
Emerging Themes in CryoEM�Single Particle Analysis Image
Processing
Jose Luis Vilas, Jose Maria Carazo,* and Carlos Oscar S. Sorzano*

Cite This: Chem. Rev. 2022, 122, 13915−13951 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Cryo-electron microscopy (CryoEM) has become a vital technique in
structural biology. It is an interdisciplinary field that takes advantage of advances in
biochemistry, physics, and image processing, among other disciplines. Innovations in these
three basic pillars have contributed to the boosting of CryoEM in the past decade. This
work reviews the main contributions in image processing to the current reconstruction
workflow of single particle analysis (SPA) by CryoEM. Our review emphasizes the time
evolution of the algorithms across the different steps of the workflow differentiating between
two groups of approaches: analytical methods and deep learning algorithms. We present an
analysis of the current state of the art. Finally, we discuss the emerging problems and
challenges still to be addressed in the evolution of CryoEM image processing methods in
SPA.
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1. INTRODUCTION
Structural biology aims to elucidate the three-dimensional
structure of biological macromolecules to understand their
working mechanisms in physiological and pathological
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contexts. The applications are multiple, from developing new
drugs to designing proteins for carrying out specific tasks.
Indeed, the field has witnessed a swift expansion in the past
decade. The number of new structures deposited each year
into databases such as the Protein Data Bank (PDB)16 proves
its impact. To have a quantitative understanding of the quick
growth of the field, we mention that the first atomic models
were determined in the decade from 1960 to 1970, but
currently, there are more than 180,000 structures16 in the PDB.
The main experimental techniques contributing to this growth
are X-ray crystallography, nuclear magnetic resonance (NMR),
and, more recently, cryo-electron microscopy (CryoEM).
Looking at the statistics on the PDB website, the X-ray
crystallography method is responsible for most of the database
entries. However, the increase of models solved by CryoEM
has steadily grown in the last ten years (see Figure 1), making

it the fastest-growing approach. The relatively steep rise of
CryoEM over other structural techniques is mainly due to its
capacity to study biological entities in close to physiological
states with reduced requirements in terms of sample quantity
and concentration and without crystallization needs.

At present, the most common CryoEM techniques are (1)
single particle analysis (SPA), which considers a purified
sample containing multiple copies of the purified protein under
study, (2) electron tomography, which works with “in situ”
preparations (i.e., without many purification steps which could
potentially disturb the structure, allowing the direct study of
the cellular environment in its native state and pushing the
understanding of protein interactions, and (3) microelectron
diffraction, probably the “newest branch”, offering some
unique opportunities in those cases in which microcrystals
are available, from small molecules to membrane proteins.41

Among them, SPA has probably been the main driver of the
current widespread recognition and impact of CryoEM. To
achieve this broad success, many challenges have had to be
solved, such as developing a new generation of detectors,

enhancing the electron optics and associated instrumentation,
developing new vitrification techniques, and, very importantly,
radically transforming new software and image processing
methods.210 In 2014 most of these problems were adequately
addressed, and resolutions close to 3 Å were obtained for the
first time for noncrystalline specimens (see Figure 1);
nowadays, that resolution is very often obtained. It is not
then surprising that this trend was then called the resolution
revolution83 and the technique received the “Method of the
Year 2015” award100 from Nature Methods. The impact of
these advances on the structural biology community and, more
generally, on the understanding of biological macromolecules
was so high that, two years later, Jacques Dubochet, Richard
Henderson, and Joachim Frank were awarded the Nobel prize
in Chemistry for developing CryoEM “for the high-resolution
structure determination of biomolecules in solution”.194

The future of this technique looks very promising, making a
review with a focus on recent image processing methodologies
and workflows in CryoEM single particle analysis particularly
pertinent. In this way, we will analyze how we have reached the
current situation of the field and what is considered state of the
art for the different processing steps. Finally, we will take the
opportunity to discuss those emerging topics and technologies
that, in our opinion, will define the next steps forward in
CryoEM. We have focused our review on the methodological
developments performed over the past decade. CryoEM is a
multidisciplinary field; this review attempts to cover the point
of view of image processing. However, the reader can take the
benefit of many other complementary reviews: about specimen
preparation,2 about membrane proteins,84 about structural
studies,109 about CryoEM limitations,34,47,91 about emerging
issues,210,218 or about computational methods.162,207

2. BRIEF INTRODUCTION TO IMAGE PROCESSING
APPROACHES

The continuous advances in computational capabilities have
allowed for an enormous revolution in data analysis and big
data. Indeed, image processing in CryoEM is all about these
two technologies. To have a coarse idea of the computational
problem, consider the usual numbers associated with a typical
CryoEM project. The fast acquisition rate of current detectors
allows acquiring movies of the sample composed of many
frames; the sum of the frames results in an image called a
micrograph. In a normal microscopy session, hundreds or
thousands of movies are acquired. Each movie has around 60
frames (depending on the dose) with dimensions of at least
4000 × 4000 pixels (and often more). Thus, raw data acquired
by the microscope can easily be measured in terabytes. In these
images, the individual macromolecules of interest need to be
located and cropped from the micrographs. The number of
cropped images (particles) can go from several hundred
thousands to several millions. Assuming that the typical
dimensions for each of these particles are 300 × 300 pixels,
then the number of collected pixels is on the order of 300 ×
300 × 2M = 18 × 1010 and the reconstructed structure will be a
volume of 300 × 300 × 300 = 27 × 106 voxels.172 These
numbers mean that we want to solve a problem involving
millions of unknown variables and thousands of millions of
equations. This is a big data problem in a huge dimensional
space, a difficult problem that gets further complicated by the
very low signal-to-noise ratio (SNR) of CryoEM images and
the intrinsic heterogeneity of the sample. Thus, image

Figure 1. Yearly evolution of (left axis) the highest resolution
achieved by CryoEM and (right axis) the number of deposited
structures in the PDB by experimental method. Data extracted from
ref 16.
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processing in CryoEM represents a real algorithmic and
computational challenge.

The SPA image processing workflow is divided into smaller
steps to solve the overall problem of reconstructing a biological
macromolecule. There exists a wide variety of mathematical
methods to undertake these tasks. In an effort to organize this
varied information, in this review we will classify methods into
two groups: analytical and deep learning methods. Tradition-
ally, SPA has used classic image processing approaches based
on what we will call analytical methods. In this group, we can
find many different algorithms; Bayesian and regularization
methods are good representatives. However, the recent
coupling of the routine experimental collection of enormous
data sets, the advent of new algorithms, and increased
computational capabilities have resulted in what we can call
the “data revolution”. This scenario is very well suited to
approaches referred to as deep learning methods because they
require high computational capabilities and large data sets to
train.
2.1. Analytical Methods

This group considers all methods that can be formulated in
direct mathematical terms, a characteristic that separates them
from the deep learning approaches that will be presented in the
next section. However, since many concepts are common to
both analytical and deep learning methods, throughout this
first section we will briefly point to some of their similarities
and differences, always aiming at providing the reader with a
broader perspective on the different approaches available for
data analysis.

Algorithms, in general, can be of a very different nature. Still,
at their core, there is usually some kind of evaluation of the
similarity or dissimilarity of two images (correlation, distance
between images, such as the Euclidean or any other distance).
This similarity comparison is generally referred to as the data
fidelity term. In its most common Euclidean formulation, it
takes the form

E Y Y0
2= (1)

where Y is a vector of observations and Y0 is a vector of
predicted values. This very generic formulation applies to
many subproblems along the image processing pipeline. For
instance, in 2D classification, Y is the experimental projection
of a single particle, and Y0 is the 2D class representative. We
can further decompose this model into smaller pieces. For
instance, let us assume that we predict that there is a clean
image Xi, called the class representative, that is affected by the
microscope’s contrast transfer function (CTF), denoted by C,
and then reoriented with an operator A to fit the orientation of
the experimental image. Under this model, our prediction with
this class representative would be ACY Xi i= . We would assign
the image Y to the i-th 2D class that minimizes the energy of
the error E, understanding the energy of the error as the square
of the Euclidean distance Y Yi

2. In fact, it can be easily
shown that minimizing the error energy and maximizing the
correlation between Y and Y0 are equivalent under certain, but
rather general, circumstances.

(Side Note: Let us consider, for instance, the problem of
finding the geometric transformation, A, that minimizes the
error between an observed image Y and the transformed
p r e d i c t i o n A X AY X(arg min

A

2 =

A AY X Y Xarg min( 2 )
A

T2 2+ =

A AX Y Xarg min( 2 ))
A

T2 . Let us assume that A is applied

in such a way that ∥AX∥2 = ∥X∥2. This is true if we use image
wrapping during the geometrical transformation, as is done, for
instance, by the discrete Fourier transform, and the absolute
value of the determinant of A is 1, as is the case for a rigid
transformation. Then, ∥AX∥2 does not depend on A, and the
transformation that minimizes the error is the same as the one
that maximizes the dot product between the two signals (

AY Xarg min( 2 )
A

T = AY Xarg max( )
A

T . Let us consider now the

c r o s s - c o r r e l a t i o n b e t w e e n t h e t w o s i g n a l s ,
A A A AY Y X X Y Y X X( ) ( )/( )T= , where

Y denotes a vector of the same size as Y with all its
components set to the average of Y. If we use wrapping, then
the average of AX is the same as the one of X and its energy
does not change either. Consequently, we may remove from
the maximization of the correlation all the terms that do not
depend on A, A AY X Y Xarg max arg max

A A

T T= . Because

all the components of Y are equal, the term AY XT is
proportional to the mean of AX, which does not depend on A
due to the wrapping and can also be eliminated from the
optimization. Finally, we get that the geometrical trans-
formation that maximizes the correlation, AY Xarg max

A

T , is

the same as the one that minimizes the Euclidean distance.
This result also holds in Fourier space with complex
components, as long as each Fourier component has the
same weight in the Euclidean distance calculation.)

Minimizing the Euclidean distance between two vectors may
seem a very natural objective. However, this action has a
critical statistical interpretation. If the data is supposed to be
generated by an additive model of a deterministic underlying
signal, Y0, plus (random) noise, N,

Y Y N0= +

then, we wonder which is the estimate of Y0 that maximizes the
likelihood of observing a particular realization of the random
vector (a vector with random variables as components)

f fY Y Y Yarg max ( ) arg max ( )
Y

Y Y
Y

N0 0
0

0
0

| =|
(2)

where fY Y0| is the conditional probability density function of

observing Y given Y0 and f N is the probability density function
of the noise. These probability density functions are also called
likelihoods. For this reason, our best estimate, Y0, is called the
maximum likelihood solution.

It is customary to maximize the logarithm of the likelihood,
instead of the likelihood,

f Y Yarg max log ( )
Y

Y Y 0
0

0
||

Because the logarithm is a monotonic function, the location of
the maximum of the likelihood is the same as the location of
the maximum of the log-likelihood. The reason for this
transformation is that when we analyze many realizations of
the same random vector, Y Y Y, , ..., P1 2= { }, we want to
optimize the model that maximizes the likelihood of the set,
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not of any image in particular; the fact that we are dealing with
logarithms makes this latter task particularly simple to express.
Indeed, because the realizations are independent, this can be
easily decomposed as

f f

f

Y Y Y Y Y

Y Y

arg max log ( , ..., ) arg max log ( )

arg max log ( )

P
j

P

j

j

P

j

Y
Y

Y
Y Y

Y
Y Y

1 0
1

0

1
0

0
0

0
0

0
0

| = |

= |

|
=

|

=
|

If we assume the noise, N, follows a multivariate Gaussian
distribution centered at 0 and with covariance Σ,

f Y Y Y Y

Y Y

( )
1

det(2 )
exp

1
2

( )

( )

j j
T

j

Y Y 0 0
1

0

0

i
k
jjj

y
{
zzz

| =|

then the optimization of the log-likelihood above after removal
of the terms that do not depend on Y0 becomes

Y Y Y Y

Y Y Y Y

arg max ( ) ( )

arg min ( ) ( )

j

P

j
T

j

j

P

j
T

j

Y

Y

1
0

1
0

1
0

1
0

0

0

i

k
jjjjjjj

y

{
zzzzzzz

=

=

=

If we assume that all the components of the noise have the
same variance, σ2, and that all of them are independent of each
other, then Σ = σ2I, with I being the identity matrix of the same
size as the length of the noise vector, and the optimization
problem becomes

Y Yarg min
j

P

j
Y 1

0
2

0 =

That is, we have come down to the Euclidean distance
minimization with which we started this section.

From this small exercise, we may draw many important and
general ideas:

1. Optimizations whose objective function is a data fidelity
term can be understood as a maximum likelihood
problem for some given statistical distribution of the
noise.

2. Assuming a multivariate Gaussian distribution with
equal variance and independent components for the
noise (what is known as additive white Gaussian noise,
AWGN) translates into an elementary least squares
problem in which the goal function is just the Euclidean
distance between the observations and our predictions.

3. All algorithms in CryoEM in which the cross-correlation
between an experimental image and a reference is
maximized, such as projection matching or the inner
steps of most algorithms in which two images are
aligned, are also maximum likelihood solutions of an
image formation model in which we assume AWGN.

4. In the CryoEM field, it is normally assumed that
projection matching and maximum likelihood methods
are two families of solutions with different properties.
This understanding stems from the specific way the two
methods were introduced to the field. In this way, in

classical CryoEM projection matching115 the estimate Y0
is searched as the maximally correlating image between
the experimental image Y and a collection of reference
images, with the search for the maximum having a non-
negligible chance of being trapped in a local optimum. In
classical CryoEM maximum likelihood,148,149,161 in turn,
the estimate Y0 is calculated as a weighted sum of all the
reference images with different weights (computed from
a likelihood reasoning). However, the latter approach to
maximum likelihood is the result of applying a particular
(and very successful) algorithm to solve maximum
likelihood problems called expectation-maximization,
which in itself could have been solved differently using
gradient descent or any other approach. The advantage
of expectation-maximization is that it can handle latent,
unobserved variables (for instance, in the CryoEM field,
the angular assignment is treated as unobserved variables
that must be marginalized). In much the same way,
projection matching could have been implemented, at
least conceptually, as an exhaustive search for the
optimal value. So, we are always solving maximum
likelihood problems, and the difference is the way this
optimization is performed. In short, expectation-max-
imization has proven to be a compelling optimization
technique in CryoEM. It opened the field to high
resolution under the typically very high dimensional,
very high noise conditions of cryogenic image
acquisition without staining.

5. Assuming other statistical distributions translates into
different optimization problems. For instance, a general
multivariate Gaussian distribution for the noise with
arbitrary covariance matrix Σ would result in a weighted
least squares problem. The data fidelity term of
RELION,145 formulated in Fourier space with different
variances for each frequency, belongs to this family.
Another example would be if instead of assuming a
Gaussian distribution, we assume a Laplacian distribu-
tion, then instead of an Euclidean norm minimization, l2,
we would have a l1 minimization. Conversely, given any
data fidelity term, such as the Huber loss function or the
correntropy used in CL2D,166 we could always construct
a likelihood function whose logarithm is related to the
term we are optimizing, even if this likelihood function
does not have any known name (Gaussian, Laplacian,
...).

6. The maximum likelihood framework has been presented
in an extremely generic way. All the steps we encounter
along the image processing pipeline in CryoEM (movie
alignment, CTF determination, particle picking and
identification, 2D classification, 3D classification, volume
restoration, ...) can be formulated in this framework. For
each one of the problems, the roles of Y and Y0 are
played by different types of data and models.

