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Why this course?
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Statistics is not intuitive.

Our evolutionary pressure was not on solving statistical problems ...
so Statistics normally escapes from our intuition.
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Statistics is not intuitive

We tend to jump to conclusions. A 4-years little child
may think all doctors are female simply because the 4
doctors she has met are women.

From a small sample we cannot generalize to the whole
population.
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Statistics is not intuitive

We tend to be overconfident.
Most people to have more common sense than the
average person and drive better than the average.
Most drugs tested do not help ... Of course, this
applies to other people’s experiments. My
experiment has a large probability of succeeding (I
carefully designed it).

Scientists need statistical methods to quantify confidence
on the results.
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Statistics is not intuitive

We see patterns in random data.
We tend to see winning or losing streaks, but the
true probability is 0.5 and all shots are independent.
0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1

But this is mental bias. Statistical rigor is needed to
avoid being fooled by apparent patterns.
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Statistics is not intuitive

We don’t realize that coincidences are common.
We rank the grades of people in a class and study
the characteristics of the people in the top 5. We
realize that they are all scorpio, so we conclude that
being born in November gives people an academic
advantage.

We cannot conclude anything a posteriori. A different
story is having the hypothesis that being scorpio gives an
academic advantage, and verifying the hypothesis by
analyzing the data from grades. Otherwise we may had
found any other characteristic amongst the top 5 (being
girls, wearing jeans, coming to school by bus, ...).
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Statistics is not intuitive
We find it hard to combine probabilities.

Behind one door there is a fancy new car, and you
must choose just one door. The host chooses one of
the other two doors and shows that there is no car
behind it. He offers you to change your choice to
the remaining door. Should you change your mind
and choose the other door? Most people think it
does not matter, the door you chose either contains
the car or not, so there is 50% of chances of getting
the car.

Let’s analyze the game. There are two possible situations:
Case A: I originally chose the right door (p = 1/3). If I change, there is a
loss of 1 car (-1)
Case B: I originally chose the wrong door (p = 2/3). If I change, there is a
gain of 1 car (+1)

On average
E{change} = 1

3 (−1) + 2
3 (+1) = 1

3
So changing the door increases my chances of winning the car.
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Statistics is not intuitive

We find hard to match long run probabilities with single
shots.

Changing doors is beneficial only if we are to play
this game a large (infinite) number of times. For a
single shot, expectations do not help.
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Statistics is not intuitive

We don’t naturally do Bayesian calculations.
HIV affects 0.1% of blood donors. The antibody test
correctly identifies 99% of infected samples, but it
also incorrectly concludes that 1% of the
noninfected samples have HIV. When this test
identifies a problematic sample, what is the chance
that it effectively has HIV?

If we have 100,000 donors, on average, only 100 (=0.1%)
of them will have HIV. If we apply the test to these
patients, 99 of them will be correctly identified (and 1
will escape). Of the remaining 99,900 donors (not having
HIV), the test will be positive on 999 of them (=1%). Of
the 99+999=1,098 positive tests, only 99 of them are
HIV carriers. That is, the chance of being HIV carrier if
the test is positive is only 99/1,098=9%.
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Statistics is not intuitive
We tend to ignore alternative explanations.

We are studying the effect of acupuncture on
osteoarthritis. Patients with sever arthritis pain are
treated with acupuncture. They are asked to rate
their pain before and after treatment and there is a
(statistically significant) decrease in the pain. So
acupuncture must have worked, right?

But we ignore that:
If the patients believe in the therapist and treatment, this belief may reduce pain
(placebo effect).
Patients may want to be polite and tell the experimenter what she wants to hear.
During the acupuncture session, the therapist talks to the patients and he may
recommend a change in the aspirin dose, exercise, nutritional supplements, ...
The experimenter may remove data from the study, those for which acupuncture
did not work because these patients have a different kind of arthritis, they had to
climb stairs because the elevator was not working, ...
Patients go to the therapist when they are feeling really bad, so they can only
improve along the day.
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Statistics is not intuitive

We are fooled by extreme values and regression to the
mean.

An athlete performs this season extremely well.
Then he appears on the cover of Sports Illustrated.
And next year, he performs worse than last season.
Appearing in Sports Illustrated brings bad luck to
athletes!!

But we ignore that: The athelete’s performance
may not have changed. Last season’s
performance may be an extreme from this
distribution. Next draw from this distribution will
most likely be from a more “central” region of
the distribution.
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Probability

Probability is a number between 0 and 1 (=100%) that expresses our certainty
about the occurrence of an event.
We may arrive to this probability by: 1) a model, or 2) by gathering data.
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Probability as a prediction from a model
We may establish a model for understanding the world:

Each ovum has an X chromosome and none has a Y
chromosome.
Half the sperm have an X chromosome and the
other half have a Y chromosome.
Only one sperm will fertilize the ovum.
Each sperm has an equal chance of fertilizing the
ovum.
If the winning sperm has a Y chromosome, then the
embryo will be XY (boy).
If the winning sperm has a X chromosome, then the
embryo will be XX (girl).
Any miscarriage or abortion is equally likely to
happen to male or female fetuses.

