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Abstract
Three-dimensional reconstruction of nano-scale objects (such as biological
macromolecules) can be accomplished using data recorded with a transmission
electron microscope. An image obtained by a transmission electron microscope
can be conceived of as an ‘ideal’ projection subjected to a contrast transfer
function, which attenuates most frequencies, reverses the phase of others and
even eliminates some of them. Such instrumental aberrations make the problem
of reconstruction from such data difficult. We reformulate the problem so that
Chahine’s method becomes applicable to it. We demonstrate the performance of
our approach with numerical evidence using both simulated and actual electron
microscopy data.

1. Introduction

Many important cellular functions are carried out by protein complexes that act as molecular
machines. Three-dimensional electron microscopy (3DEM) is a powerful technique for
imaging these complex biological macromolecules in order to understand their function.
Unfortunately, the 3DEM reconstruction process cannot be made truly quantitative unless the
aberrations introduced by the electron microscope are taken into account. We follow a model
that is well accepted within the electron microscopy community [9, 29, 30, 32, 33], incorporates
the aberrations and assumes a linear relation between the data and the measurements as
described below. This paper presents a way of explicitly incorporating these aberrations into a
version of the algorithm due to Chahine [3] for solving certain types of linear equation system.
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Figure 1. Radial profiles of the CTFs used in the experiments.

The microscope aberrations are described (in Fourier space) by the so-called contrast
transfer function (CTF). The CTF filters both the high and the low frequencies, introduces zones
of alternate contrast and eliminates all information at certain frequencies;see, for example, [33].
Figure 1 shows the radial profiles of three CTFs used in our simulations.

The model we consider [33] is the following: the measured data for the i th projection yi

consist of the line integrals parallel to a chosen direction of the original compactly supported
volume density ρ : R

3 → R�0 followed by the convolution with the point spread function
(PSF) hi . The PSF hi is the inverse Fourier transform of the CTF Hi . In practical applications,
such projections yi would also be affected by noise.

The problem is to reconstruct ρ from the collection of projections yi , where i = 1, . . . , I .
Here, by ‘to reconstruct’ we mean to find a vector c ∈ R

J whose components are the coefficients
of a sufficiently good approximation ρc to ρ in a finite dimensional space generated by suitable
basis functions. One example is the representation of ρc using a voxel (volume element) basis,
in which case the coefficients should be near to the averages of ρ over the corresponding
voxels. Following [17] we do not use voxels as the basis functions, but spherical symmetric
functions which are not only spatially limited but can also be chosen to be smooth. They are
the generalized Kaiser–Bessel window functions, also known as blobs. The property of blobs
that makes them very promising for the formulation of many algorithms is that they are smooth
both in the real and in the Fourier domain. These blobs are placed in space so that they are
centred on the points of the so-called body-centred cubic grid (BCC, obtained by interlacing
two cubic grids in such a way that the points of either grid are central to eight points forming
a cube in the other grid). For a detailed description of blobs and of their placement in space
see [16, 20–23].

From now on, we consider all the objects as defined on discrete and finite domains. Hence,
our convolutions will be discrete ones (defined using wraparounds) and our Fourier transforms
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will be discrete Fourier transforms. We write each (noiseless) projection yi as

yi = hi ∗ Pi c, (1)

where Pi is the so-called projection operator along the i th direction. It maps the volume
coefficients into the two-dimensional array pi whose entries correspond to the line integrals
of the density ρc along the set of lines in the i th direction. We will use J to denote the number
of basis functions (and hence the dimensionality of the vector c) and N to denote the number
of parallel lines in one projection (and hence the dimensionality of the vectors hi and yi );
consequently, Pi is an N × J matrix of non-negative entries (a fact of which we make use
later). In a typical 3DEM experiment for single-particle reconstruction [10], we have a total of
103–105 projections and each vector yi has of the order of 642–3152 components. Furthermore,
the signal to noise ratio of each measured yi is typically less than unity, and can be as small as
one-third.

