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ABSTRACT 

Electron microscopy (EM) is one of the state-of-the-art techniques in imaging 

technologies and, more in relation with this project, in structural biology. The Contrast 

Transfer Function (CTF) characterizes the imaging system of the microscope. The proper 

calculation of the CTF allows a posterior correction of the acquired image. 

In the first part of this project some corrections of an already developed CTF 

estimation algorithm are presented. For this purpose, the algorithm has been dissected 

and corrections have been performed in some steps that resulted in a significant 

improvement of the CTF estimates. The main corrections were focused in the selection 

criteria of the CTF estimation and the defocus calculation of the micrograph.  

Once all the corrections were implemented, the presence of false positive 

estimations of the CTF decreased a 95.76% from all the micrographs processed.  

After observing the impact of a correct calculation of the defocus of the 

micrograph, the second part of the project consisted in the development of a deep neural 

network that allows the correct calculation of the defocus. 

This new algorithm improves the defocus estimation presenting a mean absolute 

error of 504.1992 from all the micrographs processed.  
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RESUMEN 

La microscopía electrónica (EM) es una de las técnicas mejor establecidas en la 

obtención de información estructural de macromoléculas biológicas. La función de 

transferencia de contraste (CTF) permite la caracterización del sistema de imagen del 

microscopio. La correcta estimación de la CTF permite la corrección posterior de las 

imágenes obtenidas. 

En la primera parte de este proyecto se presentan algunas correcciones en el 

algoritmo, ya existente, de estimación de la CTF. Para ello, dicho algoritmo se ha 

diseccionado y se han aplicado correcciones en aquellos pasos que han resultado en una 

mejora significativa de las estimaciones. Las principales correcciones se concentran en 

los criterios de selección de la estimación y el cálculo del desenfoque de la micrografía. 

Este procedimiento no consiste en el desarrollo de un nuevo algoritmo si no en la 

corrección de uno ya existente. 

Una vez implementadas las pertinentes correcciones, la presencia de falsos 

positivos en las estimaciones de la CTF se han reducido un 95.76% entre todas las 

micrografías procesadas. 

Tras observar la importancia de un correcto cálculo del desenfoque de la 

micrografía, la segunda parte del proyecto consistió en el desarrollo de una red neuronal 

profunda capaz de calcular correctamente el desenfoque. 

Este nuevo algoritmo permitió el cálculo del desenfoque con un error medio 

absoluto de 504.1992 entre todas las micrografías procesadas. 
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1 INTRODUCTION 

In this section a general overview of the project is presented. The main structure 

is introduced and the basis that supports and give sense to the development of the project 

are stablished, in consideration with the background and objectives set. 

1.1 Motivation, background and context 

Imaging techniques are one of the most prolific and developed fields in 

engineering, even more in the case of medical imaging. The last decades have supposed 

a revolution for imaging techniques and image processing, allowing to address new 

domains and contributing with new solutions to different fields, offering a new powerful 

source of detailed and specific information. Among all the different imaging techniques, 

this thesis is focused on electron microscopy of single particles. 

Electron microscopy is one of the latest and most disruptive techniques in image 

processing and its usage has been tested against several challenges. In order to accomplish 

the development of this technique a broad implication of several fields is needed. Electron 

microscopy belongs to the set of image techniques that require a comprehensive post 

processing of the images obtained. 

The development of electron microscopy has meant a new contribution to the 

collection of imaging techniques. This technique can push further the resolution limit that 

can be obtained by the rest of the available techniques, even more after the resolution 

revolution. The resolution revolution comprehends the significant increment of the 

maximum resolution of the technique after the development of computational methods 

and a robust theoretical background. 

This increment in the resolution allows the study of new structures and 

complexes unable to be analyzed before, having special applications in different fields 

from biology to material science. This project has been developed in the Biocomputing 

unit of the Natl. Center of Biotechnology, CSIC (CNB), focused on the study of 

macromolecular structures.  

This technique has several other applications outside the study of 

macromolecular complexes. Still within the biological research field, this technique is 
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also used in nanotechnology and nanomaterials, physiology, histology, toxicology and 

drug research. Also, this technique is also involved in other research fields as material 

science and it is widely used in several industries as pharmaceutical, chemical industry, 

forensics or semiconductor design.  

The work developed in this thesis has a direct implication in this post processing 

of the raw image obtained by the microscope, more in detail, in the estimation of the 

contrast transfer function (CTF). The CTF mathematically describes how the aberrations 

introduced by the microscope affect the image, and its relevance comes from the fact that 

this step is one of the first tasks in the post processing of the raw image. 

The first part of the project consisted in the application of some corrections in 

the already developed algorithm for the CTF estimation included in the software package 

Xmipp (X-windows based microscopy image processing package) [1,2]. The corrections 

performed in this algorithm are based mainly in two different features: the defocus 

calculation of the micrograph and the selection criteria for the quality of the estimation. 

All the presented methods and algorithms are included in the software 

framework Scipion, developed by the Biocomputing Unit of the CNB. The source code 

is open and free access. 

Once all corrections were performed in the CTF, a significative decrement in 

the estimation failure was achieved. Also, and according to the actual literature [3], some 

conclusions were obtained about the significance of the different parameters according to 

the CTF estimation, realizing of the fundamental relevance of a correct calculation of the 

micrograph defocus. Due to this, the second part of the thesis consisted in the 

development of a robust algorithm able to provide a better calculation of the defocus. For 

this purpose, a deep learning estimation algorithm has been developed. 

 Deep learning and artificial intelligence techniques are useful tools for problem 

solving. Deep learning architectures can produce a prediction in the output of a system 

from an input information, as long as the collected training data is enough both in quality 

and quantity. The deep neural network architecture fits nicely with the aim of this project 
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since, from all the information contained in an image set, only a real value (the defocus) 

must be estimated.  

One of the typical drawbacks in the usage of artificial intelligence techniques, 

if not the most frequent, is the construction of a database with enough information able 

to properly train the developed network. To achieve this objective, thousands of 

micrographs have been analyzed, estimating their CTF’s and properly discarding the ones 

that did not fulfil the requirements for the database. Once enough data had been collected 

the network was trained and the defocus was estimated. 

The final defocus estimation tool is included in the CTF estimation protocol 

allowing a different procedure for the defocus obtention and improving the previous 

results obtained by this protocol. 

1.2 Objectives 

As has been exposed in the previous introduction, electron microscopy 

technique has undergone a prodigious progress for the imaging research field.  

Considering the wide range of design implications and fields of application of 

this technique, it has become necessary to narrow the work line of the project. Here are 

presented the main objectives established in this project: 

1.  Make a comprehensive study of the already developed 

algorithms, analyzing its functioning and identifying the main sources of 

possible failures.  

2. Apply the pertinent corrections necessary for a significant 

improvement in the results obtained by the algorithm, performing a 

thorough study of them. 

3. Development of a database able to train a deep learning 

network in order to predict the defocus of a contrast transfer function. 

4. Design a deep leaning network able to predict properly the 

defocus of a contrast transfer function once it is properly trained. 

5. Compare the results obtained from both methods, 

implementing the usage of the deep neural network or not, and 

establishing a robust solution for the contrast transfer function protocol. 
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1.3 Document Structure 

This document is structured in seven different sections: 

In this first section the main topic of the project is presented, including the main 

motivation to accomplish it, its background and the context that surrounds it. Also, the 

main objectives and the structure of the project are introduced. 

In the second section the actual state-of-the-art of the electron microscopy 

technique is introduced. For this the first part of this section a brief historical introduction 

of the technique is presented to subsequently give way to the main physical and 

computational fundamentals of the electron microscopy technique and the single particle 

analysis. 

In the third section the material and methods involving this project are 

presented. This is the first section where the project is separated in two different branches 

considering the two main parts of the project: the CTF estimation correction and the 

development of the deep learning algorithm for the defocus estimation of the micrograph. 

For each branch in this section the performed implementations are presented, including 

their description and theoretical implications.  

In the fourth section the results obtained from the implementations explained in 

the last chapter are presented. As in the previous section the results are presented in two 

different paragraphs one per each branch in which the project consists. 

In the fifth section it is presented a discussion about the results obtained from 

the previous section. In this discussion the results will be explained in context for a better 

understanding of the implications of this project. As in the two previous sections, two 

different paragraphs are included for each branch on the thesis. 

In the last section some final conclusions are exposed, summarizing and 

highlighting the main ideas showed in this project. 

There is a last bibliographic appendix in which all the references used during 

the elaboration of the project and thesis are referenced. 
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2 STATE OF THE ART 

2.1 History 

The history of electron microscopy began in 1926, when Busch stated the first 

steps in the development of electron optics. Busch studied the trajectories of charged 

particles in axially symmetric electric and magnetic fields, observing that such fields 

could act as a particle lens, respecting the foundations of geometrical electron optics. 

Some years earlier in 1923, de Broglie introduced the concepts of corpuscular waves, 

associating a wavelength with charged particles. this implied the beginning of the electron 

optics. [4] 

Although these previous developments, the most spread date is the year 1931 

when the first electron microscope was built by Ernst Ruska, he was awarded for it with 

the Nobel prize in 1986 [5]. Ruska and his research team were disappointed learning that 

even with electrons, the wavelength would limit the resolution, but they found that, using 

de Broglie equation, electron wavelength were almost five orders of magnitude smaller 

than the wavelength of light used in optical microscopy. In 1932 Knoll and Ruska tried 

to estimate the resolution limit formula, obtaining a theoretical limit of 0.22 nm at an 

acceleration voltage of 75 kV. This value was experimentally reached only 40 years later, 

after many technical limits were overcome although there was a theoretical base for it [4].  

In 1938, two prototypes of an electron microscope came into operation after 

Siemens and Halske developed a new Ultramicroscopy laboratory, reaching a resolution 

of 7nm. In this same year, Hiller and Prebus constructed a new transmission electron 

microscope (TEM) using magnetic lenses, reaching a magnification of 40.000X and a 

resolution of 6 nm. [6] 

On the other hand, in 1935 Knoll built a first approach to the scanning 

microscope with a resolution limit of 100 µm [4], leading to the construction of the first 

scanning electron microscope (SEM) by von Ardenne in 1938 [6].  Also, von Ardenne 

clearly described the theoretical principle underlying the scanning microscope, it is 

known it today. Some years later, in 1942, Zworykin described and developed a new 

scanning electron microscope and showed that secondary electrons provided topographic 
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contrast. This new device reached a resolution of 50 nm, still considered low compared 

to the performance obtained by transmission electron microscopes [4].  

In the following years, the electron microscopy techniques were developed 

through several countries as France, USA, Switzerland or Sweden, increasing gradually 

their resolution. With this increment of resolution new applications were available, most 

of them focused on biology and materials. 

In 1948 Oatley began to build an SEM based on the Zwoeykin’s and, in 1963, 

Pease and Nixon combine the recent improvements in a single instrument and included 

the new detector designed by Everhart and Thorley three years earlier. This research 

program culminates with the accomplishment of the first commercial design for a 

scanning electron microscope in 1965. [4] 

In these same years, from 1948 to 1953, an important development outside of 

electron microscopy had an enormous implication on it, the invention of the 

ultramicrotome. The arrival of the microtome made possible to cut very thin sections of 

biological samples improving the quality of the micrographs and reducing the need of 

microscopes with a higher voltage for analyzing thicker samples. [6] 

In 1956 Smith showed that signal processing could be used to improve 

micrographs, becoming the first post processing implementation in electron microscopy 

[4], and in 1965, Hanszen introduces the notion of contrast transfer function into 

electronic optics, culminating with its visualization in 1966 by Thon. [6] 

In the decade of 1960’s a new line of research was established in the electron 

microscopy technique: the electron tomography. Electron tomography used previous 

tools and concepts in its development established years before. The mathematical 

concepts of tomography to reconstruct a 3D volume from a set of 2D projections was first 

proposed by Radon in 1917, although this early mathematical foundation was not 

practically applied for 3D reconstruction until 1956, in astronomy, and in the field of 

medicine in 1961, for medical imaging using X-rays. [8] 

In 1968, electron microscopy and image processing overcame a new defeat 

obtaining the first three-dimensional reconstruction by Rosier and Klug, specifically from 
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a virus. Soon after, Crowther had placed the theoretical footing. In this same year, the 

first attempts to process scanning microscope images were performed. [6] 

In the year 1970 a disruptive event took place in the electron microscopy 

timeline since the first full study about the mechanism of scanning transmission electron 

microscopy (STEM) image formation was released. Using this same technology Crewe 

presented images of single atoms obtained by forming the ratio of the elastic and inelastic 

images. This contrast mechanism is known as “Z-contrast”, since the ratio of scattering 

cross section is approximately proportional to the atomic number Z. In the same year, 

new studies rose the concern on the radiation damage on the specimen due to the electron 

bombardment, especially for biological samples.  [6] This critical problem is 

counterbalanced by the high resolution attainable with the electron microscope [7]. 

In 1972, a new milestone was reached for electron microscopy after the 

development of real-time, direct-view stereoscopic scanning electron microscopy, 

enabling microdissection and 3D video recording. In the same year, the scanning 

transmission electron microscopy is used for molecular weight determination by Engel. 

Two years later, and due to the improvement of the techniques and the worries on the 

radiation damage, interest in low voltage scanning electron microscopy revived. [6] 

Apart from the improvement in biological research and the cumulation of new 

information, in 1976, crystallographic information was extracted from convergent-

diffraction beam patterns. This work line was taken the posterior years and in 1980, new 

crystallographic information was extracted from convergent beam electron diffraction 

patterns with a large angular view. [6] 

In 1981 a new breakthrough was achieved in the electron microscopy technique 

by Dubochet and McDowall with the introduction of the cryo-technique. This technique 

was designed in order to improve the specimen protection from the previous solutions, 

based in the amelioration by dehydration or water-substitution methods and the mitigation 

by stain with heavy metals. With this technique the biological specimen is embedded in 

water or a buffer solution by rapidly freezing to temperature of liquid nitrogen (90ºK), 

allowing the study of the sample in its native state without the introduction of preservation 

artifacts. [7] 
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For several years, the computer-controlled microscopy was developed, reaching 

a robust stable point by the year 1989. One of the most relevant contributions in the 

development was made by Koster, although several teams worked in the performance of 

this technique. In this same year an intensive documentation explaining the advantages in 

the combination of magnetic and electrostatic lenses is released by Frosien, Plies and 

Anger. Also, the year 1994 supposed the beginning of a new branch in this field in tele-

microscopy.  [6] 

After almost 70 years of development and several new solutions contributed to 

different field, in the year 1997 the relevance of electron microscopy was broadly 

recognized and several historians in science became interested in covering the trajectory 

of this technique. [6] 

In the last years of the 1990’s decade, the implementation of a lens-aberration 

corrector finally achieved an improvement in resolution, reaching 1.4 Å per pixel 

resolution. [8] 

In the 21st century new improvements have been performed both in electron 

microscopy and electron tomography. In the electron microscopy filed new 

improvements in the device and the post processing image have triggered the ability to 

image atoms models at 0.5 Å per pixel resolution [8]. One of the most significant 

advances for cryo-electron microscopy was the development of a new family of detectors, 

the direct detector devices (DDD) or direct electron detectors (DED), by J. Frank and R. 

Henderson. 

In the electron tomography field, the most disruptive improvement has been 

performed in the last recent years. Due to the high resolution obtained by electron 

microscopy and its close result to the limit resolution, the electron tomography is known 

as the future approach for high 3D resolution structures identification in many fields. 

Several new solutions in instrumentation, computational power, and reconstruction 

algorithms have improved the outcome of this technique. Example of promising 

directions in both hard and soft materials include high resolution tomography of 

nanoparticles, tomographic studies on single particles, the structural determination of 
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very large biological complexes, and the structure of whole cells in a native environment. 

[8] 

It is also worth mentioning that  in the last recent years it has been an 

improvement in cryo-electron microscopy for structural biology based on their techniques 

to achieve 3D imaging: single particle electron  microscopy (cryo-EM), cryo-electron 

tomography (cryo-ET), cryo-electron crystallography (cryo-EC), and electron diffraction 

(ED). As it is mentioned in the previous paragraph, cryo-electron tomography is the best 

3D imaging method that can image cells and its organelles in their native state at 

molecular resolution. [7] 

2.2 Fundamentals of electron microscopy 

Whether considering electromagnetic waves or particles, a radiation microscope 

consists of a device able to get a magnified image of a sample employing any kind of 

energy which fulfills the duality wave-particle. From now on, the exposition is focused 

on the electron microscope. [5] 

Modern microscopes are constituted by several optical elements. As an initial 

brief introduction of the working system of a microscope, the first element required is a 

source of radiation together with a collimator or condenser lens that work as an 

illumination system, lightning the sample. Then, the radiation, after interacting with the 

sample, will be detected by an imaging system composed by an objective and an ocular. 

This imaging system will capture the scattered radiation by the sample and record an 

image. 

 Between the sample and the detector, two groups of lenses are disposed. The 

first group are the objective lenses, which are the closest elements to the sample inside 

the microscope and in charge of the collection of the radiation scattered by the sample, 

projecting and magnifying it.  Finally, the second group of lenses, the ocular system, 

produces a new magnification of the radiation to improve the image received by the 

detector. A general overview of the system can be visualized in Figure 1. [5] 
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Figure 1: Scheme of the electron microscope including all its components. [5] 

Two principal approaches can be employed to address a sustainable theoretical 

framework to describe the microscope functioning. The first one relies on the geometrical 

optics: operating with this approach the wavelength and the energy of the radiation can 

be neglected after a comparison with the dimensions and energy of the electron elements. 

This approach leads to a corpuscular treatment of the radiation and the obtention of the 

image is treated as impacts of the particles (the electrons) onto the detector. The second 

approach relies on the electromagnetic theory or physical optics: operating with this 

approach the wavelength of the radiation is comparable to the elements involved in the 

system, but the energy of the radiation is not able to interact due to the small energy that 

it presents. [5] 

Following the geometric approach for the study and design of a microscopes, 

some limitations are established. Geometrical optics defines an imaging system as perfect 

(or stigmatic), always it fulfills the Maxwell conditions of Maxwell optical theorems: 
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1. There exists a relation one-to-one between object and image (the image 

of a single point is a single point). 

2. There is a similarity relationship between object and image being the 

magnification the similarity ratio. 

3. If the object is on a plane, the image lies on another plane. [5] 

These conditions are the fundamental constraints for the design of an image 

system, and they are limiting the correct functioning of the system. The two main issues 

that leads to the rupture of these laws are the aberrations and the diffractions. Aberrations 

are any deviations that leads to an imperfect image, and it depends on the image systems. 

Diffraction is an intrinsic property of radiation due to the interaction of the radiation with 

the matter, which is unavoidable. Both phenomena are common for all optical systems. 

Under these conditions it is always fulfilled that the image obtained from a point-object 

is always a point. [5] 

Before proceeding with a more accurate description of the elements of an 

electron microscope, some analysis about the use of electrons must be performed since it 

is a differential point of this technique. The use of electrons increases the diffraction limit 

in comparison to the optical microscope limit, but, on the other hand, it presents some 

drawbacks from an experimental point of view: 

1. There are no natural electron sources, implicating the design of an 

electron gun able to provide enough energy to accelerate electrons 

towards the sample without interacting with the rest of the system. 

2. Due to the strong interaction electrons-matter the system needs to work 

in vacuum and must be supplied with a source of enough energetic 

electrons. 

3. The sample can be damaged by the electron radiation, ionizing, heating 

and degrading it. To solve this issue, radiation must be as low as possible, 

considering the compromise with contrast and hence with resolution. 

