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Predicting MHC I restricted T cell 
epitopes in mice with NAP‑CNB, 
a novel online tool
Carlos Wert‑Carvajal1,2,3,8, Rubén Sánchez‑García1,8, José R Macías1, 
Rebeca Sanz‑Pamplona4,5, Almudena Méndez Pérez1, Ramon Alemany6, Esteban Veiga1, 
Carlos Óscar S. Sorzano1 & Arrate Muñoz‑Barrutia2,7*

Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer 
immunotherapy research. Novel sequential approaches through recurrent neural networks can 
improve the accuracy of T‑cell epitope binding affinity predictions in mice, and a simplified variant 
selection process can reduce operational requirements. We have developed a web server tool (NAP‑
CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative 
neoantigens from tumoral RNA sequencing reads. The developed software can estimate H‑2 peptide 
ligands, with an AUC comparable or superior to state‑of‑the‑art methods, directly from tumor 
samples. As a proof‑of‑concept, we used the B16 melanoma model to test the system’s predictive 
capabilities, and we report its putative neoantigens. NAP‑CNB web server is freely available at http:// 
bioco mp. cnb. csic. es/ Neoan tigen sApp/ with scripts and datasets accessible through the download 
section.

Cancer cells can accumulate many mutations that change protein sequences. It can lead to MHC-restricted T-cell 
 epitopes1. Identifying the tumor-specific epitopes that elicit T cell cytotoxic responses represents a major chal-
lenge for cancer immunotherapy, particularly to design personalized  therapies1,2. Finding neoantigens in every 
cancer patient will be fundamental for the next generation of antitumor immunotherapies.

A plethora of neoantigen discovery pipelines has been described to enable the prediction of epitopes from 
genetic information. However, current pipelines are human-centered and, thus, are primarily designed for clini-
cal  usage3,4. Among the preeminent research lines, genomic analysis  adjustments3,5–8, and neoepitope ranking 
 practices5,6,8,9 have been prioritized over affinity binding or immunogenicity prediction algorithms. Despite this, 
the latter ones remain a critical component of the overall workflow for which limited available options  exist10.

The absence of dedicated tools for the alternative in vivo mouse models hinders pre-clinical cancer immu-
notherapy research. Hence, laboratories have to produce or adapt to ad-hoc human pipelines. The pipelines 
Epi-Seq11, pVAC-Seq3,  MuPeXI9,12 and  Neoantimon13 offer modified versions for the murine model. These plat-
forms follow the canonical prediction process, based on sequencing data to estimate the gene expression and 
the predicted affinity with the T-cell receptor (TCR) of the mutated  peptide10, which is a prerequisite to elicit an 
immune  response1. Epi-Seq performs a full-analysis from DNA and RNA reads file, however, it is not tailored 
for neoantigen detection, as it was conceived for the discovery of common tumor antigens. The other platforms 
lack genome preprocessing and variant calling in its analysis. Hence, in these three options, a variant call format 
file (VCF) its needed for its usage. Among them, solely MuPeXI is accesible as a webserver whilst pVAC-Seq 
and Neoantimon have to be installed locally and require a BAM file to estimate the levels of gene expression, 
which underscores the importance of a comprehensive and integral pipeline as a freely accessible webservice.
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The algorithms underpinning the prediction of immune response differ aming these options. Epi-Seq and 
MuPeXI use  NetMHCPan14 and its pan-specific variant,  NetH2pan15, which rely on dense neural networks for 
binding affinity prediction. These tools have been trained with samples from the major histocompatibility com-
plex (MHC) of mice or H-2. pVAC-Seq and Neoantimon also include  MHCflurry16, which recently has been 
upgrated to include an estimation of immunogenicity through an antigen processing model using a convolutional 
neural network. In general, among the supervised machine learning methods that have facilitated the identifica-
tion of neoepitopes, artificial neural networks have proven to be highly  efficient17. However, recurrent neural 
networks (RNN) remain quite unexplored even if they are better suited for sequential problems, as attested by 
their extensive usage in natural language processing  systems18. As a case, long short-term memory (LSTM) units 
are, at present, used for protein prediction of function and  interactions19,20.

Prediction models have relied on gene expression information from tumor samples to determine putative 
peptides for  intervention1. However, current approaches depend on genetic information from DNA sequencing 
to determine  mutations5,8. This dependence hinders temporal performance and increases intervention costs, but 
whole-exome sequencing (WES) is justified for its improved  selectivity21. Hence, a system may rely exclusively on 
RNA sequencing (RNA-Seq) to simultaneously identify mutations and gene expression  levels21. If compensatory 
methods in neoepitope prediction are present, a tool designed for pre-clinical use may only rely on mutational 
information from RNA-Seq for a cost-effective solution. We developed an integrated pipeline optimized for a 
murine model that finds putative neoepitope via next-generation sequencing (NGS) tumor variant calling and 
ranks them using LSTMs. This novel platform is only based on RNA-Seq, and is automated for a given haplo-
type. As a proof-of-concept, we trained our system with the H-2Kb haplotype (MHC class I) to be tested for the 
commonly used B16 melanoma model in C57BL/6 mice, but the tool is compatible with additional typings that 
correspond to the most common in C57BL/622 and FVB/NJ23,24.