We denote by Hi the two-dimensional convolution operators (in our approach N × N
matrices), defined for z ∈ R

N by

Hi z = hi ∗ z, i = 1, . . . , I. (2)

For convenience we introduce the auxiliary block-matrices H, and P and the vector y,
consisting of

H def= diag[H1, . . . ,HI ], P def=

P1

...

PI


 , and y

def=

 y1

...

yI


 . (3)

In the following we also make use of the (real) matrix B = PT, which is known in the
reconstruction literature as the (discrete) back-projection operator. The sum of all components
of a given vector z will be denoted by z.

In an ideal situation, which is far from reality in microscopy, the CTF would be identically
one and there would be no noise. In this case, our problem would reduce to data

p
def= Pc. (4)

This problem has attracted a significant amount of attention; see [14, 24, 25] and references
therein. The presence of the CTF, however, introduces further difficulties. In the microscopy
literature it was recently considered by several authors: Frank and Penczek [11] applied Wiener
filtering in the three-dimensional space to the reconstructed volume;Zhu et al [34] incorporated
a three-dimensional PSF into the data model and used a regularized steepest-descent technique;
reconstruction algorithm; Stark et al [28] applied inverse CTF filtering to the reconstructed
volume; Skoglund et al [27] incorporated a two-dimensional CTF particular to each projection
to the projection model in a maximum-entropy reconstruction algorithm; Grigorieff [13]
provided a Fourier reconstruction algorithm in which the CTF for each projection is considered
in a Wiener-like fashion; Ludtke et al [18] proposed a CTF correction applied to the individual
projections with a weighting function in the Fourier space computed from a set of images
sharing a common CTF; Ludtke et al [19] added a Wiener filter to the weighting function
defined in [18]. The presence of these multiple approaches is indicative of the fact that there
is no agreed standard technique in 3DEM of single particles to correct for CTF effects.

Many of the proposed approaches (and, in particular, the three approaches that we
experimentally compare in this paper) fall into the following category: given the measured
data y, ‘solve’ the system

DPc = E y (5)
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for some ‘suitable’ matrices D and E . In this paper we consider three choices of D and E; the
first two are standard approaches and the third has not previously been explicitly studied in the
context of reconstruction from microscopy projections corrupted by CTF.

(i) Choose both D and E to be the identity matrix. This simply ignores the CTF and so
results in attempting to solve (1). Even with this most simple-minded approach one can
sometimes get biologically useful reconstructions [1].

(ii) Choose D to be the identity matrix and choose E so that negative values in the CTFs (see
figure 1) are turned into positive values. (This is referred to as phase flipping [9, p 45].)
Such an E can in practice be obtained by taking the discrete Fourier transform of the two-
dimensional array yi (this is a matrix multiplication), reversing the sign for all points in
Fourier space where the CTF has a negative value, and taking the inverse discrete Fourier
transform.

(iii) Choose D = BHTH and E = BHT, which results in (5) being the normal equations
corresponding to (1), namely

BHTHPc = d
def= BHT y. (6)

We remark that the operations of projection and back-projection are relatively fast, and the
convolution can be efficiently implemented by the fast Fourier transform (FFT), so in practice
we do not need to store the (prohibitively large) matrix

A def= BHTHP. (7)

In what follows, we will report on comparison experiments using the same data y, but
with the three different pairs of D and E listed above. An additional choice needs to be made:
what algorithm should be applied to solve (5)?

For the first two choices of D and E , we decided to apply one of the standard approaches
in this context, namely ART (short for algebraic reconstruction techniques [14, 15, 20, 21]).
Some specifics of this algorithm are provided below in section 5; here, we remark only that
for the first two choices of D and E our ART method is very efficient due to the sparse nature
of the matrix P . For the third choice of D and E , ART cannot make good use of the sparsity of
P and so loses its computational efficiency. Therefore, we looked for an alternative algorithm
for the third choice of D and E .

Due to its size and the non-negativity of ρ, one approach to solving (6) is to try an
algorithm due to Chahine [3] that has been used in many applications including atmospheric
science [2, 3] and medical imaging [4, 5]. This method, due to its convergence properties [6]
and simplicity, has proved to be competitive when applied to positron emission tomography.
We discuss further the choice of Chahine’s method in section 2. It turns out, as we shall see
below, that not all the necessary conditions for the published convergence results of Chahine’s
method are satisfied by the formulation of our problem given in (6).