The data analysis problems we have presented so far fall into
a category called unsupervised data analysis problems. In this
kind of problems, we are given a set of observations, Y vectors,
and our goal is to make some sense of them. The most
prominent example in CryoEM would be the 2D or 3D
classification of the experimental images. Although we use the
word classification in our field, a more technically correct word
would be clustering: images are grouped because they all
belong to the same conformational state, point of view, or any
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other feature of interest that is not explicitly stated. As opposed
to unsupervised problems, another important branch of
analysis is supervised problems. In this second branch, each
observed vector is accompanied by a label that characterizes
that observation. For instance, when we manually select
particles in a micrograph, we attach a discrete label to each
image patch of the micrograph so as to indicate whether that
patch contains a particle at the center of the patch
(representing this presence as 1, for example) or not (encoded
as 0, for example). Loosely speaking, we can define a label as a
number that identifies a given feature of the data. Classes can
be created by the set of data with the same labels (identifiers).
In this way, data now comes in pairs of observations and labels.
The most common notation is to keep Xj for the observed
vector, called the predictor variables, and Yj for the label, called
the predicted variables. We can attach more than one label to
each observation (for instance, whether the image patch
contains a centered particle and the kind of particle), and labels
can be discrete or continuous. The goal of supervised data
analysis problems is to find a function that helps us optimally
predict the labels from the observations fY X( )= . If the
predicted label is continuous, then the problem is called a
regression problem. If the label is discrete, then the problem is
called a classification problem. In CryoEM, we do not have a
real 3D classification problem because we do not know the
class labels for the experimental images. Classification
problems are often formulated in a regression framework due
to the more efficient optimization tools encountered for
continuous variables. In this way, instead of just predicting 0 or
1 for a given image, we output a continuous value between 0
and 1, indicating our belief in whether the given image is more
likely (closer to 1) or less likely (closer to 0) to contain a
particle in the middle. One of the most famous transformations
of a classification into a regression problem is the logistic
regression, which is at the core and output of many deep
learning formulations.

Regression problems can also be set in the maximum
likelihood framework. Let us consider a family of functions
fΘ(Xj) defined by a set of parameters Θ (for instance, the
family of functions y = fa,b(x) = a + bx is defined by the
parameters a and b). Given a set of (Xj, Yj) pairs, we look for
the parameters that better allow us to perform the predictions

fY Xarg min ( )
j

P

j j
1

2

= (3)

Interestingly, this is exactly the kind of optimization problem
solved by deep learning methods. In that regard, the data
fidelity term of neural networks can also be considered a
maximum likelihood regression problem. Notably, the function
fΘ in the deep learning setup is much more sophisticated and
powerful than functions used in standard regression problems.
The optimization algorithms to find Θ are also much more
robust in deep learning since they have to deal with the
drawback of performing the optimization in a very high
dimensional space (the size of the vector Θ is very large, as we
will see in the next section). Finally, the loss function (coarsely
speaking error) in deep learning is not restricted to the
Euclidean distance between the observed and predicted values,
but the field has explored a vibrant landscape of possible loss
functions.

Related to this regression formulation is the one of inverse
problems, greatly advocated for in CryoEM. We could
formulate the problem as

fY Xarg min ( )
j

P

j
X, 1

2

j
j{ } =

Note that we are given a set of observations, Yj, and we must
find the parameters, Θj, and a single predictor, X, that explains
our observations. This would be the case of 3D reconstruction
in CryoEM. For each experimental image, Yj, we must find
some 3D alignment parameters, Θj, and a volume X such that
when we project the volume along the direction given by Θj,
that is, f X( )

j
, this reprojection looks as similar as possible to

the observation.
The last kind of problems encountered in CryoEM and

addressed here is the autoencoding approach. For each
experimental observation, we must find the set of parameters
that best explains that observation:

fY Yarg min ( )j j
2

j
j

This problem is restricted to construct an internal
representation whose dimension is smaller than the dimension
of the vector Yj. In this way, the trivial identity solution does
not belong to the family of functions f

j
.

A CryoEM problem of this class would be the determination
of the defocus: for each micrograph, we would calculate its
power spectral density (PSD), Yj, and we must find the defoci,
Θj, that best explain that PSD. Note that the autoencoding is
performed in an inherently parallel fashion; that is, the
determination of the defoci of one micrograph is independent
of the defoci of any other micrograph, and that is why there is
no sum over j in the objective function. Interestingly,
autoencoding is a widespread strategy in deep learning due
to the common absence of labels attached to each observed
image. In deep learning autoencoders, the function f depends
on a set of parameters specific to each observation but also on
a set of common parameters, , that are optimized as well,

fY Yarg min ( )
j

P

j j
, 1

,
2

j
j{ } =

Therefore, the problem cannot be formulated now as a
collection of P independent subproblems, but the whole set
must contribute to determining the function parameters.

As we have seen, data fidelity terms are related to a
maximum likelihood formulation and finding the model that
makes the observations maximally likely. However, we may
extend this framework by incorporating a priori knowledge of
the atomic models through another probability density
function, in this case, of the models fY0

. In this way, the new
setup comes after a Bayesian formulation of the problem (see
eq 2 for its maximum likelihood counterpart)

f
f f

f f d
Y Y

Y Y Y

Y Y Y Y
arg max ( ) arg max

( ) ( )

( ) ( )Y
Y Y

Y

Y Y Y

Y Y Y
0

0 0

0 0 00
0

0

0 0

0 0

| =
|

||
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where the denominator is f Y(Y). Because Y0 is its integration
variable, the denominator does not depend on our choice of Y0
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. Consequently, it can be eliminated from the optimization. As
we have a product of likelihoods, it is also convenient to take
its logarithm, and because this transformation is monotonic,
the best model, Y0, will still be the same. Our optimization
problem now is referred to as maximum a posteriori (MAP),
and it is formulated as

f
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Y Y

Y Y Y
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The first term is the data fidelity term that we already
studied in the discussion on the maximum likelihood. The
second term comes from our prior information on the set of
models we are looking for. As we did with the maximum
likelihood, we may assume a particular distribution for this
term, for instance, a multivariate Gaussian distribution with
equal variance, zero mean, and independent components. As
we saw in the part related to maximum likelihood, this
assumption, after removing all the terms that do not depend on
Y0, results in a term of the form

f Y Ylog ( )Y 0 0
2

0

where ∝ denotes proportional to. This is the famous Tikhonov
regularization in regression problems. The prior of RELION
belongs to this family. Priors are great to use if they truly
correspond to reality. Unfortunately, this easy-to-handle
multivariate Gaussian prior for the model is not strictly
verified by macromolecules,178 and consequently, its use
necessarily biases the results. However, it is well-known in
the statistical literature that when the number of observations
is huge, as in CryoEM, the data fidelity term is much larger
than the term coming from the prior, and it dominates the
maximization process. The reason is that the data fidelity term
grows with the number of observations (it depends on Y),
while the penalization term does not.

In regression, it is common to formulate the problem of
combining data fidelity and a priori knowledge (or
“constraints” or “penalization term”) through a weighted
combination of these two terms that makes a new expression.
We commonly refer to this process as regularization, and it
yields expressions of the form

fY Xarg min ( ) ( )
j

P

j j
1

2 +
=

where λ is a constant that balances the weight between the data
fidelity term and the penalization term Φ(Θ), for some
positive function Φ called regularizer or penalization term.
Even λ may have an interesting statistical interpretation. For
example, for Tikhonov regularization and a least squares
fidelity term, it is easy to show that /N Y

2 2
0

= (where N
2 and

Y
2

0
are the variances of the noise and the model components,

respectively). That is, λ is the inverse of the signal-to-noise
ratio (SNR). In this way, if the SNR is high, we will reduce the
weight of the prior term with respect to the data fidelity term.
Conversely, if the SNR is low, we will put more weight on the
prior information.

Seeing the MAP formulation, we can always understand the
regularizer as related to the prior distribution of the models.

We have already seen that Tikhonov regularization comes from
a multivariate Gaussian prior with zero mean, equal variance,
and independent components. Other regularizations such as
total variation (the l1 norm of the spatial gradient of the model,
Φ(Θ) = ∥∇Θ∥1) can be understood as a Laplacian prior on
the spatial gradient of the model. It is well-known that this
prior promotes sparsity of the spatial derivatives of the model,
which is good for lowering the noise in the estimated model.
Still, it may not be necessarily true for biological structures. In
general, we can always construct a prior distribution whose
logarithm results in the regularizer we use.

The optimization strategy may vary. We may try to decrease
the whole objective function simultaneously, as is done in
RELION or deep learning approaches. In turn, we may
alternate between steps that first minimize the data fidelity
term and other steps that minimize the penalization term, as is
done in ref 35. In this second alternative it is common to use
proximity operators to increase the current solution’s prior
likelihood. Among those most used, we encounter the soft-or
hard-shrinkage operators used with l1 norms.81

Additionally, we may employ what is referred to as
noninformative priors. In this case, we assign the same
probability to all feasible solutions. For instance, we may know
that our solutions have to be non-negative. However, any
model, Y0, fulfilling this condition is equally likely. Projection
onto convex sets20,179 could be seen as a proximity operator
that chooses one of the possible solutions given by the
uninformative prior and our current model estimate. Following
this reasoning, a pure maximum likelihood problem can be
seen as a MAP problem in which all solutions are equally likely.
Consequently, the prior likelihood does not depend on our
specific choice of model, Y0, and it is eliminated from the goal
function.

From the digression above, we may draw the following
conclusions:

1. Any image processing step we perform along the
CryoEM image processing pipeline can be understood
in a MAP framework with the appropriate choice of
probability density functions: one for the distribution of
the noise that gives rise to the data fidelity term and
another one for the kind of models we are looking for
that gives rise to the penalization term.

2. We may choose priors that can be easily handled
mathematically, although they may not represent real
priors of biological macromolecules, or we may choose
priors that faithfully represent biological features but
may then be much more difficult to deal with
mathematically (and computationally). A certain equi-
librium is always needed.

3. Deep learning algorithms are not inherently different
from the more classical algorithms with respect to the
general MAP setup in which they can be formulated.
However, they are inherently different in the complexity
of the functions fΘ being sought. Consequently, they
require completely different optimization algorithms and
much more data to be able to faithfully estimate the
large number of parameters required.

In this section, we have focused on the kind of optimization
problems being solved in CryoEM. We have put them into a
single generic framework (MAP) and subsequently analyzed
the specific choices made by the different algorithms used in
CryoEM. Underneath this apparent similarity at a high level,
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we must now consider that there are significant differences in
the implementation of the algorithm, the optimizer, the choice
of initial values, and many numerical tricks, such as not
evaluating the full probability density function but only a part
of it exploiting the relationship between Fourier and real space,
etc. These differences make important distinctions between the
various algorithms and result in different properties concerning
robustness to noise, convergence speed, resilience to
perturbations of the algorithm initialization, wall-clock
execution time, memory requirements, etc.

An important idea to keep in mind is that any image
processing algorithm in CryoEM is about the estimation of
some underlying model Y0 (local frame displacements, defocus
values, particle locations, 2D or 3D classes, the angular
orientation of each particle, or any other parameter or model
we may think of). Because the input data is random (because
of the noise), the estimate of the underlying model Y0 is
another random variable. Because the SNR of the input images
is so low, between 0.1 and 0.01, the variability of the estimated
parameters may be quite large. In general, given this situation,
the best approach we can have (that is, however, seldom done
in CryoEM) is to estimate each parameter multiple times,
ideally using algorithms with different rationales and
mathematics behind them, after which we compare the
different estimates. If they are sufficiently close, the average
of these estimates will surely have a lower variance. If they are
sufficiently apart, we need clustering to identify the most likely
region for the ground-truth model for that particular input.
This clustering approach can be taken if there are at least three
independent estimates. If there are only two and they disagree,
the most we can do is discard this input image as we cannot be
sure which of the two is the correct estimate of the underlying
model. The interested reader may consult ref 168 for an
expanded discussion of bias and variance in the estimation of
parameters in CryoEM and how what we normally call
overfitting is caused by bias in the estimation of the
parameters.
2.2. Deep Learning
As we have seen, the objective functions of any deep learning
algorithm can be understood in the context of either a
maximum likelihood or maximum a posteriori formulation. In
general, they are known as loss functions in the deep learning
literature. There has been a very active search of various
possibilities86,227 beyond the Euclidean distance presented in
the previous section.

Conceptually speaking, deep learning algorithms are solving
nothing more than regression, classification, or autoencoding
problems with nonlinear functions, fΘ. This goal is shared with
more traditional image processing or machine learning
algorithms. Historically, they inherit from a tradition of neural
network algorithms that had their first wave in the 1980s with a
relatively important impact only in some niche applications.
However, in the 2000s, they acquired the adjective “deep”,
which we will explain later, and since then, they have become
ubiquitous in most data and image analysis tasks. This leap was
caused by several contributions that more or less coincided in
time (for a review, see ref 151):

• The number of network parameters was largely
increased (by several orders of magnitude). Increasing
the number of parameters obviously allows us to express
much richer functions, but they are, in principle, much
more prone to overfitting.

• The risk of overfitting data was reduced by (1) the
availability of large amounts of training data; (2) the
exploration of nonlinear functions different from the
sigmoids (such as the logistic function) traditionally
used in the neural network field; (3) the strong
reduction of parameters achieved by reusing them,
with one of the first approaches being the introduction
of convolutional neural networks (see more below); (4)
improving the backpropagation of the gradient of the
loss function; two prominent approaches are residual
networks and batch normalization (see more on these
below); and (5) the use of stochastic optimizers, that
allowed reaching useful solutions (if not the global
minimum of the goal function). In addition, there have
been many more important advances, such as the
development of attention203 and transformers,33 but
they have not substantially reached CryoEM for the
moment, and they will not be discussed further. Many
efforts have been addressed to understand the learning
mechanism of deep algorithms, and two important ideas
seem to emerge:

(1) Only a small fraction of the network is actually
useful to make the prediction. This has been
known as the lottery ticket hypothesis.40 The idea
is that having a large network with many randomly
initialized weights “buys” many lottery tickets
(subnetworks), and some of them will be
optimized to learn the relationship between X
and Y. For sufficiently wide networks, it seems
that most local minima are close to the global
minima and that the dangerous locations are not
the local minima but the saddle points (points at
which the loss function locally looks flat in most
directions).185

(2) The fΘ functions learned by deep learning are
good interpolators in the high dimensional space
of X but extremely bad extrapolators, even for X
vectors whose appearance is not qualitatively
different from the training data.102 This means
that there can be catastrophic errors for test data
that looks like the training data but whose location
in the space of X is far from the location of the
data used for training. Data augmentation
operations such as image rotation, scaling, shifts,
mirroring, adding noise, etc. and variational
approaches (see more below) have been adopted
to enlarge the space covered by the input training
data.

• The exploitation of massively parallel hardware as
provided by graphical processing units (GPUs). These
hardware elements have a computational capability
much higher than that of the general-purpose CPUs.
The price to pay is that the program control flow must
be rather linear, without too many branches or loops.
However, deep learning problems can be conceptually
cast into this class of executions, and the underlying
libraries (such as Tensorflow or Pytorch) have been
efficiently ported to GPU execution.

In its most basic formulation, a neuron is a nonlinear
function of its inputs, xi, of the form
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where g(·) is a nonlinear function called the activation
function, and wi are a set of real numbers to be set called
weights. In other words, a neuron is an activation function
g: . In fact, the activation function by itself can be
understood as the optimal maximum a posteriori criterion that
separates two classes depending on different assumptions
regarding the distribution of the neuron inputs42 (for instance,
the optimal separation of multivariate normal inputs into
multiple classes is performed by a softmax activation function).

This family of functions started as a way to simulate the
physiological behavior of biological neurons but quickly grew
past this point. A neural network is an arbitrary composition of
functions of this type; that is, it is the connection of many
neurons such that the inputs of some neurons are the outputs
of the others. As an example, and in the subfield of regression,
a neural network (see Figure 3) is a universal approximator;
that is, any sufficiently smooth function can be approximated
to any degree of accuracy by a neural network of increasing
complexity.196 Note that not all the activation functions of the
network need to be the same. For instance, it is typical to use
any of the ReLU (rectifier linear unit, defined as the function
ReLU(x) = max(0, x)) variants in the hidden layers but to use
in the output layer an identity (for regression problems) or a
logistic one (for classification problems).