Furthermore, the NAP-CNB is available separately as sequence affinity binding predictor. Entries are also 
constrained by a minimum length for each haplotype as tool is conceived for a NGS-based analysis in which 
proteins are submitted in their full extension. The resource NAP-CNB is freely available as a web server at http:// 
bioco mp. cnb. csic. es/ Neoan tigen sApp/.

Methods
The proposed pipeline employs genome preprocessing tools, variant calling software, and customized neural 
network architecture to obtain putative neoantigens from RNA-Seq experiments. As an integrative tool, the 
workflow has been adapted into a web server for RNA-Seq file submissions with filtering options available at the 
preprocessing level, as shown in Fig. 1a. A tumor RNA-Seq file should be inputted as “.fastq.gz” together with 
the MHC class I type and an email address to receive the final results in less than ten hours. The binding affinity 
predictor is also available separately to be used for peptides sequences in FASTA format, which is able to process 
5000 sequences in less than 30 seconds.

Variant calling: from RNA‑Seq to mutant peptides. The somatic mutations suitable for neoantigen 
prediction are obtained from the gene expression of tumor tissue (RNA-Seq). NGS technologies that produce a 
FASTQ file are required for this protocol.

First, a quality assessment report is produced using FastQC (v0.11.8)25 for user evaluation. In terms of pre-
processing, the RNA-Seq file is realigned with a reference genome for further processing with STAR (v2.6.0a)26. 
The resulting BAM file is processed with Picard (v2.19.2)27 for further refinements such as annotation and 
duplicate marking. Subsequently, Genome Analysis Toolkit (GATK, v4.1.2.0)28 is used for exon segmentation, 
through the “SplitNCigarsReads” protocol, and base quality score recalibration (BQSR) following Best Practices 
 guidelines29. As indicated in Fig. 1b, this part serves as a preprocessing of the RNA-Seq reads per se before vari-
ant calling. At this level, the user may introduce more flexible or conservative restrictions at the quality level by 
modifying the default threshold of BQSR.

The MuTect2 variant  caller30 from the GATK package is used in its tumor-only mode (Fig. 1b), which is 
computationally less expensive but provides a higher number of false  positives31. Even if designed primarily for 
DNA-Seq reads, MuTect2 has shown to be efficient in calling mutations from RNA-Seq32. By default, tumoral 
RNA-Seq is matched with databases of single nucleotide polymorphisms (dbSNP), although it can be used with 
a panel-of-normals (PoN) by construction. Following depth coverage (DP) filtering, the variants are submitted 
to Variant Effector Predictor (VEP) from Ensembl (v100.0)33 for annotation and extraction of mutant peptide 
sequences identified as missense variants. An additional allele frequency (AF) can be introduced at submission. 
Finally, a script matches the resulting UniParc reference from VEP to extracted UniProt proteins for protein-
level  prediction34.

Additionally, Cufflinks (v2.2.1)35 is used for mRNA abundance estimation as measured by fragments per 
kilobase million (FPKM). As there is no range for optimal neoantigen expression, this metric is provided to the 
user for its examination (Fig. 1b).

Hence, NAP-CNB provides a simplified interface for users to submit neoepitope prediction jobs to a web-
server. Hence, it removes the need for a local machine, as required by Epi-Seq11, pVAC-Seq3 and  Neoantimon13 
and, in contrast with  MuPeXI9,12, it additionally provides variant calling capabilities. Nonetheless, current cus-
tomization remains limited. The output consists of a list of sequences with a softmax score and a complementary 
binary metric from postprocessing. Additionally, levels of expression are also included for the user. Jobs can be 
downloaded as lists or “.csv” files, which permits easy analysis and compatibility with data analysis software to 
perform further candidate sorting and selection.

http://biocomp.cnb.csic.es/NeoantigensApp/
http://biocomp.cnb.csic.es/NeoantigensApp/
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Dataset generation and preprocessing. Sequences of MHC-I binding peptides were obtained from the 
IEDB  database36 for the H-2Db, H-2Dd, H-2Dq, H-2Kb, H-2Kd, H-2Kq, H-2Ld and H-2Lq haplotypes, although 
here we present the procedure and results of H-2Kb as a case. Given the different binding assessment methodolo-
gies considered in IEDB, elements were binarized by their MHC class I classification as positive or negative, per 
IEDB standards. The datasets, by entries accession number, are available at NAP- CNB.