The first goal of the present work is to present an answer to the following question: based
on the knowledge of the CTFs and the data y, how do we adapt problem (6) so that Chahine’s
algorithm becomes applicable to it? The second goal is to show, by numerical examples, that
such a method indeed produces good results, at least when compared to no CTF correction or
to a simple phase flipping.

The plan for the paper is the following. In section 2 we describe Chahine’s method and give
some background information on 3DEM. In section 3 we present our answer to the question
stated in the previous paragraph. In section 4 we describe some of the implementation details.
In section 5 we discuss the numerical results. We close in section 6 with some conclusions
and suggestions for further research.
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2. Previous work and background

We first describe Chahine’s method for solving systems of linear equations of the form

Mx = b, (8)

where x, b ∈ R
J and M is a square J × J matrix satisfying some further hypotheses that will

be spelled out in the following. The solution method goes as follows.
Consider an initial guess (say a constant vector of ones) x (0) in the positive orthant R

J
>0

and iterate the following.
For k = 0, 1, 2, . . . do

e(k) = Mx (k)

x (k+1)
j = x (k)

j · b j/e(k)
j , j = 1, . . . , J.

Chahine’s method has been used in the medical imaging literature where it is sometimes
referred to as the image space reconstruction algorithm (ISRA) [4, 5]. In fact, it was
independently proposed by Gold and Scofield in 1960 for the solution of certain linear integral
equations [12]; see [6] and references therein. A fairly strong result concerning the method is
given by the following.

Theorem 1 (De Pierro [5]). If M is a non-negative definite matrix with positive diagonal
elements and if the entries of b are all positive, then the Chahine iteration generates a sequence
(x (k))k=0,1,... that possesses a convergent subsequence. Furthermore, if M is nonsingular, then
the sequence converges.

It turns out [6] that the limit of any convergent subsequence is a solution of the symmetric
linear complementarity problem

Mx − b � 0, x � 0, xT(Mx − b) = 0. (9)

The latter are the Kuhn–Tucker conditions associated with minimizing the quadratic functional

F(x)
def= 1

2 xTMx − xTb (10)

subject to x � 0. The conditions in (9) are necessary and sufficient for x to be a minimizer
of (10) subject to x � 0.

Other results are known [2, 5–8]. In particular, Eggermont [7] strengthened theorem 1
showing convergence even without the condition that M is nonsingular. In any case, the
known results seem to rely on the hypotheses that M is non-negative definite with positive
diagonal elements and that all the entries of b are positive. The simplicity of the method and
its demonstrated effectiveness for a number of large-scale problems plagued by low signal-
to-noise ratio makes it an attractive candidate for our three-dimensional electron microscopy
problem. Indeed, the number of operations necessary to compute the matrix A applied to a
vector c representing the volume’s density is surprisingly small. All that needs to be done is
to compute projections of the current estimate (for blobs this can be efficiently performed by
‘footprint’ techniques [23]), an FFT, a product by the squared CTF, an inverse FFT and a back-
projection (that can also be done using footprints). To complete an iteration, this is followed
by one multiplication and one division per component of the unknown c. Furthermore, for
some bases (for example, the pixel basis) the volume has a non-negative coefficient expansion.
This means that the assumption that c � 0 is naturally satisfied. For other bases, such as
blobs, this corresponds to a regularization of the problem since it imposes smoothness on the
approximate ρ. For the applicability of Chahine’s method we need to discuss whether or not
the above mentioned hypotheses are satisfied.
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We start with some technical assumptions.

(i) The PSFs are even functions (or equivalently the CTFs are real functions). This implies
that the adjoint to the convolution operator H is itself, and so we may omit the super-
index T in HT.

(ii) Every voxel (or blob) in the decomposition of the image is intersected by at least one of
the projecting rays.

(iii) For every i , hi � 0 (recall that hi denotes the sum of all components of hi ). This
assumption is harmless because if hi < 0, then we can replace our data yi by −yi and
proceed with hi replaced by −hi .