Our prediction with this model is that there is 50% chances of being a boy or a
girl.
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Probability based on data
In 2012, 51.7% of all babies born in the world were boys.

For a particular pregnant woman, the probability of
having a boy is 51.7% (=0.517).
If we take a group of 1000 pregnant women, we would
expect to observe on average 517 male fetuses and 483
female fetuses.

This does not mean that if we take 1000 pregnant
women, we should observe 517 male fetuses and 483
female fetuses.

It means that if we take many (many) groups of 1000
pregnant women, and we average the number of male
and female fetuses of all these groups, as the number of
groups go to infinity, the average of male fetuses will
approach to 517 and the average of female fetuses will
approach to 483.
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Understanding the assumptions of probability

Since in 2012 we have observed 51.7% of babies to be
male, the probability of a new born being male is 51.7%.
Is that correct? It is if:

If the probabilities from the past can be used to
predict the future. There is no change of the
probability over the years.
There is no change of the probability along the year
(the male probability in January is the same as in
July).
There is no change of the probability along the race
(the male probability for Africans is the same as for
Asians).
There is no change of the probability along region
(the male probability in China is the same as in
Japan).
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Well-defined probabilities (probability of what?)

Pierre Simon Laplace

Probability = Positive results
All possible outcomes

In our example

0.517 = #Male new borns
#All new borns

A lab test for VIH is 98% accurate.

What does it mean? With this information alone it is
meaningless because it is an undefined probability. We
don’t know which are the positive cases and all possible
outcomes!!
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Well-defined probabilities (probability of what?)
Interpretation 1: Sensitivity.
Numerator: Correctly identified VIH cases in a group of
people with VIH.
Denominator: Number of tested people (all of them had VIH).

Interpretation 2: Specificity.
Numerator: Correctly identified non-VIH cases in a group of
people not having VIH.
Denominator: Number of tested people (none of them had
VIH).

Interpretation 3: Predictive value of positive test.
Numerator: Correctly identified VIH cases.
Denominator: Number of people whose result with this test
was positive.

Interpretation 4: Predictive value of negative test.
Numerator: Correctly identified non-VIH cases.
Denominator: Number of people whose result with this test
was negative.
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Conditional probabilities (probability of what?)

Thomas Bayes

p(A|B(given)) 6= p(B|A(given))

The probability that a Statistics book (given) is
boring is not the same as the probability of a boring
book (given) being about Statistics.

p(boring|Statistics) 6= p(Statistics|boring)

The probability that someone with abdominal pain
(given) has appendicitis is not the same as the
probability of someone with appendicitis (given)
having abdominal pain.

p(appendicitis|pain) 6= p(pain|appendicitis)
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Conditional probabilities (probability of what?)

Thomas Bayes

p(A|B) 6= p(B|A)

The probability that a heroin addict (given) first
used marijuana is not the same as the probability of
a marijuana user (given) will later become addicted
to heroin

p(marijuana|heroin) 6= p(heroin|marijuana)

The probability of a study for which the null
hypothesis is true (given) having a p-value smaller
than 0.05 is not the same as the probability of the
null hypothesis being true for a study in which the
p-value is smaller than 0.05 (given)

p(pval < 0.05|H0) 6= p(H0|pval < 0.05)
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Odds is different from probability

The odds is a ratio between two probabilities
The odds of being a boy is

O = p(boy)
p(girl) = 0.517

0.483 = 1.07

The odds of developing a lung cancer if you smoke is
10 times larger than if you don’t smoke.

O = 10 = p(lung cancer|smoke)
p(lung cancer|don’t smoke) ⇒

p(lung cancer|smoke) = 10p(lung cancer|don’t smoke)
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From a sample to the population

From our calculations (statistics) performed on our sample we want to infer (inference)
the true population parameters. In Biostatistics, we normally assume that our sample is
small (<10%) than the population (normally considered to be infinite).

0. Statistics and probability August 13, 2017 29 / 35



Random sampling error

Random sampling error. Just by chance your sample might have a higher (or
lower) mean/proportion/variance/correlation than that of the population.