In their most basic form, a feed-forward, dense neural
network predicts a value y from a set of inputs x by propagating
forward the x values through a network of neurons such as the
one shown in Figure 2 in which all neurons in one layer are
connected to all neurons in the next layer. We normally
distinguish between the input layer, the middle or hidden
layers, and the output layer. The parameters of the function are
the weights of each one of the connections. We can increase
the complexity of the calculated function, to enhance the
approximation that the network produces, by adding more
hidden layers and move neurons in each layer. The adjective
“deep” comes from the fact that there are many hidden layers
(for instance, ResNet-50, one of the state-of-the-art networks
to classify images, has 50 hidden layers). The total number of
parameters for a dense network, such as the one shown in
Figure 3, is (P + 1)N1 + (N1 + 1)N2 + (N2 + 1)N3 + (N3 + 1).
The term +1 is because there are P input variables plus one
that comes from the offset weight w0. These P variables are
connected to N1 neurons of the first layer resulting in (P + 1)
N1. When a second layer is added, the number elements of this

one will be (N1 + 1)N2, again as a consequence of the offset
weights. This is the origin of the total number of parameters (P
+ 1)N1 + (N1 + 1)N2 + (N2 + 1)N3 + (N3 + 1). As the number
of layers and their complexity grow, the number of parameters
of the function easily goes up rapidly. It is not uncommon to
find networks with a few million parameters even for small
applications (for instance, GPT-3, a neural network to process
natural language, has 175 billion parameters).

An easy way to reduce the number of parameters is by
reusing them. An image is particularly amenable to this because
we will probably want to apply the same mathematical
operation to an object in it, irrespective of whether it is
placed on the left or the right of the image (see Figure 4). The
same weights can be used for all input variables (pixels),
regardless of their absolute position within the input image.
Without the nonlinearity g, this operation is known as a
convolution, which is why these networks are called convolu-
tional. The weights used for the convolution are known as a
kernel. In this way, the output of a single kernel applied to an
input image is another image in which we have performed a
convolution and applied a nonlinear function, g, to the
convolution output. The number of parameters is reduced
from (P + 1)N1, for the first layer, to K2 + 1, where K × K is
the size of the kernel. For instance, for an image of size 512 ×
512 (P = 5122), a hidden layer of the same amount of neurons
(N1 = 5122), and a kernel of size 11 × 11, the number of
parameters of the first layer, w(1), decreases from (5122 +

Figure 2. Scheme of a basic neuron: (left) Mathematically, it is composed by multiple inputs xi, which are linearly combined applying different
weights, w. This linear combination is the argument of the activation function g(·). (right) Several common activation functions are shown.

Figure 3. Feed-forward, dense neural network: the input signals xi are
propagated forward through neurons which are arranged in layers of
Nj elements as in Figure 2 until they reach the output neuron. The
weights wij control the propagation of the signal through the neurons
and layers.
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1)5122 ≈ 69 × 109 to 121. This is a decrease by 8 orders of
magnitude. Because convolutional neural networks (CNNs)
require so few parameters, we can afford to learn multiple
kernels in the same layer. Now, the output of layer 1 will not
be an image but a stack of images called a tensor. This
possibility of learning multiple kernels within the same layer is
represented in Figure 4 by stacking several images within the
same layer. We may increase our artillery of nonlinear
functions by introducing other operations. Among them, one
of the most successful has been the max-pooling operation
(taking the maximum value within a neighborhood), which is
frequently found in image processing neural networks as it
somehow keeps the most important (most energetic) features
of the previous layer. In fact, we may be very creative here and
introduce any nonlinear operation or network architecture as
desired. For instance, we may calculate the output of a neuron
based on its own value (then, we have neurons with memory),
or we may force the neuron to calculate an output that looks
like the input plus a small deformation, called a residual; see
Figure 5. In general, we can generalize the concept of the
neuron to any nonlinear computational block.

The obvious problem of neural networks is how to estimate
the function parameters w to minimize the error between the
prediction of the network, fw(Xj), and the desired value Yj (see
eq 3). We need a mechanism to update the network weights so
that the loss function is minimized. In general, this process is
backpropagation of the loss function from the output layer to
the input layer, updating in this process the network weights
backward in such a way that the same input x would incur a
smaller loss, ∥y − fw(x)∥. Arbitrary computing blocks
particularly complicate this mechanism. The development of
automatic differentiation algorithms has greatly simplified this
task13 as they can calculate the dependence (derivative) of the
loss function on each of the parameters in the network. The
optimization of the loss function is performed through some
variant of gradient descent. The gradient is calculated by the
automatic differentiation module, and many variants have been

proposed from stochastic gradient descent, adaptive gradient,
etc., with all of them trying to escape the many local minima
expected for such a high-dimensional optimization. For a
review of the optimization algorithms used in deep learning,
see ref 186.

Due to the large number of parameters of deep learning
models, it can be expected that the optimization of their
parameters can be rather difficult. Several tricks are employed
when trying to find useful networks:159

• Adaptive learning rates: in any gradient descent
algorithm, the learning rate indicates how much we
must move from the current solution, w(t), to the next
one, w(t+1), that is supposed to be better in terms of the
loss function. A too-small learning rate makes the
learning process too slow and prone to local minima. In
contrast, a too-large learning rate may make the
optimization unstable and prevent the identification of
very narrow local minima. There has been much
research on designing algorithms that automatically
adapt the learning rate to the local gradient size.136

• Vanishing gradient: one of the main problems of
backpropagation in deep networks is that error may
quickly dissipate in the first few layers close to the
output layer. Technically, this is called the vanishing
gradient problem. Two techniques have been shown to
have a strong impact against this problem: batch
normalization and the use of residual layers (also called
the addition of skip connections; see Figure 5). Both
techniques have to be explicitly integrated into the
network architecture. Batch normalization is a module
that numerically recenters and rescales the output of the
previous layer. Skip connections propagate the informa-
tion at a given layer forward so that its energy is not lost
throughout the network. Skip connections can also be
thought of as an easy way to force the network to
produce an output similar to its input except for a small
difference, the residual, that has to be learned by the
network.

• Weight initialization: Much work has been devoted to
initializing the network parameters and how to relate
this process to the network number of layers, neurons,
etc. Weights are typically randomly initialized with zero
mean and some variance. However, a judicious choice of
this variance is crucial because the energy of the
propagating signals may easily saturate the response of
the internal neurons (function g in Figure 2), falling
again into a vanishing gradient problem.

• Transfer learning: In problems in which the network
cannot learn due to the initialization of the network
weights or the lack of data, it is useful to fix some of the
most costly layers in terms of parameters. With this aim,
our network will be formed by some fixed layers that will
not be optimized and some other layers that will be

Figure 4. Example of a convolutional neural network. It is composed
of a convolutional layer, followed by a pool layer, and ending in a fully
connected layer. Each layer can be understood as a matrix of weights.

Figure 5. Examples of more advanced neurons considering different topologies depending on the presence of forward or backward skip
connections.
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optimized. The fixed layers are pretrained for some other
related problem. For instance, it is typical to use the
weights and architecture of a network trained on
ImageNet,32 a data set with 14 million natural images
with labels about the content of the images (such as
persons, computers, sunsets, dogs, ...) and then add extra
layers to adapt the whole network to solve a problem in
another domain. The idea behind this is that the first
layers of a neural network tend to learn low-level
features of the input domain, such as edges in different
orientations in the case of input images. Then
subsequent layers combine the outputs of the low-level
layers into higher-level features (such as recognizing a
dog). If we need to tackle a problem in CryoEM, in
which, obviously, we do not have people or dogs in the
pictures, we may still take advantage of the low-level
features learned in ImageNet. A less aggressive approach
may train the full network on an easier problem (such as
data with more or less resolution) and then retrain the
same network on a more difficult problem starting from
the already learned coefficients.

• Ensemble networks and metaheuristics: Accounting for
the possibility of getting trapped into local minima and
not finding suitable parameters that perform a useful
regression, many solutions include training multiple
networks and combining their predictions in some way.
This approach is known as an ensemble network.
Related to this approach is the combination of known
global optimizers such as genetic algorithms, swarm, or
stochastic optimizers with the local optimizers typically
used in neural networks. In general, these approaches are
called metaheuristic optimizers.

• Hyperparameter optimization: Another approach that
has been found useful is to optimize the network with
respect to its architecture using cross-validation, i.e. the
use of two independent sets of data to validate the
weights of a trained neural network. For instance, we
may change the number of hidden layers, their activation
function, the number of neurons, or any other relevant
aspect of the network.

• Dropout: The number of parameters of a neural network
may be rather large, and it is possible that they may
adapt very well to the training data but that they fail
when trying to work on images that have not been seen
during the training (even if they have the same aspect).
One of the main techniques to avoid this overfitting is
called dropout, and it consists in setting a random subset
of the outputs of a layer to zero. This random subset is

different at every batch of training data. In this way, the
network is forced to introduce redundancy in its internal
representation as it never knows which neurons will be
dropped out at each iteration. When the network is used
in reality, the dropout is not active, and the information
flows redundantly throughout the network.

• Multiobjective learning: It has been experimentally
observed that networks that have to simultaneously
learn two or more objective functions, that is tasks like
classifying images into distinct classes and segmenting
the foreground object from its background, tend to learn
better and be more generalizable to other inputs not
seen during the training phase.

The possibilities for combining neurons in a full network can
be infinite. In general, these combinations are called the
network architecture. We have already seen the dense (Figure
3) and the convolutional architectures (Figure 4). Besides
these two, the architectures that have had the most impact in
CryoEM are as follows:

• UNet: This architecture combines convolutional, down-
sampling, upsampling, and skip connections to produce
a small representation of the information content of the
input image into an embedding vector that later on is
expanded into an output that is another image of the
same size as the input (Figure 6). The goal may be (1)
to produce an output image that is as similar to the input
as possible, as is done in denoising, and the whole
network is said to be an autoencoder (in this case, we
would not use skip connections), or (2) to produce an
image that is related to the input image, as is the case of
segmentation or object location in particle picking. The
number of hidden layers, their size, the number of
kernels in each one of the layers, etc. may change from
one implementation to another, but the overall idea
remains similar.

• Variational autoencoders (VAEs): the architecture and
goal of these networks are similar to those of the
autoencoders presented above, but instead of predicting
an embedding vector that is later decoded into an image,
they produce a mean vector and variance. Then a
random vector is drawn from a fixed distribution,
typically a multivariate Gaussian with these parameters,
obtaining the vector that must be decoded. The random
draw of the embedding makes the network generalize
better to unseen data.

• Generative adversarial networks (GANs): This archi-
tecture can be used for several purposes; here, it is

Figure 6. Example of Unet architecture. This is a complex network composed of different layers and connections, but it follows the architecture
encoder-decoder.
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shown with an example of image restoration (for
instance, denoising) for a simple illustration (see Figure
7). Two networks are trained simultaneously: a
generator and a discriminator network. Given a
degraded input image, the goal of the generator network
is to produce an image that resembles the ground-truth
image as much as possible. A switch randomly chooses
between the ground-truth and the restored images. The
discriminator network must determine whether the
presented image is really a ground-truth image or, on
the contrary, an image produced by the generator. The
loss function is such that the generator network tries to
fool the discriminator, minimizing its classification
success. Once both networks are trained, the generator
network is used independently to restore degraded
images. An interesting property of GANs is that the
generator learns the statistical distribution of the input
domain. There are many variants in which, for example,
we may add the similarity between the restored and the
ground-truth images to the loss function.

3. CLASSICAL PIPELINE OF SPA: AN OVERVIEW AND
METHODS

The capacity to structurally solve purified macromolecular
complexes by CryoEM is due to the convergence of advances
in sample purification, electron optics, image acquisition, and
image processing. Once the sample has been purified, grids are
produced and introduced into the microscope, and the images
are acquired. A set of image processing techniques are used to
determine the structure of the macromolecule under study.
This set of techniques are collectively referred to as single
particle analysis (SPA).

The starting point in obtaining the 3D structure of a
macromolecule will be the set of images acquired by the
microscope. Using these images as input, the SPA workflow is
based on two hypotheses:

1. Identical copies assumption: all images of the macro-
molecule on the micrograph are images of multiple
copies of an ideal canonical complex in the same
conformational state.

2. Projection assumption: all acquired images are projections
of the canonical complex under different directions.

Assumption 1 is a strong condition since macromolecular
flexibility is very much linked to function. Indeed, most
macromolecules present some degree of either flexibility or
compositional heterogeneity. Therefore, this identity assump-
tion will often result in a first approximation of the specimen
structure at low resolution. The search for solutions to this

heterogeneity problem is a current trend in methods
development; this problem will be explained in-depth in
section 10.

Assumption 2 is weaker; it considers that the sample is so
thin that it interacts with an electron only once and that all
planes of the sample (perpendicular to the beam axis) will be
focused on the same plane with the same magnification (this is
not strictly true because of the Ewald sphere, but this is a
relatively minor refinement). Summarizing, the first assump-
tion imposes a specimen condition while the second imposes
an imaging formation condition. However, two extra
considerations have to be made regarding the image formation:

• The information collected by the electron microscope is
delocalized into a region related to the point-spread
function (PSF) in a linear approximation of the
microscope as an optical system. This delocalization
makes it so that the collected images do not behave as
pure mathematical projections of the 3D object under
study but that they are further blurred by a PSF. The
delocalization depends on the image acquisition defocus
and spatial frequency (resolution).48 The Fourier
transform of the PSF is known as the CTF (contrast
transfer function).

• The interaction of electrons with the sample makes the
latter move under the action of the electron beam. This
is known as the beam-induced movement (BIM). The
introduction of direct electron detectors allows acquis-
ition of images in a very short time (on the order of a
few milliseconds). Each of these images is referred to as
a frame, and typically several tens of them are recorded.
During these short periods of time, we may assume that
the BIM is small. However, frames have to be correctly
aligned to each other to recover the structural
information on each macromolecule; then, they are
summed up into an image referred to as a micrograph. If
frames are not aligned, the misalignment results in a
blurred projection due to the macromolecules’ motion.

CryoEM images are highly affected by noise. Between 10
and 100 times more noise power than signal power (SNR =
0.1−0.01) is present in the micrographs, and 1 order of
magnitude less, at the level of frames. This represents a real
challenge: image processing algorithms must be robust enough
to deal with such an amount of noise while avoiding
overfitting, local minima, or artifacts. The origin of the noise
has several sources. At the level of frames, the noise follows a
Poisson distribution (shot noise). However, at the doses
normally used in CryoEM and after aligning and averaging the
frames, the noise is normally distributed, and the most

Figure 7. Example of the GAN architecture. The generator attempts to produce images as similar as it is possible to the ground truth. A second
network chooses between the restored image and the ground truth.
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important source of noise (in the sense of the interfering
signal) at that level is the amorphous ice layer surrounding the
specimen.

Because the ice is amorphous and independent of each
embedded particle when particle images are averaged, and due
to the central limit theorem, the resulting noise of the
reconstructed map is Gaussian.171 A second, but much less
important, source of noise is the random arrival of electrons to
each pixel. Due to the low total dose regime, between 30 and
60 e/Å2, the intensity distribution at each pixel follows a
Poisson distribution with a mean that depends on the dose and
the pixel size.

The SPA image processing workflow refers to a set of image
processing steps that allow for reconstructing the underlying
3D distribution of the electrostatic potential of the macro-
molecule from the set of 2D images acquired by the electron
microscope. In other words, the workflow is all about
determining the unknown projection direction of the imaged
projections, called particles, and inverting the projection
process. This is a hard task at the low SNR that the images
present. Therefore, determining the 3D structure requires
solving a large set of smaller but nontrivial problems to ensure
the reliability of the reconstructions. These problems are the

different steps of the SPA workflow. In Figure 8, we show the
general set of steps. Experimental workflows may be much
more complicated than the one shown here, but this
simplification allows us to grasp the main steps along the
path. As Figure 8 shows, the workflow starts with the movie
alignment, where the motion of the particles as a consequence
of the beam is corrected. The result is a set of images with the
motion-corrected named micrographs. Next, we estimate the
PSF, or its equivalent in Fourier space, the contrast transfer
function (CTF). Then, the picking step identifies the particles in
the micrographs, distinguishing them from their ice surround-
ing and trying not to be fooled by contaminants, aggregation,
crystals, carbon edges, or any other undesired signal. Particles
are grouped according to their similarity through the 2D
classif ication. The initial volume step provides a first estimate of
the structure. The initial volume is enhanced during the
ref inement and 3D classif ication steps, and possible conforma-
tions are elucidated. Finally, the map quality (resolution
analysis) is measured, and a sharpening is applied for enhanced
visualization.