4. Focusing electrons suppose a challenge due to it requires of the correct 

operation of a complex system of electron lenses. Also the high energy 

presented by the electrons makes even more difficult their correct 

focusing. 
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5. The high radiation also damages the sensors and detection system, 

reducing the lifetime of these devices and compromising the contrast and 

quality of the obtained images. [5] 

Although the drawbacks presented, the solutions proportioned and the correct 

development of the technique, including its exceptional results, compensates them. 

Once the use of electrons for the image conformation is clarified, a clear 

description of the different components of the microscope will be presented. The first 

element to be analyzed is the electron gun. Every imaging system requires an illuminating 

source in order to produce an image, being in the case of this technology a source of 

electrons. Unfortunately, this illuminating system must fulfill some restrictions, basically 

a high energy throughput and stability of the radiation. This high energy rate of the 

radiation will assure the electron transmission through the sample under a weak 

interaction or even if there is none.  The other stability constraint is the most critical one 

since it involves three experimental challenges: monochromaticity, coherence and 

collimation. [5] 

Monochromaticity implies that no fluctuation of energy appears in the energy 

beam, or from another point of view, that the wavelength of the electrons radiated is 

maintained constant. Coherence assures that a known phase radiation is maintained 

through all the radiation, both temporal and spatial. Respectively, the temporal coherence 

is presented by a beam if the phase difference is defined properly between two instants of 

time, meanwhile, in the case of the spatial coherence, the phase difference must be well 

defined between two different emitters. Finally, collimation implies a distribution of the 

electrons emitted from the gun as parallel as possible, in order to avoid the divergence of 

electrons. [5] 

The functioning of an electron gun consists in a material, typically a metal, that 

under certain conditions emits electrons. For this purpose, the electrons of the material 

must lay on its surface in order to be emitted and not to form an internal electric field 

generating currents when it is under certain conditions of temperature and electric field. 

This is the reason why it should be a metal material. [5] 
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Also, the pattern of the metal emitter is relevant since the electric field and 

therefore the electron density, is higher in the sharpened regions under an electric field. 

Therefore, the shape of the electron gun must be as sharpened as possible, maximizing 

the charge density and the electric field. This also has come positive implications in the 

phase difference of the emitted front wave. [5] 

The structure of an electron gun is composed of three main components: the 

cathode o filament, the Wehnelt cylinder or grid, and the anode. The cathode will be 

contained inside the Wehnelt, a metal hollow cylinder with a hole in its basis. Then, a 

high differential voltage is applied between the cathode and the anode, guiding the 

electron current by modifying the potential of the Wehnelt cylinder. This difference of 

potential allows to focus the electrons beam, increasing the directionality. [5] All these 

elements can be visualized in Figure 2. 

 

Figure 2: Scheme of an electron gun including all its components. [5] 

Although the previous exposition properly explains the general functioning of 

an electron gun, there exist different types of electron guns which are going to be briefly 

exposed: 

1. Thermionic electron gun: this kind of electron gun is based in the 

increment of the temperature of the tip of metal to achieve the electrons 
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emission. With this technique the electrons acquire enough thermal 

energy to overcome the potential barrier and be emitted. Only few metals 

can be used for this technique since high temperatures have to be reached 

without melting. 

2. Field electron emission gun: this kind of electron guns is supported by 

the fact, although the electrons ought to overcome the potential barrier to 

leave the tip, due to tunneling effect, the electron has a chance to be out 

the tip when the energy is lower that the working energy. For this, the 

electron gun supports the tunneling effect by immersing the tip in a 

strong electric field. 

3. Schottky emission guns: modern electron guns are supported by this 

effect which can be considered as a combination of both thermionic and 

field emission effect. For this combination the basis is to heat the cathode 

reducing the potential barrier, aiding the emission field to emit the 

electron by reducing the potential barrier. [5] In Figure 3 energetic profile 

function of this phenomena is showed. 

 

Figure 3: Work function of the Schottky-Norheim effect. [5] 

Once the electron guns have been explained, it will be presented the next main 

core elements of al electron microscope, the magnetic lenses. A lens can be defined as 

every element that makes a collimated radiation beam converge towards a fixed point. In 

the case of the light optics, a variation of the refractive index is caused in the material in 

which the radiation is propagated. Since the electron microscope works in vacuum, 
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implying there is no method for a material medium change, another mechanism for 

electron focusing must be applied. [5] 

The main difference between electromagnetic waves and electrons is the mass 

and the electric charge, which builds a perfect scenario for the application of the Lorentz 

equation: 

𝑭 = 𝑒[𝑬 + 𝒗 × 𝑩] 

which relates the force suffered by a particle with charge 𝑒 and speed 𝒗 when it is 

introduced in an electromagnetic field composed by the electric field 𝑬 and the magnetic 

𝑩. [5]  

As the Lorentz equation proposes, electron trajectories can be modified wisely 

by the application of electromagnetic fields, which carries to the constitution of two 

different types of lenses: electrostatic and magnetic.  Since the magnetic lenses are the 

most common used in the field only its basis will be exposed. [5] 

Between all the different categories of magnetic lenses, only the ones that 

presents a rotationally symmetric shape will be suitable for this technique. This constraint 

is crucial since any other shape would not respect the constraints in the shape of the 

magnetic field generated, which must be also rotationally symmetric. In fact, the intensity 

of the magnetic field generated should depend on the distance to the center of the lens, 

presenting a smooth decay as it moves away from the center of the lens, presenting in this 

point its maximum. [5] 

However, the previous explanation is slightly incorrect since, if a constant 

magnetic field is considered, an electron passing along the 𝒛 axis, would not experiment 

any deviation, meanwhile an electron passing at a given distance from the 𝒛 axis will 

suffer a Lorentz force to be focused that increases accordingly to its distance to the 𝒛 axis. 

In order to correct this behavior a radial magnetic field is also needed to correctly focus 

the electrons beam. In order to generate this radial field several coils encapsulated in an 

iron box are used. This iron box is used in order to produce some confinement of the field 

and it presents a small hole increasing its intensity in the aperture area. This disposition 
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is going to ensure that an intense enough field is achieved in order to produce a significant 

change in the electron's trajectory. [5] 

The expected electron trajectory through the magnetic field is expected to be an 

helicoidal movement. With the proper arrangement of the magnetic fields the electron 

beam is properly focused. [5] A schematic of the disposition of the difference elements 

of an electromagnetic lens and the magnetic field associated to it is exposed in Figure 4. 

 

Figure 4: Schematic of a magnetic lenses and its magnetic field associated. [5] 

After exposing the design and functioning of the electromagnetic lenses a brief 

mention must be done about aberrations. Considering an aberration as every deviation of 

the ideal behavior of an optical system, any failure in the function of a lenses suppose a 

source of aberrations. An ideal electromagnetic lens produces a spherical wave front form 

the electron beam, although some deviations in the wave front are inevitable despite the 

design efforts. Also, it must be considered that the weak interaction of the illuminating 

beam with the sample is typical of this technique, being the induction of aberrations 

especially critical in the image formation process. Although there are several procedures 

that can be applied to avoid this process, the most extended one in the field is the 

introduction of some defocus that will increase the contrast of the obtained image. [5] 

Once the illuminating source of the sample, the electron beam, has been properly 

exposed, the next important component is the sample and its correct preparation. For the 

proper colocation of the sample a metallic grid is placed inside the microscope. Each hole 

is composed by a deposited carbon grating in which the sample will be place after the 
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pertinent biochemist processes, depending on the nature of the run study. The main 

problem is that after this biochemist process, the result is an aqueous solution, 

incompatible with the vacuum generated inside the microscope. To solve this problem, 

different treatments can be applied in order to solidify the sample, leading to two different 

modalities of electron microscopy: 

1. Negative stain: for this technique a small concentration of uranyl 

acetate is diluted in the sample and, after setting the sample on the carbon grid 

and removing the excess of solution for a plane shape, the uranyl dries and wraps 

the sample. Due to the high-density difference between the uranyl and the sample 

the contrast on the image is increased. The main drawback of this technique is that 

the obtained image rises information of the uranyl-biological complex interface, 

so high-resolution information is lost. Also, in case the uranyl does not cover 

properly the hole complex, as in large complexes, the information of the non-

covered part will be also lost. As it can be seen in Figure 5, the images obtained 

looks like white particles over a black background. Although this technique has 

been substituted by the vitreous ice technique, it is a useful first step to obtain 

particle low resolution structures. 

2. Vitreous ice: this technique consists in freezing the sample the 

quickest as possible in order to obtain a non-crystalline structure, known as 

vitreous ice. The speed in the freezing process is fundamental since it will preserve 

the complexes in their native state and keeping the high-resolution information. 

As a drawback, it must be considered that the images will present low contrast 

although not only the interface will be shown. As it can be seen in Figure 5, the 

images obtained looks like black particles over a white background. The use of 

this technique has supposed a revolution in the cryo-electron microscopy field in 

the recent years. [5] 

In Figure 5 can be seen a schematic showing the main differences between both 

sample preparation techniques and the resulting image. 
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Figure 5: Schematic of the sample preparation and micrograph obtained from both vitreous 

preparation (left) and negative stain (right). [5] 

Once the sample is properly prepared the next step to take place in the imaging 

processing is the image formation. Unlike the electron lenses able to treat the electron 

microscope from the geometrical optics, to study the image formation process it is 

necessary analyze this process from the deep electron-matter interaction framework. [5] 

When electron-matter interaction is considered in real systems, Maxwell 

conditions are broken due to aberrations and the diffraction limit. Then, under these 

circumstances, the image of a point-object is no longer a point, and instead it will be a 

spot, known as point spread function (PSF). Since electrons only impact in a single 

position, the spatial distribution of the beam is obtained on the screen after several 

electrons collide with the detector. [5] 

Imaging detectors or imaging sensors register the intensity pattern obtained 

from the electron beam after interacting with the sample. The detector design is as 

important as good optical system for a correct image formation. [5] 

In the beginning of this technique, the detector consisted on a sensitive plate to 

radiation. This design was not very convenient since the information had to be extracted 
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from the film by inspection of the detector and digitized posteriorly. Nowadays, this 

technique is obsolete, and it has been substituted by digital sensors.  These are several 

different techniques for the design of a digital sensors, that have been evolved during the 

last 40 years. [5] 

The main advantage accomplished by the digital sensors is its automatic 

digitalization of the detected signal, in comparison with the photographic detectors, which 

are an “analogic” technology that requires from a posterior digitalization of the image 

processing of the signal. Due to this, the automatic processing of the detected micrographs 

can be done at once, without requiring the substitution of the detector every time a 

micrograph is captured. [5] 

In the early years two different technologies arise for the design of digital 

detectors: charge coupled device (CCD) detectors and complementary metal-oxide-

semiconductor (CMOS) sensors. Since then, the improvements where focused on the 

improvement of the signal detection, increasing their efficiency and reducing the noise 

detection. After some years of research, a new generation of detectors was developed: the 

direct detector devices (DDD) or direct electron detectors (DED). The main advantage in 

this new generation of detectors was the measurement of the radiation without needing 

the conversion of the electron beam into light, using a phosphor layer with the only 

backward that it introduces some blurring in the detected image. [5] 

Inside these different technologies, several families of detectors have been 

developed with different characteristics. For a good differentiation of the capabilities of 

different sensors, some characterizations are needed from these. Although there are some 

external factors that affects in its functioning this characterization is possible, since the 

resolution is not the only parameter to consider. Here are exposed some of the most 

relevant:  

1. Picture element size: a sensor is basically a composition of a matrix 

of identical picture elements (or pixels). Each pixel works as a single detector of 

radiation, but it must be considered that not the whole pixels’ surface works as an 

effective radiation detector area.  
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2. Resolution. Coarsely, resolution can be defined as the minimum 

difference that can be detected by a sensor, or on the case of an image detector the 

highest spatial difference that can be detected. Due to this, resolution is measured 

as the number of different pixels that form the output image, considering the actual 

size of the detector. Hence, the digital detector introduces a discretization of the 

image, determined by the sampling rate given by its resolution. These last two 

concepts are clarified in Figure 6. 

 

Figure 6: Schematic of a sensor with resolution 2 × 3 exposing the effective area of each pixel. [5] 

3. Analog to digital converter. The radiation intensity detected by each pixel 

should be digitized, in order to be posteriorly processed as discrete values. For this, a 

specific number of bits are used to express the value, being the sensitivity or precision 

(minimal change that can be expressed) of the value directly proportional to the number 

of bits used. 

4. Dynamic range. This feature is defined as the ratio of the maximum signal 

intensity and the root mean square of the noise, measured in decibels. 

5. Gain. This feature is defined as the ratio between the recorder signal 

intensity and the real or theoretical signal intensity. Although a perfect sensor should 

present a gain equal to one, this is not feasible, appearing some signal losses in the 

detection process. 

6. Detective quantum efficiency. This feature works as a measure of how the 

signal is preserved while the measurement process. Although an ideal detector should 

keep the signal to noise ratio (SNR), real detectors might introduce some errors in the 
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signal detected due to the conversion process, decreasing the quality of the output image. 

[5] 

2.3 Fundamentals of single particle analysis 

Electron microscopy technique has been used intensively in the elucidation of 

macromolecular complexes structures. These structures have been analyzed thanks to the 

posterior processing of the images obtained from the microscope, employing a set of 

image processing techniques known as single particle analysis (SPA). The main objective 

of this procedure is to obtain a 3D structure, or an atomic model if possible, of the 

macromolecular complex under analysis. In this section the whole workflow of the SPA 

is exposed, analyzing the tasks performed in each step. [5] 

Before starting this exposition of the different steps that constitute the workflow, 

some assumptions that SPA makes to perform its analysis must be mentioned: 

1. Homogeneous sample. Assumes that all, or almost all, the 

macromolecular complexes observed are identical but disposed in different 

orientations. 

2. Projection assumption. The images obtained (micrographs) are 

considered a projection of the sample under a determine amplification of the 

microscope. [5] 

The combined effect of both assumptions establishes a scaled identity condition 

for the complexes observed in the micrograph, which sets a solid base for the 

reconstruction process. It is necessary to mention that the homogeneous condition is 

weaker than the projection assumption.  [5] 

Before dawning into the SPA workflow, a new theoretical concept critical in the 

macromolecular complexes reconstruction must be exposed, the central slice theorem. 

Each projection of the complexes in the micrograph (particle) is analyzed, obtaining its 

angular orientation, forming the projection sphere for each possible orientation of the 

particle. From this projection sphere the central slice theorem is defined as follows: 
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Given a 3D structure defined by a function 𝑆(𝑥, 𝑦, 𝑧) and 𝑃𝛼(𝑆) a projection of 

the structure under certain direction α, where 𝑃 denotes a projection operator along, α, 

then, 

𝐷𝛼 [ℱ(𝑆)] = ℱ(𝑃𝛼(𝑆)) 

where 𝐷𝛼 is the plane defined by the normal vector with direction α that passes 

through the origin of the Fourier space. In other words, the Fourier transform of the 

particle image projections fills the Fourier space in an orientation given by the angular 

projection of the particle. Filling the Fourier space with several projections of the same 

particle, the volume can be reconstructed by the inverse Fourier transform. For a better 

explanation Figure 7 shows a schematic with the relationships of the projections and its 

associated component in the Fourier space, and the reconstruction of the final volume. [5] 

 

Figure 7: Demonstrative scheme of the central slice theorem. [5] 

Even though the implications of the central slice theorem in the structure 

reconstruction of macromolecular complexes, due to the ignorance of the particle 

orientation in the micrograph, the reconstruction process is not straight forward. The 

reconstruction problem is addressed through the SPA analysis, composed of several steps 

some of them facing remarkable problems. A schematic including the different steps 

involved in the SPA is shown in Figure 8. [5] 
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Figure 8: Schematic presenting the different steps that compose the SPA. [5] 

In the first step of the workflow takes place the image acquisition process. 

Although this process is more related with the microscope functioning, some 

differentiation must be done between two different systems of image acquisition: movies 

and micrographs. 

The structural information of the observed complexes is given by the contrast 

of them with the ice, being possible to increment this contract with a higher electron beam, 

acquiring a single micrograph. But another possible approach is to take several images 

with a lower electron beam intensity, acquiring a stack of movies instead. A comparison 

of both methodologies is shown in Figure 9. [5] 

 

Figure 9: Schematic comparing both acquisition techniques: single-image micrograph (A) and 

movies recording (B). [5] 

In case of obtaining a single micrograph, no post processing is needed, but in 

case a stack of movies is obtained, some operations must be performed. The first 
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phenomena that must be taken under consideration is that the electron beam is going to 

produce some movement in the radiated particles consequence of the electron-particle 

interaction. This interaction is affecting its position for the next acquisition in the movie 

stack. Also, it must be considered that the contrast presented in each frame of the movie 

stack is very low, more compared with a single micrograph, presenting a very low SNR. 

[5] 

To process the stack of movies some alignment must be performed between the 

different frames. This step of the workflow is known as motion correction or movie 

alignment. The task performed is to correct the movement of the particles form one frame 

to the next one in the movie stack. This process can be performed both globally, correcting 

the whole frame in the same direction and magnitude, or locally, allowing different 

corrections for each particle present in the frame. [5] 

After the motion correction takes place, the obtained image present a 

significantly higher SNR and a higher contrast due to the combination of all the frames. 

Also, consider that the output of the procedure is also known as micrograph although the 

procedure behind it differs from the micrograph obtention procedure. [5] 

Once the movie alignment process is finished (or in case the input image was a 

single micrograph image) the next step to take place is the contrast transfer function 

(CTF) estimation. As it is explained in the previous section CTF models the imaging 

performance of the microscope and, due to the imaging conditions changes for each 

acquisition, this process must be performed for each obtained image. The CTF quantifies 

the effect and variation of the obtained image from the ideal one, allowing the correction 

from aberrations and increasing the SNR of the posterior reconstruction. [5] 

For the CTF estimation it is necessary to explore the Fourier transform of the 

acquired image. The acquired image is the convolution product of the CTF function, a 

sinusoidal function in the plane, and the Coulomb potential, procedure equivalent to a 

multiplication in the Fourier space. Once both elements have been defined, the most 

common approach begins with the power spectrum density (PSD) calculation (the squared 

modulus of the image Fourier transform). In the PSD some fringes, known as Thon rings, 

can be observed as in Figure 10. These fringes establish the base for the CTF estimation 
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since the zeros present in the PSD coincide with the zeros present in the CTF, allowing 

the estimation of the behavior of the sinusoidal signal and hence the CTF. [5] 

There exist several methods for the CTF estimation. Concerning to this project, 

the method used in the ctf_estimation belonging to the software package Xmipp. 

 

Figure 10: Calculated PSD from a micrograph, presenting clearly its Thon rings. [5] 

The next step in the SPA workflow is the particle picking. In this process the 

particles present in the micrograph are selected, delimited and cropped, grating the proper 

identification of the particles and differentiating them from the ice despite noise. In this 

process the first raw data to perform a reconstruction is obtained, making this a dedicated 

step in the whole workflow. [5] 

Although the element/pattern identification problem has been broadly solved in 

image processing, the low SNR presented in the micrographs makes this a hard problem 

to solve. In order to confront this problem several methods have been developed for this 

purpose specific for this field, based on very different solutions: template matching, edge 

detection, intensity comparison, texture-based methods, or neural networks, nonetheless 

some methods exploit several of these solutions. For a coarser classification, several 

categories are proposed differentiated by its usage: 

1. Manual methods. This first kind of picking requires the completed 

identification of the particles that are going to be cropped. For this, the user must 

identify by eye view all the particles and select them manually. The main 
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drawback of this techniques is mainly the extensive amount of time required and 

the possible biasing of the results due to subjectivity of the user. 