Random sampling error decreases with the sample size.
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Systematic errors
Non-response bias: Individuals who do not respond to a call to participate in
research studies behave differently from those who do respond.
Selection bias: Studies performed in a hospital are not representative from
the general population. The admissibility criteria may not represent the
population.
Publicity bias: Some individuals refer themselves to the investigator following
publicity of the study (they have a particular interest in the disease being
studied).
Healthy worker bias: Voluntaries in studies may be particularly healthier as
they are concerned about their own health and are predisposed to follow
medical advice.
Overcoverage: Including data from outside the population.
Undercoverage: Sampling does not cover the whole population.
Measurement error: Respondents fail to understand a question.
Processing error: Mistakes in data coding.
Information bias: Systematic misclassification of subjects.
Confounding: The effect of one variable is mixed up with the effect of
another variable (e.g., assessing the effect of smoking on lung cancer, but the
average ages of the smoking and non-smoking groups are very different).
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Bias and variance

D. Figuereido, et al. When is statistical significance not significant? Braz. Polit. Sci. Rev. 7 (2013)

Bias invalidate inference.
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Stratified sampling

Stratified sampling helps undercoverage.
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Random sampling

0. Statistics and probability August 13, 2017 34 / 35



Outline

1 Statistics and probability
Statistics is not intuitive
Probability
Statistics

0. Statistics and probability August 13, 2017 35 / 35



Chapter 1. Confidence Intervals

C.O.S. Sorzano
coss@cnb.csic.es

National Center of Biotechnology (CSIC)

August 13, 2017

1. Confidence Intervals August 13, 2017 1 / 27

coss@cnb.csic.es


Outline

2 Confidence Intervals
Confidence interval for a proportion
Confidence interval for survival data
Confidence interval for counted data

1. Confidence Intervals August 13, 2017 2 / 27



Outline

2 Confidence Intervals
Confidence interval for a proportion
Confidence interval for survival data
Confidence interval for counted data

1. Confidence Intervals August 13, 2017 3 / 27



From population to sample (“simulation”)
Binomial distribution. The probability of observing r
independent successes out of N, each has a probability p.

If you flip a fair coin (p = 0.5) 10 times (= N), what
is the chance of observing exactly 7 heads (= r).
If the probability of getting an infection after a
surgical operation is 5%, what is the chance that 10
of the next 30 patients will get an infection?

Cumulative binomial distribution. The probability of
observing r or more independent successes out of N, each
has a probability p.

What is the chance that 10 or more of the next 30
patients will get an infection?

Negative binomial distribution. The probability of
observing q independent successes before observing r
failures, each has a probability p.

What is the chance of observing 30 non-infected
patients before we observe the first infection?
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From sample to (estimated) proportion
(“experimentation”)

Premature babies born at Johns Hopkins Hospital
between 1990-1993:

0/29 babies born at Week 22 survived after 6
months (0/29=0%).
31/39 babies born at Week 25 survived after 6
months (31/39=79.5%).

Is the true survival proportion exactly 0 and 79.5%?
Probably, not.
Can we give a confidence interval that contains the true
proportion with probability 95%
Yes [0,13.9]% and [64.3,89.5]%.
These intervals only account for sampling error (not for
bias).
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Assumptions

Random (or representative) sample. 1) Other than
chance there is no systematic difference between the
newborns at Johns Hopkins Hospital and the general
population newborns (that is, we assume there is no
difference in nutrition of the mothers before giving
birth, medical care to the newborns, hygienic state
of hospital, ...). 2) This proportion is at some
particular conditions (location, time, medical
knowledge) and it can only be used to predict the
outcome at the same conditions (a change in
location (Africa), time (20 years later), ...) will most
likely have different underlying parameters.
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Assumptions

Independent observations. Twins are not
independent (they share genetic and environmental
factors), or if deaths are caused by a hospital
infection that affect some newborns.
Accurate data. If the doctors know that 6-month
survival is to be tracked, they may make heroic
efforts to bring a 5-month old baby a few days more
so that he accounts (even if he dies a few days after
6 months).
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What is confidence?

The true population proportion lies or lies not in the 95%
CI. But there is no way to know if it does or not.
If we repeat the experiment (calculating the CI) many
(many) times, in 95% of the occasions, our CI contain
the true population proportion (altough we don’t know
which ones).
95% is the probability that our CI contains the true
proportion.
If the true parameter is outside our CI, it is due to bad
luck with our samples (sampling error). This occurs in
5% of the cases.
There is nothing special about 95% (except tradition).
Lower confidence results in narrower CI.
Actually, the confidence is on our procedure to construct
intervals, not about this particular interval.
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What is confidence?

95% is not the probability that the true proportion is in
our CI.
A 95% CI does not mean that 95% of the sample data
falls within this interval.
A 95% CI does not mean that with probability 95% if we
repeat the experiment, the estimated proportion falls
within this interval.
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How to calculate the confidence interval for the Binomial
distribution?

Clopper-Pearson exact formula

r
r + (N − r + 1)F1−α

2 ;2(N−r+1),2r
≤ p ≤

(r + 1)F1−α
2 ;2(r+1),2(N−r)

(N − r) + (r + 1)F1−α
2 ;2(r+1),2(N−r)

r is the number of observed success, N is the total number of samples. (F is
Snedecor’s F distribution)
Approximated by the modified Wald formula

p′ =
r+0.5z2

1−α
2

N+z2
1−α

2

95%
≈ r+2

N+4

W = z1−α
2

√
p′(1−p′)
N+z2

1−α
2

95%
≈ 2

√
p′(1−p′)

N+4

p′ −W ≤ p ≤ p′ + W
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How to calculate the confidence interval for the Binomial
distribution?