In the following sections, the SPA workflow is explained step
by step: first, with a general overview of the problem that each
step aims to solve and showing the main issues arising in its

Figure 8. SPA workflow. The images are acquired as movies (frame collection). They are aligned to correct the beam-induced motion and averaged
to reduce the noise variance. Then, the CTF is estimated to correct the microscope aberrations and defocus. Particles are selected to be later
classified and screened in a 3D classification used to refine the structure. Finally, the map is sharpened to enhance the visualization, helping to build
the atomic model (if it is possible).
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quest; second, showing the image processing methods (with a
brief explanation of some of them) that have been developed
in the last 10 years. Because one of the goals of this article is to
review the use of analytical approaches and deep learning
methods, the distinction between both groups of methods will
be highlighted. Finally, at the end of each step, we will show a
figure with the time evolution of the number of related
publications with that workflow step. Our objective is to
identify trends in methods and understand the algorithms’
working mechanisms rather than provide an exact number of
publications for each year.

4. MOVIE ALIGNMENT

4.1. The Movie Alignment Problem
As we already mentioned, illuminating with electrons induces a
movement in the sample due to the interaction of electrons
with the matter. This displacement can be local or global. The
movie alignment step is responsible for correcting these errors
between frames, generating the so-called micrographs as the
sum of the motion-corrected frames. The electron dose
received by the sample accumulates during acquisition: the
first frame is scarcely radiated, and the last one is highly
radiated and, therefore, can be substantially degraded. To
alleviate this problem, it is common to apply a dose weighting
schema to the frames after the movie alignment. The effects of
radiation on the sample have been previously analyzed in the
literature,45,46,58 and certainly, they represent a limiting factor
in the quality reconstruction.

Another common correction in this step is the gain
correction of the camera, resulting from the fact that the
sensitivities of all the sensor’s pixels can be different. They
depend on the manufacturing of the camera and their current
internal currents and potentials at the moment of acquisition as
a semiconductor device. These differences evolve and have to
be determined for each microscopy session.
4.2. Movie Alignment Methods
The first works on movie alignment attempted to characterize
and correct the movement of the sample during acquisition as
a consequence of radiation. From a pure image processing
point of view, the need to address errors due to movie
alignment was highlighted in the work of Brilot et al. in 2012,19

where the cross-correlation between images was used to
determine the shifts between frames and correct for them. This
simple approach drew some important conclusions: (a)
Particle motion presents correlation in a radius of 300−500
nm. (b) Low electron doses reduce the particle movement. (c)
High-resolution features can be recovered by aligning the
frames. This work showed the need for movie alignment
algorithms to achieve high-resolution reconstructions. As a
consequence, during the following years movie alignment
became a hot topic. Perhaps the most famous breakthrough
was the development of MotionCorr88 in 2013. MotionCorr
aligns the frames by introducing constraints in the frame
motion. Essentially, it considers that the movement between
any two frames (for instance, frame 1 and frame 4) must be the
vector sum of the displacement vectors of all in-between
frames considering the relative displacement between them
(r14 = r12 + r23 + r34). The vector sum constraint avoids the
situation where the occasional spurious correlation peak
produces a large error in alignment. MotionCorr considers
whole frame displacements. The advantage of this algorithm
was its computational efficiency due to its GPU implementa-

tion and the reliability of the obtained results. MotionCorr was
almost simultaneous with several other algorithms such as
those introduced by Shigematsu and Sigworth,157 also
addressing issues of pixel noise associated with dose, and Bai
et al.,8 where they considered that particle displacements
should be small and proposed the use of a Gaussian prior to
determine them. This latter work was extended by Scheres144

adding spatial correlation in the movement of the particles,
assuming close particles should present a similar behavior and
introducing dose weighting. They did so by minimizing a merit
function that takes into account the spatial correlation, using a
Gaussian regularizer that depended on the distance between
particles. The result of the minimization is the shifts and in-
plane rotations of the particles. In 2015 two new algorithms
were published. The first one addressed the problem of local
motion by defining an objective function and optimizing it; to
do that, the first derivatives of the cost function were
analytically obtained by Rubinstein.135 The merit function
considered the correlations of the Fourier transforms of each
frame with the sum of the shifted Fourier transforms of the
frames. The second algorithm introduced a novel approach,
the use of the optical f low algorithm to estimate the local
motion of the particles.3 Other methods, such as Unblur,
address the alignment by introducing the electron dose and its
effect on the SNR50 as weights. In 2017, the algorithm of
MotionCor was improved, and MotionCor2 was released.228 It
introduced anisotropic correction of the BIM and described
the sample deformation through a polynomial fitting. Thus, it
can correct local deformations of the ice and local motions.
This correction is carried out in two steps: first, a whole frame
motion and, later, the correction of the anisotropic local
motion. Also, in 2017 the package Zorro was released.99 Zorro
performs the drift correction by cross-correlation using a noise
model to weight each cross-correlation and filter. Finally,
FlexAlign183 was developed in 2020. FlexAlign can carry out
motion correction in real time thanks to its implementation in
GPUs. Hence, it performs the movie alignment with a global
correction similar to MotionCor, using B-splines and control
points for local correction.

Movie alignment is the first step of the SPA workflow. The
field is evolving toward image processing in streaming (as soon
as the microscopes acquire the images, they enter into the SPA
image processing workflow) and automation. Despite all
current movie alignment methods being well automated, the
new generation of detectors presents a greater number of pixels
and the acquisition speed is getting faster and faster. It is not
surprising that improving the speed and computational
efficiency of the algorithms is a trend in movie alignment.

In Figure 9, the time evolution of the number of methods
addressing the BIM correction is represented. Note that, at this
stage, all algorithms are analytical approaches. Also, it is
observed that movie alignment became a problem of interest in
the years 2013−2015, with the interest in new methods
declining since then.

It is of utmost importance to end this section with a remark
that the best BIM correction would be to avoid the movement
to start with. Indeed, this has been a topic of research in the
past decade,106,137 directly related to a deeper understanding of
the physical processes behind these movements.111,138,140

Recent works in the area105 may indicate that a significant
physical movement reduction can be obtained by better
understanding the process and a new EM grid design.
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5. CONTRAST TRANSFER FUNCTION ESTIMATION

5.1. The CTF Estimation Problem
The acquired micrographs are affected by the defocus and
aberrations of the electron microscope. Although defocus is
usually considered an aberration, it is not strictly so because it
is not an imperfection of the optical system; in CryoEM,
defocus is intentionally introduced by the researcher to gain
some contrast between the macromolecules and their back-
ground. Aberrations are caused by defects, misalignment, or
imperfections of the microscope optic, resulting in blurred and
distorted images. The contrast transfer function (CTF) is the
Fourier transform of the point-spread function, and it models
the microscope aberrations, including the defocus. Note that
the higher the desired resolution, the more critical the CTF
estimation and correction are. The nominal defocus is known
during image acquisition as well as the theoretical magnitude
of some of the microscope aberrations, such as the spherical
aberration coefficient. However, these nominal values may not
be accurate enough. Hence, estimating the defocus and
aberrations from the acquired micrographs is necessary for
their posterior correction.

CTF estimation is normally carried out by analyzing the
micrographs’ power spectral density (PSD). These PSDs have
distinctive rings called Thon rings caused by the defocus;195

note that the electron lenses make the different diffracted
components in the focal plane converge; however, due to the
introduced defocus and the rotational symmetry of the lenses,
defocus appears as rings (Thon rings) of spectral information.
The amplitude of the Thon rings helps to determine other
microscope aberrations. Traditionally CTF estimation algo-
rithms work by fitting the power spectrum with |CTF|2 to
estimate the defocus, astigmatism, or phase shift. This
approach is justified since a random image, filtered by the
CTF, will have a power spectrum that goes with |CTF|2.

Currently, higher-order aberrations, such as beam tilt, are also
estimated, although these are not estimated on the PSD but on
the Fourier coefficients of the acquired images.

Traditionally the CTF estimation is initially carried out for
each micrograph. However, particles can be at different heights
inside the ice layer, and as a consequence, each particle has its
own defocus. In the early stages of the SPA workflow, the CTF
correction neglects this effect, which is normally corrected at
the end of the workflow to refine the obtained structure.
5.2. CTF Estimation Methods

There are many methods for estimating the CTF, but they can
be classified into three groups: estimation of untilted samples,
local estimations of the CTF-per-particles, and estimation of
tilted samples.

In the first group, we find one of the most used methods,
CTFFIND,101 that carries out a fitting of the model of the
microscope (the CTF) to the PSD of the images. In its latest
version, CTFFIND4,132 the method was enhanced to include
the effect of the dose and the use of phase plates (see below),
and its performance was boosted. Another popular algorithm is
gCTF,225 which provides a fast estimation of the CTF thanks
to its implementation in GPUs. The CTF estimation is
determined by maximizing the correlation of the CTF model
with the difference between the PSD and the background.
Another method is FASTDEF,202 an automatic and fast
estimation of the defocus that does not require an initial
defocus for the estimation. FASTDEF uses a Zernike
polynomial basis to estimate the aberrations. Whenever a
physical magnitude is measured, its associated error should
also be estimated; aberrations and defocus are not an
exception. Thus,112 they proposed CTER, an efficient and
accurate algorithm for the CTF and its uncertainty estimation.
It is very common that two different algorithms estimate
different parameters for the same micrograph. In the
community effort referred to as the CTF Challenge,95 it was
reported that the typical uncertainty of the defocus of a
micrograph was between 200 and 300 Å, although we should
note that this accuracy has undoubtedly improved since then
judging by the field capacity of obtaining maps below 2 Å
resolution. Sheth et al.156 proposed a way to measure the
consistency between the estimated and the observed PSDs to
define the resolution of a micrograph. Furthermore, multi-
tapering was recently proposed by Heimowitz et al.57 to reduce
the bias in the estimation of the PSD by applying multiple
Slepian functions as mask windows.

The second group considers methods that provide an
estimation of the CTF per particle. gCTF225 also allows this
estimation. To do that, gCTF makes use of the neighbor pixels
around the particle and then considers an initial estimation of
the global CTF of the micrograph, using it to refine the local
estimation per particle. Recently, Zivanov et al. proposed a
method to estimate higher-order aberrations such as tilt,
comma, or trefoil, by combining reprojections of the map and
the use of a Zernike decomposition of the CTF argu-
ment.234,235 This method requires a high-resolution recon-
struction of the macromolecule, and for that reason, it is
explained in more detail in section 11.

The third group considers the CTF estimation of tilted
samples. It was recently pointed out that tilting the sample in
the microscope can increase the angular coverage of an
acquisition.189 This is particularly useful if there are
preferential interactions of the protein with the water−air

Figure 9. Time evolution of the number of publications about movie
alignment based on analytical approaches or deep learning methods.
The symbol #publications denotes the number of publications.
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interface. goCTF184 was specifically designed to estimate the
CTF in such tilted samples. The dependence of the defocus on
the height has been long known for large specimens, and
several methods have been proposed to correct this depend-
ency within a single particle.97,211,212 The implications for
tomography of these developments are obvious, but electron
tomography methods are beyond the scope of this review.

Finally, we would like to comment on the use of phase plates
in CryoEM. These devices allow for working in focus without
losing contrast and have reached significant technical develop-
ment with the so-called Volta phase plates (VPPs).27 Assuming
that the microscope is aberration-free, to work in focus allows
one to neglect the CTF correction. However, working in focus
also makes the Thon rings disappear and complicates the CTF
estimation, which is crucial since some kind of aberration is
always present.28 More developments in this area are expected
in the coming years.

The trend in the publication of CTF-related methods shows
a constant publication rate (see Figure 10), first, with the

publication of methods for untilted samples and, now, with the
new methods on local CTFs. In our opinion, the current trend
points toward faster estimations, with improved accuracy
(reliability) and the estimation of high-order aberrations. The
use of tilted samples also seems a new topic, but it complicates
the image acquisition and the CTF estimation.

6. PARTICLE PICKING

6.1. The Particle Picking Problem
Each micrograph contains projections of many copies of the
structure under study; these projections are called particles.
Particles are selected and cropped from the image to input
subsequent image processing steps in the picking step. The
atomic number of the elements that compose the specimen is

very close to the atomic number of the aqueous solution where
the macromolecules are. As a consequence, the contrast of the
particles in the micrograph is very low. The contrast can be
increased by defocusing the sample, but then the high-
frequency information content of the macromolecule is
compromised. The picking step is critical in the SPA workflow,
since the reliability of the reconstructed structure will depend
on the quality of the selected particles. Particle picking
algorithms work by searching micrograph areas with specific
features similar to those of the particles sought after. However,
other regions in the micrograph may spuriously correlate with
the kind of object we look for, resulting in false positives. A
data set with a significant amount of false positives is rather
dangerous because of the so-called Einstein-f rom-noise
effect59,198 (the average of noise particles aligned to a reference
looks like the reference) and represents a threat in the SPA
workflow due to the possibility to produce wrong but very
reproducible structures as a consequence of the results being
biased.168 A similar effect is observed if an incorrect
macromolecular template is used for picking the particles.
6.2. Picking Methods

Leaving manual picking aside, picking methods are usually
classified as semiautomatic or automatic, depending on the
degree of interactivity required from the user. This review will
show analytical and deep learning picking methods, and we will
follow their yearly evolution in the past decade.

Starting with the group of analytical methods, we find
Xmipp-picker,4 a semiautomatic picker. This picker is trained
with a small set of particles that the user has to select manually
(around 15 particles). From this set the picker learns how to
distinguish particles and noise by means of a classifier based on
support vector machines (SVMs) and a number of engineered
image features. gEMicker66 uses normalized cross-correlation
to find the particles in the micrographs using templates (class
averages or specific particles as input) of the particles to be
sought after. The novelty of this latter picker was its
implementation in multiple GPUs, making it a very fast
picking tool. Autopicker/ViCer85 finds particles following a
two-step strategy: first, the Autopicker algorithm carries out
template matching to select particle candidates; then, a refined
set of candidates is obtained by means of principal component
analysis of the obtained particles and the application of the
Otsu algorithm;110 finally, the ViCer algorithm performs an
outlier detection with an unsupervised classifier. Yet another
approach to the picking step takes advantage of the existence
of relevant similar structures obtained in many cases from X-
rays. If they are available, they can be converted into density
maps and projected to obtain a gallery of templates. Thus,
Rickgauer et al. showed that by means of template matching it
is possible not only to find the particles in the micrograph but
also to determine their orientation.131 As will become clear in
this section, variations of template matching are highly used for
analytical picking methods, with many other proposals such as
the ones used by RELION78,146 or Gautomatch,1 which uses
GPU support to increase the performance. Additionally,
template matching is also closely related to other fully
automatic approaches that do not explicitly use templates as
input (i.e., the user is not asked to provide templates), such as
APPLE picker,56 where the templates are internally estimated.
Finally, pickers specifically designed for helical particles also
exist, such as in ref 68, but are not covered here.

Figure 10. Time evolution of the number of publications of CTF
estimation based on analytical approaches or deep learning methods.
The symbol #publications denotes the number of publications.
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In the group of deep learning pickers, the algorithms use
neural networks to undertake the picking. These networks are
previously trained with CryoEM images to make a fully
automatic picking possible. Also, many deep learning methods
allow training and/or refining the model with the data set at
hand. In this class, we find DeepPicker,215 which performs the
picking by means of the first step of a convolutional neural
network (CNN) designed to find candidates to be particles;
this is followed by a second layer which carries out a
classification of whether the candidate is a particle or not.
Topaz15 represents another picker also based on a CNN
composed of eight layers that alternatively combines a
convolutional layer with subsampling layers finishing in a
fully connected layer. Topaz preprocesses the micrographs to
find those regions with a high probability of containing
particles. The search for these regions is defined as a positive
and unlabeled learning problem. DeepCryoPicker trains the
CNN with unsupervised learning algorithms and is designed to
work with extremely low SNR.5 Warp also includes a picker
based on BoxNet, a fully convolutional ResNet architecture
composed of 72 layers.190 crYOLO213 makes use of the general
YOLO network (you only look once)130 approach specialized
to the CryoEM picking problem. YOLO consists of 22
convolutional and 5 max-pooling layers. To avoid the
limitations of YOLO with small particles, micrographs are
divided into a small number of overlapping patches.
PARSED222 performs the picking from a segmentation point
of view. To do that, particles are found by means of a fully
convolutional neural network composed of only convolutional
and deconvolutional network layers. Finally, PIXER224 uses a
segmentation network to create probability maps (of finding a
particle) from the micrographs.