It is easy to check that the matrix A in (7) is non-negative definite since the hi are real and
even and B = PT. The diagonal entries of A are positive, except for degenerate cases. Indeed,
each entry A j j corresponds to the �2 norm of the j th column of HP . Such an �2 norm would
be zero only if, for all i , the zero set of the i th CTF contained all the nonzero points of the
Fourier transform of Pi e j , where e j is the vector of zeros except for a one in the j th position.
Though possible, this is unlikely. Furthermore, if the number of projections is large, the CTFs
are ‘mildly’ behaved and a good angular coverage is available, then one would expect A to be
invertible (although we cannot say much a priori about its conditioning).

However, in the case of 3DEM in the presence of the CTFs, a major difficulty arises: the
PSFs hi change sign. Furthermore, their Fourier transforms have zeros and decay at infinity.
The change in sign of the PSFs may cause the components of the vector d to change sign.
Because of the decay of the CTFs, the matrix A may be singular or nearly singular (and thus
highly ill conditioned). Indeed, our first attempts to apply Chahine’s method directly to the
3DEM problem with realistic CTFs did not lead to acceptable results.

3. Methodology

We now discuss a technique to circumvent the above problems in the case of 3DEM or in any
other field where a similar data formation model holds. Our idea is to pre-process the data
in a way that is equivalent to replacing the PSFs by some virtual PSFs. This pre-processing
consists of adding a suitable multiple of a constant-component vector to each projection. For
notational convenience take

1 def= [1, 1, . . . , 1]T ∈ R
N .

We propose the following idea: add the vector vi
def= λi 1 to yi before and after it is convolved

with hi , where λi will be suitably chosen. We set v to be the vector

v =

 lv1

...

vI


 .

We shall show that the above mentioned pre-processing corresponds to solving a modification
of problem (6) with a different set of PSFs and the right-hand side (RHS) vector

d̃ = B(H(y + v) + v). (11)

Note that for any vector z ∈ R
N ,

z ∗ 1 = z1. (12)

The following claims are fundamental to the following.
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Claim 1. If we choose the numbers λi , i = 1, . . . , I , appropriately, then all components of
the vector d̃ are positive.

Proof. Fix i ∈ {1, . . . , I }. Because of (12), hi ∗ vi = hivi . So,

hi ∗ (yi + vi ) + vi = hi ∗ yi + (hi + 1)vi .

Now we choose λi so that

λi (hi + 1) > − min
l

{0, (hi ∗ yi)l}. (13)

Since the back-projection matrix has only non-negative entries, the resulting vector d̃ has only
non-negative entries. Furthermore, none of the entries in d̃ can be zero since by the choice of

the λi all the entries of ỹ
def= (H(y + v) + v) are positive. Therefore, the only way an entry of

B ỹ can be zero is if the corresponding row of B vanishes. But this contradicts the second of
our technical assumptions in section 2 since it would correspond to a column of zeros in P , in
other words a voxel (or blob) which is not intersected by any of the line integrals that produce
the totality of projections. �

Our next goal is to show that the pre-processing in claim 1 leads to a set of virtual PSFs
of the form

h̃i = hi + αivi , (14)

where the constants αi will be chosen appropriately. Such a virtual PSF may not be realizable
in a real microscope, but it leads to a set of equations that is amenable to Chahine’s algorithm,
as we shall see below. Associated with these virtual PSFs we define the operators

H̃i z
def= h̃i ∗ z and H̃ def= diag[H̃1, . . . , H̃I ]. (15)

Claim 2. Let c ∈ R
J
�0 \{0} be such that Ac = d and suppose that y = HPc. Take d̃ as in (11)

with λi satisfying (13), for i = 1, . . . , I . Then, there exists α = (α1, . . . , αI ) ∈ R
I such that

c is a solution of Ãc = d̃ where Ã = BH̃H̃P , and H̃ is associated with the PSFs h̃i as defined
in (14) and (15).