Firstly, peptides deemed as antigenic were processed to extract their binding sites. These correspond to 
positive epitopes from IEDB as classified by their qualitative labels “Positive High”, “Positive Intermediate” and 
“Positive Low” for each MHC class I haplotype in mice irrespective of the assay type. A further selection criteria 
was to include only epitopes with protein identifications to generate negatives and resize the sequence to a given 
length. Consequently, sequences were aligned with its protein source through the Smith-Waterman  algorithm37 
to obtain the remaining sequence as negative samples (Suppl. Fig. 1). Additionally, epitope regions were extended 
through the original sequence to have a regular size (Suppl. Fig. 1). In contrast with previous methods, a given 
prevalence (i.e., the fraction of the minority class) was not imposed on the dataset. In total, for H-2Kb, 4,828 

Figure 1.  Workflow for the integrated pipeline. (a) The user interface of NAP- CNB with the fields required 
for NGS analysis. Users can introduce filters of GATK for base quality score recallibration (BQSR) of RNA-
Seq reads, minimum depth coverage (DP) and allele frequency (AF). Additionally, users may submit peptidic 
sequences for affinity prediction. Individual submissions are haplotype-specific, and results are sent to an email 
address. (b) Workflow for the integrated pipeline. Firstly, the sample is preprocessed before variant calling. 
Quality control through FastQC and STAR alignment with the reference genome is followed with protocols 
from Best Practices of GATK. Known variants are introduced through known polymorphisms or a panel-of-
normals if requested, andsufficient non-tumor RNA-Seq reads are provided. MuTect2 is used for variant calling, 
and plausible single nucleotide variant (SNV) mutations translated into peptidic sequences for prediction with 
the RNN model. Gene expression is quantified through Cuffquant in Cufflinks.

http://biocomp.cnb.csic.es/NeoantigensApp/
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peptide entries were processed into 251,049 sequences with 6714 positive entries and 244,225 negatives. A 10% 
split was used for test set generation. Concerning blind test data, IEDB datasets 1034799 and 1035276 were pro-
cessed through the previous procedure and by the method described  by15. Additional information concerning 
the dataset for each haplotype is available in the download section of NAP-CNB.

Further postprocessing was implemented with a majority vote algorithm that considered mutations to the 
most similar amino acid, given by the BLOSUM62  matrix38, for each position. In other terms, a sequence modi-
fied its classification if there was a consensus among its most akin peptides.

Neural network training. The neural networks were implemented through Keras (v2.2.4)39 and Tensor-
Flow (v1.11.0)40. A scalable routine was used for architecture optimization through simplified datasets (Suppl. 
Fig. 1) until one competent was obtained. Moreover, training was done with “on-batch” class balancing and data 
augmentation. The latter increased the number of positives sequences through random substitution of a given 
number of amino acids with similar ones from the BLOSUM62  matrix38, with a given tolerance (Suppl. Fig. 3). 
The training was performed through fivefold cross-validation, for hyperparameters tuning and optimization of 
balancing and augmentation, generating a total of 80 models for the actual dataset.

The initial toy model was used for embedding selection and tuning of neural architectures (Suppl. Table 1A,B), 
which was maintained in the type and depth of layers in later configurations. At this stage, there were no sig-
nificant improvement in any of three low-dimensional  embeddings41–43, against a one-hot encoding (Suppl. 
Table 1A). Hence, we maintained the dimensions given by the naturally occurring amino acids. While an interme-
diate dataset (Suppl. Fig. 1C) was introduced for data balancing and augmentation. The final model was produced 
with the complete dataset and cross-validation of the number of internal LSTM units at each layer, the number 
of on-batch sequence augmentations, and its tolerance, and the on-batch class balancing.

In the final architecture, peptide sequences of a given length are introduced with a one-hot encoding rep-
resentation to three consecutive bidirectional LSTM layers, followed by three layers of dense neurons with two 
intermediate dropouts units. The output layer consists of a dense neuron, with a soft-max activation, which yields 
the affinity estimation probability. The overall network is represented in Fig. 2.

Sequencing raw data. An in  vitro B16 melanoma cell line with a H-2Kb haplotype was processed for 
RNA extraction and sequenced through an NGS Illumina HiSeq2000. From the FastQC analysis, all evaluated 
parameters were satisfactory except from the presentation of four over-represented sequences corresponding to 
Illumina single end PCR primer and technical noise as TrueSeq adaptors. Trimming of these sequences was done 
before RNA-Seq processing. The resulting “.fastq.gz” file was introduced for analysis in a local server.