More approximations

p̂ = 0
N

95%⇒ 0 ≤ p ≤ 3
N

p̂ = 1
N

95%⇒ 0 ≤ p ≤ 5
N

p̂ = 2
N

95%⇒ 0 ≤ p ≤ 7
N
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Common mistake

Giving an antipyretic to mice with fever makes their
temperature drop from 39.5◦C to 37◦C. That is a
temperature drop of 6.3%.

This percentage is not a probability of the occurrence of
an event.

It is the change of a continuous variable. So the
confidence interval calculated in this section does not
apply.
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Survival data

Survival data measures the time to a
well-defined event such as

... death

... occlusion of a vascular graft

... first metastasis

... rejection of a transplanted kidney
Data is censored

... when we stop observing the
subject at the end of the study.
... if they cease to collaborate.
... if they die from a different
reason from that of the experiment.
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Kaplan-Meier analysis

In this plot, red and blue points indicate
censored data.

At each point in time we may create a
confidence interval as shown in the
figure.
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Survival summary

We may summarize survival data through:
Median survival time (50% of the samples still survive)
Two-year survival (survival proportion at a given time)
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Assumptions

Random sample. So that the sample is representative from the population.
Independent subjects. If the study pools from two different hospitals, each
hospital with different average survival, then the proportion of individuals
from each hospital will distort the survival curve.

If the studied disease has a genetic component, including family members in
one treatment group distorts the survival curve.
Entry criteria are consistent. If the study lasts for years, the enrollment
criteria cannot change over time. For instance, cancer patients are enrolled at
their first metastasis, but over the years new technology allows for earlier
diagnosis.
End point is consistent. In a cancer study, do we count deaths from car
accidents as deaths? Counting or not counting makes sense, but the decision
has to be taken before the study.
Average survival does not change over time. If the nature of the disease
changes over time (e.g., a rapidly evolving infectious pathogen), then results
are difficult to interpret. If the treatment (including supportive care) changes
over time, ...
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Assumptions

Starting time clearly defined. For instance, the first hospital admission. Do
not rely on the patient remembering when he first had symptoms.

Do we remove patients that they before they could start treatment? This
leads to bias, especially if one treatment can start immediately (medication),
but the other requires preparation or scheduling (surgery). Most study follow
a policy of intention to treat.
Censoring is unrelated to survival. If some patients dropout the study
because they feel too sick or they thought the treatment was not useful, then
the censored data is related to the disease progression or response to therapy
and the analysis is invalid. In these cases it is recommended to analyze the
data censoring the dropouts and excluding them. If the results of both
analyses coincide, then the result is clear. If they do not coincide, then the
study results are ambiguous.
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Counted data

Poisson distributed counts (number of events occurring
independently of the time since the last event and at a
fixed rate). The variance of Poisson is equal to its mean.

Babies born in an obstretics ward each day.
Number of eosinophils see in one microscope field.
Number of radioactive disintegrations detected by a
scintillator in 1 minute.

Binomial distributed counts (number of Bernouilli
successes, each with a fixed probability, occurring
independently)

Number of heads in 50 coin flips.
Number of left-handed and right-handed in a sample.
Number of male and female in a sample.
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Counted data

Negative binomial distributed counts (number of
Bernouilli successes, each with a fixed probability,
occurring independently before r failures are observed).
This distribution is used for overdispersed Poisson counts
(the variance is larger than its mean). Negative binomial
has two parameters (p and r) that can be adjusted to the
observed data.

Number of parasites in a blood specimen.
Number of alcoholic drinks taken over a period of
time.
Incidence rate of mastitis in cattle.
Annual counts of tropical cyclones in the North
Atlantic.
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Poisson distribution

Distribution examples for event rates of λ = 2, 4, 6, 10 counts/min, counts/field,
counts/period, ...

1. Confidence Intervals August 13, 2017 22 / 27



Assumptions of Poisson distribution

The event is clearly defined (the cell type in a microscope field is sometimes
difficult to determine).
Each event occurs randomly, independently of other events (baby twins in an
obstretics ward violate this assumption, parasite aggregations in blood
samples too)
The average rate does not change over time.
Each event is counted only once (in a study of airplanes close to collide,
researchers asked pilots and copilots how many times they were about to
collide with another plane; some events were counted twice because the pilots
and copilots of the two planes were interviewed separately).

1. Confidence Intervals August 13, 2017 23 / 27



Confidence interval. Larger samples are better.