2. Semi-automatic methods. This approach is a combination that 

requires some previous interaction with the user before to start the automatic 

process. Although several techniques are applied in the usage of these methods, 

the essential functioning consist in the generation of some template from the input 

information of the user for a posterior identification of the particles present in the 

micrograph. For this identification, a template is generated from the data 

introduced by the used, and by means of correlation or other comparison process, 

elements like the template generated are founded in the micrograph. More 

complicated approaches have been developed in this category, allowing different 

templates generation, template-leaning techniques, and other techniques outside 

the template-matching techniques. 

3. Automatic methods. This kind of algorithms are the last approach 

in the state-of-the-art, designed in order to avoid the biasing by human interaction. 

Although there exist some algorithms that automatically selects the template, most 

of the automatic methods make use of convolutional neural networks (CNN) 

based on deep learning techniques. These techniques receive a prior training to 

posteriorly differentiate particles from the background. [5] 

Once particles are selected, they are extracted conforming a stack of particles. 

It must be considered that picking methods usually present false positive elements as 

artifacts, wrongly picked particles or even noise.  

To avoid the misinformation present in the produced stack, the particles are 

presented sorted with some criteria, usually some similarity measure or SNR, in order to 

make easier some discarding of particles if needed.  An example of an already picked 

micrograph is presented in Figure 11. [5] 
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Figure 11: A beta-galactosidase micrograph with all its particles picked. [5] 

Once the particles are extracted, the workflow can be continued to the 2D 

classification of particles. With the particle extraction concluded, the number of elements 

in the stack goes from several thousand to a few millions for a common SPA. Some 

drawbacks arose due to these magnitudes are: 

1. Although the number of picked particles, the SNR of each particle 

is very low, which impedes a correct angular orientation estimation. 

2. The exalted number of particles increases the computational effort 

significantly for the 3D reconstruction of the structure. 

3. Apart from the homogeneous sample consideration, several artifact 

and other undesired structures are picked, breaking this condition and the 

projection assumption. Due to this some pruning of the particles should be 

performed. [5] 
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To address these three issues, the 2D classification process takes place. In this 

process the particles are grouped in different classes, being each of these classes defined 

as a subset of particles that presents similar characteristics under certain error tolerance. 

From each class it can be obtained a class average or class representative, result of a wise-

mean averaging of the particles that compose the class. Obviously, the averaging 

procedure includes a previous alignment of the particles belonging to the class, being here 

where the wise behavior of the averaging comes from. [5] 

This class averaging simplifies significantly the problem and instead dealing the 

elevated number of particles only a few images, the class averages, have to be considered. 

Furthermore, the averaging process increases the SNR of the class representatives 

compared with the unclassified particles, obtaining a high detailed image. Also, all the 

picking structures that are not corresponding to a particle class, as artifacts or empty 

particles, will be clustered in the same class making easier the pruning process. Finally, 

the classes construction solves other side problems as the existence of preferred 

directions, bad angular covering of the projection sphere or some other kinds of 

heterogeneity in the sample. [5] An example of the output of this procedure is shown in 

Figure 12. 

 

Figure 12: Set of classes obtained after the picking process. Each presented image is the class 

representative or average from each set of particles. [5] 
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For the set of classes creation there are several algorithms able to separate all 

the picked particles in different classes. The first algorithm is the multivariate statistical 

analysis (MSA), whose strategy is performing a dimensionality reduction of the data, 

removing the information that lacks sense for the classification and makes the process 

harder. In a simpler way, if an image is considered as a 3D object, this algorithm is going 

to focus on the “shadow” of the image, reducing the information contained in a 2D object 

and hence its complexity. These “shadows” are the best approximation of the original 3D 

object and the comparison between them is a much simpler process. Another different 

approach is the multi-reference classification (MRC), where an initial class representative 

is selected, and the rest of the particles are classified according to the similarity with them. 

As logical, the final classes are sensitive to the initial representatives selected, although 

there exist some methodologies to correct this behavior. [5] 

Once the class representatives are calculated, enough information is available to 

start with the reconstruction of the initial volume. Due to the problems solved coming 

from the use of class averages, like SNR or angular assignment, it is possible to use these 

representatives to reconstruct a first coarse estimation of the 3D volume complex. This 

first volume presents a very low resolution with no high frequency features, being refined 

in the post processing through several iterations. Withal, a proper estimation of the initial 

volume is fundamental in order to obtain a posterior accurate high-resolution 

reconstruction. Poor or mistaken initial maps introduce some biasing in the structure that, 

in best case scenario, will slow the convergence to the final refined map. [5] 

In this step the central slice theorem, previously introduced, is being used. There 

are several algorithms in the literature that address this problem. One of the approaches 

is based on the consideration of the classes as several projections of the macromolecular 

complex, reducing the angular assignment calculation as a common lines identification 

problem between all the projections. Unfortunately, these methods do not rise robust 

estimations of the common lines, mistaking some of them. [5] 

Alternatively, some algorithms are based on statistical approaches for the 

optimization of the alignment variables. An example of these procedure is shown in figure 

13. These algorithms propose a starting point base on a random angular assignment, 

obtaining a structureless ball, and through an iterative process of optimization, evolve the 
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ball to a more realistic map more compatible with the classes. The main drawback of this 

method is that, due to its iterative nature and depending on the initial random ball, the 

reconstruction process can get stuck in some local minima. Other methodologies consider 

random reconstruction maximizing the number of projections compatibles with the 

reconstruction to posteriorly select the optimal one after a posterior refinement. [5] 

 

Figure 13: Evolution of the refinement reconstruction process from the ball shape to the resulting 

initial volume. [5] 

In the uncommon case in which these methods fail in the calculation of al initial 

volume, an alternative solution is to use negative stain particles for the initial volume 

reconstruction. Due to its high contrast, this approach allows the use of other more robust 

reconstruction methods, as random conical tilt (RCT) or orthogonal tilt reconstruction 

(OTR), that should lead to a better initial volume. This new initial volume can be used for 

a posterior refinement employing cryo-EM data, allowing high resolution structures to be 

reconstructed. Although this method requires from a double sample preparation, it is 

obsolete given that the initial reconstruction problem has been addressed with the 

methods introduced before. [5] 

Now, once the initial volume is constructed and a first approach to the real 

structure is defined, some problems arise due to the rupture of the homogeneity 

assumption. These problems appear since not all the particles used for reconstructions are 

different projections of the same macromolecular complex, presenting some 

heterogeneity. The heterogeneity of the sample can be classified between conformational 

heterogeneity: considering that macromolecular complex is not rigid and present certain 

flexibility, and structural heterogeneity: some proteins, despite the purification process, 

present non neglectable differences in their structure. [5] 

Due to these two heterogeneity phenomena, if a refinement process is 

accomplished, it is necessary to classify all the sets of particles in groups belonging to a 
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set of projections of the same macromolecular complex. This is the 3D classification step. 

[5] 

Although a complete resolution of the heterogeneity problem is not feasible for 

all the cases, there exist many methods able to solve it under certain conditions. One 

solution is the definition of a phase space in which the different possible conformations 

of the macromolecular complex are considered. Alternatively, several statistical 

approaches can be considered, as maximum likelihood, Bayesian marginalization 

algorithms, or principal component analysis. [5] 

Once the 3D classification is performed and it is possible to guarantee that the 

set of particles projections for reconstruction is homogeneous, the elucidation of a high-

resolution map can be started, known as refinement. Under this process, the refinement 

starts from an initial volume with no high resolution resolved structures and, through an 

iteration process, the converge in a detailed 3D structure that presents high frequency 

features is reached. Through the refinement process, a continuous estimation of the 

wellness of the reconstructed model is performed, comparing the difference or distance 

between the images and the projections of the constructed structure. To perform this 

comparison several strategies can be followed: maximum likelihood, maximum a 

posteriori, or projection comparison. [5] 

The maximum likelihood approach allows to reduce this task to an optimization 

process where each experimental image obtained is considered as a projection of the 

reconstructed structure from many directions, assigning a different probability to each of 

them. Then, the aim is to collapse these probabilities reducing the number of possible 

directions through an iterative process. On the other hand, maximum a posteriori method 

penalize some possible orientations considered in the previous method by introducing 

previous information of the structure before going through the iterative process. Finally, 

projection matching splits the maximum likelihood approach in two different tasks 

simpler to solve: firstly, the particles get assigned angles considering the initial map and, 

secondly, a new structure is reconstructed considering these angles, measuring its 

viability compared with the experimental images. [5] In Figure 14 the result of a 

refinement process is shown. 
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Figure 14: High resolution structure obtained after the completion of the refinement process. [5] 

Although the reconstruction procedure is finished, and the main goal of the SPA 

is achieved, some final procedures must be done according to the validations and analysis 

of the final structure obtained. The validation is an even more necessary process in SPA 

since the very noisy images accompanied by the possible biasing coming from the user 

decision can affect the final reconstruction, even more if it is considered that the 

algorithms could elucidate wrong structures even if the user only takes correct decisions. 

[5] 

To this purpose quantitative methods are going to be used in other to check the 

wellness of the reconstruction. A first approach consists in the comparison of the 

reconstructed structure with the results obtained by other techniques as x-ray 

crystallography or nuclear magnetic resonance (NMR), although this suppose an 

increment in the facilities and budget needed. An easier approach consists in the 

compotation with similar structures already resolved. Other approach would be based in 

the compatibility of the reconstructed structure with the particles it comes from. One of 

these methods is based on the geometrical constraint introduced by the tilt angles, aligning 

the tilt pairs with the reconstructed map to determine the robustness of the reconstruction. 

[5] 

Particularly, many reconstructed structures suffer from overfitting, so some 

method is needed to its detection. To do this a subset of the particles is substituted by 
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random noisy particles and the new reconstruction is compared with the original one with 

the use of the Fourier shell correlation (FSC). The FSC is a quality tool able to detect the 

overfitting between both reconstructions. The last group of methods are based on the 

validation of the alienability, considering each particle should be a projection of the 

reconstructed map. Then, the angular assignment of the particles should cast the most 

probable directions of each particles close between them, in contrast to the noisy image. 

[5] 

Once the map has been properly validated, some measure of the quality must be 

done, expressing the spatial reliability of the reconstruction. Resolution, as me minimal 

observable change, arises as the most reasonable option although there is no consensus 

for a universal definition of this concept. Due to the high noise present in cryo-EM data, 

resolution is oriented as measure to distinguish the signal and noise at different 

frequencies. Several metrics arises as plausible options for this measurement: FSC, 

differential phase residual (DPR), or the spectral signal to noise ratio (SSNR). Currently 

the most spread metric is the FSC, defined in the Fourier space as a measure of the cross 

correlation of two maps at different frequencies, although in this case the FSC measures 

the self-consistency of the reconstructed map rather than the quality. [5] 
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3 MATERIALS AND METHODS 

After the exposition of the physical basis of electron microscopy and the 

computational post processing of the images obtained, the new developed contributions 

are introduced. For this purpose, this chapter is divided in two different sections. Firstly, 

including all the corrections performed in the CTF estimation protocol, and secondly, 

including the development of the deep neural network able to calculate the defocus of a 

micrograph. 

3.1 CTF estimation corrections 

In this first section the main corrections performed in the CTF estimation 

algorithm from the Xmipp package are presented. Before examining these corrections, it 

is mandatory to introduce the estimation algorithm and its functioning. It is important to 

clarify that in this first part of the developed project no new workflow design is 

developed.  

The design of this algorithm is detailed in [3], hence only a general overview of 

its function is explained. For this, a special attention is paid in the modules in which 

corrections has been introduced, in order to achieve a better understanding of them. As it 

has been introduced in the previous section, the estimation of the CTF requires a previous 

step for the calculation of the PSD, form which some features will be extracted. Once the 

algorithm estimates the PSD the feature extraction starts, which is focused in the detection 

of its sinusoidal behavior. 

The disposition of the PSD, several concentric fringes, encourage its 

characterization by the calculation of its radial average, reducing its dimensionality and 

hence the computational complexity of the posterior calculations.  

Also, it is relevant to be aware that if the concentric circles are deformed to an 

ellipsoidal shape, the radial averaging of the signal would be spoilt. This ellipsoidal shape 

in the PSD fringes implies a defocus variation depending on the angular direction, leading 

to an astigmatic image. Anyway, these astigmatic images, although it is still possible to 

obtain a correct estimation of their CTF, should be discarded. 
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Once the radial average of the PSD is calculated, the lower and upper bound are 

set in order to capture the oscillatory sinusoidal behavior that this signal presents. These 

two boundaries confine the signal and allow the calculation of the parameters that 

characterize it.  

In Figure 15 an image of the PSD signal with its upper and lower boundaries is 

shown.  

 

Figure 15: Radial average of the experimental PSD and the theoretical PSD lower and upper 

bounds. [3] 

Once the radial average is confined into the boundaries, it is possible to start the 

calculation and posterior refinement of the characterization parameters to finally obtain a 

robust estimation of the CTF.  

In Figure 16 an image of the result obtained after the correct parametrization of 

the CTF is displayed compared with the PSD.  
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Figure 16:  Radial average of the experimental PSD and the theoretical PSD. [3] 

From these methods and other studies of the literature as [9], it is possible to 

observe the relevance of the defocus calculation to a proper estimation of the CTF. The 

defocus of the micrograph is characterized by four different parameters, necessary for a 

proper characterization in this dimensionality. But nevertheless, once the software 

solution of the protocol is implemented, in the first step of the defocus calculation, its 

characterization is performed by a single number, given by the following formula: 

𝐷𝑒𝑓𝑜𝑐𝑢𝑠 = 2 · 𝐾0

(2 · 𝑇𝑆)2

𝜆
 

where 𝐾0 is defined as the index (or position) of the maximum of the Fourier 

transform of the radial average function respect to the square of the frequency, 𝑇𝑆 is 

defined as the sampling rate of the micrograph, and 𝜆 is defined as the electron 

wavelength.  

The first corrections implemented are applied over this function and its 

maximum value calculation. As it can be seen from the defocus calculation formula, its 

value only depends on three parameters, from which only the 𝐾0, maximum index of the 

Fourier transform of the radial average function respect to the square of the frequency, 

requires to be calculated. The other two parameters, the sampling rate and electron 

wavelength, are given from the acquisition procedure of the micrograph. Due to this, the 
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correct calculation of the maximum value of the PSD radial average is fundamental for 

the correct calculation of the defocus. 

Until now the problematic is very clear and, although calculating the maximum 

of a signal could present some complexity in some cases, the signal is completely defined 

before starting the calculations and it is not wide extensive. Then, the problematic is not 

the actual calculation of the maximum, but the behavior that the PSD radial average 

present itself. 

Although the performed averaging of all the points of the PSD that are at a same 

distance to the center, there are some behaviors that can introduce some artifacts in the 

resulting signal. These artifacts can lead to a spoilage in estimation of the maximum of 

the signal and hence in the defocus estimation. In general, these artifacts have no 

implication in the maximum on the function but in case they have, the defocus cannot be 

properly calculated.  

It is important to be aware that a failure in the estimation of the CTF suppose 

the discarding of the micrograph from the whole workflow, removing valuable 

information in case the quality of the image was acceptable. To prevent this to happen, 

some corrections have been performed in the algorithm in order to calculate correctly the 

maximum of the function.  

Before applying any correction and due to none of the signals of interest are part 

of the output of the protocol, some debug code has been added. This debug code allows 

a posterior plotting of the three signals of interest: the background radial average signal 

of the PSD (psdbackground), an interpolation to obtain the PSD respect to the squared 

frequency (psd_exp_radial2), and the Fourier transform of the previous signal 

(amplitud).  

Apart from the signal, some other useful information were included as an output 

of the debugging code as the minimum index form which the maximum of the signal is 

searched, every new maximum index observed in the signal, the final index obtained after 

the maximum index calculation and the calculated defocus. With all this new debug 

information, trying to diagnose any malfunctioning of the algorithm is possible. 
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Once the different signals could be displayed, interesting information were 

obtained from bad estimated CTFs. The first behavior that was checked is the correct 

calculation of the maximum value in the PSD radial average signal. Then, it became clear 

that the calculated defocus at the index at which the maximum value of the signal was 

presented was not corresponding with the actual defocus presented in the micrograph.  

This checking is possible thanks to a CTF estimation tool integrated in the 

Scipion framework form the software package Xmipp. This tool allows the manual setting 

of the first fringe of the PSD, allowing the correct calculation of the defocus presented by 

this specific micrograph. Although this tool it is not useful for high throughput processing, 

it has supposed a critical aid for the proper understanding of the behavior of the algorithm 

and to apply the corrections needed. The interface of this tool is shown in Figure 17. 

 

Figure 17: Xmipp interface for manual estimation of the CTF. The inner and outer blue circles set 

the range in which the algorithm looks for a maximum and the yellow circle should indicate the 

first zero in the PSD. 



Image processing algorithms for the determination of the optical aberrations of an electron 

microscope 

 39 

With the usage of this tool, new ground truth information can be obtained and, 

after some comparisons of the behavior of the algorithm with its ideal one, the first 

corrections were applied. The first approach for a better estimation of the CTF was to 

apply some corrections in the Fourier transform of the radial average function respect to 

the square of the frequency signal, in order to improve the maximum detection.  

From the ground truth information, it is possible to check that, the index at which 

the maximum is located in the signal do not correspond with the index from which the 

correct defocus is calculated for some micrographs. In order to deal with the irregularities 

that are causing this behavior, some preprocessing of the signal is performed before the 

maximum index calculation.  

The first approach was to apply some outliers treatment of the sample, in order 

to avoid some noise or other phenomena that were introducing atypical values in the 

signal that could affect its radial average profile. The processing performed was very 

standard. Every value that present a difference with the mean of the signal higher than 

three times the standard deviation is detected. In order to not introduce artificial high 

frequency behavior in the signal, the values detected were cropped to three times the 

standard deviation plus the mean (the maximum allowed).  

This outlier correction is accompanied with a subtle correction in the maximum 

calculation. Instead of following the straightforward process of searching for the 

maximum value of the signal and take its index, some conditions were applied to a better 

detection of the local maximums. These conditions will assure that the maximums 

detected are placed in a peak of the function and no at the top of a decaying behavior.  

The combination of both corrections, the removal of outliers and the local 

maximum searching, shows an especially robust behavior against profiles that present 

high energy at low frequencies. In these cases, the maximum peaks obtained in the low 

frequencies range are corrected allowing the detection of the local maxima in the profile 

in some cases.  

This procedure has shown a significant improvement in the defocus calculation 

and therefore in the CTF estimation. In the figure 18 it is shown the improvement obtained 
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by this correction. In the example presented it can be shown the profile from which the 

maximum index is calculated, and the estimation obtained before and after applying the 

outliers corrections to the protocol. 

 

Figure 18: PSD and CTF estimation in quadrant disposition without the application of the outliers 

correction (top left), PSD and CTF estimation in quadrant disposition with the application of the 

outliers correction (top right), Fourier transform of the interpolation of the PSD average without 

the application of the outliers correction (bottom left), and Fourier transform of the interpolation of 

the PSD average with the application of the outliers correction (bottom right). 

Once this first correction was applied with success the next correction was 

performed, this time in the PSD background radial average signal. As in the previous 

correction, the intention was to limit the disruptive information in the PSD radial average 

that could introduce artifacts that difficult the detection of its maximum value. With this 
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purpose, a high pass filter was implemented in the algorithm in order to remove the high 

frequencies of the background radial average signal.  