Results
Cross‑validation metrics. Initial architectures, based on LSTM and dense layers, showed performance 
improvements, in terms of the area under the curve for the receiver operator characteristic (AUC ROC), for 
higher depth models (Suppl. Table 1A). Despite this, these changes did not have an impact as significant as “on-
batch” balancing and data augmentation. In particular, modifications of a “virtual” prevalence raised AUC ROC 
and F-1 values to 20% in test sets (Suppl. Table 1C) and decreased the degree of overfitting. All parameters were 
adjusted through grid search on the final model under a limited number of epochs (see Additional file 2—Grid 
search parametrization). As observed in Table 1, the network’s final AUC ROC for H-2Kb reached 95%, albeit 
with an acceptable F1 score, due to the assumed low prevalence. The complete cross-validation results of each 
model are available at NAP-CNB. For further evaluation in the H-2Kb haplotype, 10% of the original dataset was 
used as a test set of the selected parametrized system. In Fig. 3, both the ROC and the precision-recall curve 
are shown. The latter reflects how the system fares against a high-class imbalance. In terms of metrics, the ROC 
AUC for the test sample was 86.5% with 97.2% accuracy. Notwithstanding, the proposed ensemble method for 
postprocessing could increase precision by 7.6%. Throughout cross-validated models, window sizes of 8, 10, and 
12 amino acids were tested for predictive performance. Sequences of 12 amino acids produced more accurate 
models (Fig. 4). This result may indicate that antigenic determinants are not sufficient for peptide classifica-
tion and distal amino acids carry additional predictive information. The distribution of sequences classified as 
positive and a sensitivity analysis from random classifications showed similar results (Suppl. Fig. 4). In contrast, 
NetH2pan has reported a greater accuracy for short sequences around  epitopes15.

The cross-validation metrics of the all generated haplotypes presents both enhancements and reductions in 
efficacy, as shown in Table 2. In the typings H-2Kd, H-2Kk and H-2Lq the best performance corresponded to 
8-mers. We provide, as an example of further benchmarking and binary metrics, additional results for H-2Kd 
(Suppl. Material. H2-Kd). Moreover, for this typing, we report a suboptimal cross-prediction with H-2Kb (Suppl. 
Material. H2-Kd), which evidences the need for individual networks for each haplotype.

Benchmarking. In contrast with  NetH2pan15, which is the benchmark used for MHC class I affinity predic-
tion in mice, the reported cross-validated AUC ROC, in Table 2, were comparable or superior with a 95% for 
H-2Kb, which is 3% higher, and a similar performance in PPV. Results vary for each haplotype and we report a 
hindered efficiency in some haplotypes such as H-2Db. Results of binding affinity are also on par with those from 
MHCflurry 2.016, showing improved scores for H-2Kk and a worsening for H-2Lq, for instance. MHCflurry 2.0 
does provide a more refined metric for immunogenicity by predicting antigen processing.

The divergence in the generation of negatives and the assumed prevalences may render the comparison 
in cross-validation metrics with both methods insufficient. Hence, to confirm a better performance against 
NetH2pan on a dataset, blind testing was implemented from two new H-2Kb datasets from IEDB (1034799 and 
1035276). Negatives were generated following the protocol mentioned above, disregarding positive sequences 
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that do not have a protein accession or cannot be reframed into 12-mers, and by generating random sequences 
with an assumed prevalence as described in  NetH2pan15. Given that NetH2pan considers different epitope 
lengths and substitutions, binarization was done by considering whether binds were predicted overall for a 12 
mer sequence. Even if this size was chosen for an evaluation under equal conditions, it should be noted that 
NetH2pan predicts better shorter sequences on average (Suppl. Fig. 5). In all binary metrics, the LSTM network 
achieved improved results (Suppl. Figs. 6 and 7). The reported accuracies for were between 96% and 98%, with 
up to threefold increases in precision.

Notably, in all cases, positives were better detected than in NetH2pan for 12 mers irrespective of the method 
used to produce negative sequences. On the whole, our approach detected 259 and NetH2pan 86 of a total of 438 
antigens across both datasets. Moreover, an ensemble method joining predictive positives from both methods 
improved detection to 277 with random negatives and 254 with negative sampling.

Use case. As a result of MuTect2 calling, 4566 variants were identified. From those, 1085 missense transcripts 
were obtained from VEP corresponding to 345 genes. These were matched against the results from Cufflinks and 
submitted for prediction. In the end, our proposed software generated a ranking of putative neoantigens. The 
35 top-scoring putative neoepitopes are shown in Table 3. The predictions were matched with the original B16 
results from Castle et al.44 (Suppl. Table 2). Additionally, we compared the rank given by our proposed algo-

Figure 2.  Neural network model of the binding affinity prediction for H-2Kb. The input sequence corresponds 
to a one-hot encoding of a 12 mer peptide sequence extracted from the preprocessing workflow. The number of 
LSTM units corresponds to the input sequence’s overall length across the three consecutive layers. Following the 
RNN, two hidden dense units, with alternating dropouts, serve to process an affinity probability.
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rithm’s softmax score with the relative classification of the 12 mer sequence in  NetH2pan15 and MHCflurry 2.016, 
obtained by averaging the scores across all of its possible epitope lengths and mutations. Table 3, thus, establishes 
an order of preference for both methods. Due to sample size limitations, the haplotype H-2Db of the C57BL/6 
model is not analyzed but should also be included in a naïve study.