Proof. For i = 1, . . . , I , let pi = Pi c, and consequently pi > 0. We will show how to choose
the αi so that BH̃H̃Pc = d̃ . By (11) it is sufficient to prove that, for i = 1, . . . , I ,

H̃iH̃iPi c = Hi (yi + vi ) + vi ; (16)

or, using equations (14) and (15) and the assumption that y = HPc, that

(hi + αiλi 1) ∗ (hi + αiλi 1) ∗ pi = hi ∗ (hi ∗ pi + λi 1) + λi 1. (17)

Using that for 1 ∈ R
N we have 1 ∗ 1 = N1 and equation (12), it is easy to check that

equation (17) is a consequence of

(pi N)(αi λi )
2 + 2hi pi(αiλi ) − λi(hi + 1) = 0. (18)

We must have by (13), and our third technical assumption that hi � 0, that λi > 0.
Consequently, we can find the following real-valued solutions αi of equation (18). If hi = 0,
then we can take αi = ±1/

√
λi pi N . If hi �= 0, then using the fact that yi = hi pi , we can take

αi = hi

λi N

(
±
√

1 +
N(hi + 1)λi

hi yi

− 1

)
. (19)

This concludes the proof. �



940 J P Zubelli et al

Remark 1. For each i , if hi �= 0, then αi can be chosen to be a non-negative number that
depends only on hi , yi and N . If hi = 0, then we can take αi = ±1/

√
λi pi N .

Remark 2. Technical assumption (iii) of section 2 gives us that for each i = 1, . . . , I the DC
component of the PSF hi is non-negative. For reasons of numerical stability it is sound to
choose the positive value of αi in our computations, so as to avoid loss of significant digits
in the computations. In this case a more numerically sound way of computing αi is by the
expression

αi = [(hi + 1)/yi ]

1 +
(
1 + λi [(hi +1)/yi ]

hi /N

)1/2
. (20)

From now on, we take αi to be this positive root of equation (18).

It would be desirable for any solution to our modified equations Ãc = d̃ to satisfy the
original equationsAc = d . This, however, may not be the case. We have instead the following
weaker result.

Claim 3. Let c̃ be a solution of Ãc̃ = d̃ , where αi and h̃i are computed according to (20)
and (14), for i = 1, . . . , I , and d̃ is computed by (11). Then, c̃ satisfies

Ac̃ = d +
I∑

i=1

riPT
i 1, (21)

where

ri = (1 + hi)λi − Pi c̃(N(αi λi )
2 + 2hi (αiλi )). (22)

Proof. If c̃ satisfies Ãc̃ = d̃ , then by (6) we get that

I∑
i=1

PT
i ((hi + αiλi 1) ∗ (hi + αiλi 1) ∗ Pi c̃) = d +

I∑
i=1

PT
i (hi ∗ vi + vi ). (23)

Expanding the product (hi +αiλi 1)∗ (hi +αiλi 1), and using that 1∗1 = N1, we have that (21)
and (22) follow. �

In our numerical experiments, we found that the norm of
∑I

i=1 riPT
i 1 was small as

compared to the norm of d , and so in practice the solutions of Ãc̃ = d̃ yielded ‘near solutions’
of Ac = d .

4. Practical implementation

In view of claims 1–3 we transform our problem of seeking a solution to equation (6) into
searching for a solution to

Ãc = d̃, (24)

where now d̃ has positive components and Ã is a non-negative definite matrix with positive
diagonal entries. Indeed, d̃ has positive components because of claim 1. Furthermore, Ã is
a non-negative definite matrix since H̃ is symmetric and thus we can write Ã = (H̃P)TH̃P .
Finally, the diagonal entries of Ã are positive because each entry A j j corresponds to the �2

norm of the j th column of H̃P . Such an �2 norm is not zero. To see this claim, notice that
it is the sum for i = 1, . . . , I of the �2 norm of hi ∗ Pi e j . By Plancherel’s theorem this is
a (positive) multiple of the �2 norm of H̃iF(Pi e j ), where H̃i is the Fourier transform of the
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virtual PSF h̃i . The claim follows now because the DC components of all the virtual PSFs are
nonzero.

Thus all the hypotheses in theorem 1 hold and Chahine’s method is applicable to our
reformulated problem.