The filter used for this purpose was an implementation of one of the filters 

implemented in the libraries of the MATLAB software. Unlike in the previous correction, 

the results arose by this approach was not successful, spoiling the results obtained by the 

estimator. Due to this, the correction finally was not implemented. In figure 19 the results 

obtained by this correction are show. In the schematic presented the PSD background 

radial average and the estimation associates to it with and without the use of the high pass 

filter correction can be observed. 

 

Figure 19: PSD and CTF estimation in quadrant disposition without the application of a high-pass 

filter (top left), PSD and CTF estimation in quadrant disposition with the application of a high-pass 

filter (top right), PSD background radial average without the application of a high pass filter 

(bottom left) and PSD background radial average with the application of a high pass filter (bottom 

right). 
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After these two corrections were applied the results obtained have improved 

although the rejection rate of good micrograph was still high. In other to continue with 

the correction process, new changes in the algorithm were performed although not related 

with the previous part of the procedure. The next approach to a better implementation of 

the algorithm was the correction of the downsampling procedure of the micrographs.  

Before analyzing the downsampling correction, it must be understood the 

implications that this procedure has in the PSD.  A reduction in the sampling rate suppose 

that the maximum frequencies that can be sampled are also reduced, given by the Nyquist-

Shannon theorem: 

𝑓𝑠 ≥ 2 · 𝑓𝑚𝑎𝑥 

Also, performing a downsampling of the micrograph is going to have some 

visual implications in its PSD. A reduction in the sampling rate suppose and expansion 

of the signal in the Fourier space, losing high-frequency information. Graphically, bigger 

rings will be shown when the sampling rate decreases. In figure 20, it can be seen the 

PSD of the same micrograph under three different sampling rates. 

 

Figure 20:  PSD of the same micrograph under three different sampling rates: 1 Å/px (left), 2 Å /px 

(center), and 3 Å /px (right). 

Although, a decrement in the sampling rate have undesired effects in several 

applications, it is a useful tool for the CTF estimation and, specially, for the maximum 

index detection in the defocus calculation process. The reason for this is that, depending 

on the micrograph, a different disposition of the fringes can lead to a better detection of 

the maxima in the Fourier transform of the radial average function respect to the square 
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of the frequency. Whether the fringes are very concentrated in the center or very expanded 

and only a few of them are shown, obtaining a correct estimation is harder. Due to this, 

several possible downsampling factors can be used until the estimation is correctly 

performed. This will increment the number of CTF properly estimated, although also the 

computational cost. 

To implement this solution each micrograph is processed several times. For this, 

if the CTF is not correctly estimated, a new downsampling factor is applied and the 

process is repeated. This iterative process will be repeated until all the considered 

downsampling factors stored in a downsampling factor list are tried or the CTF is properly 

estimated. Now, the difficulty comes from the confection of the downsampling factor list. 

First, it is important to mention that the target sampling is calculated considering 

the actual sampling rate of the processed micrograph, so there is no need of any 

specification process depending on sampling rate presented by the micrograph. Different 

approaches have been tried in the confection of this list. The original approach was that, 

given an initial downsampling factor, in case the CTF estimation fails, the original 

downsampling factor plus and minus one would be added to the downsampling factor list 

and they will be posteriorly tried for the CTF estimation. A posterior approach set a 

couple of fixed values, but this still presented improvable results. 

Due to this approach did not arise the best results, the solution was to fix some 

new values that from experience arise better results. For this, two different downsampling 

are applied in order to obtain target sampling rates of 1.75 Å/px and 2.75 Å/px, to 

posteriorly repeat the estimation with the original micrograph with no downsampling 

applied (or applying a downsampling factor of 1). These values arose an improvement in 

the obtained results, being more robust against atypical sampling rates and simplifying 

the posterior analysis and correction. 

Once the correction concerning the downsampling procedure of the micrographs 

is completed there is a last source of errors that must be corrected, the criteria for the 

goodness of an estimation. These criteria are composed by several features of the PSD 

and the CTF estimation that must be fulfilled in order to classify the estimation performed 

by the algorithm as a good estimation. These are the features that compose the criteria: 
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• Critical iceness (ctfCritIceness): This attribute gives a measure of 

the amount of ice that is present in the micrograph. An excessive presence of ice 

could imply the discarding of the micrograph. In detail, this attribute calculates 

the ratio between the PSD downsampled to 3 Å/px and 4 Å/px.  

The vitreous ice can be detected as a thicker whitish fringe in the 

PSD. In case the ice present in the micrograph is crystallin, brilliant white 

conjugated spots appear in the PSD. Although before any presence of ice the 

micrograph should be discarded, crystallin ice is always harder to detect. In figure 

21 is it possible to observe two micrographs both presenting these two kinds of 

ice. 

 

Figure 21: PSD of two different micrographs presenting vitreous ice (left) and crystalline 

ice (right). 

• Correlation of the PSD at 90º (ctfPsdCorr90). This attribute 

measures the correlation (or similarity) between the PSD and itself rotated 90º. 

This is a strong measure against corrupted PSD, since it will discard both 

astigmatic PSD, where the defocus varies depending on the direction and fringes 

presents astigmatic behaviors, and very noisy PSD, where the fringes of the PSD 

are not well defined.  
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• Position of the first cero (ctfFirstZero). This attribute measures the 

radius of the first fringe presented by the PSD. If the radius of the first zero is very 

big the estimation will be discarded. 

• Maximum critical frequency (ctfCritMaxFreq). This attribute 

gives a measure of the frequency at which the envelope signal of the PSD decays 

100 times respect to the maximum value.   

• Directional ratio of the first zero radius (ctfCritfirstZeroRatio). 

This attribute expresses the ratio between the radius of the first zero observed in 

two perpendicular directions, in order to detect astigmatic behaviors.  

• First minimum and first zero ratio (ctfCritFirstMinFirstZeroRatio). 

This attribute expresses the ratio between the first minimum observed and the first 

zero. 

• First and third zero correlation (ctfCritCorr13). This attribute 

measures the correlation between the radial profile of first and the third zero. 

• Critical CTF margin (ctfCritCtfMargin). This attribute calculates 

the ratio between the variance of the radial profile of the first zero and the second 

maximum, giving a measure of how the second maximum is observed compared 

with the noise present in the zero.  

• Validation of a non-astigmatic estimated CTF profiles 

(ctfCritNonAstigmaticValidity). These attributes compare the sine profiles in two 

perpendicular directions of the PSD and calculates the frequency at which they 

are in opposite phase. 

• Characterization of the background PSD (ctfBgGaussianSigmaU). 

This attribute gives a measure of the decaying behavior characteristic of the PSD 

background, indicating gaussian width in one of the axes.  

From the previous list it can be observed that, although all them appear as a 

homogeneous group, there are two different types of criteria: those applied to the PSD 

and those applied to the CTF estimation performed by the protocol.  

From all these criteria it is possible to characterize properly the results obtained 

by the algorithm. Through a procedure of trial and error the boundaries values given to 

each attribute has been checked and slightly corrected for some of them. These 
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corrections will improve the selection and discarding of the calculated estimations. In 

Table 1 the previous values for all the criteria and the new set ones are presented. 

Table 1 Criteria values comparison before and after the corrections were applied. 

Criteria Before After 

ctfCritIceness c>1 c>1.03 

ctfPsdCorr90 Not applied c<0.1 

ctfFirstZero c<5 c<5 

ctfCritMaxFreq c>20 c<0.9 U c>20 

ctfCritfirstZeroRatio c>1.1 c>1.1 

ctfCritFirstMinFirstZeroRatio c>10 c>10 

ctfCritCorr13 c<0 c<0.27 

ctfCritCtfMargin c<0 c<1 

ctfCritNonAstigmaticValidity c<0 U c>25 c<0 U c>6.5 

ctfBgGaussianSigmaU c<1000 Not applied 

 

From these two different criteria groups, one of the approaches performed in 

order to increase the efficiency of the protocol was to apply only once the PSD calculation 

criteria. Under this approach, if the PSD did not fulfill these criteria then the processed 

micrograph would be immediately discarded.  

It is important to understand that a bad established criterion could spoil a good 

estimation algorithm. The establishment of the values for each criterion is a delicate 

process. Too restrictive values could lead to the loss of good micrographs and, on the 

other hand, if the values are not restrictive enough, micrographs that do not present 

enough quality could be included in the processing workflow. 

Before exposing the next correction, it is important to understand the importance 

of these selection procedure and its relationship with the rest of the corrections performed 

and the functioning of the protocol.  
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As it has been exposed previously, once the defocus calculation procedure is 

fixed, then several estimations over the same micrograph will be performed at different 

resolution through the different downsampling factors. But this downsampling factor list 

depends also in the correct adjustment of the selection criteria. If the CTF estimation is 

incorrect, it must be detected by the criteria in order to discard it and, after the application 

of the next downsampling factor of the list, the CTF estimation may be properly detected.  

Following the previous exposition, a robust defocus calculation algorithm 

accompanied by a coherent downsampling factor list could be useless under an incorrect 

set of selection criteria.  

The next correction performed in the protocol was related with the manual 

downsampling procedure. If this option is selected, no downsampling factor list is 

generated and instead only one downsampling factor is tried, introduced by the user. 

Apart from this difference, the rest of the protocol behaves exactly as explained before. 

The manual setting of the downsampling factor could arise some issues if the 

value introduced is smaller than the unit. Although this value would not make sense in 

principle, it may have it for some specific applications. In case this happens, the previous 

procedure was performing the sampling transformation in the Fourier space. This implies 

that, in case of downsampling factors smaller than one, the transformation of the signal 

will introduce some new “generated” or “invented” information that was not contained in 

the original image, introducing some artifacts. 

In case the described procedure is followed some meaningless results are 

obtained. To solve this problem a different transformation is performed, avoiding the 

Fourier space. For this new transformation, a resize of the image is performed in real 

space until the desired resolution is obtained.  

A comparison between the different results obtained after and before the 

correction are shown in the Figure 22. Be aware that neither of the two PSD profiles 

shown are suitable for performing a CTF estimation.  
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Figure 22: Comparison of the results obtained before (left) and after (right) the downsampling 

correction for downsampling factors smaller than 1 was applied. 

The last correction performed it was not over a strict issue on imaging 

processing but in how the data is treated. A it has been exposed before, this CTF 

estimation protocol is integrated in Xmipp software package which, at the same time, is 

integrated in the Scipion framework as a plugin. Due to both software have their own 

metadata files for the data structures they work with, parsing processes are needed in 

order to work with the same data in both sides.  

Some of these parsing processes where not correctly performed and for some of 

wrong estimated CTFs, the metadata associated to these estimations were mistreated. 

Once this problem was fixed and the parsing process of the metadata belonging to the 

conflictive images were properly performed, this issue did not appear anymore. 

Finally, although this is not exactly a correction, a new functionality has been 

added, the amplitude contrast refinement. This new implementation appears as a new 

option for the user that allows him to apply this new procedure during the execution of 

the protocol. The amplitude contrast refinement process consists in the correction of the 

CTF through a change in the amplitude ponderation between the different frequencies 

that form the image.  
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In detail, under an ideal assumption, the whole image should be transmitted and 

properly detected. In this case the amplitude of the sinusoidal behavior of the CTF would 

be equal to one for all the frequencies. Under this assumption all the frequencies that 

compose the image should be transmitted without suffering any losses. 

Outside the ideal case scenario, the behavior observed differs from the previous 

exposition. In a real case scenario, there is always some losses in the transmission, being 

the amplitude of the CTF smaller than one. Now, the behavior why amplitude contrast 

refinement is needed comes from the fact that this amplitude factor works as a function 

of the frequency. Due to this, the amplitude factor is unevenly distributed between the 

frequencies that compose the image, increasing the losses for high frequencies. To correct 

this behavior, the amplitude contrast refinement process evens the amplitude factor 

between the different frequencies that form the image, trying to avoid decompensations 

in its spectral domain. 

This correction did not present any improvement in the obtained results from all 

the datasets in which it has been tested. Despite this, the functionality is maintained in the 

protocol because of two different reasons. Firstly, because under some conditions that 

were not present in the test datasets it could improve the obtained results and, secondly, 

because since it is an optional behavior, there is no reason for its application if it is not 

desired.  

The impact of these corrections in the results obtained from the protocol are 

analyzed in the next chapter. 

3.2 Deep learning network for defocus estimation 

In this section of the material and methods chapter, the second developed part 

of the project is introduced. The project task performed consists in the development of a 

deep learning network able to predict the defocus of a micrograph from its PSD. Before 

presenting the details of the developed system, few theoretical concepts are introduced to 

help with the explanation. 

Deep neural networks are a specific kind of artificial neural networks, 

characterized by an intensive number of different layers in its structure. This extensive 
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architecture allows the development of a very robust design able to model very complex 

dynamic systems. Artificial neural networks are a new paradigm in computational 

systems inspired in the knowledge obtained from neuroscience. The main idea that these 

systems follow is to replicate the behavior of the human brain, creating an abstraction for 

a neuron and, by the interconnection of several of them, form a network. A schematic 

showing the behavior of a single neuron is shown in Figure 23. 

 

Figure 23:  Schematic of a single neuron from a deep learning network. From the figure it can be 

identified the inputs of the neuron, the neuron itself, and the response generated from these inputs. 

[10] 

Once the concept of the neuron is defined the next step is the wise 

interconnection of several of these elements forming a network. Although any disposition 

of the network is possible, the most typical approaches are disposed in several 

interconnected layers.  

The only difference between a neutral network and a deep learning network is 

in the number of layers that compose the network, although there is not an established 

limit to consider a network from one group or the other.  

A schematic of a simple neural network compared to a deep neural network is 

shown in Figure 24. 
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Figure 24:  Schematic of a comparison between a simple neural network (left) and a deep learning 

neural network (right) 

Once the theoretical concepts are clarified there are several tasks that must be 

solved in order to develop a functional deep learning network.  

The first task to solve in order to develop any machine learning solution is the 

confection of a robust and intensive enough training database in other to have a high 

throughput source of information able to make the network learn. For this purpose, several 

sets of micrographs have been processed in order to accumulate enough information.  

In order to meet the criteria for a good design of a deep learning database some 

features were taking in consideration. First, the source of information is going to be 

limited to a specific kind of electron microscope working at a specific voltage 

acceleration, precisely at 300kV. The reason for this, as it has been explained in the 

previous sections, is that the defocus is related with the acceleration voltage of the 

electron and its wavelength. The other limitation introduced and in the aim of looking for 

some homogeneity on the data was on the resolution of the training images. For this, a 

manual sampling was introduce depending on the sampling rate of the micrographs in 

order to assure that all the output PSD was sampled at the same frequency.  

Once the basic limitations of the data collected for the database were 

established, the next step is to find enough different resources of information in order to 

assemble enough micrographs to train the network. For this purpose, several datasets were 

analyzed constituting an input of more than 10,000 micrographs. 
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Now the constraints for the database were established and the source of 

information was available, it is possible to start the processing process. In order to build 

a more robust training database some extra steps are going to be taked.  

In principle only a PSD image vector with its associated resulting defocus is 

needed but, for a more robust implementation, three different PSD are going to be 

calculated at three different sampling rates: 1 Å/px, 2 Å/px, and 3 Å/px. The only 

problematic behavior of this solution is from where to take calculated defocus from the 

three different resolutions.   

First, only the images from which the defocus is correctly calculated can be 

taken which, in spite of the corrections performed and presented in the previous section, 

decreases significantly the number of available PSD. The positive part of this condition 

is that, from the three different calculations of each PSD at each resolution, only one 

correct estimation is needed since the other two associated images are used to reinforce 

the learning. Then, only the PSD is needed, not a correct estimation of the CTF. This 

increments significantly the amount of data available to train the network.  

Once every set of micrographs is processed the sets of three PSD at the three 

different sampling rates are obtained. A script in Python programming language has been 

written in order to prepare the database of PSD and its associated defocus. As mentioned 

in the previous section, different sampling rates can improve or deteriorate the results of 

the CTF estimation algorithm. Due to this, the number of good estimated CTFs will not 

match between the three different resolution groups.  

There are different ways to address this problem. The optimal solution would 

consist in checking each one of the three groups and removing all the wrong estimations 

of the CTF. After that, the next step would be checking the good estimations obtained 

from each group and importing to the database all of them with its associated defocus and 

the other two PSD at different sampling rates, without coincidences in order to not 

duplicate information. 

The previous approach implies a lot of validation code and, after observing the 

results obtained in each of the three groups, the decision taken was to not follow it. The 
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reason for this is that the results obtained between the different groups are very 

uncompensated. Usually one of the groups presents a significantly higher number of good 

estimations with a very low failure rate in the estimation. Also, it must be considered that 

always a significant part of the discarded estimations is due to the quality of the 

micrograph and not because of the estimation itself.  

Also, the success rate in the estimation of CTFs between the different resolution 

groups is compared. From the processed datasets it has been observed that the number of 

well estimated CTF from the two groups with the lowest success rate that are not included 

in the highest success rate group is low. Due to this, picking only the group with the best 

estimations leaves an insignificant amount of well estimated CTFs unselected from the 

other groups.  

From the previous reasoning a much simpler approach has been taken, giving 

place to the following database confection procedure. The first simplification performed 

comes from the selection of the source of information. In this case only the groups from 

each triad which present the greatest number of good estimations is going to be 

considered. After these groups were selected by the user, the protocol is going to remove 

all the incorrect estimations and the defocus from the good ones is going to be saved in a 

metadata text file generated. This metadata file is going to have five different fields for 

each element:  

• ID: a unique identifier for each element of the database. 

• Defocus: the correctly calculated defocus value taken from the 

selected group. 

• Kv: the acceleration voltage at which the microscope took the 

images. 

• Subset: the resolution group selected from which the information 

associated to the estimation is taken. 

• File: the file path where PSD used in the correct estimation of the 

CTF is stored. The file path is slightly change, including the subset group in the 

name of the file for an easier posterior management of the data.  

Once the metadata.txt file is generated, the management of the database is much 

simpler. Some lines of this file are shown below:  
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     ID      DEFOCUS   kV  SUBSET  FILE 

  0000000   4206   300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130111_10950_aligned_psdAt_1.xmp 

  0000001   6345  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130110_10652_aligned_psdAt_1.xmp 

  0000002  12453  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130111_11018_aligned_psdAt_1.xmp 

  0000003   7736  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130110_10742_aligned_psdAt_1.xmp 

  0000004   3246  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130110_10657_aligned_psdAt_1.xmp 

  0000005   7667  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130110_10646_aligned_psdAt_1.xmp 

  0000006  10516  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130110_10669_aligned_psdAt_1.xmp 

  0000007  15415  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130113_11301_aligned_psdAt_1.xmp 

  0000008  15528  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130109_10510_aligned_psdAt_1.xmp 

  0000009   8338  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130110_10672_aligned_psdAt_1.xmp 

  0000010   7280  300    1    /home/fede/Documents/DeepDefocus/TrainStack/20130109_10623_aligned_psdAt_1.xmp 

  ... 

From this file, the rest of the information can be imported easily to the database. 

Once the groups form which the estimation information is going to be taken are included 

in the database and hence in the metadata file, the other two groups associated to it can 

be imported. For this, the same protocol can be used but indicating with a flag that the 

estimation data is already included in the database. Then the protocol will check the 

matching files between the selected group and the files already present in the database 

and will import them, after indicating its subset group in the file name. 

In order to reduce the hard disk traffic and accelerate the deep learning network 

training, an extra step is performed when the database is constructed. With the usage of a 

new developed Python script, the content of the database is saved employing a data 

structure easier to load a read by the network using the data structure classes from the 

Python software package NumPy. 