You carefully dissect 1 bagel and find 10 raisins. If
raisins do not aggregate and the recipe does not
change over time, the 95% confidence interval is
between 4.8 and 18.4 raisins per bagel.
You carefully dissect 10 bagels and find 9, 7, 13, 12,
10, 9, 11, 9, 10 and 10 raisins. A total of 100 raisins
in 10 bagels (an average of 10 raisins per bagel). For
100 objects counted, the 95% confidence interval is
from 81.36 to 121.63. If we divide by 10, then the
confidence interval for the number of raisins per
bagel is from 8.1 to 12.2. (A much smaller
confidence interval.)
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Confidence interval. Larger samples are better.

If we observe C counts, then ...
... the exact confidence interval is

1
2χ

2
α
2 ,2C ≤ λ ≤

1
2χ

2
1−α

2 ,2(C+1)

... an approximated confidence interval is

C − z1−α
2

√
C ≤ λ ≤ C + z1−α

2

√
C

Remind that for α = 0.05, z1−α
2

= 1.96
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Confidence interval
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Discrete vs continuous variables

Discrete data: Number of eosinophils per microscopy
field: 0, 1, 2, ...
Continuous data: pH of viable eosinophils: 6.00, 6.01,
6.02, ..., 7.49, 7.50

Assume that we measure the temperature to 9 people and get the data:

37.0, 36.0, 37.1, 37.1, 36.2, 37.3, 37.0, 37.0, 36.1

We may calculate a measure of centrality:
Mean: µ̂ = 37.0+36.0+37.1+37.1+36.2+37.3+37.0+37.0+36.1

9 = 36.76
Median: µ̂ = (36.0, 36.1, 36.2, 37.0, 37.0, 37.0, 37.1, 37.1, 37.3) = 37.0
Trimmed mean: µ̂ = ��36.0+36.1+36.2+37.0+37.0+37.0+37.1+37.1+��37.3

7 = 36.79
Geometric mean:
µ̂ = exp

( log 36.0+log 36.1+log 36.2+log 37.0+log 37.0+log 37.0+log 37.1+log 37.1+log 37.3
9

)
= 36.75

Harmonic mean: µ̂ = 1
1

37.0 + 1
36.0 + 1

37.1 + 1
37.1 + 1

36.2 + 1
37.3 + 1

37.0 + 1
37.0 + 1

36.1
9

= 36.75

Mode: µ̂ = (36.0, 36.1, 36.2, 37.0, 37.0, 37.0, 37.1, 37.1, 37.3) = 37.0
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Different measures of centrality

Mean: Average of the input samples. The best for normal variables (heights,
volumes, weights, ...)
Median: Half the samples are below this value, and half the samples are
above this value.
Trimmed mean: Average removing the lowest and highest values. Robust to
outliers.
Geometric mean: Average in the logarithmic scale. The best for log-normal
variables (number of cells, gene expression, ...)
Harmonic mean: Average in the inverse scale. The best for speeds.
Mode: The most frequent value (it does not necessarily be in the middle of
the distribution).
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Types of variables: Interval variables

A change of an interval (e.g. 1◦) is the same all
along the interval).
The zero reference may be arbitrary (Celsius or
Fahrenheit degrees).
If the temperature of an object is 20◦ and of another
object 30◦, the temperature of the second object is
not 50% larger (in Fahrenheit scale, the percentage
would be different).
Calculating differences between two interval
variables makes sense.
Calculating ratios between two interval variables
does not make sense.

2. Continuous variables August 13, 2017 6 / 47



Types of variables: Ratio variables

The zero reference is not arbitrary (height, weight,
enzyme activity, temperature in Kelvin).
It makes sense calculating the ratio between two
values. A weight of 4 grams is twice the weight of 2
grams.
Calculating differences and ratios between two ratio
variables makes sense.
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Types of variables: Ordinal variables

Ordinal variables only express a relative rank between variables.
Differences or ratios are meaningless.
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Types of variables: Categorical variables

Categorical variables represent labels (male, female;
no, yes; false, true; red, green, blue, ...; cat, dog,
horse, ...)
No mathematical operation is allowed even if they
are encoded as numbers (0, 1, ...)
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Variability and bias

Variability may have different sources:
Biological: There is an intrinsic variability associated to individuals.
Experimental random errors: Reading (e.g. height) is subject to
measurement errors (normally assumed to be Gaussian, but not necessarily)

Bias may have different sources:
Systematic errors: The instrument is wrongly used by the experimenter (zero
offset, calibration, scale factors, ...), defective instruments, software bugs, ...