The above remarks lead to the following practical implementation of Chahine’s method
in 3DEM.

Given the PSF hi , and the data yi , i = 1, . . . , I :

(i) for each i = 1, . . . , I , compute hi and yi , and make sure (by changing (hi , yi)

into (−hi ,−yi), if necessary) that they are both non-negative (see remark 3
below);

(ii) choose λi so that equation (13) holds for i = 1, . . . , I ;
(iii) for i = 1, . . . , I , determine h̃i by computing αi according to claim 2 and

equation (20) (equivalently, add to the DC value of the i th CTF the value of
Nαi ) and

(iv) apply Chahine’s method to solve the equation

Ãc = d̃,

where d̃ is given by (11).

Remark 3. The effect of noise and mismatch on the estimation of the angles and on the
estimation of the CTF can lead to further corruption of the data yi , i = 1 . . . , I . One problem
that could arise is that the averages yi and hi may have different signs, which could lead to
complex roots in equation (20). In such a case, the matrix Ã may not satisfy the hypotheses
of theorem 1 and Chahine’s method would no longer be applicable. This cannot happen in
claim 2 itself, because one of its hypotheses is that y = HPc, which implies that the data are
perfect except for the CTF aberration. One practical way of dealing with this is by adding a
constant volume to the sought value c. To wit, we choose a µ ∈ R so that the data satisfy the
condition that sgn(yi + µHiPi 1) = sgn(hi ), for i � i � I .

5. Numerical results

In this section we describe some of the numerical experiments that we used to validate the
technique described in section 4. We compared our results with two implementations of the
ART; see [14]. They are both based on the block-ART variant of ART, which can be described
as follows.

Starting from a J -dimensional zero vector as an estimate of c, we update this estimate
iteratively. In an iterative step we make use of data from one projection only; we repeatedly
cycle through all the projections in the complete algorithm. The update of the estimate is
done in a computationally efficient manner [23] so as to reduce the discrepancy between the
measured data provided by the projection used in that iterative step and the matching pseudo-
projection data that are obtained from the current estimate of c. A more detailed description
of this implementation, including convergence properties, is given in [15].

In all the implementations (both ART and Chahine’s method) we used blobs as the basis
functions. Following [20], we selected blobs with the following parameters: order m = 2,
shape α = 13.363 3059, radius a = 3.394 212 and grid sample separation 2.0. The initial
estimate of c is constant valued (unit valued for Chahine’s method and zero valued for ART).

In one implementation of ART, we apply a simple CTF phase flipping, and in the other
we do not take the CTF into account at all. By CTF phase flipping, we mean that the algorithm
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Figure 2. Surface rendering of the three-dimensional φ-29 phantom.

makes use of the sign of the CTF so that the processed measurements (i.e., the input to the
algorithm) are obtained by the inverse Fourier transform of the Fourier transform of the original
measurements multiplied by −1 whenever the CTF is negative. All of our reconstructions were
implemented using the XMIPP software available at http://www.cnb.uam.es/∼bioinfo/.

In the following, we show the evolution of the objective function

F(c) = 1
2 cTÃc − cTd̃. (25)

Notice that for the special case H̃ = H and d = d̃ , a simple computation gives that
1
2 ‖HPc − y‖2 = F(c) + 1

2‖y‖2.

F(c) is a way of monitoring the evolution of the iterates. It is known that F(c(k)) is a non-
increasing sequence [5]. We will also show the evolution of the squared relative residual
error

η(k) def= ‖e(k) − d̃‖2

‖d̃‖2
, (26)

where e(k) = Ãc(k).
In the synthetic data examples, we used a total of I = 1000 projections with uniformly

distributed random angles and N = 1282 pixels each. The CTFs used were randomly chosen
from the three examples displayed in figure 1. The number of blob coefficients was J = 34 327.

In the real data experiments, we used a total of I = 570 projections, with N = 1282 pixels
each, and the number of blobs J = 130 869.