Once this procedure is done for every analyzed group it is possible to start with 

the design of the network. For an easier way of designing the network, the software 

package Tensorflow has been used in conjunction with the library Keras, which gives a 

more comfortable interface to interact with these designment tools.  

The main lines of the design are easy to follow since the constructing process 

consist mainly in the consecutive addition of several layers. The first one added is an 

input layer, which accepts the images into the network, and, after the propagation of the 

input data through the network, the defocus value is predicted at the output. Once the 

model is complete and constructed it, can be trained feeding it with the images and the 

defocus calculation associated to them.  
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The network is fed with a 3D data structure which consist in several blocks (one 

per each defocus estimated), consisting each block of a 3D element with the size of the 

PSD (512x512 pixels) and 3 overlapping layers for each resolution provided of the image. 

The defocus values are saved in a regular float vector. 

Once the data is ready to feed the network it is necessary to establish the 

structure of the network that is going to be trained. The power and robustness of the Keras 

software package is that every network is constructed through the addition of several 

predefined layers that can be characterized with some feature parameters. This universal 

interface allows the design of very different networks using the same tools. Here, the main 

kind of layers used for the confection of the networks are exposed: 

• Input(shape, name): the input layer is the first one added to the 

model in which the shape of the data coming into the network is specified. The 

rest of the layers will do automatically the shape inference, so this is the only one 

which needs explicit information about the shape of the input data. Attributes: 

o Shape: the dimensions of the input data of each element 

which inputs the network. In the case of this project the shape of the 

incoming data is three images of 512x512 pixels each (512,512,3). 

o Name: the given name of the layer. In the case of this 

project the given name is “input”. 

• Conv2D(filters, kernelSize=(x,x), activation): in this layer a 

convolutional kernel is created and convolved with the input to produce a tensor 

of outputs, indicating its number and shape. In other words, this layer is going to 

convolve the input images with a set of filters from which some features are 

captured. Attributes: 

o Filters: the number of different filters applied to the image. 

In the case of this project the number of filters will vary depending on the 

approach taken and the layer location inside the model. 

o kernelSize: the dimension of the moving window used to 

capture the features of the images. In the case of this project the size of the 

of filters will vary depending on the approach taken and the layer location 

inside the model. 
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o Activation: specification of the activation function to use 

for the filters. Different kinds of activations have implications in results 

obtained in the features extraction process. In the case of this project the 

activation is equal to “relu”, rectified linear unit.  

• BatchNotmalization(): this layer is used in order to normalize the 

input data through a mathematical transformation of the input image by adjusting 

and scaling the activations. The reason behind applying this layer is to improve 

the speed, performance and stability of the network by reducing the covariance 

shift. The covariance shift is defined as the change from the input distribution to 

the internal layers of the network due to small changes from the input that get 

amplified down the network. Reducing the covariance shift implies a faster 

convergence of the network. 

• MaxPooling2D(pool_size=(x,x)): this layer applies the maximum 

pooling operation for spatial data. This operation is defined as a wise-behavioral 

downsampling procedure in which, inside the filter specified, the algorithm will 

keep the maximum value and discard the others. This filter will move through the 

image with a specific stride (differential) constructing the output image. A 

schematic of this process is shown in Figure 25. Attributes: 

o pool_size: this parameter indicates the size of the filter in 

which the maximum pooling process will be applied. In the case of this 

project the size of the maximum pooling window will vary depending on 

the approach taken and the layer location inside the model. 

o stride: this parameter specifies the differential 

displacement of the maximum pooling window. Although it is not 

specified in this project, by default it is equal to the pool_size attribute, in 

order to avoid window overlapping. 

 

Figure 25:  Schematic of a 2x2 filter and same stride maximum pooling procedure for an 4x4 pixel 

image. 
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• Dropout(rate): the dropout procedure consists in randomly setting 

a fraction of the input units to 0 during the training process. This application is 

done in order to avoid the overfitting of the network to the input data. Attributes: 

o Rate: faction of the data that will be dropped to zero. In the 

case of this project this rate will be set to 0.2 (20% of the input data). 

• Flatten(): the procedure followed in this step is very simple. The 

shape of the data is prepared in order to fit the input of the dense layer of the neural 

network. For this the data undergo a flattening process allowing a sequential 

feeding of the network.   

• Dense(units, name, activation): this layer consist in a regular 

densely-connected neural network layer. All the previous steps were performed in 

other to a proper preparation of the data and feature extraction, but once they are 

completed, the data generated is ready to feed the dense layer of the deep neural 

network. This layer includes the deep learning network and the output generator. 

Attributes: 

o Units: this parameter indicates the dimensionality of the 

output space. In case of this project this number depends on where this 

dense layer is located inside the network. If this layer is placed at the end 

of the network this value is equal to 1, since this design is just for 

predicting the defocus value. 

o Name: the given name to the network. In case of the project 

the given name is “output” if it is the last layer or “dense” if it is not.  

o Activation: specification of the activation function to use 

for the filters. Different kinds of activations have implications in results 

obtained in the learning process. In the case of this project the activation 

is equal to “linear” if it is at the output of the network and depend on the 

specific approach for any other case. 

Once the construction procedure of the networks is clarified is easier to explain 

the designment procedure. But first, it is necessary to introduce the concept of network 

parameters and which are their implications in the functioning of the network.  
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These network parameters are going to characterize the model obtained after the 

training of the network. If it is true that not all the parameters are trainable, but most of 

them are, and specific changes on each of them lead to a different behavior of the network 

and the model obtained as a whole. Due to this, the more parameters the network has the 

more refined behavior will be possible to model, although the more information is needed 

for the training process, being aware also of avoiding overfitting.  

Once the network is designed and the training data is ready it is possible to start 

training the network. To do this, the training dataset is divided in batches. A batch is a 

fixed size group of training elements and, in the training process, the network is fed with 

every batch one following the next. Once each batch has been propagated through the 

whole network, the weights are recalculated, and the next batch is introduced 

Also, the training process is divided in epochs. An epoch consists in an iteration 

of the training process in which the network has been fed with the whole training dataset 

once. This process can be iterated until the network converges or the number or set epoch 

for the training process is completed.  

If training process last too many epochs and the size of the data and the network 

architecture is not compensated, the network can suffer from overfitting. Overfitting is a 

statistical phenomenon in which, due to an intensive training process, the output model is 

too closely fitted to the specific data with which it has been trained. 

In the development of the different models designed in the project, the number 

of epochs used by the default is 100. Although it is an elevated number, the argumentation 

for this is to be sure that no behavior is lost due to a lack of epochs, although it increases 

the training time. With the training design, although the network does not converge, a 

comprehensive study of the characterization of the learning process is achieved.  

But, during this training process, some measure of the wellness of the 

estimations performed by the network is used. Although at the end of the training process 

the next followed step is the testing process, some inner testing during the training is 

needed to check how the network is behaving meanwhile.  
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To accomplish this, before starting the training process some amount of the 

training data is removed before the construction of the batches. These data will be used 

as a validation group or batch and, at the end of the epoch, the network will use this data 

to test how the training process is progressing. The measure of error used during the 

training of the models is the mean absolute error (MSE).  

It is important to consider that, in order to have a robust estimation of the 

performance of the network in each epoch, the validation data is separated before the 

training start, so the network will not be ever fed with this data for training purposes. 

As an extra functionality, Keras software package allows to include specific 

behavioral features to the developed models, known as callbacks. These callbacks allow 

diverse and different functionalities, from a more detailed output of the developed training 

process, including graphical and analytical information, to changes in the behavior of the 

network in order to face different events while the training process is performed. From 

the vast different kinds of possible callbacks only the ones used are exposed: 

• CSVLogger. This callback will generate a .csv file with the 

evolution of the performance of the deep learning network while the training 

process is taking place. 

• TensorBoard. TensorBoard is a specific visualization tool for 

machine learning processes. With the application of this callback, a log file is 

generated while the training process is taking place. Then, this file can be 

visualized with the TensorboardTool, offering a very comprehensive view of the 

process performed.  

• ReduceLROnPlateau. This callback will decrease the learning rate 

of the network optimizer when the metric has stopped improving from a 

determined number of epochs. The learning rate gives a measure of the magnitude 

at which the network is going to change its weights when the input data is 

propagated through the network. Models usually benefits from a decrement of the 

learning rate when they get stagnated.  

Once the followed procedure for the generation of the models is explained, the 

structure of the network generated is introduced.  
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This first approach to the confection of a deep learning network was a standard 

approach in the field of image processing. In this approach the objective is not to produce 

a massive network that requires too much data, computational power and time to be 

trained, but robust and extensive enough network to study its training profile as a starting 

point.  

This first network architecture is composed by 13 layers giving a total of 60.081 

parameters. From these parameters, 59,985 are trainable and the remaining 96 are not.  A 

resume of this architecture is summarized in the Table 2. 

Table 2 Structure of the first deep learning network developed in the project. 

Layer type Output 
shape 

Number of 
parameters 

Features 

InputLayer 512x512x3 0 (512,512,3), “input” 

Conv2D 498x498x16 10,816 16, (15,15), “relu” 

BatchNormlization 498x498x16 64  

MaxPooling2D 166x166x16 0 (3,3) 

Conv2D 158x158x16 20,752 16, (9,9), “relu” 

BatchNormalization 158x158x16 64  

MaxPooling2D 79x79x16 0  

Conv2D 75x75x16 6,416 16, (5,5), “relu” 

BatchNormalization 75x75x16 64  

MaxPooling2D 37x37x16 0  

DropOut 37x37x16 0 0.2 

Flatten 21,904 0  

Dense 1 21905 1, “output”, “linear” 

 

Although this first design presented an acceptable result for the simplicity of the 

network, it did not fulfill the requirements for the application of the network. It is 

important to consider that the usage of a deep learning network for the prediction of a 

very sensitive value for the CTF estimation, as the defocus, is a double-edged sword. On 
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one hand, if a robustly trained model is obtained, an important and sensitive source of 

errors is eliminated but, on the other hand, if the model is not trained well enough, this 

same sensitive source of errors will spoil the results due to the wrong estimations 

obtained. 

Also, setting a new point of view with the design of a new network establishes 

a double check and allows a deeper analysis. This analysis will allow to verify if the 

previous result is due to the simplicity of the network, unable to learn enough details from 

the input data in order to give a better resolution, or if there exist a lack of data that will 

not allow a proper training of a network.  

 A second architecture is designed for the construction of a new network. The 

aim of this new design is to increase the learning capability of the network in order to 

capture more features and details of the input data and increase it learning capability.  

This second design is composed by 14 layers giving a total of 5.646.113 

parameters. From this set of parameters, 5.646.017 are trainable and the other 96 are not. 

A resume of this architecture is summarized in the Table 3. 
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Table 3 Structure of the second deep learning network developed in the project. 

Layer type Output 
shape 

Number of 
parameters 

Features 

InputLayer 512x512x3 0 (512,512,3), “input” 

Conv2D 498x498x16 10,816 16, (15,15), “relu” 

BatchNormlization 498x498x16 64  

MaxPooling2D 166x166x16 0 (3,3) 

Conv2D 158x158x16 20,752 16, (9,9), “relu” 

BatchNormalization 158x158x16 64  

MaxPooling2D 79x79x16 0  

Conv2D 75x75x16 6,416 16, (5,5), “relu” 

BatchNormalization 75x75x16 64  

MaxPooling2D 37x37x16 0  

Flatten 21,904 0  

Dense 256 5,607,680 256, “relu” 

Dropout 256 0 0.2 

Dense 1 257 1, “output”, “linear” 

 

The design of this network, although it maintains the initial treatment over the 

input images through the convolutional layers, increases its learning capability. For this, 

a new dense layer has been added to the network, being it the main source of trainable 

parameters of the network.  

This second network did not completely fulfil the requirements for its design. In 

order to produce a more stable and robust network a third design is implemented.  

The third and last network architecture developed is composed by 12 layers 

giving a total of 17,938,353 parameters, from which all of them are trainable.  A resume 

of this architecture is summarized in Table 4. 
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Table 4 Structure of the third deep learning network developed in the project. 

Layer type Output 
shape 

Number of 
parameters 

Features 

InputLayer 512x512x3 0 (512,512,3), “input” 

Conv2D 498x498x16 10,816 16, (15,15), “relu” 

MaxPooling2D 166x166x16 0 (3,3) 

Conv2D 158x158x16 20,752 16, (9,9), “relu” 

MaxPooling2D 79x79x16 0  

Conv2D 75x75x32 12,832 32, (5,5), “relu” 

MaxPooling2D 37x37x32 0  

Conv2D 33x33x64 51,264 64, (5,5), “relu” 

Flatten 69,696 0  

Dense 256 17,842,432 256, “linear” 

DropOut 256 0 0.2 

Dense 1 257 1, “output”, “linear” 

 

As it can be seen, this network presents a new increase in the number of trainable 

parameters. This increment comes, not as in the previous case adding a new dense layer 

but feeding this layer with a more intensive information. For this, a new convolutional 

filter layer has been added and the rest of them have been modified in order to extract 

more features and details of the input images.  

This third deep learning network increased significantly its performance 

presenting better results in the defocus estimation compared with the previous ones. Due 

to the results obtained from this model no new designs have been implemented.  

Both models have been trained with the same database due to two main reasons. 

First, in order to take advantage of all processed micrographs and, second, because it is 

the only procedure that allows a fair comparison between the models.  
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The whole training dataset contains 8,144 elements, from which 7329 will be 

used for training and 815 for validation, considering each element as a triad of images. 

At this point the training process of the network would be concluded and now it 

is possible to move on to the testing process. A schematic of the resumed workflow 

followed in the training process is shown in Figure 26. 

 

Figure 26: Schematic of the whole workflow of the deep learning network training process for the 

micrograph defocus estimation 

Once the trained models are available it is possible to advance to the testing 

process. This process is much simpler than the previous since only it is necessary a sample 

data and the ground truth information. Then, this data will be processed by the network 

and a defocus value will be estimated for each input triad of PSD.  

Finally, the predicted defocus values from the testing dataset are compared with 

the ground truth information and the MAE can be calculated to characterize the quality 

of the prediction.  

A schematic of the resumed workflow followed in the testing process is shown 

in Figure 27. 
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Figure 27: Schematic of the whole workflow of the deep learning network testing process for the 

micrograph defocus estimation 

In order simplify the process and considering that the validation data gives a 

robust enough estimation of the performance of the model, no testing step is performed 

in the development of this project.  
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4 RESULTS 

After the exposition of the materials and methods employed in the development 

of this project, the results obtained from these are presented. For this purpose, this chapter 

is divided in the same two different sections than the previous one. First, presenting the 

results obtained from the corrections performed in the CTF estimation protocol, and 

second, presenting the results obtained from the deep neural network for defocus 

estimation. 

4.1 CTF estimation corrections 

In this first section the results obtained from the applied CTF corrections are 

presented. Due to the relation of the whole set of corrections performed and its joint 

behavior the results presented compare the performance of the algorithm after and before 

the whole set of corrections were applied.  

An individual analysis of the improvement obtained from each individual 

correction is nonsense. The reason for this is due to the compose action of several 

corrections, synergies are generated which raises a higher improvement than the separate 

effect of each one of them. 

Now, diagnosing the improvement of the performance of the algorithm after and 

before the corrections is not obvious. The reason for this is that two different behaviors 

must be considered in order to give a robust measure of the performance. First correct 

estimation of the CTF, and second the correct discarding of those CTF that do not achieve 

a quality compromise.  

In order to do so, the performance measure will be calculated over a matrix that 

will compare the real quality of the estimation against the estimation. To judge the quality 

of the estimation it is necessary to analyze each, one by one, which is a time-consuming 

task if large datasets are going to be analyzed. In order to be robust in the analysis of the 

improvement performed of the corrections, a large dataset with 1792 elements has been 

used. 

From the confusion matrix four different groups are defined: 
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• True positive. Those micrographs the are correctly estimated and 

fulfill the requirements criteria. 

• True negative. Those micrographs that were correctly discarded 

due to the do not fulfill the requirements criteria. 

• False negative. Those micrographs that are correctly estimated but 

did not have to be discarded. 

• False positive. Those micrographs that are not correctly estimated 

but passes through the quality criteria. 

The set of elements formed by the first two groups represents the correct 

behavior of the protocol, while the set of elements from the second two groups constitutes 

the sources of errors. Two matrices are constructed one before and after the corrections 

were applied, comparing its results. In Table 5 it is possible to see the classification of 

these 4 groups in the confusion matrix 

Table 5 Confusion matrix for the classification of the results obtained and the evaluation of the 

performance of the CTF estimation protocol.  

Total population Condition position Condition negative 

Predicted condition 
positive 

True positive False positive 

Prediction condition 
negative 

False negative True negative 

 

Now some criteria have been selected in order to give a measure of the 

performance of the CTF estimation protocol and a quality of its estimation, it is possible 

to compare the impact of the corrections comparing the confusion matrix obtained before 

and after the corrections were applied.  

In Table 6 it can be seen the results matrix for the algorithm before the 

corrections were applied. 
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Table 6 Confusion matrix obtained from the CTF estimation protocol before the corrections where 

applied. 

Total population Condition position Condition negative 

Predicted condition 
positive 

1457 236 

Prediction condition 
negative 

1 98 

 

Once the corrections were applied a significant improvement was obtained both 

in the absolute values of each group and its relative distribution inside de matrix, meaning 

that not all the false positives were moved to true negative, but also some estimations 

were also corrected, leading these element to the true positives group.  

In Table 7 it can be seen the results matrix for the algorithm after the corrections 

were applied. 

Table 7 Confusion matrix obtained from the CTF estimation protocol after the corrections where 

applied. 

Total population Condition position Condition negative 

Predicted condition 
positive 

1622 10 

Prediction condition 
negative 

0 160 

 

In order to give a more compact measure of the obtained results that makes 

easier the comparison of both matrices, before and after the corrections were applied, the 

F1 score and the Matthew correlation coefficient are used. These scores are going to give 

a measure of the wellness of the algorithm performance considering the 4 different groups 

of the matrix. 

In the literature, there is some criticize to the usage of the F1 score. The reason 

for this is that their detractors argue that this coefficient is not considering the relevance 
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of each group, but it is giving the same importance to all kind of errors and matches and 

refusing any ponderation between them. 

Being aware of this issue, the measure is used. The reason for this is that, first 

the raw data it is presented and a deep comparison between the different groups will be 

performed while the benefits of simplicity and understanding compensates its backwards. 

The F1 coefficient is defined as: 

F1 = 2 ·
precision ·  recall

precision +  recall
 

Defining precision and recall as: 

precision =
true possitives

true possitives + false positives
 

recall =
true possitives

true possitives + false negatives
 

Now this first score the result gives in the confusion matrix before the 

corrections were applied is: 

precision =
1457

1457 + 236
= 0.8606           recall =

1457

1457 + 1
= 0.9993 

F1 = 2 ·
precision ·  recall

precision +  recall
= 2 ·

0.8606 ·  0.9993

0.8606 +  0.9993
= 0.9248 

And its homologous after the corrections were applied: 

precision =
1622

1622 + 10
= 0.9939           recall =

1622

1622 + 0
= 1 

F1 = 2 ·
precision ·  recall

precision +  recall
= 2 ·

0.9939 ·  1

0.9939 +  1
= 0.9969 

To reinforce the information given by the previous score, the Matthews 

correlation coefficient is also applied to the obtained results. This score is defined as:  
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MCC =
(TP · TN - FP · FN)

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

denoting TP as true positives, TN as true negatives, FP as false positives and FN 

as false negatives. 