Bias data is not accurate.
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Variability and bias
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Plots: 1D Scatter plots, histograms and boxplots
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Plots: Time plots and data smoothing

Typical data smoothers are splines and LOESS.
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Plots: 2D Scatter plots and 1D histograms
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Plots: 2D Scatter plots
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Plots: 2D Scatter plots
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Plots: 2D histograms
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Plots: 3D Scatter plots
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Scatter plots
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Standard Deviation

The standard deviation (SD) expresses how samples differ from the average. For
example, the average human temperature is 36.82◦C with a SD of 0.41◦C.
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Standard Deviation

About 68% of the samples normally fall between ±1SD.
About 95% of the samples normally fall between ±2SD.
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Standard Deviation

The sample mean and standard deviation are calculated as

µ̂ = 1
N

N∑
i=1

xi

σ̂ = 1
N−1

N∑
i=1

(xi − µ̂)2

Note that sample variance is the square of the standard deviation, σ̂2.

Means and standard deviations are sensitive to outliers. The equivalent robust
estimates are the median and median absolute deviation (MAD)

med = med(xi)
mad = med(|xi −med |)
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Standard Deviation

N is the number of independent samples (biological replicates).
Technical replicates (measuring the same individual multiple times) does not
give independent samples.
Multiple measurements from the same individual (n = 1 experiments) is
representative of the samples obtained from that person, not from the whole
population.
The SD from 100 samples is approximately the same as the SD from 1000
samples. The SD quantifies the underlying variability, as long as the sample
is large enough to gain some precision, the SD estimates should not change
with the sample size.
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Histogram summary

The interquartile range shows the difference in
the central 50% of the data.
The 5-number summary shows a quick look
summary of the histogram.
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Variability
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Gaussian distribution

The Gaussian is the limit distribution of many additive random variables (central
limit theorem). Variations in experiments may be caused by many factors at the
same time: imprecise weighing of reagents, imprecise pipetting, the random
nature of radioactive decay, nonhomogeneous suspensions of cells, ...
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Gaussian distribution

This is the “probability density function”. It indicates the likelihood of each value.
On this curve we can measure percentiles (the 95% percentile is a value such that
95% is a value such that 95% of the values drawn from this distribution occur
below this value). We may normalize a value through its z-score

z = x − µ
σ
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Not everything is Gaussian (Normal)

Many other distributions exist. Even there are variables for which there are no
closed-form distributions. In the example above, the distributions have been
normalized to have 0 mean and standard deviation 1. The red arrows indicate a
central interval with 91.1% of the population.
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Log-normal distribution

The logarithm of our measurements are Gaussian. This is typical of cell counts
and concentrations (e.g., EC50, concentration to achieve 50% of the effect,
pEC50 is its logarithm).

This distribution is well suited for variables that act as multiplicative rather than
additive. They are equally likely to double their value or cur it in half. These
variables should be used in the logarithmic scale and treated, then, normally.
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Confidence interval of a mean

Assume that we measure the temperature to 9 people
and get the data:

37.0, 36.0, 37.1, 37.1, 36.2, 37.3, 37.0, 37.0, 36.1

The mean is 36.76◦C and its 95% confidence interval
[36.37,37.14]◦C. This means that with probability 95%,
this interval contains the true mean. Note that this
interval is symmetric around 36.76.

The confidence interval is calculated as[
µ̂−

t1−α
2 ,N−1σ̂√

N
, µ̂+

t1−α
2 ,N−1σ̂√

N

]
where t1−α

2
,N − 1 is the 1− α

2 percentile of a Student’s t distribution with N − 1
degrees of freedom.
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Confidence interval of a standard deviation

Assume that we measure the temperature to 9 people
and get the data:

37.0, 36.0, 37.1, 37.1, 36.2, 37.3, 37.0, 37.0, 36.1

The sample standard deviation is 0.50◦C and its 95%
confidence interval [0.34,0.96]◦C. This means that with
probability 95%, this interval contains the true standard
deviation. Note that this interval is not symmetric
around 0.50.

The confidence interval is calculated as[
σ̂

√
N − 1

χ2
1−α

2 ,N−1
, σ̂

√
N − 1
χ2
α
2 ,N−1

]

where χ2
1−α

2 ,N−1 is the 1− α
2 percentile of a central χ2 distribution with N − 1

degrees of freedom.
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Assumptions of confidence intervals

Random (representative) sample. In clinical studies, patients are not
randomly sampled from the patient population. They are included in the
study because they were at the clinic at the right moment (convenience
sampling). This assumption would also be violated if the body temperature is
from people who joint the study because they suspected their body
temperature was normally too high or too low (voluntaries in clinical studies
are not random samples!)
Independent samples. All subjects are sampled from the same population and
independently selected from others. This assumption is violated if two
siblings are included in the study, or if the same person is measured twice.
Accurate data. Violated if the thermometer was not correctly placed or it was
misread.
Population distribution. Confidence intervals can only be constructed if the
underlying, population distribution is known. The formulas in the previous
slides are valid only for Gaussian populations.
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Properties of confidence intervals

More samples. The larger the experiment, N, the narrower the CI (we have
less uncertainty about the underlying parameter).
More confidence. The larger the confidence, 1−α, the wider the CI (we need
to enlarge it to be surer that it contains the true parameter).