From an implementation perspective, NAP-CNB simplifies the overall process in comparison with previous 
murine pipelines by removing the need of performing variant calling separately. In terms of overall performance, 
the entire pipeline has an execution time of around ten hours in a local server using two CPU cores. This duration 

Table 1.  Binary classification metrics for the final fivefold cross-validated algorithm for the H-2Kb typing. The 
reported mean statistics estimators correspond to AUC ROC, accuracy (ACC), precision or positive predictive 
value (PPV), and sensitivity and specificity with their harmonic average (F1). The prevalence of positive 
samples was around 1:40.

AUC ROC ACC PPV Sensitivity Specificity F1

(±SD) (±SD) (±SD) (±SD) (±SD) (±SD)

0.95± 0.04 0.977± 0.004 0.6± 0.1 0.62± 0.09 0.988± 0.004 0.6± 0.1

Figure 3.  ROC and precision-recall curves for the final model trained with H-2Kb samples. (a) ROC curve for 
10% test partition with an AUC of 86.5%, the dashed line shows chance level. (b) Precision-recall curve with 
the prevalence of around 3% shown as chance. The precision-recall AUC is 41.97%, whereas a random guess 
corresponds to an AUC of 2.64% for the same data imbalance.
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corresponds to steps between preprocessing of the RNA-Seq and quality analysis to affinity prediction. The levels 
of abundance are presented to guide the user in selecting a candidate.

Discussion
The proposed pipeline provides an integrated software solution for mouse neoantigen MHC class I discovery 
from RNA-Seq data. The workflow is based on a streamlined process adapted to the resource-efficient and 
accessibility requirements of pre-clinical research. Notably, we report an affinity binding estimation model that 
successfully improves previously reported performance. The B16 case study also shows a good number of puta-
tive neoantigens that are coherent with literature  estimates44. A functional validation measuring T-cell immune 
responses by ELISPOT or intracellular IFN-gamma staining in mice responding to B16 tumors would be required 
to validate the prediction results.

In terms of the actual prediction algorithm, the RNN-based approach presents an AUC ROC of 95% in cross-
validation. Compared with the current NetH2pan benchmark  model15, it represents an enhancement in terms 
of accuracy and precision for the H-2Kb haplotype in both cross-validation and blind testing metrics, with a 
threefold increase of precision in the latter. However, this varies depending on the haplotype used, with H-2Kd, 
for instance, lacking such improvements for a blind set. Additionally, this approach eludes a more refined version 
of immunogenicity prediction as the one presented by MHCflurry 2.016, although it presents a comparable per-
formance in their binding affinity estimation. Thus, these results may reinforce sequential models’ usefulness as 
an efficient solution to antigen binding prediction against more conventional neural network approaches. Future 
lines of research may include more recent sequential model innovations. Novel types of sequential architectures 
in transformers and RNNs, such as  BERT45 and  GORU46, could serve as enhancers of overall performance. Also, 
subsequent work in epitope size should aim to reconcile flexibility, which is compatible with an RNN-based 
framework, with the generation of empirical negative samples. The web server restricts the haplotype utilized for 
prediction. Even if cross-prediction between haplotypes  Kb and  Kd suggests type-specific modeling is an optimal 
solution, a pan-specific system is part of the future directions.

Concerning data processing, the use of negative empirical sequences and data augmentation should also be 
considered to improve affinity estimation. Strategies could include generative models such as Gaussian mixtures 

Figure 4.  Cross-validation of peptide window sizes for H-2Kb. The area under the curve of the receiver 
operating characteristic curve using 8 mers, 9 mers, and 12 mers obtained through fivefold cross-validation in 
different conditions. The windows are obtained from the mutated peptide sequence centered at the location of 
the SNV. Significant differences between means (Student’s t-test, p < 0.05 ) are shown.

Table 2.  AUC ROC scores and minimum required peptide lengths of haplotypes implemented in NAP-CNB. 
The AUC ROC corresponds to the fivefold cross-validation average of the best configuration obtained through 
grid-search parametrization. In all haplotypes 128 models were initially generated for lengths of 8, 10 and 12 
amino acids with additional fine-tuning for some instances.