The grey-level scale of the displayed results of the reconstructions was adjusted so that
the minimum value was mapped to zero and the maximum level was mapped to 255. In the
plots of F(c(k)) and η(k) we do not display the values for k = 0, since they would change the
scale of the graphs and reduce the distinguishability of the remaining ordinates.

The experiments were performed using the XMIPP software running under the Red Hat
Linux 7.2 operating system, on an Intel Xeon CPU of 1.70 GHz. In the synthetic data
experiments, the typical (system) time for one iterative step was of the order of 10 min.
In the real data experiments, the typical (system) time for one iterative step was of the order
of 25 min. In typical 3DEM experiments, the specimen preparation and data gathering exceed
such times by several orders of magnitude.

5.1. Synthetic data: the bacteriophage φ-29 connector

We chose as a phantom for our simulations a rather realistic one. It was produced from the
structure of the bacteriophage φ-29 connector. The atomic coordinates of this protein can be
found in the ‘protein data base’ (http://www.pdb.org) under the PDB-ID 1FOU. In our model,

http://www.cnb.uam.es/~bioinfo/
http://www.pdb.org
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Figure 3. Central slices of the original φ-29 phantom (top) and the reconstruction after
six iterations (middle) and after 49 iterations (bottom), using Chahine’s method.
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Figure 4. Evolution of the objective function F(c(k)) of (25) and of the squared relative residual
error η(k) of (26), with k = 1, 2, . . . for the φ-29 example by Chahine’s method in the no-noise and
no-CTF case.

the atoms are replaced by small blobs. Such blobs, however, have different parameters from
the ones used in the reconstructions; more precisely the blob radius was 12, the shape 0.1 and
the order 2. The surface of the resulting phantom is displayed in figure 2.

We first present the reconstruction by Chahine’s method of the original phantom in the
(unrealistic) noiseless and no-CTF case. As can be seen in figures 3 and 4, the reconstruction
and the original phantom are in excellent agreement. In figure 4 we display the values
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Figure 5. Central slices of the φ-29 phantom and its reconstructions from noisy data using ART,
ART with phase flipping and the sixth iteration of Chahine’s method. From top to bottom: ART;
ART with phase flipping; Chahine’s method; phantom.

of F(c(k)) and η(k) for k = 1, 2, . . . . The corresponding values for the initial guess are
F(c(0)) = −1.067 × 10+11 and η(0) = 0.8089. This example of a comparison between
Chahine’s method and ART in the unrealistic noiseless and aberrationless case is representative
of a large set of such comparisons that we have performed.

Next, in figure 5, we present reconstructions from noisy data in the presence of CTFs
using three different methods: ART with no CTF correction, ART with CTF phase flipping
and Chahine’s method. The synthetic data were generated from projections from a random
set of directions that was subjected to the CTFs described in figure 1 and further corrupted
by noise. The SNR is 1/3 on average. The relaxation parameter used for ART is 0.06. ART
results are reported after two cycles through all the projections, while the results of Chahine’s
method are shown after the sixth iteration.

The evolution of the objective function and of the squared relative residual error in
Chahine’s method is presented in figure 6. The corresponding values for the initial 1-valued
estimate c(0) are F(c(0)) = −4.448 × 10+11 and η(0) = 0.4229, which means that most of the
improvement was achieved in the first iteration.

In order to assess objectively the advantage of using Chahine’s method over the other two
algorithms, we present in figure 7 a plot of the Fourier shell correlation (FSC) between the
phantom and the reconstructions. The FSC between two volumes is defined as follows. Given
the Fourier transform of the phantom F[p](R) and of the reconstruction F[r ](R), the FSC at
a given frequency R with a shell width �R is

FSC(R,�R) =
∑

R�R′�R+�R F[p](R′)F∗[r ](R′)
(
∑

R�R′�R+�R |F[p](R′)|2)1/2(
∑

R�R′�R+�R |F[r ](R′)|2)1/2
.

See [31] for more information about the FSC. As can be seen in figure 7, the correlation between
the Chahine reconstruction and the phantom is better than the correlation between either of the
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Figure 6. Evolution of the objective function F(c(k)) and of the squared relative residual error
η(k) , with k = 1, 2, . . . for the noisy φ-29 example by Chahine’s method.
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Figure 7. Correlation between the Fourier transform of the phantom and of the reconstruction as
a function of frequency shell radius.

