in the Guinier plot. The results can be observed in Fig. 56. To do that, the
atomic model was converted into density map by means of xmipp_volume_from_pdb
[161]. Then the structure factor was calculated an represented in the Guinier plot
(dashed line). As it happened in the previous example, the structure factor of the
sharpened maps with local approaches present an excellent correspondence be-
tween the structure factor of the converted map and the sharpened one, in contrast
with the local approaches. Again, it is remarkable the similarity of LocalDeBlur re-
sults with the converted map, without any knowledge about the model.

8.4 discussion

A new and fully automatic algorithm for local sharpening, called LocalDeBlur, has
been developed. This method makes use of local resolution information to deblur
the density map, in this sense and leaving the local filters out, it represents the
first application of local resolution. Thus, the B-factor correction is avoided solving
the problem of structure factor flattening, in agreement with the scattering theory.
In contrast with global approaches, LocalDeBlur is specially suitable for map that
presents a broad local resolution range. It is a logical result. Indeed, if resolution
is understood as a measurement of SNR, then global sharpening approaches try to
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sharp the map weighting by the SNR. When the SNR is more less constant in the
whole map, the global sharpening works properly. In contrast, if it is spatially vari-
ant, it is necessary to weight locally. It is exactly what LocalDeBlur does, it modifies
the local weights of the different frequencies highlighting the closer to the local
resolution, and neglecting higher frequencies.
The results with experimental maps show a considerable improvement with re-
spect to global sharpening approaches, and slightly better results than the current
local approach, LocScale. However, the best result is obtained when a combination
of both methods is considered in the order, first LocalDeBlur and then LocScale. This
combination restores the high resolution elements, by means of a deblurring based
on local resolution, to then adjust the contrast with LocScale trying to get the high-
est similarity with the atomic model.
The proper elucidation of the structure by means of sharpening process results
critical for modelling process and tracing atomic models. In particular, it currently
represents a hot topic in the field of structural biology, with applications to drug
development.

8.5 conclusions

1. A new and fully automatic free-parameter local sharpening method, named
LocalDeBlur based on local resolution information has been proposed.

2. Up to our knowledge it represents the first application of local resolution
(leaving out local filters)

3. LocalDeBlur avoids the B-factor quasi-flattening in agreement with the scat-
tering theory.

4. It is compatible with LocScale, in fact the best result are achieved with a
combination of both methods.

5. The proposed algorithm significantly improves the interpretability of density
maps helping in the interpretability of the map and in elucidation of atomic
models.
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Figure 53: Capsaicin receptor TRPV1 and an example of α-helix overlapped with the
atomic model. The original map and the sharpened maps obtained with post-
processing - RELION, Autosharpen - Phenix, LocalDeBlur, LocScale and a combi-
nation of LocalDeBlur and LocScale are shown.
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Figure 54: The Guinier plots for the Capsaicin receptor TRPV1 of the original map and
the sharpened maps obtained with postprocessing - RELION, Autosharpen -
Phenix, LocalDeBlur, LocScale and a combination of LocalDeBlur and LocScale are
shown (continuous line). In dashed line it is represented the Guinier for the
atomic model converted into density map.



8.5 conclusions 133

Figure 55: Plasmodium falciparum 80S ribosome and region of interest overlapped with the
atomic model. The original map, its local resolution map (resolution in Å), and
a region of the sharpened maps obtained with postprocessing - RELION, Au-
tosharpen - Phenix, LocalDeBlur, LocScale and a combination of LocalDeBlur and
LocScale are shown.
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Figure 56: The Guinier plots for Plasmodium falciparum 80S ribosome of the original map
and the sharpened maps obtained with postprocessing - RELION, Autosharpen
- Phenix, LocalDeBlur, LocScale and a combination of LocalDeBlur and LocScale
are shown (continuous line). In dashed line it is represented the Guinier for the
atomic model converted into density map.
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C O N C L U S I O N S

This section summarizes the main conclusions of the present thesis. The main
objectives of the this work were exposed in the first chapter, and the conclusions
will be presented following the same order and referencing them.