Despite the many available automatic and semiautomatic
methods, particle pickers end up selecting a non-negligible
number of incorrect particles. Consequently, the task of
particle quality assessment and sorting is important. Tools such
as those introduced by Vargas et al.199 can be used to separate
gross erroneously picked particles from correct ones based on
multivariate statistical analysis of the particle set. MAPPOS108

is a pruning algorithm that uses a classifier to determine if the
particles are correctly picked. To do that, the user has to train
the classifier with a small subset of particles. Pruning methods
in the field of deep learning also exist; one of them is
deepConsensus.142 It receives the set of picked particles by
different picking algorithms, and utilizing a CNN, the picked
candidates are classified as true or false particles. The problem
of discriminating between particles on carbon and particles on
ice is also addressed by first detecting carbon supports using
EMHP.17 A different approach is micrographCleaner,143 which
is a segmentation tool based on a trained Unet-like model that
excludes those particles that lay on undesired regions such as
carbon areas, contaminated regions, or regions that are simply
artifacts.

As can be easily inferred by the large numbers of picking
algorithms developed over the years, this is not a generally
solved issue in CryoEM. Figure 11 shows the number of new
articles on this topic over the years. We highlight the increased
interest in recent years. Probably the reason for this trend is
the introduction of deep learning approaches, as Figure 11
suggests. Indeed, picking particles is a task that is very close to
the standard formulation of deep learning algorithms and,
consequently, has been one of the first ones to benefit from
this new technique. Some of these algorithms have been

trained on tens of previous projects to be applied to new
projects without retraining. This possibility helps to automate
the SPA image processing pipeline further. Other topics of
interest are identifying nonparticles such as interfering areas of
the carbon support film, ice contamination, or malformed
macromolecules. Finally, we would like to highlight the
benefits acquired from the existence of this wide variety of
picking methods that allow for applying consensus techniques
to further ensure the reliability of the results.

7. 2D CLASSIFICATION

7.1. The 2D Classification Problem
Once particles have been selected, they are grouped by
similarity into different sets called 2D classes. Generally, similar
images will have close projection directions. As particles come
from the picking step, they can be in any arbitrary orientation
with respect to their class representative and normally need to
be aligned. Their relative shift must also be determined. We
may think of the class representative as the weighted average of
all the particles assigned to that cluster once aligned, which is
much cleaner than the raw particles. Images are supposed to
have been normalized in preprocessing steps so that the
surrounding noise has zero mean. By averaging, the noise
variance is reduced, and the signal of the particle is reinforced.
In many cases, it is possible to visualize the projection of
secondary structure elements, such as α-helices. These high-
resolution features in the 2D classes are a good indicator that it
might be possible to obtain a high-resolution reconstruction. In
essence, the goal of the 2D Classification step is twofold:

1. As was pointed out previously, the low SNR in the image
particles compromises the accuracy of the picking.
Indeed, picking pure noise particles and artifact-like
defects is relatively common, despite the continuous
advances on pickers reviewed in the previous section.

Figure 11. Time evolution of the number of publications of picking
based on analytical approaches or deep learning methods. The symbol
#publications denotes the number of publications
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These undesirable particles affect the quality of the
reconstruction. The 2D classification step helps to group
these unwanted images. Undesirable classes will
generally contain undesirable particles, but the opposite
is not necessarily true (not all images assigned to a good
class are good). The grouping into classes is not a
warranty of obtaining clean sets of particles, and there
always remain noisy particles and artifacts in many
classes. This is the reason why it is usual to perform
several rounds of 2D classification. In this sense, 2D
classification is used as a screening step of the picked
particle set.

2. Class representatives have a much higher SNR than raw
particles, resulting in a lower uncertainty during the 3D
angular assignment. This is particularly important during
the construction of the initial volume (section 9).

7.2. 2D Classification Methods
Most 2D classification methods work by generating a fixed
number of classes. Then, particles are classified iteratively,
assigning them to one set by comparing them with the class
representative using a similarity metric. Once particles are
assigned to a class, the reference is updated with the new
particles. This general strategy is called multireference
alignment and has a long tradition in the field;197 note that,
generally, particles are also aligned against the reference before
computing the similarity score. Indeed, 2D classification is a
crucial step in the analysis and understanding of the data; it is,
therefore, logical that there have been new methods proposed
in the last 10 years. We start the analysis of these methods with
an elegant approach proposed in ref 163 by Singer. The
method assumes that all particles are centered, and it focuses
on the in-plane rotations and clustering. It works by estimating
the distance dij between all pairs of images and the optimal in-
plane rotational angle θij between pairs of images. From these
distances, the method estimates a sparse Hermitian matrix.
The nonzero components of the matrix represent the
rotationally invariant distances, and the main eigenvector
describes images with a close rotation angle. The ISAC
(iterative stable alignment and clustering) algorithm221

proposed a different solution. ISAC attempts to align and
classify particles into highly homogeneous and stable classes,
which is not an easy task due to their attraction problem�
when highly populated classes exist, the lack of noise lowers
the barrier to be assigned to that class, and many particles may
be wrongly attracted to those highly populated classes. To
minimize the attraction problem, ISAC automatically splits a
class if its population is large enough (this strategy was already
introduced in ref 166). This is the essence of the EQK-means
algorithm (equal-size group k-means). Another classification
method addressed the use of robust w-estimators for class
means.67 This w-estimators approach considers that particles
are aligned against the reference, and images are corrected by
the CTF. The method estimates the class mean as the fixed
point of the weighted average of the images of each class. The
weights are the product of two terms: the first one is the
absolute value of the correlation coefficient between each
image and the class average, while the second one, an
exponential term, is responsible for limiting the number of
outliers of each class. In terms of popularity, methods such as
the expectation-maximization algorithm of RELION are
prevalent due to their computational efficiency and GPU
implementation.78

Common to all methods above is the use of local optimizers
with a non-negligible chance of getting trapped into local
minima. Probably the first method in CryoEM to explicitly
address the need to increase the radius of convergence of the
algorithms by introducing some element of randomness in the
classification was PRIME-CLUSTER.129 Indeed, this algorithm
introduced stochastic hill climbing (SHC) and random walk
approaches in class estimation. The algorithm is similar to k-
means, but it significantly differs in the matching process
between particles and class averages. Traditionally, the
identification of the best in-plane rotation angle was performed
by maximizing the correlation. Instead, PRIME considers the
first in-plane random rotation and cluster that improve the
previous correlation. This simple random search reduces the
computational time and alleviates the dependency on the
classes’ initialization. Important elements of randomness in the
optimization were later on introduced in RELION235 and
CryoSPARC,119 especially through approaches such as
stochastic gradient descent. Still, the field has been rich in
proposals, such as NCEM,160 based on graph theory and using
correntropy as the similarity measure. The use of statistical
manifold learning was also proposed to solve 2D classification
problems. The idea proposed by Wu et al. was to establish a
correspondence between the input particles and a set of
variables in a latent space by means of a generative topographic
mapping.217

We note that most algorithms search for homogeneous
classes under the hypothesis that all particles in the same class
are rotated and shifted versions of the same projection.
However, the reality is different. The starting particle set may
be more heterogeneous than what was algorithmically
modeled, with contaminating particles, artifacts, and false
particles that are just pure noise or wrongly picked (besides
aspects of macromolecular flexibility or compositional
heterogeneity). Thus, there is still a need for methods to
further screen and rank particles and classes, such as the
outliers’ removal methods proposed in refs 18 and 177 or the
automated approaches to detect good classes based on deep
learning in refs 89 and 181.

As shown in Figure 12, most 2D classification algorithms
developed in the past decade belong to analytical methods.
This is not surprising because unsupervised deep learning
algorithms are much less common than supervised ones.
However, we expect more deep learning works to appear in the
coming years. In fact, deep learning is already being used for
3D continuous flexibility analysis in an exploratory manner�
as will be covered in other sections�so the algorithmic bases
are there. In short, 2D classification methods have been
focused until now on increasing the speed of the process, the
use of different similarity metrics, and the reduction of the
attraction problem among classes.

8. RECONSTRUCTION
This section is slightly different from the rest because it does
not cover a specific step of the SPA workflow. In turn,
reconstruction methods are so fundamental that they are
applied in several workflow steps, such as initial volume, 3D
classification, and map refinement.

The general problem addressed by 3D reconstruction
algorithms can be stated in the following manner: we want
to find the 3D structure from a set of its 2D projections under
different and known points of view (projection directions). It is
assumed that all projections have the same magnification. This
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problem is called tomographic reconstruction. Many methods
have been designed to solve this problem; we mention some
traditional approaches such as Fourier reconstruction26,30,98

and Fourier gridding,113 weighted backprojection,121 iterative
algebraic reconstruction techniques such as SIRT or ART,44,49

and variants of these methods.6,96 This wide variety and the
constant publication of reconstruction methods throughout the
years highlight reconstruction techniques’ relevance. In SPA,
Fourier gridding is the most used method due to its
computational speed.

In the last ten years, we also find many publications on
specific 3D reconstruction techniques for CryoEM. In this way,
Li et al.87 presented a 3D reconstruction algorithm based on B-
spline functions modeling the structure in 3D. The
optimization was carried out by the L2-gradient flow of energy
model solving a variational model with a TV regularization
term, that is minimizing an energy term that combines fidelity
to the experimental data and a penalization for rapidly varying
maps. A later extension of this work by Xu et al.219 addressed
issues related to its computational efficiency and accuracy.
Along those lines, Kucukelbir et al.81 tried to find an adaptive
basis of functions based on the data at hand to improve the
map’s SNR. To select the adaptive basis, a Bayesian approach
was considered by Wainwright under a sparsity prior.214 They
observed that an appropriate frame for SPA reconstructions
seemed to be stationary scaling functions and wavelets. The
results seem to keep high-resolution information and to
suppress background noise.

One of the problems of reconstruction algorithms is their
high computational time. Trying to overcome this problem, the
subspaceEM method was proposed.37 The algorithm required
a set of aligned particles and an initial volume. The key idea
was to eliminate all redundant information from the particles in
the initial volume projections by performing a PCA (principal

component analysis). Particles were then represented in a low-
dimensional subspace where it is possible to rotate, align, and
carry out transformations quickly, accelerating the expectation-
maximization algorithm to reconstruct the structure. Abrishami
et al.3 refined the gridding based direct Fourier method to
explicitly consider the interpolation function used to map the
Fourier coefficients of the images onto the Fourier coefficient
of the volume. Without this correction, the results were as if
the reconstructed volume would have been multiplied by a
mask that had not been made explicit before. Thus far, the field
of deep learning has only provided one reconstruction
algorithm.51 The method named CryoGAN uses unsupervised
deep adversarial learning to learn and identify the different
poses of the particles.

An important consideration for reconstruction approaches is
that, for thick samples, the acquired images are not pure
projections of the samples due to the depth of field. Therefore,
the Fourier transform of the particles will not be planes in the
Fourier space of the reconstruction. This is the essence of the
so-called Ewald sphere correction139 that should be applied
when dealing with thick samples. Following this work, we
expect that in the future more 3D reconstruction algorithms
will explicitly incorporate more physical models of the image
formation process.

Most of the methods in this section belong to the category
of analytical methods (Figure 13). Probably, the CryoEM

community will be witness of the development of new
reconstruction algorithms based on deep learning in the near
future. The pros of analytical reconstruction methods are the
combination of good computational performance, good quality
of reconstruction, their capacity for dealing with low SNR, and
the fact that they provide a result with clearly known
mathematical properties.

Figure 12. Time evolution of the number of publications on 2D
classification based on analytical approaches or deep learning
methods. The symbol #publications denotes the number of
publications

Figure 13. Time evolution of the number of publications on
reconstruction based on analytical approaches or deep learning
methods. The symbol #publications denotes the number of
publications.
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9. INITIAL VOLUME

9.1. The Initial Volume Problem

We refer to this step as the provision of a first initial map (or
maps) for the subsequent steps of 3D classification and
refinement. Initial volumes do not need to be detailed
reconstructions, and therefore, their resolution is normally
low, some 20−30 Å. Despite their low resolution, the initial
volume estimation is a critical point in the SPA workflow.
Indeed, if this first approximation of the structure is wrong,
then, in the most optimistic case, the convergence to the real
structure will be slowed down. Still, in many other cases, an
incorrect reconstruction will be achieved.

Algorithms to perform this step need to assign some
approximate 3D angular orientation to subsets of particles or
images derived from the particles. The former section shows
that 2D classification reduces the complexity of many image
processing operations by increasing the SNR. Disregarding the
use of 2D class representatives or raw projections, initial
volume algorithms must find a suitable volume that is
compatible with the acquired data. However, the compatibility
landscape has many local minima, and the two most powerful
strategies employed to minimize their effect are (1) using a
stochastic optimization algorithm and (2) smoothing the
landscape. The past decade has been very active in trying to
solve this problem, and we may subdivide these algorithms into
three groups:

• Group 1. Algorithms exploiting the central slice
theorem, which establishes that each particle (projection
image) is a central plane of the Fourier transform of the
reconstructed map. In this way, any pair of images
should have a common line in Fourier space. Finding the
common line gives information about the relative
angular assignment between both images.

• Group 2. Algorithms that start with a random angular
assignment. Despite their higher computational cost,
they constitute the currently preferred family of methods
due to their ability to find more representative initial
volumes.

• Group 3. This group exploits the geometrical relation-
ship between two acquisitions of the same area at
different tilts. Although not much in use today due to
the relative success of Group 2, this technique is handy
for those cases in which purely computational tools fail.

9.2. Initial Volume Methods

In the first group of algorithms, we find a wide variety of
proposals. In ref 158 the problem of finding common lines is
posed as a synchronization problem; that is, the alignment
parameters are estimated from relations between pairs of
images. The solution is found by optimizing the number of
pairs that keep a consistent relative spatial configuration. Wang
et al.236 revisited this solution, and a more robust solution is
proposed considering unsquared residuals and introducing a
spectral norm term in order to avoid the clustering. The
OptiMod method is also based on the search of common
lines.93 Instead of reconstructing a single map, it generates
multiple reconstructions, considering each one a rough
solution. In a subsequent step by Pragier et al., they are all
compared. Other initial volume methods also interpret the
estimation of the initial volume as a synchronization
problem.116

In the second group, we find PRIME,38 which employs an
approach of random reconstruction and reprojection of the
reconstruction to compare with the particles/classes. Each pair
of experimental images and reprojections is given a weight
relative to its correlation. Stochastic hill climbing is then used
to accept or reject new orientation candidates. This algorithm
was later improved by changing the stochastic optimization
algorithm.128 In another work, the quite broadly used
RANSAC (random sample consensus) algorithm was used
for this task200,39 This method randomly assigns 3D
orientations to a small subset of 2D class representatives and
then evaluates the result with respect to the rest of the
representatives. Those classes that correlate well with the
reconstructed volume are called inliers. This process is
repeated many times, and the volumes with the highest
number of inliers are kept. Reconstruct significant170 is an
iterative algorithm that computes the statistical significance for
the similarity of each one for the possible class representative−
reprojection pairs measured in multiple ways. The statistically
significant pairs are then used for the reconstruction at the
current iteration. The significance is progressively increased
along iterations. A novel technique was introduced in
CryoSPARC,117 which uses the stochastic average gradient
descent (SAGD) in combination with the well-known
maximum a posteriori estimation.