Haplotype AUC ROC(±SD) Peptide length (mer)

H-2Db 0.7± 0.1 12

H-2Dd 0.9± 0.1 12

H-2Dq 0.8± 0.1 12

H-2Kk 0.96± 0.06 8

H-2Kq 0.9± 0.2 12

H-2Ld 0.9± 0.1 12

H-2Lq 0.7± 0.2 8
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or adversarial networks (GAN)47. Nonetheless, one of the problems posed by the dataset is its reliance on a 
binarized predictor which hampers the biological meaning of the results. Another problem is the prevalence 
dependency of precision and recall. Further work should be done to identify an optimal strategy. Finally, our 
method is characterized by the employment of window sizes that are above the normative length of an epitope 
to optimize performance, which may imply that reported antigenic determinants are not sufficient information 
for prediction. Notwithstanding, this limits the usefulness of the tool for short sequences or evaluating multiple 
epitope sites for a given sequence, which enhances accuracy in  NetH2pan15 or  MHCflurry16. However, as NAP-
CNB is intended to be employed in its complete pipeline form, this a trade-off against providing a single and 
more robust score to the user.

The variant calling process poses further challenges. Our approach has prioritized a procedure that functions 
solely on RNA-Seq data with a conservative selection of mutations, particularly missense SNV. This neglects a 
high percentage of variants that produce  neoantigens48 and increases the mutational uncertainty by not includ-
ing genomic data from DNA-Seq21. Advances should proceed in this direction, albeit prioritizing an exclusive 
RNA-Seq utilization to retain the tool’s cost-effectiveness, which is essential for our open web service to remain 
reachable.

Table 3.  Putative neoantigens, shown by sequence and gene symbol, ranked by scores for the H-2Kb restricted 
B16 melanoma model. The gene expression is quantified as fragments per kilobase million. Neoantigens 
examined in Castle et al.44 are classified by selection for validation (*) and reactivity (**). Ranked classification 
of the average scores of peptide sequences for a complete 12 mer sequence, considering epitope lengths 
between 8 and 12, given by NetH2pan and MHCflurry 2.0. The ranking of NetH2pan and MHCflurry 2.0 
corresponds to binding affinity and presentation scores, respectively.

Rank Sequence Gene Probability FPKM Castle et al. NetH2pan MHCflurry 2.0

1 NKVVMEYENLEK Pnp 1.00 3.04 – 24 22

2 KASGFRYNVLSC Nr1h2 1.00 0.00 – 1 17

3 SQAWTHPPGVVN Adar 1.00 0.00 – 88 128

4 TFVYPTIFPLRE Lrrc28 1.00 0.94 – 10 14

5 DKSYTLPSSLRK Zic2 1.00 1.83 – 27 28

6 TLAQLTWPLWLE Hjurp 0.43 0.00 – 26 72

7 VDTNMMGHEHIR Safb2 0.26 24.20 – 140 150

8 AKTAVNDYFQCN Stox2 0.25 0.00 – 126 179

9 FIAIYHHASRAI Tm9sf3 0.21 24.29 ** 8 40

10 SGASNTTPHLGF Tab2 0.20 29.21 – 103 58

11 YSSMRMMKEALQ Herc6 0.18 10.93 – 38 102

12 TRASVTNFQIVH Tulp2 0.16 0.00 – 43 16

13 AWGVDGTLAQLE Pkdcc 0.16 5.50 – 118 134

14 VVLLMDALYLLR Sirpa 0.14 51.24 – 13 49

15 NVTISNLYEGMM Hjurp 0.13 0.00 – 6 20

16 ARALWFWAFSLQ Sfi1 0.09 0.00 – 5 47

17 GASSFREAMRIG Eno3 0.09 29.01 – 21 112

18 LAAIVGKQVLLG Rpl13a 0.09 1203.49 * 67 5

19 AYSAHTSENLED Zfp638 0.09 0.00 – 142 181

20 TVAVLGFILSSA Commd4 0.09 41.28 – 52 30

21 FQYCLFKICRDV Pla2g12a 0.08 7.05 – 63 101

22 AISAPCIGSPGC Hjurp 0.08 0.00 – 227 297

23 HKHLMPTQIIPG Jmjd1c 0.08 3.42 – 144 106

24 MFGIDGFAAVIN Pdhx 0.07 10.26 – 56 59

25 YQPRQSVSYEDV Tasor2 0.06 5.16 – 188 220

26 LCPLESRVPHTL Hjurp 0.06 0.00 – 218 127

27 QMIVFYLIELLK Jak2 0.05 6.03 – 2 6

28 AHMYEAVALIKD Dennd5a 0.05 64.21 – 17 9

29 DRIVHALNTTVP Ccdc58 0.05 0.00 – 70 108

30 NEVDVQEVTHSA Dlg4 0.04 9.45 – 289 138

31 LAAIVGKQVLLV Rpl13a 0.04 1203.49 * 48 2

32 QRNRKLDYSSSE Bod1l 0.04 3.65 – 282 328

33 HLGCIKKKFLQR Sfi1 0.04 0.00 – 177 225

34 PPTARMMFSGLA Wiz 0.03 16.70 – 18 167

35 QEEVFAKHVSNA Smarcc2 0.03 0.00 – 167 104
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SUPPLEMENTARY MATERIAL 

 
  