What if the assumptions are violated?

In many situations, these assumptions
are not strictly true. Then, the CI may
still be a reasonable approximation of the
range of the underlying parameter
(depending on the severity of the
violation). But the confidence will, for
sure, not be the one we think (95%).
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Confidence Intervals
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CIs vs SD vs SEM

SD is the standard deviation of the population
SEM (standard error of the mean) is the standard deviation of our estimate
of the mean

SEM = SD√
N

CI is about our estimate of the mean
SEM and CIs show how accurate is our estimate of the mean, not how variable is
our data. To show the variability of the data show a boxplot or a histogram.

2. Continuous variables August 13, 2017 42 / 47



Boxplots better than µ̂± SD

µ̂± SD implicitly imply that the distribution is symmetric (Gaussian), although
this is not always the case as in this example of the number of citations of 500
Nature papers.
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Practice

Compute the mean, median, SD, percentiles of a population.
Compute the SEM of the mean estimate.
Compute the 95% CI of the mean estimate.
Represent a boxplot of the population.
Represent a histogram of the population.
Multiple scatter plots of several variables.
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What is a p-value through examples
We flip a coin 20 times and observe 16 heads and 4 tails. Is it a fair
coin?. On average, for a fair coin we would have expected 10 heads
and 10 tails. 16 heads is too far from 10, can we say the coin is not
fair?
This table shows the probability (%) of observing different number of
heads in 20 flips.

0 or 20 0.000 1 or 19 0.002 2 or 18 0.018 3 or 17 0.109 4 or 16 0.462
5 or 15 1.479 6 or 14 3.696 7 or 13 7.393 8 or 12 12.013 9 or 11 16.018
10 17.620

We should be suspicious on the coin if we observe a result as strange as 16 heads
or even stranger. These results are 0, 1, 2, 3, 4, 16, 17, 18, 19, 20 heads.

p − val = Pr{0} +Pr{1} +Pr{2} +Pr{3} +Pr{4}+
Pr{16} +Pr{17} +Pr{18} +Pr{19} +Pr{20}

= 1.18% = 0.0118

The p-value, that is, if the coin is fair, the probability of observing a result as
extreme or more as the actually observed (16 heads) is 1.18%. That is, just by
coincidence, a fair coin flipped 20 times (and repeated this experiment many
times) could have 0, 1, 2, 3, 4 or 16, 17, 18, 19, 20 heads in the run in 1.18% of
the cases. Now it is your turn to decide. In this single run, we observed 16 heads,
would you say the coin is fair?
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What is a p-value through examples

We randomly assigned 972 surgical patients to receive an
antibiotic ointment or an ointment without an active
medication.

Infections occurred in 6.6% of the patients who received
the antibiotic and in 11.0% of the patients who received
the inactive ointment. That is, the risk of infection was
67% higher in the inactive ointment group ( 11

6.6 = 1.666).

If we assume that the risk of infection is the same in both
groups and that the antibiotic ointment is not helping to
prevent infections, what is the probability of observing a
result as extreme as this one or more?

p− val = 1% = 0.01
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What is a p-value through examples
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The null and alternative hypotheses

If the coin is fair, then ...
If the the risk of infection is the same in both groups and that the antibiotic
ointment is not helping, then ...

The null hypothesis is the state of affairs we want to disprove. The alternative
hypothesis is the opposite (what we want to prove):

The coin is not fair.
The risk of infection is not the same in both groups or the antibiotic
ointment is helping.
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p-values are random variables
Miller (1986)gave data comparing partial thromboplastin times for patients whose
blood clots were dissolved (R=recanalized) and for those whose clots were not
dissolved (NR).

R: 41 86 90 74 146 57 62 78 55 105 46 94 26 101 72 119 88
NR: 34 23 36 25 35 23 87 48

The (bootstrap) distribution of p-values would be

That is, with this data (or similar) we could have obtained a p-value going from
0.000 to more than 0.01. Its logarithm is approximately normal.
Boos and Stefanski. p-value precision and reproducibility. The American Statistician, 65:4, 213-221 (2011).
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p-values and replicability

If we are in the limit of
the p-value decision,
there is a high chance
(50%) that a replicate
may result in a
non-significant
difference.

Greenwald, A. G.; Gonzalez, R.; Harris, R. J., Guthrie, D. Effect sizes and p values: what should be reported and what should be replicated?
Psychophysiology, 1996, 33, 175-183
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p-values and replicability

This is simulated data,
all experiments have a
mean difference of 10
and a SD=20 (effect
size=10/20=0.5).
However, some of the
experiments are highly
significant and some
others are not. The
p-value range from
<0.001 to 0.76!!

Better use CIs, rather
than p-values.