In addition, they introduced the importance sampling
scheme, which is greatly responsible for the high computa-
tional speed of the method. In this way, instead of working
with all possible rotations and shifts, it considers random
subsets where the probability distribution of an image is
optimized. Finally, Joubert et al.74 introduced a method that
employs a pseudoatomic model with Gaussian functions. The
model is combined with a Bayesian framework. All these
methods may provide either a single initial volume or, instead,
a set of candidates. However, practitioners may wonder if
combining several initial volume estimates to achieve a
consensus volume might still be more reliable or of higher
quality than any of the candidates. This is exactly what swarm
consensus173 does. It simultaneously uses the whole set of
particles and a set of initial volumes estimated by different
methods. Then, employing the swarm optimization, a
stochastic gradient descend with momentum, the population
of volumes evolves toward a more globally correct initial
volume.

The third group of algorithms considers the classic
technique of random conical tilt (RCT), which makes use of
two images of the sample, one of them acquired with the
sample tilted a given angle.122 The objective of this technique
is to introduce the tilt angle as a constraint to simplify the
search of the particle orientation, which is then performed just
in two dimensions in the untilted images. In this group, we find
ref 164, in which the theory behind random conical tilt was
revised and generalized to situations in which the particles
were not centered with respect to the reconstructed volume, as
is normally the case due to the imprecision of the particle
picking step.

We have shown in this section many methods for the initial
volume estimation. All of them belong to the category of
analytical methods. The estimation of a proper initial volume
has been a constant subject of research in the past decade,
although it seems that it has lost momentum in recent years
(Figure 14). It is probable that we have currently reached a
development plateau, which probably indicates that the quality
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of existing initial volume methods is already good enough for
most purposes. However, the calculation of a representative set
of initial volumes in the presence of large heterogeneity is still
an open problem.

10. 3D CLASSIFICATION

10.1. The 3D Classification Problem
Routine CryoEM grid preparation normally takes from
seconds to minutes (with the freezing step itself being in the
millisecond range), but this follows hours or days of
biochemical manipulations to produce the sample. In this
relatively large time, specimens are expected to sample most of
the allowed conformational landscape under the experimen-
tally set conditions of temperature and pH, among other
factors. However, different conformations break the first SPA
assumption, which considers that all particles are identical
copies of the same reference macromolecule. This problem was
previously referred to as heterogeneity. Its straightforward
solution is to perform a discrete 3D classification by splitting
the population of particles into subsets (classes) that attempt
to capture the different states of the protein. Thus, each 3D
class can be independently refined to reach a high resolution.
This straightforward solution is currently the most used in the
CryoEM field, although the situation is changing.

We can distinguish two kinds of heterogeneity: discrete and
continuous. Heterogeneity will be discrete when we explicitly
declare that the problem is splitting a data set of images into a
finite number of relatively homogeneous subsets, with that
number being an algorithmic parameter. In turn, we will refer
to continuous heterogeneity when algorithms can deal with
essentially continuous changes in the macromolecule without
the need to set a defined number of classes to partition the
data set; however, they may introduce other assumptions about
how structural changes happen.

10.2. 3D Classification Methods
Traditionally, 3D classification methods have focused on the
search of discrete conformations, and in general, they need
initial models of each of the conformations to be refined. One
of the most used methods is 3D classification, as presented in
the RELION package.145 It assumes that the number of
structural classes is known, so particles are classified using a
maximum a posteriori approach reconstructing the associated
representative of each class. In turn, the software package
FREALIGN92 carries out the 3D classification by expectation-
maximization of a marginal likelihood, while the particle
alignment is determined maximizing a joint likelihood
including some hierarchical priors. A similar approach from a
statistical point of view proposed by Zheng et al. suggests a
mixture of Gaussians to represent each class; then expectation-
maximization is used to estimate the parameter of the
Gaussians.229 More recently, CryoSPARC119 made use of a
branch-and-bound search strategy and a stochastic gradient
descent (SGD) approach to perform ab initio structure
determination and 3D classification, representing a new way
to tackle 3D classification with a very high computational
efficiency. In general, SGD is considered to be a robust method
to search for deep optimum solutions in nonconvex problems
like this one. Gupta et al.52 extended the GAN approach (see
section 2.2) of ref 51 to consider the possible existence of
multiple conformations.

Another distinct approach to address the heterogeneity
problem is through the use of energy landscapes and
manifolds. In general, macromolecules may be in different
states, each one with a different free energy. The continuous
motion of the macromolecule can be captured in a manifold in
some abstract space (for a review on continuous heterogeneity,
the reader is referred to ref 175). This family of algorithms
establishes a correspondence between the observed particles
and their conformational state, that is a map between the
particles and the conformational manifold.43,153 Currently, this
approach is used by a series of different methods. The main
difference between them is how to carry out the embedding
into the manifold. For instance, Schwander152 suggests three
different manifold embedding approaches: generative topo-
graphic mapping, Isomap, and diffusion maps. The use of
energy landscapes was popularized with the work of Dashti et
al.29 Particles were first aligned against a global reconstruction
without taking into account their heterogeneity. Then, all
particles with a close angular assignment were used to define a
conformational manifold using a diffusion map embedding
algorithm. Maji et al.94 explored how to “stitch” all the local
manifolds calculated in ref 29. A different approach by
Moscovich et al. and a more recent method constructs a
manifold from a graph Laplacian defined from the projection
images.103 A heuristic analysis of manifolds obtained with a
simulated heterogeneous cryo-EM data set was used to build a
framework from which reconstituting the quasi-continuum of
conformational states.154 CryoDrgn230 proposed a method
using a variational autoencoder architecture trained to encode
the particle images in a latent space, the manifold. e2gmm23 is
another deep learning based algorithm. Macromolecular
flexibility is described by the different combinations of the
parameters of a Gaussian mixture model (GMM). They
proposed a neural network based on encoders to map the
particles into a latent space and then decoded this latent space
into a set of parameters for the GMM. Principal components
analysis (PCA) and the analysis of the map covariance matrix

Figure 14. Time evolution of the number of publications on initial
volume algorithms based on analytical approaches or deep learning
methods. The symbol #publications denotes the number of
publications.
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have also played a highlighted role in the continuous
heterogeneity analysis.55,75,90,118,187 In this case, the manifold
is approximated by the linear space defined by the principal
components. References 75, 90, and 187 are remarkable
because the principal components were calculated directly
from the images. However, ref 174 showed that a PCA
performed considering only a few components is necessarily
restricted to low-frequency motions. Another way of
addressing the continuous heterogeneity problem is through
normal modes analysis (NMA), as the HEMNMA algorithm
showed.53,72,167 This algorithm studies the continuous
conformational changes in the particles modeling the transition
pathway with the help of NMA. Thus, it attempts to provide
some light on the dynamics of the protein. To do that, it makes
use of an atomic or pseudoatomic model of the macromolecule
to predict the motions from the normal modes. The study of
heterogeneous samples with normal modes was extended in a
“local sense” by dividing the map into small regions and
searching the combinations of normal modes that better
explain the motion of the protein given the set of particles.150

Zernike3D62 can also estimate continuous deformations as
NMA, but the deformation field is now continuously defined
for all points in the space (not only at the center of the atoms
or pseudoatoms), and it naturally introduces a coarse-to-fine
movement decomposition that removes the need to manually
choose the normal modes to explore. Given a continuous
deformation field, ref 169 introduced a method to estimate the
local rotations and strains by means of its differential analysis.

The last group of methods contains those that cannot be
classified in the previous two groups. Multibody refinement104

assumes the flexibility of the macromolecule can be
decomposed into independent rigid movements of structural
regions, called bodies. Individual bodies can be solved at a
higher resolution by masking the body region and isolating that
region in the particle projection. These new particle images are
then refined in the standard way, and the refined bodies are
placed back into their original location within the macro-
molecule. A similar idea was proposed a few years before as
proof of concept, named localized-optimization.155 This idea
can be considered the natural evolution of the localized 3D
classification.9 cisTEM and FREALIGN also introduced a 3D
classification based on this concept of masking the region of
interest to solve the heterogeneity and refinement problems.223

Klaholz80 proposed to perform multivariate statistical analysis
of specific map regions.

Reference 165 introduced an interesting idea that can be
considered to lie in between discrete and continuous
heterogeneity analysis. Let us assume that we have a number
of maps found by a discrete heterogeneity analysis. We may
arrange them in a continuous low-dimensional map according
to their relative distance. In this way, we may identify
continuous trajectories followed by the macromolecular
complex, helping in its dynamic characterization. This idea
was further pursued in ref 62 with the combination of multiple
criteria to perform the mapping to the low-dimensional space.

Figure 15 shows the time evolution of the number of
publications related to the refinement step. We can see how
the 3D classification step has been a constant topic of interest
during the past decade. The reason is the critical biomedical
information that specimen flexibility provides. In this way,
methods have tried and still try to overcome the possibility of
getting trapped in local minima. The analysis of continuous
heterogeneity in the manifold framework seems a topic of high

activity of research with promising results, although the
problem of local minima is even more severe due to the
larger number of parameters. We expect more developments in
this regard during the next years. Moreover, due to the
nonlinearity of the mapping onto a manifold, deep learning has
started to play an important role in the definition of latent
spaces.

11. MAP REFINEMENT

11.1. The Refinement Problem
The refinement step makes use of all particles assumed to
belong to a given 3D class, meaning that the flexibility/
heterogeneity problem (if it existed) is assumed to be solved
and all particles are projections of the same conformation of
the macromolecule. With all these particles, the map
refinement step determines the relative orientation of the
particles with respect to a reference volume. This process is
iterative: starting from a reference volume, all particles are
assigned an orientation with respect to it, and then the volume
is updated using the experimental images and their
orientations. The methods of projection matching and
maximum likelihood explained in section 2.1 are the most
common approaches for the refinement. Once the map is
obtained after each iteration, the result is filtered according to
its estimated resolution (see section 13), which determines the
highest reliable frequency of the map over the noise level. This
filtering prevents noise features from serving as anchors biasing
the particle orientation estimation. Some other approaches,
such as nonuniform refinement (explained later), apply a local
filter according to the SNR, and in general, any postprocessing
procedure that can identify and attenuate noise features can be
employed. Finally, some minor refinements are carried out
after angular refinement, such as better frame alignment, local
CTF estimation and correction per particle, or the Ewald

Figure 15. Time evolution of the number of publications about 3D
classification based on analytical approaches or deep learning
methods. The symbol #publications denotes the number of
publications.
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sphere correction. In general, all these steps are known in the
field as polishing. The combination of these minor corrections
allows for further pushing the quality of the reconstructed map.

One of the problems of this step is that we will always obtain
a map as a final result. However, there is no guarantee that the
obtained map is correct. The reason is that there are multiple
optimizations along the path, and our refinement can be
trapped into a local minimum far from the global
representative solution. If this is the case, the resulting map
will not represent the structure we try to solve, and any
interpretation of its biological informational content will be
wrong. This situation is known in the field as overfitting, and in
ref 168 we show that this is caused by bias in the estimation of
the various parameters involved in the image processing.
11.2. Refinement Methods

We can group the refinement methods in two categories: first,
those methods that purely address the issue of angular
assignment and reconstruction from projections; second,
those methods aimed at enhancing the quality of the
reconstructed structure (i.e., polishing).

• Group 1. Probably the most popular approach in the
field is a Bayesian formulation of the angular assignment
problem introduced by Scheres.145 The key idea behind
the maximum a posteriori approach is to find the map
that maximizes the likelihood of observing the
experimental data at hand given some prior distribution
of the maps being reconstructed. The prior is a Gaussian
distribution of the Fourier components of the signal. A
key component of its success was its implementation
through the expectation-maximization method and the
use of massively parallel hardware (GPUs).78 This
method became dominant in CryoEM.

A revolutionary approach appeared in 2017 with
CryoSPARC.119 It introduced a combination of
stochastic gradient descent and branch-and-bound
approaches to solving the previously explained expect-
ation-maximization problem.145 The combination of
these two methods, along with good implementation
and the use of GPUs, allowed for the refinement of high-
resolution reconstructions in really short times. The
stochastic gradient descent considers only random
subsets of particles in each iteration, which reduces the
complexity of the problem and avoids falling into local
minima. The branch-and-bound approach speeds up the
angular assignment by establishing a bound that prevents
uninteresting regions of the parameter space from being
explored.

HighRes176 introduced the idea of removing non-
significant features of the reconstructed map. A multi-
resolution approach is used to speed up the computa-
tional time and reduce the probability of getting trapped
in local minima. Global search of the projection
directions is promoted until the angular assignment is
stable, and then a local refinement is performed.

The nonuniform refinement method proposed by ref
120 follows the idea of filtering out those map features
that cannot be reproduced in both halves of the data set.
This filter is local, as the SNR is, in general, not
uniformly distributed in space. This is particularly true
for membrane proteins or heterogeneous samples.

In the domain of deep learning algorithms, Jimeńez-
Moreno et al.71 introduced an algorithm in which an

ensemble of neural networks determined particle
orientation. Each network was responsible for recogniz-
ing the particles coming from a given orientation. Gupta
et al.51,52 formulated the 3D refinement problem as a
GAN problem. Experimental images are not explicitly
assigned an orientation. Instead, a volume is recon-
structed such that its projections cannot be distinguished
from the experimental images by a discriminator
network. This is one of the first works in which the
physics of the forward image formation model and a
neural network are jointly used in a single algorithm.

• Group 2. The idea of going back to the frames after a
first reconstruction is obtained to fine-tune the image
parameters was first proposed by Scheres144 as part of a
motion correction algorithm that was discussed in
section 4. The goal was to refine the BIM on a per-
particle-per-frame basis, and later on, summing up all
particle frames with some weights resulting in a new
particle image called a polished particle. The weights aim
at taking into account the radiation damage and its
associated loss of information at high frequency. To that
end, the ratio between the Fourier decay of the
amplitudes of consecutive frames served as an estimate
of the radiation damage. Zivanov et al.233 introduced
Bayesian polishing as an extension of ref 144 but with a
different way of estimating the relative amplitudes. In
this case, they use the Fourier cylinder correlation
(FCC), which measures the correlation between each
particle frame and the reference at different frequencies.
Thus, it is possible to minimize the distance between the
FCC and an exponential model with a parameter that
describes the weights of the frames to be summed during
the polishing. The idea of weighting the different frames
was also explored by Grant50 considering the electron
dose and optimizing the contrast based on the SNR or in
ref 12 taking into account the similarity between the
frame content and the reconstructed map.

The estimation of local defocus and high-order
aberrations were the next refinement. In section 5 we
have shown that the CTF is first estimated per
micrograph. However, particles can lie at different
heights within the sample, implying a different defocus
per particle.12 Images are not only affected by defocus
and astigmatism, but other aberrations also contribute to
the loss of quality. To estimate these undesired effects
on a per-particle basis, the reconstruction of the
macromolecule must present a high resolution. The
methods published in refs 234 and 235 refine the phase
argument of the CTF by using Zernike polynomials that
are an orthogonal basis of functions to describe surfaces
on the unit circle. In all cases, this fine-tuning of image
parameters has improved the resolution of the
reconstructed map.

Going ahead with modeling corrections, we encounter
the effect of the so-called Ewald sphere. In CryoEM, the
sample is intentionally defocused to increase the contrast
to visualize the macromolecules in the sample.
Furthermore, CTF models are based on the weak
phase approximation that assumes elastic interaction
between electrons and sample and a thin sample. When
the sample is thick, these hypotheses are broken, and
therefore, the CTF model is not fully valid. The main
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reason is that the weak phase approximation assumes a
single defocus value or, equivalently, that the limited
depth of field can be neglected. This assumption is
generally correct for low frequencies, and all rays reach
approximately the same image plane on the detector.
However, for higher frequencies, the wave fronts start to
be focused on different planes. The importance of the
effect is resolution-dependent, with large macromole-
cules as the first candidates for enhancement.36 Several
methods were proposed to correct the Ewald sphere
curvature, such as the single-side-band CTF correc-
tion139 or the more recent ref 22. Experimental results
agree with the considerations above, showing a clear
improvement, especially in thick samples such as
viruses.188,231

Despite all the advances in map refinement, we must
remember that all these angular and imaging parameters have
to be estimated in very noisy images. The estimation process
can become rather unstable depending on the data set, and it is
not uncommon that two different algorithms or two executions
of the same algorithm disagree in their estimations for more
than 50% of the particles in some unfavorable cases. Those
incorrectly estimated parameters will necessarily bias the
reconstructed map, an effect that is usually referred to as
overfitting. This idea is further explained and experimentally
validated in ref 168.