 

 

Supplementary Figure 1 
 

 
 
A) Initial architecture configurations used random peptides with the binarized 
classification from NetH2pan as a toy model. B) For data augmentation and 
balancing trials, the dataset consisted of epitopes categorized by IEDB as “high 
positive” and “negative” entries with an equal window. C) In the final model, 
epitopes were extracted as 12-mers from the original protein, with the rest of the 
peptide extracted as negatives. 
 
Supplementary Figure 2 
 

 
Data from IEDB (A) is aligned through the Smith-Waterman algorithm with the 
PDB entry from UniProt to obtain an extended sequence and get negatives for 
training with the remaining sequence. (B) These sequences are then balanced 
on-batch for different prevalence levels. 
 
Supplementary Figure 3 
 

 
 
For a sequence (A), data is augmented through mutations at a random location. 
The new amino acid's similarity score, extracted from the BLOSUM62 matrix (B), 
normalized using a softmax function (C), is higher than a given tolerance. The 
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number of amino acids to be mutated and the proportion of sequences per batch 
to be augmented serve as additional optimization parameters. 
 
Supplementary Table 1 
 
A) 

#LSTM Output AUC Precision ACC Sensitivity Specificity F-1 
1 10 0.978 0.994 0.972 0.954 0.993 0.999 
2 5 0.999 1.000 0.995 0.997 0.993 0.996 
3 5 1.000 0.994 0.984 0.976 0.993 0.985 

 
Tests on different depths in long short-term memory units for a batch size of 10 
and 5 epochs. We considered the best results in terms of output size in the range 
of 5,10, or 20. The training was performed on the toy model (Supplementary 
Figure 1A). Metrics correspond to a 10% test set. 
 
B) 
 

Embedding Dim AUC Precision ACC Sensitivity Specificity F-1 
One-hot 22 1.000 0.976 0.987 1.000 0.972 0.988 
Kidera et al. [1] 10 0.999 0.991 0.982 0.976 0.990 0.983 
Liu et al. [2] 11 0.998 0.991 0.972 0.957 0.990 0.974 
Atchley et al. [3] 5 0.999 0.973 0.982 0.994 0.969 0.984 

 
Performance metrics of embeddings extracted from literature for amino acid 
representation. The toy model (Supplementary Figure 1A) was not cross-
validated for each case, hence, we used the same hyperparameters for 
comparison. Metrics correspond to a 10% test set. 
 
C) 

On batch additions Tolerance AUC Precision Sensitivity Specificity F-1 
0 - 0.937 0.763 0.766 0.943 0.765 
 
1 

0.00 0.957 0.767 0.838 0.941 0.801 
0.05 0.947 0.774 0.689 0.952 0.729 
0.10 0.934 0.726 0.796 0.926 0.759 

 
2 

0.00 0.943 0.737 0.818 0.931 0.775 
0.05 0.931 0.701 0.718 0.927 0.709 
0.10 0.919 0.668 0.711 0.901 0.689 

 
5 

0.00 0.948 0.754 0.826 0.939 0.788 
0.05 0.934 0.756 0.593 0.955 0.665 
0.10 0.933 0.713 0.713 0.931 0.713 

 
Measures from the data augmentation tests for different numbers of new peptide 
entries per batch at different tolerance thresholds. A batch size of 20 entries and 
20 epochs was used. Tolerance denotes the maximum normalized BLOSUM62 
similarity for augmentation (Supplementary Figure 3). Thus, only mutations 
higher than the tolerance score were allowed. Augmentation changes were 
tested for method validity on the intermediate high-confidence model 
(Supplementary Figure 1B) with the mean of 5-fold cross-validation shown for 
each metric. See Additional file 2- Grid search parametrization 
 
 
 



 

 

Supplementary Figure 4 

 
To characterize the susceptibility of each location to change the outcome, we 
generated 60,000 natural random peptides and produced random substitutions 
for each position. As a result, 5,843 sequences representing a 9.74% of the entire 
series, were prone to modify their prediction through a single amino acid variation. 
Of those, 83.04% altered their label from negative to positive. The resulting 
histogram failed to pass a two-sided Kolmogorov-Smirnov test for a uniform 
distribution (D = 0.097911, p< 2.2e-16), which implies sensitivity is not evenly 
distributed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Supplementary Figure 5 
 