9.1 objective 1 : measurement of local resolution in spa

• It was proposed a new local resolution method, MonoRes, for computing the
local resolution in SPA. This method is fully automatic, and only requires a
mask and the density map.

• The local resolution values provided by MonoRes consist on a measurement
of the SNR. Resolution values are assigned when the local amplitude of the
signal cannot be statistically distinguished (hypothesis test) from the ampli-
tude of noise.

• MonoRes algorithm is invariant under B-factor correction. Sharpened map
and original reconstruction present the same resolution. Sharpening only af-
fects the visualization of the map.

• The proposed algorithm casts high accuracy on resolution estimation. This
was confirmed with synthetic data.

• MonoRes allows to estimate the local resolution of large maps in short com-
putational times.

• The proposed method is also able to locally filter maps by the local resolution
values.

9.2 objective 2 : measurement of local resolution in electron to-
mography

1. Up to our knowledge MonoTomo represents the first local resolution method
in electron tomography.

2. The input of MonoTomo consists on two independent tomograms, usually
obtained by odd-even splitting of the tilt series.

3. Splitting frames approach is introduced as a new method for splitting datasets.

4. The noise in electron tomograms is spatially dependent. MonoTomo uses the
core of MonoResadapted to handle this dependency.

5. MonoTomo might open new possibilities in the field, like subtomogram aver-
aging, alignment, segmentation, sharpening or local filtering.
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9.3 objective 3 : measurement of local-directional resolution and

local resolution anisotropy in spa

1. The concept of local resolution has been generalized adding directionality:
resolution is represented with a tensor instead of a scalar.

2. A fully algorithm, MonoDir, for computing the local-directional resolution
and analyze the existence of anisotropy in SPA reconstructions has been pro-
posed.

3. The resolution anisotropy provides information about the local and global
map quality needing only the reconstructed map for that.

4. Angular assignment error can be identified as a slope in the radial average
of the local resolution maps, in particular in the radial and tangential compo-
nents.

5. The existence of preferred directions and global anisotropy are shown as a
non uniform coverage of the angular plot.

9.4 objective 4 : analysis of b-factor correction

1. Guinier law is only valid at very low frequencies, the theory predicts an
exponential decay of the structure factor.

2. Up to our knowledge, the first analytic calculation of Guinier’s validity range
has been presented.

3. The Porod law is only valid at high resolutions, and also predicts a decay of
the structure factor.

4. The structure factor of a macromolecule has a non-flat spectrum. This fact is
independent of the spectral range.

5. The b-factor correction only contributes to the visualization of the macro-
molecular complex.

6. Map with flattening/quasi-flattening sprectra does not represent macromolec-
ular complexes. Proteins must present a decay in the structure factor.

7. 3D Reconstruction algorithms do not always over-dampen the spectrum of
the macromolecule.

9.5 objective 5 : development of a local sharpening method

1. A new local sharpening method, LocalDeBlur based on local resolution has
been developed.

2. Up to our knowledge, it represents the first application of local resolution
(leaving out local filters).
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3. LocalDeBlur avoids the b-factor quasi-flattening in agreement with the scat-
tering theory.

4. It is compatible with LocScale, in fact the best results are achieved with com-
bining both methods.

5. The proposed algorithm significantly improves the interpretability of density
maps in terms of the of the map understanding and in the elucidation of
atomic models.

9.6 objective 6 : introduction to the physics of the electron mi-
croscope and spa workflow

This was a side objective, out of the scope of this thesis and was originated be-
cause of the multidisciplinarity of the field of cryoem: on the microscope side, it is
required knowledge of Optics, Electromagnetism, Material Physics and Quantum
Mechanics. On the other hand, the development of SPA methods needs knowledge
of image processing, and mathematical background, but the microscope physics is
also desirable. Part of the introduction of this thesis was conceived as a concise
and enough detailed approach to Microscope Physics, the SPA assumptions and
the current methods, in the search of the providing of a more accesible starting
point to this document for the people who belong to one of the others disciplines
involved in this topic. Usually all this information is spread in very specific books
and reviews.
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