Figure 16 shows the time evolution of the number of
publications related to the map refinement step. We observe

how the step of CryoEM refinement is evolving from the pure
reconstruction algorithms that attempt to properly determine
the angular assignment of the particle toward the introduction
of physical constraints. The increasing amount of data available
is stressing the current algorithms in two ways. First, the
execution time must be kept within reasonable values without

compromising the quality of the angular assignment. The
second stress is imposing the need to choose or, at least,
weight the different input images according to their quality and
similarity to the conformation being reconstructed.

12. VALIDATION

12.1. The Validation Problem
The reconstructed structure is not the end of the SPA
workflow. Now, we want to determine if the obtained structure
is reliable. The SPA workflow is composed of many steps, and
the possibility of committing an error in any of them can result
in a wrong reconstruction. In general, the main culprit of these
errors is the low SNR of the images. Perhaps overfitting is the
most widespread problem, and in many steps, such as angular
assignment, the errors can result in low-quality or even
incorrect maps. Although methods such as the gold standard
(splitting randomly the set of particles in two subsets with half
the images each, which are then independently processed to
reconstruct two maps) are used to detect overfitting, they do
not guarantee the absence of systematic errors committed in
both data halves.168 Validation methods may analyze different
features of the map itself, or for studies that propose an atomic
model, they may consider the map and the structural model
simultaneously. We should comment that early work on this
topic included a report of a specially convened task force (the
Validation Task Force), including a set of good practices to
reduce the number of incorrect structures,61 and a review of
some validation tools can be seen in ref 133.
12.2. Validation Methods
Validation methods were first considered by ref 134, where
pairs of images at different tilts of the same specimen area were
acquired. The idea of this work was that the geometry
acquisition would impose two constraints, the angular
orientation of the tilt pair of particles and the tilt angle and
the tilt axis (rotation axis of the sample). Thus, by an
independent search for the angular assignment of the untilted
and tilted particles we could validate the alignment if the
angular difference between them was given by a rotation of the
tilt angle around the tilt axis. This difference was summarized
in a polar plot in which the points corresponding to a correct
angular assignment tended to cluster around a point related to
the tilt angle. This work served as the theoretical basis of a
validation server where the users could upload the particles and
the reconstructed map and the server would produce the
validation method mentioned above.216 Along these lines,
Russo137 proposed a hypothesis test based on a Fisher
distribution to quantify the clustering of the polar plot. The
analysis of tilt pairs was also used to study the influence of the
molecular mass in the angular alignment, as Henderson et al.
showed.60 It showed that small molecules present a major
uncertainty in their angular assignment. Tilt-pair validation is
currently not much employed due to the use of cryo-samples
and their low contrast in tilted images. Vargas et al.201

proposed another way of characterizing the angular assignment
by studying the clusterability of the most similar projection
directions (not only the best one, as is normally chosen by
projection matching). A lack of clusterability reveals an
intrinsic difficulty in aligning a set of images to a particular
reference volume.

Another common issue related to validation is the existence
of overfitting. This fact makes it so that noise can be reinforced
in the alignment step resulting in an overestimated resolution.

Figure 16. Time evolution of the number of publications about map
refinement based on analytical approaches or deep learning methods.
The symbol #publications denotes the number of publications.
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Chen et al.24 proposed a phase randomization of the particle
images beyond a given frequency to detect overfitting.
Moreover, they derived a formula to calculate the unbiased
Fourier shell correlation (FSC; the FSC is a resolution
measurement; see section 13). Also with the aim of detecting
overfitting, Heynmann63,64 suggested the use of pure noise
particle data sets of the same size as the sets used for
reconstruction. The resolution achieved with a set of true
particles of a given size should always be better. The size of the
data sets was varied from small subsets to a final set with the
same size as the total number of particles available. Along a
similar line of reasoning, we have ResLog plot;182 the idea is to
track the progress of the resolution as a function of the number
of particles used. This curve can inform whether a particular
study is limited by the number of particles or by other
experimental factors such as intrinsic variability, difficulties in
the alignment, etc.

A different approach to the validation problem was proposed
by Cossio et al.25 This work complements the gold-standard
technique by taking out a small subset of particles as the test
set during the refinement. It allows for determining the
probability of the refined map at each frequency given the test
set. This probability should grow with the resolution in each
refinement iteration and, therefore, discriminate between well-
reconstructed maps and those obtained from noisy or empty
particles.

A large group of validation methods compares the CryoEM
structure with other determinations of the same structure with
different experimental techniques such as X-ray,127 SAXS,70,77

or ion mobility mass spectrometry.31 Despite their interest, we
feel that these techniques fall far from the image processing
scope of this review.

Figure 17 shows the time evolution of the number of
validation-related publications. The validation methods have

evolved from the compatibility or consistency of the raw data
with the reconstructed map and the analysis of possible
overfitting to validation of the atomic models traced from the
reconstructed density maps. Despite this transition, issues such
as alignability or the angular assignment are still critical
because the finest details of the reconstruction are sensitive to
problems in this task.

13. RESOLUTION ANALYSIS

13.1. The Resolution Problem
Every time we measure a physical magnitude, it is necessary to
report its uncertainty or degree of reliability. Resolution
analysis attempts to address this problem of estimating the
degree of spatial reliability that a reconstruction presents. Even
though the CryoEM community lacks a universal definition of
resolution, it is widely defined as the size of the smallest
reliable detail of the structure and, therefore, will be measured
in length units, generally angstroms (Å). The resolution
analysis can be global, when we try to analyze the quality of the
whole map, or local, when a specific region is analyzed. The
Fourier shell correlation (FSC)54 is the current standard for
global resolution. It measures the cross-correlation between
two half maps (i.e., two independent reconstructions using for
each half the set of particles, followed by gold standard
reconstruction) band pass filtered at different resolution shells.
When a mask is provided to exclude the noise from the half
maps, then the resolution changes due to the convolution in
Fourier space implied by the mask. For a review of global
resolution methods, see ref 171. The concept of resolution can
also be extended into a directional resolution189 to determine if
a given reconstruction is isotropic or anisotropic. Experiments
with preferred orientations result in anisotropic reconstruc-
tions (the overrepresented directions have a larger SNR).
Current global anisotropy metrics are the sphericity and the
Fourier shell occupancy.189,205

In this way, we see not only that the resolution is a single
number with which we may qualify the goodness of a
reconstruction but also that it depends on the specific location
and direction we consider (technically, this is called a tensor).
In general, local and directional resolution values are better
understood as relative “quality” descriptors between regions of
the macromolecules, which may be affected in different ways
by flexibility or compositional heterogeneity, besides errors in
angular assignment. Additionally, we must emphasize that
having a given global resolution is not a necessary condition to
visualize some structural details (e.g., a resolution of 5 Å does
not guarantee visualization of α-helices), but the visualization
of some structural details implies given resolutions (e.g., the
visualization of α-helices implies a resolution > 5 Å). The same
argument could have been made with side chains, which
should start to be visible at a resolution ∼ 3 Å.204 Finally, we
would like to highlight that resolution analysis should be
carried out with the raw reconstructed half maps without
postprocessing.
13.2. Resolution Methods
In general, all resolution measurements are based on the gold
standard method,147 that splits the set of particles into two
independent subsets resulting in two independent reconstruc-
tions or half maps.

Concerning global resolution, in the past decade, there have
been very few contributions. Reference 220 introduced SRes
based on the spectral SNR and multiscale spectral analysis.

Figure 17. Time evolution of the number of validation-related
methods based on analytical approaches or deep learning methods.
The symbol #publications denotes the number of publications.
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Despite the existence of alternatives, the FSC remains the
current standard, and in a way, this facilitates the comparison
of the reported resolutions among different studies.

In the last ten years, there have been several new
developments in local resolution. The first approach appeared
in 2013 with blocres.21 This method considered a local FSC
computed in a small window centered at the voxel of interest.
By moving the window, the local FSC was computed for all
voxels of the protein. Almost simultaneously, another method,
ResMap, was also published to quantify the local quality of the
reconstruction.82 However, the approach was completely
different. ResMap employed a basis of steerable functions
based on Hermitian polynomials that were used to
approximate local sinusoidals. The resolution was then
estimated with a hypothesis test to determine if the local
sinusoidal fitted to the density was significantly above the noise
level. A new approach was proposed in 2018, MonoRes.207

This algorithm estimates the local resolution by establishing a
hypothesis test between the local amplitude of the signal
(coming from the macromolecule structure) and the noise
level of the map. This comparison was carried out at each
frequency, and the resolution at which the local signal could
not be detected above the noise (in a statistical sense) was
defined as the local resolution value. To have access to local
amplitudes, ref 207 makes use of the so-called monogenic
signals. This method was also extended to electron
tomography. References 124 and 208 introduced a local
resolution approach based on deep learning, DeepRes. A
neural network was trained with atomic models converted into
density maps and band pass filtered at different resolutions.
The network was then used to identify textures similar to those
used during training and, therefore, infer the map resolution.
Another deep learning approach was proposed by Avramov et
al.,7 where neural networks were used to classify features
according to their resolution, validating the resolutions on
experimental reconstructions. In general, it is important to
mention that different local resolution methods may produce
(and often do) somewhat different estimations. The reason is
that each of these methods considers a different property to
define the resolution and even the very notion of “locality”, as
is discussed in ref 204 in a work addressing good practices for
local resolution estimation. Other conclusions of the latter
work are that local resolution should be estimated from raw
half maps only, without any postprocessing or sharpening
(except with DeepRes, which is based on textures).

After tackling the estimation of local resolution, the field
addressed the problem of resolution anisotropy. The existence
of preferred directions reinforces the signal along the planes
perpendicular to the preferred directions of the particles. In
2017, Tan et al.189 proposed that the existence of preferred
directions could be alleviated by tilting the sample. To show
that, they calculated a directional FSC considering a cone of 20
degrees as a directional filter, obtaining the so-called 3DFSC
(defined as the isosurface of the directional FSCs along all
possible directions). Thus, the sphericity of the 3DFSC was
proposed to evaluate resolution anisotropy. The closer to a
sphere, the more isotropic the reconstruction is. Related to this
work and almost simultaneously published, Naydenova and
Russo107 addressed the issue of how preferred orientations
affected the quality of the map and proposed a way to estimate
anisotropy based on efficiency, a statistical parameter that
characterizes the orientation distribution with a point-spread
function. This work also showed the importance of tilting the

sample to alleviate problems related to preferred directions.
MonoDir209 extended the method of MonoRes to measure
local and directional resolutions. As in MonoRes, resolution is
measured through a hypothesis test on the energy of the local
amplitude at different frequencies. The difference is that this
measurement is performed on a filter bank of directional filters.
Recently, a very simple metric for the simultaneous estimation
of the FSC-resolution and anisotropy was proposed, the
Fourier shell occupancy (FSO).205 The FSO informs about the
percentage of information at each resolution (Fourier shell)
compared to the FSC shell, showing that resolution anisotropy
cannot be reduced to a single number; that is, anisotropy is a
spectral property. The authors prove that the value FSO = 0.5
occurs exactly at the FSC resolution. Thus, the article
addresses the simultaneous measurement of global resolution
and global anisotropy and provides a mathematical formalism
for directional filtering and understanding the statistical
behavior of both the FSC and FSO. The induced resolution
anisotropy as a consequence of the particle direction
distribution was also studied in the latter work, showing that
resolution is certainly affected by the particles’ orientations; in
other words, the resolution is affected by the sampling of
directions, and anisotropy can be considered a consequence of
a nonuniform sampling. The sampling compensation factor
(SCF) was introduced to characterize the effect of the angular
sampling on the SSNR (spectral signal-to-noise ratio).10,11

The last group of research topics related to the resolution
step addresses the effect of different masks on estimating the
resolution and its uncertainty. Two recent works have
addressed these topics. The first one, the mFSC,114 proposed
to invert the order of application of the mask in the FSC
estimation; more precisely, instead of masking and computing
the cross-correlation of the masked maps at different
frequencies, this method proposed to band pass filter the
half maps and mask them to compute the cross-correlation.
This strategy alleviates the effect of the mask on the FSC but
considerably increases the computational burden. The same
work also analyses the FSC error using Fisher’s z transform,
providing a confidence interval for the resolution estimation.
The second approach, by Beckers et al.,14 proposes random
permutations of the Fourier shells in the half maps. This allows
for estimating multiple FSCs to determine the FSC
distribution and, therefore, to infer a confidence interval for
the FSC (resolution error). In addition, this approach seems to
be stable under different mask geometries.

It is interesting to note how an old topic like resolution
estimation has been and still is an issue of sustained and varied
work. Traditionally, the controversy about the FSC threshold
has always been present.171 Still, the last 10 years have
witnessed the emergence of local resolution, local-directional
resolution, resolution anisotropy, resolution error, and mask
dependency. Figure 18 shows the time evolution of the
number of publications related to resolution estimation. The
use of deep learning methods is starting in the resolution field,
so that most of the publications in this regard correspond to
analytical approaches. This can be explained partly due to the
relative novelty of deep learning approaches and partly because
of the desire to root these metrics into a defined statistical
signal processing background, which can be difficult to achieve
with deep learning.
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14. VOLUME RESTORATION

14.1. The Restoration Problem
Understanding the biological behavior of a given macro-
molecule is one of the goals of structural biology. The
reconstructed map contains the spatial information about the
macromolecule, and from it, we would like to interpret it in
terms of an atomic model. However, this information can be
complex to analyze. For instance, reconstructed maps are
usually visualized by establishing a threshold that defines an
isosurface; thus, only densities greater than or equal to the
threshold are shown. This representation can be suboptimal
because it depends on an arbitrarily chosen parameter, the
density threshold. We can find reconstructions for which some
connections between densities do not have enough contrast in
the map and are, therefore, difficult to trace in atomic terms. In
other situations, such as those corresponding to maps
presenting regions of very different local resolutions, it is
necessary to change the density threshold to enhance the
visualization of one region over another. Thus, it would be very
desirable to have a map transformation that enhances the
visualization of the protein for its understanding, helping trace
the amino acid chain. This is what sharpening methods do.
This transformation normally involves a high-frequency
boosting and a map denoising/masking. Special care must be
taken to avoid oversharpening. Note that this boosting of the
high-frequency components changes the spectral properties of
the reconstruction in ways that may be rather complex so that
the quantitative use of sharpened maps beyond visualization
should be handled with great care.206

14.2. Restoration Methods
Sharpening algorithms can be grouped into two types: global
and local sharpening methods. The most widespread method is
the B-factor correction.134 It is a global transformation that

carries out a flattening of the spectrum of the protein, taking
into account the FSC. The idea is to get a sharp visualization of
the high frequencies hidden by the low-resolution information.
This is what RELION postprocessing does.145 AutoSharpen192

proposed to look for the best B-factor considering two
objective functions simultaneously: the sharpened map must
have a maximum connectivity and minimum surface. Leaving
the weighting by the FSC out, the B-factor correction
considers that the reconstructed map is the result of a
convolution of a sharpened map with a Gaussian and isotropic
PSF (point-spread function). This assumption is the starting
point of many sharpening methods. For instance, Hirsch et
al.65 used a blind deconvolution to determine the sharpen map
considering some constraints such as non-negativity, smooth-
ness, and sparseness of the map. Other approaches such as the
one followed by Kishchenko et al.79 assume that the blurring of
the protein is a consequence of inaccuracies in the angular
assignment of the particles. Then, the introduced error must be
purely tangential and will grow with the distance to the origin.
They suggested a spherical deconvolution to restore the map.
Another method called VISDEM180 makes use of the number
of atoms that the protein has as a constraint. Normally, this
information is known by means of other techniques, and if it is
not, the method provides mechanisms to estimate it.
Considering the number of atoms and the shape of the
protein (obtained by thresholding), the volume is filled (coarse
grain model) with pseudoatoms, and a refinement of the
density distribution and radial spectrum is carried out. The
coarse-graining technique was also used as a denoiser in ref 73.