 
NetH2pan presents a greater sensitivity for short lengths. A) Histogram of the 
true positives detected at lengths of 8-12. A) Distribution of the false negatives.  
Sequences were obtained from dataset 1035276 in IEDB and predicted for 
lengths 8-12. The higher number of true positives and negatives at narrower 
windows is also due to the overrepresentation of short sequences in the sample 
(i.e., from a 12mer NetH2pan generates four 8mers), which was corrected by 
considering a minority rule, in which an arrangement of amino acids was positive 
or negative if at least one sequence was of that class.  
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Supplementary Figure 6 
 

 
 
A) Normalized confusion matrix for negatives extracted entries in the 1035276 
IEDB dataset. PPV 29.70% (NAP-CNB) and 12.01% (NetH2pan), ACC 98.15% 
(NAP-CNB) and 97.79% (NetH2pan). B) Negatives obtained from random 
sequences introduce 999 natural random peptides per positive sequence. PPV 
3.33% (NAP-CNB) and 0.89% (NetH2pan), ACC 98.24% (NAP-CNB) and 97.89% 
(NetH2pan). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A

B



 

 

Supplementary Figure 7 
 

 
 
 

A) Normalized confusion matrix for negatives extracted entries in the 1034799 
IEDB dataset. PPV 42.31% (NAP-CNB) and 27.27% (NetH2pan), ACC 96.03% 
(NAP-CNB) and 95.13% (NetH2pan). B) Negatives obtained from random 
sequences introduce 999 natural random peptides per positive sequence. PPV 
2.81% (NAP-CNB) and 1.30% (NetH2pan), ACC 98.26% (NAP-CNB) and 97.90% 
(NetH2pan). 
 
Supplementary Table 2 
 

# Sequence Gene Score FPKM NetH2pan MHCflurry 2.0 
9 FIAIYHHASRAI Tm9sf3 0.21 24.29 8 40 
55 WYTGEAMDEMEF Tubb3 0.01 87.0 237 235 
64 TQLKKPFLVNNK Ppp1r7 0.01 8.03 128 31 
84 FVDWENVSPELN Kif18b 0.01 3.32 143 243 
158 TTTKKARVSTPK Dag1 0.0 0.0 259 262 
166 QAFIDVMSRETT Actn4 0.0 87.84 150 245 
248 HLNNDVWQIFEN Plod2 0.0 0.0 204 253 
253 GQQLVIQLLHTC Tnpo3 0.0 39.04 75 90 
283 LVLHVVSAAQAE Sema3b 0.0 31.53 132 226 

 
Complete validated immunogenic mutations from the original paper by Castle et 
al. [4] with the ranking of the mean score given by NetH2pan, MHCflurry 2.0 and 
the proposed LSTM-based algorithm. Also shown are the fragments per kilobase 
million (FPKM) of the gene expression. The one-sided Wilconson signed-test 

A

B



 

 

statistic against NetH2pan is of 20 (n.s., p>0.05) and 24 with MHCflurry 2.0 (n.s., 
p>0.05). 
 
Supplementary Material for H-2Kd 

 
The total dataset for a window of 12 peptides contained 1,531 positives and 
63,686 sequences in total. Using this dataset for prediction with the ANN built for 
H2Kb, we obtained the binary metrics: 
 

ACC PPV Sensitivity Specificity F-1 
0.964 0.114 0.076 0.986 0.091 

 
It corresponds to a 12mer peptide window with positives obtained from T-cell and 
MHC ligand assays from IEDB that had a protein entry with the epitope. 
 
Thus, to improve the performance for low positive detections, we trained a 
different NN for this specific haplotype. Under different network configurations, 
8mers systematically outperformed 10mers and 12mers in AUC ROC and PPV 
in 5-fold cross-validation. The parameters employed for H-2Kb did not produce a 
good performance after re-training; thus, we use a 5-fold cross-validation routine 
for optimization. 
 
The dataset used for the 8mer sequences contained 1895 positive sequences 
and 93281 negative ones. 
 
The cross-validation metrics of the final model were: 

AUC ROC ACC PPV Sensitivity Specificity F-1 
(±SD) (±SD) (±SD) (±SD) (±SD) (±SD) 

0.96±0.05 0.982±0.008 0.5±0.2 0.7±0.2 0.987±0.008 0.6±0.2 
 
For the test set, the binary metrics are: 

ACC PPV Sensitivity Specificity F-1 
0.974 0.397 0.485 0.984 0.436 

 
Due to its entry date and identification of the original peptides, we identified set 
1036855 for blind testing with 9 positives. We generated 92 negatives from our 
method and 8991 from random negatives. 
 
For this set, our method had less optimal results in overall positives identification. 
In comparison, NetH2Pan identified one epitope, whereas our approach did not 
predict any.  
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