Now this coefficient is defined, its result calculated for the confusion matrix 

before the corrections were applies is: 

MCC =
(1457 · 98 - 236 · 1)

√(1457 + 236)(1457 + 1)(98 + 236)(98 + 1)
= 0.4990 

And its homologous after the corrections were applied: 

MCC =
(1622 · 160 - 10 · 0)

√(1622 + 10)(1622 + 0)(160 + 10)(160 + 0)
= 0.9672 

All the results presented in this section will be compared and analyzed in the 

next discussion section.  

4.2 Deep learning network for defocus estimation 

In this second section of this chapter, the results obtained from the designed 

deep learning networks for the defocus prediction are presented. But first it is necessary 

to analyze the training process of the model.  

The main reason for this is that, depending on how the training progression was 

performed, it is possible to rely on the obtained results or not. In principle, if the training 

data is not performed properly, the testing process will arise poor results.  

Remember that the error measurement of the obtained estimation employed 

while training and testing is the mean absolute error (MAE). 

In case the generated model is overfitted, one of the main concerns in the design 

and train of deep learning architectures, a very specific behavior of the MAE obtained by 

the training and the validation data can be observed. This overfitting behavior is 

characterized by a sharp decrement of the MAE function in the training data, since the 
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network is “memorizing” and not learning this data, while the MAE function obtained by 

the validation data increases sharply, since the network is not learning and the validation 

element do not match with the training (and memorized) ones.  

To check the correct training of the model it is necessary to analyze and compare 

the evolution of the error functions presented by the training and the validation datasets 

during the process. The details of this comparison process will be explained in the 

discussion chapter.  

In first place the results obtained from the first simplest model are shown. For 

an easier interpretation of the performance of this model, the error profile of both datasets 

(training and validation) are shown at the same time. In the Table 8 it can be seen the 

MAE obtained at the end of each epoch for the training and the validation data.  
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Table 8 MAE for both validation and train data in the training step of the first developed model. 

Epoch Train MAE Validation 
MAE 

Epoch Train 
MAE 

Validation 
MAE 

Epoch Train MAE Validation 
MAE 

1 14923.9461 16483.8667 35 642.6408 2135.522 69 645.7195 2413.0824 

2 4938.4459 3967.1706 36 644.529 1955.1537 70 650.004 2005.5305 

3 2781.569 7406.6253 37 648.6108 1804.4199 71 641.3758 1854.4794 

4 2,191 4434.3644 38 636.4016 1835.3795 72 647.1924 2237.7793 

5 2124.8578 3108.6466 39 646.5268 1693.9652 73 646.7732 2243.9877 

6 1878.028 3840.9335 40 639.1028 1942.3927 74 649.932 2286.8069 

7 1738.0563 1857.3791 41 650.2256 1887.6984 75 648.4023 1701.4646 

8 1578.073 6552.6205 42 653.7123 2240.7864 76 647.9737 2254.155 

9 1502.7047 2687.4888 43 638.8355 1924.7676 77 645.9368 2012.5067 

10 1448.0198 5456.0541 44 642.8428 1856.8356 78 645.5324 2287.0633 

11 1291.2272 2363.7729 45 648.8692 1930.4765 79 637.2915 1797.9453 

12 1231.4586 1597.927 46 648.5715 2062.3185 80 645.8953 2219.5222 

13 1158.1423 3090.2952 47 650.2258 2099.0128 81 655.5077 2336.5213 

14 1114.6565 4252.9029 48 638.0292 1823.7257 82 643.7384 1862.8117 

15 1050.021 1927.2213 49 639.6658 1714.2971 83 643.3276 1679.5038 

16 1001.4539 1090.0683 50 651.2495 2169.9248 84 633.6328 1806.0378 

17 963.3323 1753.5307 51 629.282 2080.6183 85 626.2174 2322.9727 

18 898.294 1098.5901 52 641.355 2305.5273 86 646.545 1747.5427 

19 886.3934 2069.3034 53 631.0106 2103.6066 87 645.7141 2135.3724 

20 838.3466 1850.2737 54 654.7787 1739.4262 88 651.9804 2314.1894 

21 810.9587 1206.2354 55 640.1239 2143.4493 89 636.5743 1788.2038 

22 694.177 2333.9149 56 642.5668 2181.2686 90 639.281 2260.5833 

23 670.944 2037.2854 57 642.8349 1893.2544 91 644.138 2427.1342 

24 677.1188 2279.2257 58 641.1354 1818.8469 92 647.1844 1994.7515 

25 677.4127 2351.1055 59 643.9639 2230.8986 93 634.6277 1896.8726 

26 665.8807 2419.7443 60 637.4104 1833.9714 94 634.3699 1929.8352 

27 652.4883 1784.0337 61 643.7096 2150.7264 95 645.3282 1885.3223 

28 643.7601 2205.7128 62 644.5611 1800.7671 96 641.7834 1841.7785 

29 638.8731 2379.7879 63 642.9749 2278.9927 97 647.6663 1758.5578 

30 646.1048 1798.7329 64 640.0991 1755.3121 98 637.0184 2122.094 

31 656.3399 1900.9764 65 652.636 1862.2526 99 637.2182 2059.7121 

32 643.1721 1914.6919 66 638.1169 1984.0148 100 646.1381 2082.7864 

33 652.9998 1942.2035 67 652.5643 1763.0338    

34 638.5752 1833.4693 68 646.1592 1677.4069    
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In order to facilitate the understanding of the previously presented data, it has 

been plotted in Figure 28. 

 

Figure 28: Values obtained at the end of each epoch for the training data (red) and the validation 

data (blue) measuring their mean absolute error for the first designed model. 

Once the MAE values from all epochs for both train and validation were 

obtained it is possible to characterize the behavior of the generated model. Attending to 

the error measurement of the estimation performed over the training dataset, from 

iteration 25 it presents a stable profile around a MAE of 645.03.  

Regarding the performance of the model it is necessary to attend to the 

validation data. This dataset is the one used in order to accomplish the testing procedure 

of the model while the training process is taking place. The lowest MAE value that the 

trained model presented once it has abandoned the transitory regime is 1677.4069, at 

iteration 68.  

Once the exposition of the results concerning to the first model is finished the 

results of the second model are presented.  As for the previous model the results regarding 

to the training and validation processes are shown together. In the Table 9 it can be seen 

the MAE obtained at the end of each epoch for the training and the validation data. 
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Table 9 MAE for both validation and train data in the training step of the second developed model. 

Epoch Train MAE Validation 
MAE 

Epoch Train MAE Validation 
MAE 

Epoch Train 
MAE 

Validation 
MAE 

1 5265.3221 3921.5278 35 5265.3221 625.7383 69 772.1474 592.9078 

2 1685.9492 3817.9805 36 1685.9492 556.8276 70 772.0543 612.2017 

3 1321.3871 1507.3217 37 1321.3871 570.373 71 766.1735 637.195 

4 1144.6739 2637.551 38 1144.6739 613.6317 72 772.2699 648.1382 

5 1046.2012 1057.1036 39 1046.2012 667.5173 73 782.8852 630.3086 

6 1002.4411 563.306 40 1002.4411 660.1959 74 783.8548 558.2686 

7 969.3886 971.7463 41 969.3886 704.3576 75 773.0874 597.0657 

8 950.4835 1069.81 42 950.4835 605.2893 76 760.7962 655.5763 

9 895.6867 765.5455 43 895.6867 703.9587 77 764.5396 635.196 

10 902.6185 1129.4586 44 902.6185 640.8378 78 758.441 586.288 

11 893.6601 336.2581 45 893.6601 695.2381 79 776.2029 660.8635 

12 873.2935 520.0651 46 873.2935 597.2834 80 771.9667 629.5203 

13 875.9147 808.1545 47 875.9147 600.4609 81 771.369 673.9074 

14 866.2153 1449.1964 48 866.2153 655.7635 82 770.0508 616.4582 

15 895.7293 524.8058 49 895.7293 619.6062 83 759.1199 628.1327 

16 841.8867 882.3111 50 841.8867 625.7872 84 770.3139 680.6082 

17 797.4445 677.6053 51 797.4445 603.2508 85 767.5731 589.4382 

18 774.9127 1183.6225 52 774.9127 654.5428 86 769.6572 633.812 

19 775.3095 942.7841 53 775.3095 737.1643 87 771.6747 637.1917 

20 788.5488 980.315 54 788.5488 660.325 88 781.1145 657.2766 

21 785.1263 591.8588 55 785.1263 604.6705 89 765.1878 599.2198 

22 764.1961 680.1444 56 764.1961 631.7743 90 765.3799 672.5181 

23 766.6758 550.037 57 766.6758 704.7565 91 752.1925 692.8028 

24 767.5778 625.1243 58 767.5778 600.7221 92 766.8335 660.2816 

25 769.1709 631.6594 59 769.1709 584.0653 93 761.1048 594.6647 

26 783.713 691.5395 60 783.713 587.8008 94 783.061 617.3551 

27 775.5811 632.6427 61 775.5811 663.2713 95 781.6897 614.0408 

28 781.7389 608.8003 62 781.7389 610.172 96 759.6743 594.3741 

29 774.14 630.1872 63 774.14 670.7733 97 770.0165 671.0063 

30 771.477 596.3289 64 771.477 639.7269 98 774.0807 591.4648 

31 772.7271 635.9029 65 772.7271 661.9095 99 761.8572 726.7094 

32 769.4824 598.6687 66 769.4824 632.9932 100 778.9581 625.5055 

33 773.3475 599.8772 67 773.3475 671.4829    

34 779.9682 639.036 68 779.9682 625.7383    
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In order to facilitate the understanding of the previously presented data, it has 

been plotted in Figure 29. 

 

Figure 29: Values obtained at the end of each epoch for the training data (red) and the validation 

data (blue) measuring their mean absolute error for the second designed model. 

Once all the MAE values for both train and validation were obtained it is 

possible to characterize the behavior of the generated model. Attending to the error 

measurement of the estimation performed over the training dataset, from iteration 25 it 

presents a stable profile around a MAE of 769.61.  

Regarding the validation data, the lowest MAE value that the trained model 

presented once it has abandoned the transitory regime is 556.8276, at iteration 36.  

Finally, the same previous procedure is done for the last third model constructed. 

As for the previous model the results regarding to the training and validation process are 

shown together. In the Table 10 it can be seen the MAE obtained at the end of each epoch 

for the training and the validation data. 
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Table 10 MAE for both validation and train data in the training step of the third developed model. 

Epoch Train MAE Validation 
MAE 

Epoch Train 
MAE 

Validation 
MAE 

Epoch Train MAE Validation 
MAE 

1 6906.0705 5578.7515 35 954.101 504.4455 69 942.8634 504.1992 

2 4246.2555 4188.6799 36 954.9026 511.2336 70 940.9698 504.1992 

3 3393.3498 3578.6936 37 936.6101 505.8664 71 944.3294 504.1992 

4 2909.4139 3048.8931 38 943.3834 504.6351 72 938.4253 504.1992 

5 2304.9447 3520.9587 39 947.2607 504.329 73 942.9315 504.1992 

6 1900.0349 3138.7949 40 942.7136 504.0495 74 931.8519 504.1992 

7 1712.2279 4051.9137 41 936.3492 504.7355 75 945.707 504.1992 

8 1750.4901 1813.2277 42 942.1123 504.5796 76 944.2089 504.1992 

9 1369.9822 1982.2114 43 931.7128 504.5702 77 940.3295 504.1992 

10 1318.1988 874.4662 44 945.1441 504.4749 78 947.1132 504.1992 

11 1387.1404 1460.172 45 920.3414 504.2922 79 937.959 504.1992 

12 1189.2656 1592.9411 46 949.5572 504.2831 80 944.2289 504.1992 

13 1276.3478 1518.306 47 947.3945 504.2045 81 935.9772 504.1992 

14 1115.8838 1338.4267 48 959.8998 504.2013 82 935.398 504.1992 

15 1159.7688 928.6857 49 950.2943 504.1994 83 936.4687 504.1992 

16 1009.5135 658.3785 50 942.4473 504.1991 84 942.7208 504.1992 

17 985.6337 710.5122 51 944.0733 504.2005 85 932.2695 504.1992 

18 993.071 1002.9568 52 945.1506 504.1986 86 946.453 504.1992 

19 982.6094 552.6769 53 948.9198 504.2 87 937.8504 504.1992 

20 983.668 551.1602 54 945.0734 504.1985 88 931.7735 504.1992 

21 985.6328 623.3457 55 946.7009 504.1997 89 936.1044 504.1992 

22 973.1463 573.5585 56 940.1063 504.1975 90 932.9595 504.1992 

23 985.9028 679.3578 57 945.8268 504.1978 91 947.0551 504.1992 

24 966.0499 619.6917 58 943.9019 504.1975 92 949.5227 504.1992 

25 959.3828 551.9126 59 937.2469 504.1971 93 946.9618 504.1992 

26 961.9479 530.5338 60 936.642 504.1988 94 927.4164 504.1992 

27 933.8925 488.1128 61 945.7086 504.1987 95 933.7468 504.1992 

28 952.2826 499.0185 62 926.2942 504.1992 96 932.889 504.1992 

29 938.3903 495.0139 63 936.484 504.1992 97 952.4123 504.1992 

30 949.8653 518.8249 64 951.0844 504.1992 98 945.8782 504.1992 

31 948.6656 499.7923 65 926.476 504.1992 99 941.557 504.1992 

32 935.0021 537.9519 66 933.2736 504.1992 100 925.2371 504.1992 

33 950.8735 500.2287 67 941.5843 504.1992    

34 954.6252 507.0442 68 948.0085 504.1992    
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In order to facilitate the understanding of the previously presented data see, it 

has been plotted in Figure 30. 

 

Figure 30: Values obtained at the end of each epoch for the training data (red) and the validation 

data (blue) measuring their mean absolute error for the third designed model. 

Once all the MAE values for both train and validation were obtained, it is 

possible to characterize the behavior of the generated model. Attending to the error 

measurement of the estimation performed over the training dataset, from iteration 25 it 

presents a stable profile around a MAE of 942.34.  

Regarding the validation data, the trained model falls from iteration 62 into a 

stable MAE of 504.1992, after leaving the transitory regime.  In this case, instead looking 

for the lowest MAE to find the epoch at which the model presents the best performance, 

the performance resulting model was better characterized by the stable region presented 

at the end of its training process.   

Results will be compared and analyzed in the next discussion section. 
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5 DISCUSSION 

Once the results are presented it is necessary to achieve some discussion in order 

to put them in context and understand its relevance. For this purpose, this chapter, as the 

two previous one, is divided into sections. First, for the analysis in the corrections applied 

in the CTF estimation protocol and second, for the deep learning network for defocus 

estimation designed. 

5.1 CTF estimation corrections 

In this first discussion section, the results obtained from the corrections 

performed in the CTF estimation algorithm are analyzed. In order to do so, it is necessary 

to analyze each one of the different groups generated by the confusion matrix in order to 

understand where and how these corrections had an impact in the protocol.  

But before going deep in the study of the performance of the protocol, the 

macroscopic measures of the results obtained will be analyzed first. Both scores or 

coefficients present different behaviors that will be compared and contextualized with the 

results obtained. But before going deep in the analysis and comparison of both statistics 

it is important to understand the different implications of the groups that are disposed in 

the confusion matrix, being some confusions or error more harmful than others for the 

whole processing workflow.  

Although the interpretation of the data is lost while these scores are used, they 

easily resume the obtained results in just one parameter which is a comfortable procedure 

in order to easily characterize the behavior of a classifier. Due to the simplicity of these 

coefficients it is important to understand how they are constructed, and which kind of 

behaviors from the estimation protocol will have more impact in its result and which of 

them will be underrated.  

Starting with the F1 estimation, it shows a 7.8% increment from 0.9248 to 

0.9969. Considering that this score can takes values between 0 and 1, the quality of the 

estimation according to this coefficient is highly accurate even before the corrections 

were applied. The reason for this, and one of the main criticisms granted to this score, is 

that it does not apply any ponderation between the different groups in the confusion 
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matrix. This behavior leads to a difficult characterization of the estimators or classifiers 

in which most of the elements are correctly estimated in case it is needed to analyze the 

sources of errors, as it is the case of the CTF estimation protocol.  

The second scored used is Matthew correlation coefficient. Compared to the F1 

score, the improvement of the protocol using this coefficient is far exalted presenting a 

93.83% increment from 0.4990 to 0.9969. If it is considered that this score is bounded 

from -1 to 1, this increment is even more significant.  

The reason for this difference between both coefficients is due to how each of 

them is constructed. The Matthew correlation coefficient is more informative rather than 

the F1 score in the binary classification problem because it considers the balances 

between the four different groups of the confusion matrix.  

The difference in the behavior between the two scores is even more outstanding 

when most of the elements are properly estimated and it is necessary to deal with false 

positives and false negatives analysis, as in the case of the CTF estimation algorithm. For 

these cases, Matthew correlation estimation gives a more robust measure between the 

ratios of the different groups that form the confusion matrix. Due to this, the correction 

of falsely classified elements, basically false positives, has a larger implication in this 

estimator.  

Since this protocol is both performing the estimation and analyzing the wellness 

of it, the disposition of this matrix can be significantly affected if deep changes are 

performed in the behavior of the protocol. In a perfect case scenario, and counting with a 

high-quality dataset, most of the elements should be placed in the True positive group 

and, as the quality of the dataset decreases, more elements will be displaced from this to 

the true negative group. 

In case of some element do not belong to one of this groups, supposing a 

classification error, the consequences of one or the other would be different. Without a 

doubt, false positive mistakes are always worse than false negatives. If losing value 

information is always something undesired (false negatives), the inclusion of mistaken 

data into the workflow must be the first correction priority (false positives). The reason 
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for this is that these false negative elements could spoil the results from a workflow that, 

without the inclusion of these elements, will arise good results. This is the main reason 

why, although analyzing the macroscopic values is a good practice, some deeper study 

must be performed. 

As it can be seen, although most of the elements were correctly classified, there 

is a non-neglectable number of false positives before the corrections were applied. These 

elements are the first ones whose behavior must be corrected. Also, the number of false 

negatives is insignificant and neglectable. In order to correct this behavior two different 

approaches can be performed, both improving the estimation or the selections criteria 

although. At the end, a combination of both is performed. 

If both confusion matrices are compared, the main correction is performed over 

the false positive group where after the correction the number of elements present fell 

from 236 to 10, supposing a decrement of the 95.76%. This is an extraordinary 

improvement in the performance of the protocol.  

Attending to the rest of the groups, important improvements can be seen in the 

properly classified elements, increasing a 11.32% for the true positive group and a 

63,27% for the true negative. Although an increment in the true negative group could not 

be considered as an improvement in comparison to the true positive group, some 

considerations must be taken. Firstly, not all the CTF need to be properly estimated since, 

if the quality of the PSD does not fulfill the criteria, the correct decision is to discard it 

although a good estimation is performed. Also, since the estimation process of the CTF 

cannot be perfect, the best decision that can be taken for the bad estimated profiles is to 

discard them. The false negative group is ignored due to its lack of elements.  

If a deeper study is performed over the false positive group, it is possible 

to characterize some common features or behaviors of the corrected elements. Most of 

them presented an error in the detection of the first zero. This behavior and its correction 

can be seen in Figure 31: 
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Figure 31: False positive estimation (left) and its comparison after the application of the corrections 

(right) 

The other two main source of false positives that has been corrected were PSD 

presenting an excessive noise or astigmatism that were not discarded. An example of 

these to behaviors is presented in Figure 32: 

 

Figure 32: False positive estimation due to an undetected excess of noise (left) and false positive 

estimation due to an undetected astigmatism (right). 