Local sharpening methods started as a trend in 2017 with
the algorithm of LocScale.69 The idea was to carry out the B-
factor correction in a local sense to obtain a local spectrum
similar to the local spectra of a reference atomic model,
although the method can also internally handle other
possibilities. LocalDeBlur123 addressed the problem of local
sharpening as a local deconvolution where the local PSF
depends on the local resolution of each voxel. This method has
proven to be very effective when the maps present regions with
very different resolutions. LAFTER125 makes use of two half
maps to recover the part of the signal that is not buried in
noise. To do that, the maps are band pass filtered at different
resolutions, and the voxels of the band pass filtered maps are
locally weighted, according to their probability of being signal
and noise. Then, the weighted and filtered maps are added and
an eighth-order Butterworth low-pass filter is applied. This
method is the basis of SIDESPLITTER,126 where the map
restoration step is integrated into the map refinement process.
A similar approach was proposed by ref 76, only that the local
energy by frequency is estimated using the spiral transform that
can decompose a function as the product of an envelope and a
phase. The details of the weighting used to reconstruct the
sharpened map are also different. Finally, we comment on local
density modification methods that incorporate prior knowl-
edge coming from the atomic nature of the map being
reconstructed. This approach introduced by Terwillinger et al.
is very often used in crystallography and was recently
introduced in CryoEM to improve the interpretation of the
maps.191,193

All these restoration approaches are based on analytical
methods, and we had to wait until 2021 to have the first deep
learning sharpening method, DeepEMhancer.141 Indeed, the
high number of CryoEM reconstructions with fitted atomic
models already deposited at the Electron Microscopy Data

Figure 18. Time evolution of the number of publications of
resolution-related methods based on analytical approaches or deep
learning methods. The symbol #publications denotes the number of
publications.
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Bank (EMDB) and PDB16 databases is enough to train a
neural network. The neural network must learn the shape of
atomic models converted into density maps from the shape of
the reconstruction. At very high resolutions, there are not
enough maps for the training, and deep learning algorithms
may not be so useful.

Figure. 19 shows the time evolution of the number of
publications related to map restoration. It can be observed that

the majority of the methods published in the the last ten years
are analytical. In the future, we expect the introduction of
anisotropic approaches to sharpening, perhaps based on deep
learning.

15. REMAINING PROBLEMS AND EMERGING TOPICS
AND METHODS IN CRYOEM

As we have seen throughout the paper, there have been many
new image processing and data analysis methods in the past 10
years. In Table 1, we show a summary of these papers over the
years and topics. From this table, we can see that there are
three different topics trends depending on the number of new
methods in each one of them. Smaller activity does not mean
that a particular problem is unimportant or that it is solved.
However, on the other hand, a large activity probably means
that the problem is really at the core of the data analysis path
and that the problem is still perceived as open either in its basic
or more advanced aspects.

• Low-activity topics: Micrograph and particle denoising,
together with map segmentation, are the three topics
with the lowest activity in the last ten years. We note,
however, that activity in these areas is also more recent,
concentrating in the second half of the decade. Probably,
micrograph and particle denoising are outside the main
data analysis path. They are helpful as auxiliary steps to
other tasks, such as particle picking or image alignment.

Figure 19. Time evolution of the number of publications on map
restoration based on analytical approaches or deep learning methods.
The symbol #publications denotes the number of publications.
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These auxiliary tasks are not commonly used because
the standard data analysis pipeline has already been
designed to deal with the high levels of noise found in
the raw data. Instead, map segmentation is normally
performed by simple isosurface thresholding in the
different visualization programs. Although more sophis-
ticated approaches can be employed, these are useful for
interpreting subtle details as loops, side chains, or other
weak details.

• Medium-activity topics: We may identify two different
trends here: those topics for which there was a larger
activity in the first half of the decade and those for which
a larger activity occurred in the second half.

(1) First half: In this category, we find movie
alignment, CTF determination, initial volume,
and map validation. This is logical, as these steps
are crucial to settle the bases of obtaining a map
by CryoEM.

(2) Second half: In this category, we find map
refinement and restoration. Again, this is logical;
once the bases are settled, we want to fine-tune
the parameters to reach high resolution (refine-
ment) and gain more details by postprocessing the
map (restoration).

Interestingly, 2D classification has equal contributions
in both halves, meaning that new ideas regarding
identifying images constantly appear.

• High-activity topics: These are the workhorse tasks of
the data analysis pipeline: particle picking, 3D
classification, and resolution. The relatively higher
activity in these domains shows the healthy condition
of the field and how new advances are steadily being
adopted.

In the following paragraphs, we comment on the current
trends for each one of the topics, which are the most active
areas of research for each one, and which are the problems that
are still perceived as open:

• Movie alignment:
(1) One of the main problems here is the accuracy of

the local alignment. It must be remembered that
at, the frame level, the SNR is below 10−3 and that
neither the signal nor the noise follow a Gaussian
distribution (and consequently, tools such as
Euclidean distance or cross-correlation are sub-
optimal). This accuracy is crucial to achieving very
high resolution, but it does not need to be fully
solved at the beginning of the image processing
pipeline. Instead, it can be tackled at the end of
the process in a step normally referred to as
polishing,12,233 essentially fine-tuning the frame
alignment parameters.

(2) Electron microscopes are continuously increasing
their acquisition speed and the size of the
recorded images. At present, movies can be
acquired in <10 s, which is the time to perform
the movie alignment if we are processing the data
in streaming. This time constraint can be
alleviated if we employ several GPUs in parallel,
but in any case, there is a huge pressure on movie
alignment algorithms to do their task in a very
short time.

• CTF determination: Following the general trend, the
processing speed and accuracy of the estimated
parameters are still open problems in the field. Speed
is normally addressed using GPUs. Regarding accuracy,
this is normally not explicitly contemplated. However, to
reach a very high resolution, the defocus must be
determined with <100 Å of error.226

The per-particle refinement of the defocus aims at
filling this need for accurate defoci. The same can be said
of the handling of tilted samples, in which each region of
the micrograph has a different defocus. Estimating high-
order aberrations is a step further in modeling the
transfer function experienced by each particle trying to
model it to very high resolution. The accuracy of the
CTF of each particle is, undoubtedly, an open problem
in which more research should be expected.

• Particle picking: Despite quick advances in recent years,
especially with the adoption of deep learning algorithms,
particle picking will probably remain as one of those
areas with constant progress and continuous appearance
of new ideas. Current tools can handle large data sets
within a reasonable computational burden. Still, in the
best case, the number of false positives can easily be as
high as 10%.142,232 In more difficult cases, false positives
can rocket up to 60−70%; the possibility of introducing
structural bias is also a concern. Some algorithms have
been developed to compute a consensus of multiple
pickings smartly and eliminate obvious contaminating
particles. False negatives are currently not a problem, as
we acquire thousands of micrographs containing several
millions of particles and losing some of them is not a
catastrophe. Open problems in this domain are (1)
decreasing the number of false positives without
introducing bias; (2) addressing difficult situations
such as micrographs close to focus, very low-
molecular-weight particles, picking in thick ice, or
finding minority populations; and (3) automatic picking
without any human intervention.

• Clustering in 2D: Classifying particles into homoge-
neous 2D clusters may be one of the most classical
image processing problems, probably dating back to the
1970s. Current research focuses now on the following:
(1) how to handle millions of particles efficiently and
automatically; (2) how to divide the input data set, on
the order of millions of particles, into many distinct
groups avoiding the so-called attraction problem by
which the classes with higher SNR get most of the input
images even if their representative does not correspond
to the underlying image; and (3) exploring different
image similarity metrics, trying to make the classification
more robust to outliers, contaminations, low SNR, etc.

• 3D angular assignment: The next three topics are
intertwined. Still, we will try to give a separate view of
each one of the issues. 3D angular assignment addresses
the problem of finding the orientation of a set of
particles with respect to a reference map (ideally, a map
containing minimal information, or even none). The
open problems and current research lines include the
following: (1) trying to minimize the dependence on an
incorrect reference map and looking for a global
minimum for each one of the particles, including a
way to assign quality metrics to the angular assignment
on a per-particle basis; (2) trying to escape the attraction
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problem that also occurs in 3D (as one direction gets
higher SNR, it attracts experimental images even if they
do not come from that direction); and (3) how to solve
the problem efficiently either by changing the algorithm
or by implementing it in massively parallel hardware so
that millions of images can be handled in a reasonable
amount of time.

• 3D reconstruction: 3D reconstruction can be considered
a regression problem in which we try to find a signal
model, the map, that is compatible with the acquired
data. As in any other regression problem, the open
problems are as follows: (1) being robust to large
amounts of noise through regularization, the use of a
smooth basis that reduces the number of parameters to
estimate, or the addition of constraints; (2) fully
accounting for the image formation model (for instance,
explicitly considering high-order effects, such as the
Ewald sphere correction or high-order microscope
aberrations), including even possible elastic deforma-
tions of the structure being reconstructed; (3) including
a priori information about the kind of objects being
reconstructed through suitable priors in a Bayesian
setup; and (4) solving the problem efficiently, as millions
of particles may be involved in this step.

• 3D classification: This process tries to identify
structurally homogeneous populations of particles. As
with the previous topics, current research lines address
the following: (1) finding the global minimum of the
goal function being optimized and (2) handling
continuous heterogeneity accounting for the continuous
flexibility of biological macromolecules.

• Resolution determination: The resolution of the
reconstructed map is the most typically reported quality
measure of the final result. However, this concept is ill-
defined, as it could refer to optical resolution, SNR, the
self-consistency of our data analysis, or the presence of
structural details of a given size. The four aspects make
sense, and there could be multiple ways of measuring
each of them without agreeing with each other. What is
important is that there is at least one common way of
reporting the quality, and this has been achieved at the
level of the entire field by reporting the resolution at
which the FSC drops below 0.143. The specific number
may not be so important, in general, but what is
important is that collectively we report in the same way.
Current research focuses on locally and directionally
characterizing the SNR and removing the influence of
the measuring mask in the reported values. The
elucidation of which factors are responsible for the loss
of resolution is still an open question, and these factors
probably change from one experiment to another.
Despite there being some advances, the CryoEM
community lacks metrics to identify such problems.
For instance, the existence of angular alignment errors
can be measured with the local-directional resolution,
while also giving some clues about the possible existence
of preferred directions; however, there is still room for
new methods.

• Map restoration: A common current practice is to
postprocess the raw output of the 3D reconstruction
process. This has been termed map sharpening, and the
goal is to boost the weak high-frequency components of
the reconstructed map to distinguish better small details

such as side chains, loops, or even water molecules
around our map. At the same time, we want to remove
all possible spurious artifacts unrelated to our structure.
Current research lines follow either a pure signal
processing approach somehow exploiting the SNR or
the incorporation of priors based on the knowledge of
the structure at high frequency of the building blocks of
biological macromolecules (atoms, amino acids, secon-
dary structure, protein folds, ...).

• Map validation: Another vital topic is the verification of
the correctness of the structure obtained. Current
research tries to do so by the following: (1) verifying
the self-consistency of the data analysis pipeline; (2)
verifying the consistency of the reconstructed map to
data that has not been used during the reconstruction;
(3) trying to identify possible parameter misestimates,
most importantly in 3D angular assignment and
classification; (4) verifying the consistency of the
reconstructed map to other biophysical measurements;
and (5) verifying the correctness of the properties
observed for biological macromolecules at the given
resolution.

• Atomic model fitting: The ultimate goal of a structural
study with CryoEM is to elucidate the location in space
of the atoms of the macromolecule. Since we currently
reach a high-resolution map in many cases, the last step
is usually the fitting of an atomic model to the
reconstructed map. Current research lines try to do
the following: (1) automate this process as much as
possible, including rigid and flexible fitting; (2) avoid the
local minima of the fitting goal function; (3) provide a
measure of the uncertainty of the fitting (e.g., by
producing an ensemble of models rather than a single
structure); (4) extend these modeling capabilities to
lower resolution maps; and (5) incorporate other
biophysical measures such as those coming from mass
spectroscopy, domain−domain interactions, or evolu-
tionary constraints.

The whole image analysis pipeline in CryoEM can be
regarded as a succession of small problems in which we need to
estimate some parameters (the parameters describing the local
movement of frames in movie alignment, the defocus
parameters in the CTF estimation, the location of a particle
in particle picking, etc.). These parameters themselves can be
considered to be random variables, and in such a noisy
environment, all these estimates are expected to be rather
noisy. Our estimate can be relatively close to the underlying
ground truth or rather far away. However, with a single
parameter estimation, it is impossible to know which situation
we are in. The only way to know is by estimating the same
parameter multiple times and comparing the different
outcomes. This is a rare practice in the field, but current
research is heading toward calculating so-called consensus
parameters (parameters that are consistently estimated in the
same region). Only for these stable parameter estimations can
we be more certain that we have successfully found a more or
less correct parameter. On the opposite side, just taking the
output of a single execution of any of the algorithms involved
leaves us in a fragile position from a statistical point of view.

16. CONCLUSIONS
After observing what has happened in the last 10 years, we may
draw some interesting conclusions:
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1. There is no doubt that the resolution revolution in
recent years has come from advances on multiple fronts:
improvements of the reproducibility of sample prepara-
tion, the introduction and further advancement of direct
electron detector cameras, improvements in the stability,
automation, and better electron optics at the electron
microscope, and the development of faster and more
robust image processing and data analysis methods,
which is the topic of this review.

2. The average number of new methods per year and topic
is about 1.5, which gives a total of 15 new methods per
year. These numbers show the healthy and active
condition of the field. Additionally, the number of
methods in the second half of the past decade is larger
than that in the first half, pointing to acceleration and
incorporation of new engineering or physics groups into
the field. This steep increase in new methods makes it
difficult for users to keep up the pace, especially if they
have to change from one platform to another to use
them. In that regard, an integrative platform where most
of them are accessible is indeed handy not only because
it simplifies their use but also because it allows for
comparing the results from the different software tools
solving the same problem. This comparison allows the
scientist to find which parameters can be relied on and
which are less reliable.

3. About 10% of the algorithms come from deep learning
(see Figure 20), and most of them appeared in the

second half of the decade. The problems in which these
algorithms have mostly appeared are the expected ones:
particle picking, map sharpening, validation, and tracing.
However, they are starting to appear in more core tasks
such as 3D reconstruction, angular assignment, and
classification. In the coming years, deep learning
algorithms will probably fully erupt onto the scene,

and very likely, we will see hybrid algorithms and a more
accurate consideration of the image formation model
underlying CryoEM data acquisition.

4. Still, classical methods have advantages over deep
learning approaches, which are seen as black boxes:
(1) they allow explicit modeling of the physics and close
understanding of the underlying mechanisms; (2) even
though we now have millions of images, deep learning
algorithms require labeled data; in this aspect, classical
algorithms have a clear advantage, as they can work with
very few images as well.

5. We may recognize two main trends in the development
of new methods: (1) addressing more subtle details
(“high-order”) or more difficult (lower molecular
weight, lower contrast, continuous flexibility, etc.)
problems and (2) decreasing the user dependence
through the incorporation of automatic, smart decisions
based on the data itself.

6. Although it is not common among practitioners, from
the algorithmic point of view it has been recognized that
the parameters required along the image processing
pipeline are extremely noisy and that the fraction that
can be reliably determined can be as low as 20% in some
difficult projects and between 50 and 70% in more
standard projects. The fraction of incorrect parameters
(incorrect angular assignment, incorrect 3D class,
incorrect particle, incorrect defocus, ...) is biasing our
result. Consensus algorithms are being introduced to
identify these situations, and in the future more
algorithms of this kind should be expected.

7. Over the past decade, we have witnessed an increase
from a few tens of thousands of particles at the
beginning of the decade to a few millions at the end.
This has put a formidable pressure on computational
performance, and currently, the most successful
algorithms invariably require GPU acceleration.

Overall, we are experiencing a sweet moment for technical
advances in this discipline. The increased automation,
robustness, and smart algorithms are shifting the image
processing and data analysis in single particle analysis from
art to routine. This can be seen by the quickly increasing
number of maps deposited at the EMDB, many of them
coming from groups that have recently adopted CryoEM as
one more experimental technique within their reach.
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Universidad de Maĺaga), a B.Sc. degree in Computer Science
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