ART-based reconstructions and the phantom for all the frequencies at which the phantom and
the reconstructions are consistent. (The term ‘consistent’ does not have a standard definition
in the field of electron microscopy, but usually a reconstruction is considered consistent with
a phantom at those frequencies at which the FSC is greater than 0.5.)
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Figure 8. Central slices of reconstructions from experimental data. Top: ART reconstruction from
uncorrected measurements. Middle: ART with CTF phase flipping. Bottom: Chahine’s method
after 11 iterations.

We stress once more that in the above (and in the following subsection) the experiments
were carried out not for the purpose of testing the effectiveness of algorithms (ART or
Chahine’s) to solve a system of equations, but rather the effectiveness of different systems
of equations (due to the choices of D and E in section 1), each combined with an appropriate
algorithm for solving the equations. Thus the data used in the comparisons are the same for
the three methods that are compared, but the methods differ both in the systems of equations
to be solved and in the algorithms used for their solution. However, the methods are designed
to solve the same physical problem: the estimation of c from the measured data y.

5.2. Real data reconstructions

We now present central slices of reconstructions using experimental data from cryomicroscopic
projections of the Large T-antigen of the virus SV40. The angle information was obtained by
model based orientation search [26] and the CTF information was obtained using the technique
in [32]. We compare the reconstruction obtained by Chahine’s method with the results obtained
by ART with no CTF correction and with CTF phase flipping. The results are reported in
figures 8 and 9.

6. Conclusions and suggestions for further research

We have shown that it is possible to replace the normal equations

Ac = BHT y with A = BHTHP
by processing the data y in such a way that the resulting system

Ãc = d̃

satisfies the hypotheses of theorem 1, thus ensuring the convergenceof the Chahine’s algorithm
iterates. The resulting method was implemented and was successfully tested with simulated
as well as with experimental data. The reconstructed images that we have presented here are
typical of a much larger set of experiments we performed. Based on the experiments and on
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Figure 9. Evolution of the objective function F(c(k)) and of the squared relative residual error η(k),
with k = 1, 2, . . . , 41 for the real data reconstruction using Chahine’s method. The corresponding
values for the initial unit-valued estimate were F(c(0)) = −242 114 and η(0) = 0.641 133.

the FSC curves we have a strong indication that Chahine’s algorithm is a promising technique
for three-dimensional image reconstruction in electron microscopy when implemented with
the data processing described in sections 3 and 4. Furthermore, the results in figure 7 indicate
that the correlation between the Chahine reconstruction and the phantom is better than the
correlation between any of the ART based reconstructions for a substantial frequency range,
including those for which the phantom and the reconstructions are consistent.

In future work, we plan to address in detail the issue of regularization. We point out
that Chahine’s method is naturally amenable to regularization with a minimal additional cost.
Indeed, following the standard procedure of regularizing the problem Ac = b by means
of finding c(ε) such that (A + ε I )c(ε) = b, a moment’s thought indicates that the iteration
cn+1

j = b j/(ε + ((Acn) j)/cn
j )) performs such regularization with only one additional operation

per coefficient.
Concerning the need to find the stopping point of the iterative procedure, we did not make

this automatic in the code. We instead followed the plot of F(c(n)). This is the function that
is being minimized by Chahine’s method. As it turns out a few iterations sufficed as shown in
figures 4 and 6 as well as in a large number of other experiments we performed.

The technique described in section 3 can also be applied to other reconstruction problems
of similar structure; for example, if the data y were treated by Wiener filtering. In this case,
the PSF hi would be substituted by

F−1

(
Hi∑

j H 2
j + ε

)
,

where ε is the signal to noise ratio. This approach is a natural one for following up the present
work.
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[34] Zhu J, Penczek P, Schröder R and Frank J 1997 Three-dimensional reconstruction with contrast transfer function

correction from energy-filtered cryoelectron micrographs: procedure and application to the 70s Escherichia
coli ribosome J. Struct. Biol. 118 197–219