Finally, but a lower rate, some of the estimation where not even show (some not 

even included in the output set) due to the mistaken metadata parsing process and other 
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displaying issues. This problem has been also corrected and an example of it can be shown 

in Figure 33. 

 

Figure 33: False positive estimation due to a mistaken parsed metadata (left) and its comparison atter 

the corrections estimated at a different sampling rate (right). 

After going in detail into the comparison of the false positive group before and 

after the corrections were applied, an overview of how the corrections affected to this 

group in comparison with the rest is mandatory due to the significative improvement. The 

corrections applied had two main consequences to the elements belonging to this group, 

both almost in the same proportion.  

First, the CTF estimations that were correctly performed moved these elements 

to the true positive groups while second, the CTF estimations that were not corrected or 

which criteria did not fulfill the requirements were moved to the true negative group. 

Almost all the 10 remaining elements of the false positive group after corrections 

presented a no detection of an astigmatic behavior in the PSD. 

Attending at the final disposition of the confusion matrix after the correction 

were applied, although almost all the elements are properly classified, it is a clear 

decompensation between the false positive and the false negative group. This behavior, 

attending to the previous exposition, is undesired since it is always better to miss some 

good data rather that feeding the workflow with a corrupted one.  
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Although this behavior could be corrected applying a more restrictive estimation 

criteria, moving the false positives to the true negatives group and losing from other side 

some true positives into the false negatives, this was not applied. The reason for this is 

mainly because the cost-benefit ratio did not worth it, losing some true positive 

estimations to correct a few false positives.  

5.2 CTF estimation corrections 

In this second section of the discussion chapter the results obtained from the 

developed deep learning network for defocus estimation are analyzed. As it can been in 

the results sections, three different networks have been developed adding some changes 

from one to the next in order to achieve the better performance of the output model at the 

end of the training process.  

Machine learning solutions are useful tools for problem solving, more when 

some behavior or data want to be characterized in order to produce a wise output. The 

application proposed in this project fits very well to these programming approaches since 

a lot of coherent information (an image) is going to be used to predict a single numerical 

value (the defocus of the micrograph).  

But before analyzing the results, some comments need to be done about the 

problematic that this application has. First, constructing deep neural network, changing 

its architecture and parameters it is something that, in principle requires a deep effort of 

design and validation. Due to the usage of TensorFlow as a calculation engine and the 

software library Keras working as a user-friendly interface in order to design and develop 

these networks, this task is highly simplified.  With the usage of these tool changing the 

architecture of the network or its parameters is an affordable task, allowing the accessible 

and clear application of different nuances.  

Once the design problem is covered there is another, even harder, task that must 

be solved. This problem is to gather the enough computational power in order to train the 

network. Deep neural network training requires a huge amount of calculation power, even 

more if it is making some prediction from input images. To do so, this task cannot be 

performed in a normal user computer, and a more powerful device is required. To solve 
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this, these networks have been trained in a computational server form the CNB, the Carver 

machine.  

There are two main causes why it is necessary the usage of this machine. First, 

a personal computer does not usually have enough memory to allocate all the calculations 

required in the train process of a network and, second, the usage of a powerful GPU to 

perform the training step is deeply encouraged. Although a network can be trained 

employing only a CPU, the usage of a GPU makes this process around 50 times faster, 

taking from one hour and a half to a couple of minutes for each epoch trained. This is not 

a worldwide measure of the performance of a GPU for this task, just a measure of the 

computing times experimented in the consecution of this project. 

Once all the tools needed to develop the deep learning network are available it 

is time to prepare the data and design the network. The most time-consuming task from 

the computational point of view is the preparation of the training database, although the 

positive factor is that it is only needed to be done once. For training the network, the usage 

of powerful GPU significantly lightens the computational process. 

The reason why it is given this importance to all the computational complexity 

and the resources necessary to accomplish the calculation is due to the significant payload 

that they suppose in order to develop a deep learning solution. The amount of data needed 

for the training and the complexity of the models requires powerful tools.  

Due to a lack of experience in the application of machine learning solutions the 

first model developed is a conventional approach to a network able to process and learn 

from images that has been tested for other applications. The results of this network were 

worse than expected, and the MAE of 1677.4069 was significantly high considering the 

range of values in which the defocus usually is bounded.   

Analyzing the progression of the MAE of the train and the validation data 

through the different epochs it is possible to see how, although the training data has a 

smoother profile, the validation data present an unstable one. Also, the validation data 

present a significant higher MAE compared with the training data, although both of then 

presents an unacceptable error rate. The interpretation done about this result is that, due 
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to the simple architecture presented by this attempt of deep learning network, it may not 

be able to learn from the captured features of the input images. Due to this it is not possible 

to produce a correct prediction of the input image. 

In order to solve this behavior a second network is designed, with the only 

change that a new dense layer is added. The intention sought when adding this new layer 

to the network is to significantly increase the number of trainable parameters. All the new 

parameters added should be able to learn the captured information by the convolutional 

layers. 

Attending to the obtained result from this second design, the pursued objective 

was partially achieved. As it can be seen in the result section, the MAE presented by this 

new model significantly decrease, reaching the value of 556.8276. As it can be seen in 

the learning process both the train and the validation error functions did not present any 

qualitative change.  

Another difference that can be observed is that, once the both train and 

validation profiles are stable and the transitory region has finished, the validation profile 

is situated below the train one. Although this is not a typical behavior, the small difference 

between them discards any concern.  

Apart from the decrement in the in the error rate, the progression of the profile 

after the changes in the new network were applied did not present any improvement in 

the stability of the error function, still presenting an irregular behavior. 

The new model arises an error that is closer to an acceptable prediction for a 

defocus estimation. Although the improvement introduced in the prediction after this 

change in the design of the network, the error rate and the still unstable profile presented 

by the validation data aims to look for some modification in the architecture of the model 

that keeps improving its performance. 

In order to look for corrections of the actual model, it is necessary to interpret 

its results and understand the consequences in the behavior of the protocol. The 

interpretation is that the new dense layer introduced, and consequently, the significative 

increment in trainable parameters, allows the network to capture and model more complex 
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and detailed behaviors. This new captured behavior improves the prediction, reducing the 

error in the estimated defocus value. Due to this, instead of adding new more dense layers 

and trainable parameters to the network a different approach is tried. 

The last included modification to the network consists in a different design of 

the convolutional layers. The aim was to feed the network with more information 

increasing the features extracted from the images, now that there is a significative learning 

capability of the network. In order to do so, a new convolutional layer has been added 

and some modifications have been done in all of them. In order to improve the feature 

detection, the number of filters (channels) will be progressively increased from 16 to 64 

by a factor of 2 while the size of the filters is reduced from 15 to 9 and finally to 5.  

Also, the batch normalization layers are removed. The reason for this is that 

there is not enough variation in the input the data in order to produce some covariant shift 

effect that decreases a network performance.  

Finally, with the previous modifications, the third and final model is constructed 

and trained. The result obtained from this model fulfilled the expectations from the 

corrections. The decrement of the MAE reaching 504.1992, although it is a smaller 

decrement than in the previous corrections, suppose a new significative reduction of the 

error obtained from the model.  

Also, and more significantly, the reduction of the instability in the error function 

is huge, even more if it is considered the difference between the first erratic behavior and 

the posterior flat one after the second set of corrections was applied. 

With the first correction the learning capability of the network is addressed and 

with the second the quality and quantity of the information it is fed with improves.  

Some final comments must be done about some general behaviors observed in 

every model. The initial unstable behavior of the validation data, common for all the three 

models is due to a slightly elevated learning rate. Thus, the network tries to learn from 

each epoch more image features than it should. Due to this elevated learning rate, the 

network presents this erratic results in the prediction of the validation data at the 

beginning of the training process. 
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Also, one of the reason due to all the train data error functions tends to smooth 

behavior is, in part, due to the application of a reduction in the learning rate when a plateau 

region is reached. The main implication of this application is that, when the error function 

did not present significant changes for five epochs, the learning rate is reduced.  

Also, no overfitting behavior is observed in any of the presented models, so no 

correction in the design or the training data were needed to correct this situation. The 

reason why it can be assured that no overfitting took place is because the behavior 

presented by any of the considered models is this project did not present any of the typical 

consequences of an overwitted training process.  
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6 CONCLUSIONS 

Once the project has been concluded and the results obtained have been 

analyzed some conclusions are extracted from the developed work. 

The first remarkable point in the course of the project is the entry barrier that 

suppose working on an already developed project, more being aware the size of the 

protocol and the environment in which it is immersed (the Xmipp software package). This 

kind of protocols that performs complex calculation requires a deep initial study of their 

workflow before applying any correction which suppose an increment in the complexity 

of the developed work. This entry barrier is even tougher if the added difficulty of the 

need of theoretical knowledge of the performed process is needed too.  

On the other hand, these previous drawbacks carry the profit that, in case the 

project presents an improvement or a new solution, it will have real applications in the 

field, and it will not be reduced to a theoretical range of action. Since the corrections are 

performed on a professional software tool, the increment in the performance will have 

implications in real applications. 

The CTF estimation is a complex process where the corrections applied not 

always improved its performance. Deep analyzing the implications of each correction is 

necessary to understand its impact and viability in the final configuration of the protocol. 

The identification of the sources of erroneous behavior in the protocol is a slow dedicated 

process, even more considering that not all the sources of error are due to image 

processing but due to data manipulation and other code bugs.  

Also, the individual effect of each correction may not cause a significant change 

in the behavior of the algorithm but the combination of all of them suppose a correction 

in the behavior of the protocol as a whole. Each correction applied implies an intensive 

tedious process of trial and error in order to assure that the performed changes in the 

behavior of the protocol are not casualty or that they do not have any adverse implication 

under another paradigm in its execution. 

An objective measure of the improvement performed in the protocol is hard to 

calculate. Measuring the implications of each correction is not representative due to the 
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synergies coming from the corrections combination. In order to give an overall 

characterization of the effect of the corrections performed, a more detailed result measure 

must be given. This measure must consider independently correctly admitted and 

discarded estimations, true positives and true negatives, and misclassified estimations, 

false positives and false negatives.   

From these results it is observed a significant improvement in the behavior of 

the protocol. Depending on which macroscopic score it is used the impact of the 

corrections varies, thus deep analysis has been performed over the confusion matrix. 

Attending to this matrix, the main effect of the corrections is affecting the false positive 

classified elements, reducing its number more than a 95%. This is a very positive result 

since the false positive group is the most harmful for the correct performance of the 

workflow.  

From the corrections performed one of the main conclusions obtained is the 

importance of a correct calculation of the defocus for a proper estimation of the CTF. 

This is the main reason why the continuation of the project was the search of a more 

robust procedure for the calculation of the defocus form a PSD.  

The solution chosen for a better defocus calculation procedure is the 

implementation a deep neural network. These kinds of solutions adapt nicely to the 

proposed problematic since, from a very powerful and intensive training data, the PSD 

dataset, it is only necessary to predict a number, the defocus. 

Also, the different approaches in the design of a deep learning network have 

been studied, comparing the different possibilities and approaches, changing some 

characterization parameters and comparing the different results obtained. Once the proper 

design of the network was achieved, a robust method for defocus estimation is obtained.  

The design procedure of these deep learning networks was based in the 

improvement in the performance of an original design until a robust and accurate 

architecture was obtained for the network. The last design met the compromises of 

stability and error prediction, presenting a MAE of 504.1992. 
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6.1 Future work 

Although the developed project has achieved the objectives established from its 

beginning, some posterior designs could be implemented in order to give a broader 

application to the developed work and to increase its action range. 

The first and more straight forward continuation for the developed work would 

be the development a new deep learning model that allows the defocus calculation form 

micrographs coming from a 200 kV electron microscope. This process would be easier to 

perform since only an enough large dataset of 200 kV micrographs is needed. Then the 

procedure is identical as the one performed for the 300 kV model. 

Also, some improvements can be performed in the network since, as it has been 

mentioned in the discussion section, its behavior is still improvable. Different network 

architectures and data usage are under development in order to obtain a more robust model 

to perform this task.  

Once the models are generated, the natural next step is their integration in the 

software package Xmipp through the creation of a new protocol. This new protocol 

should take some input micrographs, generate the dataset with the PSD at the same 

resolutions with which the model has been trained and then calculate their defocus. Once 

the defocus is calculated, the protocol could conclude its execution. Since the CTF 

estimation protocol from Xmipp has an option to import the defocus from another 

estimation, the combination of both protocols is straightforward.  

Outside the previous exposed future lines of work, from the knowledge acquired 

during the development of this project and in view of the promising obtained results, other 

applications employing deep neural network can be designed. Once of the possible 

applications could be stablished over the goodness of the estimation performed, allowing 

its proper prediction with the employment of a deep neural network. For this, a deep 

learning network could be trained per each criterion or, if possible, only one, eliminating 

the need of the estimation criteria in the code.  

Finally, some less disruptive corrections could be performed. Due to the variety 

of tools that have been used, one of them is the inclusion of safe code practices on the 
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developed work. A good example of this is the downsampling tool from Xmipp, in order 

to avoid undesired or unexpected behaviors.  

As a final comment, working with an already designed tool or protocol and 

applying corrections to it is a hard but always feasible project. The truly complicated 

objective is to reach a robust and efficient design able to always perform correct 

estimations with a stable behavior. Due to this, always new sources of error can be found, 

and corrections can be applied in order to improve the behavior of an algorithm and its 

performance, even more if it is such an extent protocol immersed in a very complex 

environment as in the case of this project.  
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8 APPENDIX 

8.1 PrepareDataset.py 

import os 
import sys 
import xmippLib as xmipp 
import shutil 
 
class DeepDefocus: 
   def importCTF(self, fnDir, dataFlag): 
       fileList = [] 
       for file in os.listdir(fnDir): 
           if file.endswith("_enhanced_psd.xmp"): 
               fnRoot = os.path.join(fnDir, file) 
               md = xmipp.MetaData(fnRoot.replace("_xmipp_ctf_enhanced_psd.xmp", "_xmipp_ctf.xmd")) 
               objId = md.firstObject() 
               dU = md.getValue(xmipp.MDL_CTF_DEFOCUSU, objId) 
               dV = md.getValue(xmipp.MDL_CTF_DEFOCUSV, objId) 
               kV = md.getValue(xmipp.MDL_CTF_VOLTAGE, objId) 
               enabled = md.getValue(xmipp.MDL_ENABLED, objId) 
               if dataFlag == 1: 
                   if enabled == 1: 
                       fileList.append((fnRoot, 0.5*(dU+dV), kV)) 
               else: 
                   fileList.append(fnRoot) 
       print("Files read from origin") 
       return fileList 
 
   def downsampleCTF(self, fileList, stackDir, subset, dataFlag): 
       if dataFlag == 1: 
           for file in fileList: 
               fnRoot, defocus, kV = file 
               fnBase = os.path.split(fnRoot)[1] 
               destRoot = stackDir + fnBase.replace("_xmipp_ctf_enhanced_psd.xmp", "_psdAt_%d.xmp" 
% subset) 
               if os.path.isfile(os.path.join(stackDir, "metadata.txt")): 
                   metadataPath = open(os.path.join(stackDir, "metadata.txt"), "r+") 
                   metadataLines = metadataPath.read().splitlines() 
                   lastLine = metadataLines[-1] 
                   i = int(lastLine[0:9]) + 1 
               else: 
                   metadataPath = open(os.path.join(stackDir, "metadata.txt"), "w+") 
                   metadataPath.write("  ID         DEFOCUS      kV   SUBSET  FILE\n") 
                   i = 0 
               shutil.copy(fnRoot, destRoot) 
               metadataPath.write("%9.7d%11d%8d%9d  %s\n" % (i, defocus, kV, subset, destRoot)) 
               i += 1 
           print("Files copied to destiny and metadata generated") 
 
       else: 
           for fnRoot in fileList: 
               metadataPath = open(os.path.join(stackDir, "metadata.txt"), "r+") 
               fnBase = os.path.split(fnRoot)[1] 
               destRoot = stackDir + fnBase.replace("_xmipp_ctf_enhanced_psd.xmp", "_psdAt_%d.xmp" 
% subset) 
               metadataLines = metadataPath.read().splitlines() 
               metadataLines.pop(0) 
               for line in metadataLines: 
                   storedFile = line[40:] 
                   storedFileBase = os.path.split(storedFile)[1] 
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                   if storedFileBase == fnBase.replace("_xmipp_ctf_enhanced_psd.xmp", "_psdAt_1.xmp") \ 
                           or storedFileBase == fnBase.replace("_xmipp_ctf_enhanced_psd.xmp", 
"_psdAt_2.xmp") \ 
                           or storedFileBase == fnBase.replace("_xmipp_ctf_enhanced_psd.xmp", 
"_psdAt_3.xmp"): 
                       shutil.copy(fnRoot, destRoot) 
           print("Files copied to destiny") 
 
   def prune(self, stackDir): 
       metadataPath = open(os.path.join(stackDir, "metadata.txt"), "w+") 
       lines = metadataPath.read().splitlines() 
       lines.pop(0) 
       nameFiles = [] 
       for line in lines: 
           fileName = line [40:-1] 
           nameFiles.append(fileName) 
 
       for file in stackDir: 
           for nameFile in nameFiles: 
               nameFile.replace() 
               if nameFile == file: 
                   break 
               file.replace(".xmp", "_ERRASE.xmp") 
 
if __name__ == "__main__": 
   if len(sys.argv) == 1: 
       print("Usage: python prepareDataset.py <dirIn> <dirOut> <subsetNumber> 
<importDataFlag(0/1)>") 
   fnDir = sys.argv[1] 
   stackDir = sys.argv[2] 
   subset = int(sys.argv[3]) 
   dataFlag = int(sys.argv[4]) 
   stackDir = stackDir + "/" 
   deepDefocus = DeepDefocus() 
   allPSDs = deepDefocus.importCTF(fnDir, dataFlag) 
   deepDefocus.downsampleCTF(allPSDs, stackDir, subset, dataFlag) 
 

8.2 PrepareStack.py 

import numpy as np 
import os 
import sys 
import xmippLib as xmipp 
from time import time 
 
def prepareData(stackDir): 
   metadataFile = open(os.path.join(stackDir, "metadata.txt")) 
   metadataLines = metadataFile.read().splitlines() 
   metadataLines.pop(0) 
   Ndim = len(metadataLines) 
   imagMatrix = np.zeros((Ndim, 512, 512, 3), dtype=np.float64) 
   defocusVector = [] 
   i = 0 
   for line in metadataLines: 
       storedFile = line[39:] 
       subset = int(line[30:38]) 
       defocus = int(line[10:21]) 
       img1Path = storedFile.replace("_psdAt_%d.xmp" % subset, "_psdAt_1.xmp") 
       img2Path = storedFile.replace("_psdAt_%d.xmp" % subset, "_psdAt_2.xmp") 
       img3Path = storedFile.replace("_psdAt_%d.xmp" % subset, "_psdAt_3.xmp") 
       img1 = xmipp.Image(img1Path).getData() 



Image processing algorithms for the determination of the optical aberrations of an electron 

microscope 

 95 

       img2 = xmipp.Image(img2Path).getData() 
       img3 = xmipp.Image(img3Path).getData() 
       imagMatrix[i, :, :, 0] = img1 
       imagMatrix[i, :, :, 1] = img2 
       imagMatrix[i, :, :, 2] = img3 
       defocusVector.append(defocus) 
       i += 1 
   imageStackDir = os.path.join(stackDir, "preparedImageStack.npy") 
   defocusStackDir = os.path.join(stackDir, "preparedDefocusStack.npy") 
   np.save(imageStackDir, imagMatrix) 
   np.save(defocusStackDir, defocusVector) 
 
if __name__=="__main__": 
   stackDir = sys.argv[1] 
   print("Preparing stack...") 
   start_time = time() 
   prepareData(stackDir) 
   elapsed_time = time() - start_time 
   print("Time spent preparing the data: %0.10f seconds." % elapsed_time) 
 

8.3 Batch_DeepDefocus.py 

#!/usr/bin/env python2 
import cv2 
import math 
import numpy as np 
import os 
import string 
import sys 
import time 
from time import time 
 
batch_size = 128 # Number of boxes per batch 
 
if __name__=="__main__": 
   os.environ["CUDA_VISIBLE_DEVICES"] = "1" 
 
   from keras.callbacks import TensorBoard, ModelCheckpoint 
   import keras.callbacks as callbacks 
   from keras.models import Model 
   from keras.layers import Input, Conv2D, MaxPooling2D, BatchNormalization, Dropout, Flatten, Dense 
   from keras.optimizers import Adam 
   import tensorflow as tf 
   from keras.models import load_model 
 
   def constructModelOne(): 
       inputLayer = Input(shape=(512, 512, 3), name="input") 
       L = Conv2D(16, (15, 15), activation="relu")(inputLayer) 
       L = BatchNormalization()(L) 
       L = MaxPooling2D((3, 3))(L) 
       L = Conv2D(16, (9, 9), activation="relu")(L) 
       L = BatchNormalization()(L) 
       L = MaxPooling2D()(L) 
       L = Conv2D(16, (5, 5), activation="relu")(L) 
       L = BatchNormalization()(L) 
       L = MaxPooling2D()(L) 
       L = Dropout(0.2)(L) 
       L = Flatten()(L) 
       L = Dense(1, name="output", activation="linear")(L) 
       return Model(inputLayer, L) 
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   def constructModelTwo(): 
       inputLayer = Input(shape=(512, 512, 3), name="input") 
       L = Conv2D(16, (15, 15), activation="relu")(inputLayer) 
       L = BatchNormalization()(L) 
       L = MaxPooling2D((3, 3))(L) 
       L = Conv2D(16, (9, 9), activation="relu")(L) 
       L = BatchNormalization()(L) 
       L = MaxPooling2D()(L) 
       L = Conv2D(16, (5, 5), activation="relu")(L) 
       L = BatchNormalization()(L) 
       L = MaxPooling2D()(L) 
       L = Flatten()(L) 
       L = Dense(256, activation="relu")(L) 
       L = Dropout(0.2)(L) 
       L = Dense(1, name="output", activation="linear")(L) 
       return Model(inputLayer, L) 
 
   def constructModelThree(): 
       inputLayer = Input(shape=(512, 512, 3), name="input") 
       L = Conv2D(16, (15, 15), activation="relu")(inputLayer) 
       L = MaxPooling2D((3, 3))(L) 
       L = Conv2D(16, (9, 9), activation="relu")(L) 
       L = MaxPooling2D()(L) 
       L = Conv2D(32, (5, 5), activation="relu")(L) 
       L = MaxPooling2D()(L) 
       L = Conv2D(64, (5, 5), activation="relu")(L) 
       L = Flatten()(L) 
       L = Dense(256, activation="relu")(L) 
       L = Dropout(0.2)(L) 
       L = Dense(1, name="output", activation="linear")(L) 
       return Model(inputLayer, L) 
 
   model = constructModel() 
   model.summary() 
 
   if len(sys.argv)<3: 
       print("Usage: scipion python batch_deepDefocus.py <stackDir> <modelDir>") 
       sys.exit() 
   stackDir = sys.argv[1] 
   modelDir = sys.argv[2] 
 
   print("Loading data...") 
   imageStackDir = os.path.join(stackDir, "preparedImageStack.npy") 
   defocusStackDir = os.path.join(stackDir, "preparedDefocusStack.npy") 
   imagMatrix = np.load(imageStackDir) 
   defocusVector = np.load(defocusStackDir) 
 
   print("Train mode") 
   start_time = time() 
   model = constructModel() 
   model.summary() 
   optimizer = Adam(lr=0.0001) 
   model.compile(loss='mean_absolute_error', optimizer='Adam') 
   elapsed_time = time() - start_time 
   print("Time spent preparing the data: %0.10f seconds." % elapsed_time) 
 
   callbacks_list = [callbacks.CSVLogger("./outCSV_06_28_1", separator=',', append=False), 
                      callbacks.TensorBoard(log_dir='./outTB_06_28_1', histogram_freq=0, batch_size=128, 
                                            write_graph=True, write_grads=False, write_images=False, 
embeddings_freq=0, 
                                            embeddings_layer_names=None, embeddings_metadata=None, 
                                            embeddings_data=None), 
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                      callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1, 
mode='auto', 
                                                  min_delta=0.0001, cooldown=0, min_lr=0)] 
   history = model.fit(imagMatrix, defocusVector, batch_size=128, epochs=100, verbose=1, 
validation_split=0.1, callbacks=callbacks_list) 
   myValLoss=np.zeros((1)) 
   myValLoss[0] = history.history['val_loss'][-1] 
   np.savetxt(os.path.join(modelDir,'model.txt'), myValLoss) 
   model.save(os.path.join(modelDir,'model.h5')) 
   elapsed_time = time() - start_time 
   print("Time in training model: %0.10f seconds." % elapsed_time) 
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Madrid..........de .......................de........... 
 
 
 
 
 
 
 
 

 
D./Dña.: ............................................................................................................ alumno 

de la Universidad San Pablo CEU de Madrid, da permiso para que su Trabajo Fin de 

Grado pase a estar depositado en la Biblioteca de la Universidad, dónde podrá ser 

consultado por cualquier persona que esté interesado en ello. 

 

Y para que surta efecto donde proceda, firma la presente 

 

 

 

 

 

 

Fdo:................................................................................................................... 
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Licencia de autorización para incorporación de materiales 
 en CEU Repositorio Institucional 

 
 

D./Dña                                                            DNI/PASAPORTE-----------------------------------  
 
 DOMICILIO EN------------------------------------------------------------------------------------- 
 
 

MANIFIESTA: 
 
Primero.- Su interés en  que la obra/s que a continuación se detalla/n quede/n  depositada/s  en 
el REPOSITORIO de la FUNDACIÓN UNIVERSITARIA SAN PABLO-CEU, la FUNDACIÓN 
PRIVADA UNIVERSITAT ABAT OLIBA CEU y sus Centros académicos dependientes, en 
adelante CEU Repositorio Institucional. 
 
El CEU Repositorio Institucional comprende en la actualidad los proyectos: 

• OCW (Open Course Ware) de difusión de materiales docentes organizados por 
asignaturas. 

• ReI: (Repositorio Institucional) de difusión de la producción científica, académica e 
institucional del CEU 

• Así como cualquier otro proyecto de naturaleza similar que pudiera desarrollarse en el 
futuro con estos mismos fines o análogos. 

 
Todos los materiales depositados estarán bajo la protección de licencia Creative Commons en 
los términos expuestos en el anexo II 
 
Segundo.- 
  

Ser titular de los derechos de  propiedad intelectual de la obra/s depositada/s, como autor 
de la misma, y que esta es una obra original. 
 
Ser cotitular de los derechos de  propiedad intelectual de la obra/s depositada/s,  y que 
cuenta con la autorización de los restantes cotitulares cuyos nombres aparecen en la 
obra depositada para hacer la cesión. 
 
Que no existe una previa cesión a terceros de los derechos que en este documento se 
contemplan y que, en caso de existir una cesión previa, tiene la autorización de dichos 
titulares de derecho a los fines que en este acuerdo se establecen. 

 (Márquese con una x lo que proceda) 
 
   
Tercero.-Que cede por el presente documento al CEU REPOSITORIO, y con el fin de dar la 
máxima difusión de la/s obra/s citada/s de forma gratuita y no exclusiva, y  con fines de  docencia 
e investigación,  los derechos de archivo, digitalización, reproducción, difusión en línea y puesta  
a disposición electrónica, y transformación de la obra/s que a continuación se detalla y/o 

 

 

 

http://www.bibliotecaceu.es/index.php
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extractos de la misma con el objeto de hacer posible su utilización por todos los usuarios del  
Repositorio según las directrices que se establecen en el  presente documento. 
 
Cuarto.- que garantiza que este acuerdo no infringe ningún derecho de propiedad industrial, 
intelectual, derecho a la cita, al honor, intimidad o imagen o cualquier otro derecho de terceros.  
 

 
  OBJETO Y FIN DEL ACUERDO  
 
Es la  difusión,  promoción cultural y puesta en marcha del Repositorio institucional que, sin ánimo 
de lucro y con fines de docencia e investigación, está  llevando a cabo la FUNDACIÓN 
UNIVERSITARIA SAN PABLO-CEU, LA FUNDACIÓN PRIVADA UNIVERSITAT ABAT OLIBA 
CEU y sus Centros académicos dependientes,  a través de sus Bibliotecas, haciendo posible su 
utilización por todos los usuarios del Repositorio y sus aplicaciones (OCW, ReI, entre otras).  

 

 
CONDICIONES DE LA CESIÓN 
 

• Sin  perjuicio de la titularidad de la obra, que sigue perteneciendo al autor, éste  
entregará al CEU REPOSITORIO, en soporte electrónico o papel la documentación 
que le sea requerida para hacer efectiva la cesión de los derechos establecidos. 

 

• Quedan excluidos de este acuerdo y reservados al autor todos los derechos que le 
correspondan, no previstos en el mismo. 

 

• La FUNDACIÓN UNIVERSITARIA SAN PABLO-CEU, la FUNDACIÓN PRIVADA 
UNIVERSITAT ABAT OLIBA CEU y sus Centros académicos dependientes, en virtud 
del presente acuerdo, adquieren el derecho de poder  difundir las obras objeto de la 
presente cesión de forma total o parcial, siempre haciendo constar los datos necesarios 
para la identificación inequívoca de las mismas  (nombre y apellidos del autor, titulo de 
la misma, nº ISBN / ISSN y Depósito legal, entre otros)  

 

• CEU Repositorio Institucional podrá:  
 

1. Realizar las transformaciones necesarias en la/s obra/s con el fin de su adaptación 
a cualquier tecnología necesaria para su incorporación a Internet, utilización de la 
obra en formatos electrónicos, o adaptación a cualquier sistema de seguridad y 
protección. 

 
2. Reproducir la obra en soporte digital e incorporarla a una Base de Datos. 
 
3. Almacenar la obra en servidores a los efectos de garantizar su seguridad y 

conservación 
 
4. Comunicarla y ponerla a disposición de los usuarios/público a través de un archivo 

abierto institucional, accesible de forma libre y gratuita a través de Internet.      
 

• Los Centros académicos dependientes de la FUNDACIÓN UNIVERSITARIA SAN 
PABLO-CEU y la FUNDACIÓN PRIVADA UNIVERSITAT ABAT OLIBA CEU 
informarán a los usuarios del CEU REPOSITORIO sobre la Licencia que protege la 
obra,  no asumiendo  responsabilidad alguna sobre la forma y manera en que los 
usuarios hagan uso posterior de los documentos cedidos.  

 

• El autor, cuando deposite en el CEU REPOSITORIO una obra no publicada, lo 
realizará bajo los términos de una licencia “Creative Commons”.  
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• El CEU REPOSITORIO aconsejará al autor sobre el uso de las licencias “Creative 
Commons” y explicará el funcionamiento de las mismas.   

 

• El autor se responsabiliza de la veracidad de los datos, la originalidad de la/s obra/s, el 
contenido de las mismas y el goce en exclusiva de los derechos cedidos. 

 

• El autor exonera al CEU REPOSITORIO de toda  responsabilidad que pudiera surgir 
como consecuencia de reclamaciones realizadas por parte de terceros en relación con 
los mismos, incluyendo las indemnizaciones por daños y perjuicios que pudieran 
ejercitarse contra la FUNDACIÓN UNIVERSITARIA SAN PABLO-CEU y la 
FUNDACIÓN PRIVADA UNIVERSITAT ABAT OLIBA CEU así como asume la 
responsabilidad en el caso de que la Institución fuera condenada por infracción de 
derechos derivada de las obras objeto de la cesión. 

 
 

• El autor renuncia a cualquier reclamación frente a la FUNDACIÓN UNIVERSITARIA 
SAN PABLO-CEU y la FUNDACIÓN PRIVADA UNIVERSITAT ABAT OLIBA CEU por 
el modo de utilización de las obras que hagan los usuarios  cuando no se ajuste a la 
legislación vigente.     

 

• Ambas partes se comprometen a comunicar a la otra, cuando tenga  conocimiento de 
ello, la existencia de cualquier reclamación de un tercero relacionada con los 
documentos objeto de la cesión, así como de cualquier infracción de los derechos de 
propiedad intelectual.  

 
 
   
DURACIÓN   
 
Esta  cesión tendrá una duración de ---5------- año/s a contar desde la  fecha de su firma. A falta 
de revocación expresa, comunicada de forma fehaciente, con un mes de antelación a la fecha 
de su vencimiento, el plazo de esta cesión se entenderá prorrogado por periodos sucesivos de -
-5--------- (años) 
 
 
POLITICA DE RETIRADA Y EXCLUSIVIDAD 
 
 
El Autor podrá solicitar la retirada de la obra del CEU REPOSITORIO por causa justificada, sin 
perjuicio de que la decisión última sobre dicha solicitud corresponda al CEU Repositorio. 
Asimismo, el CEU REPOSITORIO podrá retirar la obra, previa notificación al autor, en 
supuestos justificados o en caso de reclamaciones de terceros. 
 
Los documentos que se hayan incluido en el CEU REPOSITORIO por personas vinculadas en 
su momento a la FUNDACIÓN UNIVERSITARIA SAN PABLO-CEU y la FUNDACIÓN PRIVADA 
UNIVERSITAT ABAT OLIBA CEU se regirán por lo establecido en el párrafo anterior. 
 
El autor tiene, derecho a introducir otras copias en repositorios de otras instituciones bajo 
acuerdo de no exclusividad. 
 
 
JURISDICCIÓN Y LEY APLICABLE 
 
El presente documento se regirá de conformidad con la legislación española en  todas aquellas 
situaciones y consecuencias no previstas en forma expresa en el presente documento y, en 
concreto, de acuerdo con las prescripciones de la legislación española sobre propiedad 
intelectual vigente y demás legislación aplicable.  
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Para la resolución de cualquier controversia que pudiera surgir en la aplicación e interpretación 
del presente documento se realiza un sometimiento a la jurisdicción de los Juzgados y Tribunales 
de Madrid Capital, con expresa renuncia a cualquier otro fuero que pudiera corresponder 
 

 
                                                               En Madrid, a     de                de  

 

 
Fdo.: D. 
 

 

 

 

ANEXO II 

Creative Commons 

(Licencia de Uso) 

 

 

El autor  como titular de los derechos de propiedad intelectual puede establecer 

determinadas condiciones al uso que los usuarios hagan de su trabajo, por medio de las 

licencias, protegiendo su obra de usos indebidos si está en acceso abierto. 

 

Licencias Creative Commons 

 

http://es.creativecommons.org/proyecto/ 

 

 

Creative Commons es una corporación americana sin ánimo de lucro. Si quieres 

conocerla mejor puedes visitar su web. 

 

 http://es.creativecommons.org/licencia/ 

 

 

La licencia de los materiales  incorporados al CEU Repositorio Institucional es :  

 

 Reconocimiento – No Comercial – Compartir Igual (by-nc-sa): 

No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la 

distribución de las cuales se debe hacer con una licencia igual a la que regula la obra 

original. 

 

 

 

 

 

 

 

http://es.creativecommons.org/proyecto/
http://creativecommons.org/about/history
http://es.creativecommons.org/licencia/


Image processing algorithms for the determination of the optical aberrations of an electron 

microscope 

 103 

 

 

 

 

 

 

 

 

 

 

ANEXO I 

(Relación de materiales que se incorporan a CEU Repositorio Institucional) 

 
 

Artículos 

 

 

Capítulos 

 

 

Comunicaciones 

 

 

Materiales docentes 

 

 

 

 

                                                                               En         , a     de             del 2….. 

 

 

Fdo.:D../Dña. ----------------------------------------  
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ACTA DE EVALUACIÓN DEL TFG 

Tribunal-
Miembros 

1: 
2: 
3: 

Título TFG  

Estudiante  

Director TFG  

 

Los Resultados de Aprendizaje (RA) que componen la rúbrica aseguran la adquisición de las 

competencias comprometidas en el TFG del GIBM que se detallan en el Anexo. 

Se valorará de 0 a 100 el nivel de adquisición del Estudiante de los Resultados de Aprendizaje 

tras la revisión del TFG y su defensa oral: 

RÚBRICA DE EVALUACIÓN 
 

Miembro 
1 
Tribunal 

Miembro 
2 
Tribunal 

Miembro 
3 
Tribunal 

Valoración 
Media 

RA1: Study and analyze the scientific, technical and 
socio-economic viability of a Biomedical Engineering 
project and understand the relationships between 
science, technology and business. 

    

RA2: Understand the principles of scientific 
methodology and apply it to solving problems in the 
field of Biomedical Engineering. 

    

RA3: Knowing how to find and interpret information 
in major scientific databases of engineering and 
medicine. 

.    

RA4: Write, present and defend a research paper.     

CALIFICACIÓN GLOBAL TFG (0 -100) 
CALIFICACIÓN GLOBAL NORMALIZADA (0-10) 

 

 

Firma: Firma: Firma: 

Miembro 1 Tribunal: 
 

Miembro 2 Tribunal: Miembro 3 Tribunal: 

En Madrid a ____de _____de 20___ 
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ANEXO: Competencias del Trabajo Fin de Grado del GIBM 

Los Resultados de Aprendizaje que componen la rúbrica de evaluación del TFG en el GIBM, 

aseguran la adquisición de las competencias comprometidas en su memoria de verificación: 

 COMPETENCIA ESPECÍFICA DEL TFG EN GIBM 

CE-34   Gestionar y coordinar un proyecto de Ingeniería Biomédica empleando herramientas 
comunes de gestión de proyectos y saber realizar, tramitar y gestionar documentos 
técnicos. 

CE-35 Estudiar y analizar la viabilidad científico-técnica y socioeconómica de un proyecto de Ingeniería 
Biomédica y conocer las relaciones entre ciencia, tecnología y empresa. 

CE-36  Conocer los principios de la metodología científica y aplicarlos a la resolución de problemas en el 
campo de Ingeniería Biomédica. 

CE-37 Saber buscar e interpretar información en las principales bases de datos científicas, tanto de la rama 
de la ingeniería como de la medicina. 

CE-48 Aplicar los conocimientos adquiridos durante los estudios a la resolución individual de un problema 
en el ámbito de la Ingeniería Biomédica. 

 

 COMPETENCIAS BÁSICAS DEL TFG EN GIBM 

BAS-2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma 
profesional y posean las competencias que suelen demostrarse por medio de la elaboración y 
defensa de argumentos y la resolución de problemas dentro de su área de estudio. 

BAS-3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente 
dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas 
relevantes de índole social, científica o ética. 

BAS-4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público 
tanto especializado como no especializado. 
 

BAS-5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para 
emprender estudios posteriores con un alto grado de autonomía. 

 