Cumming, G. Replication and p intervals: p values predict the future only vaguely, but confidence intervals do much better. Perspectives on Psychological
Science, 2008, 3, 286-300
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Common mistakes on the p-value

Some researchers compared the mean in two groups (treatment and control) and
found the p-value to be 0.03.

If the two population means were identical (null hypothesis), there is a 3%
chance of observing a difference as large as you observed (or larger).
Random sampling from identical populations would lead to a difference
smaller than what you observed in 97% of the experiments, and larger than
you observed in 3% of the experiments.
There is a 97% chance that there is a real difference between the two
populations and 3% chance that the difference is a random coincidence.
The p-value is the probability that the result is due to sampling error.
The p-value is the probability that the null hypothesis is true.
The probability that the alternative hypothesis is true is not 1− pval .
The probability that the experiment will hold up when repeated is not
1− pval .
A high p-value does not prove that the null hypothesis is true.
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P-values
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Statistical hypothesis testing

Statistical hypothesis testing helps to automate decision
making:

In a pilot experiment, we must decide whether to
proceed to further experimentation with this drug.
At Phase II, we must decide whether to go to Phase
III.
At production quality control, we must decide if a
batch can be released.
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Innocent until proven guilty

A juror starts with the presumption
of innocence of the defendant.
A juror bases his decision only on
factual evidence presented at the
trial and should not consider any
other information (e.g., newspaper
stories).
A juror reaches the verdict of guilty
when the evidence is inconsistent
with the assumption of innocence.
Otherwise, the juror reaches the
verdict of non-guilty.
If the juror is not convinced, he can
say “I’m not sure”.

A scientist starts with the
presumption that the null hypothesis
“there is no difference” is true.
A scientist bases his decision only
on data from one experiment,
without considering what other
experiments have concluded.
A scientist reaches the conclusion of
statistical significant difference when
the p-value is small enough to make
the null hypothesis very unlikely.
Otherwise, the scientist reaches the
conclusion of non-significantly
different.
If the scientist is not sure, he can
collect more data.
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Some concepts
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Some concepts

Symbols Phrase p-value
ns Not significant p>0.05
* Significant p<0.05
** Highly significant p<0.01
*** Extremely significant p<0.001
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Some mistakes

Stargazing: Considering results in a paper only important if they have 1, 2, 3,
... stars. p-values are not as reproducible as CIs, and they only mean at
showing that the result is not generated under the null hypothesis, not that
the result is relevant.
Significance is not relevance: Being statistically significant does not mean
that the result is relevant.
p-hacking to obtain significance: Trying different hypothesis tests to see if
one of them proves to be significant, dynamic sample size (adding more and
more data until the result is significant), taking subsets of the data on which
the difference is significant, playing with the definition of outliers, changing
from a two-sided hypothesis to a one-sided.
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CIs and hypothesis testing

These two techniques are based on the same theory
CIs compute a range that 95% of the time will contain the population value
(given some assumptions).
Hypothesis testing computes a range that you can be 95% sure would
contain the experimental results if the null hypothesis were true. Any result
within this range is considered not statistically significant, and any result
outside this range is considered statistically significant.

Remember
If the 95% CI does not contain the value of the null hypothesis, then the
result must be statistically significant (with p < 0.05).
If the 95% CI does contain the value of the null hypothesis, then the result is
not statistically significant (with p < 0.05).
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CIs and hypothesis testing

With N = 12 measurements we observe some difference between the average
observed temperature and the reference (null) value (37◦C). However, this result
is not significant
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CIs and hypothesis testing

With N = 120 measurements the result becomes significant
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Statistical significance does not imply relevance

We compare the responding proportion in a control and treatment group

Sample size per group Control Responding pval CI 95%
10 10% 80.0% 0.006 [44.39,97.48]%
100 10% 26.0% 0.006 [17.74,35.73]%
1000 10% 14.1% 0.006 [12.00,16.41]%
10000 10% 11.2% 0.006 [10.59,11.83]%

They all have the save p-value, but their relevance are rather different (e.g., the
last one is seldom interesting, the effect is too small).
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Significance level, power and false discovery rate
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Significance level, power and false discovery rate

Reject H0 Do not reject H0
H0 is true A = 45 B = 855 A + B = 900
H0 is false C = 80 D = 20 C + D = 100

A + C = 125 B + D = 875 A + B + C + D = 1000

Significance level
α = A

A + B = 45
900 = 0.05

Significance answers the questions:
If H0 is true, what is the probability of incorrectly rejecting it?
Of all the experiments you could run in which H0 is true, what is the fraction
in which you will reach the conclusion that the results are statistically
significant?
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Significance level, power and false discovery rate

Reject H0 Do not reject H0
H0 is true A = 45 B = 855 A + B = 900
H0 is false C = 80 D = 20 C + D = 100

A + C = 125 B + D = 875 A + B + C + D = 1000

Power
1− β = C

C + D = 80
100 = 0.80

β = D
C + D = 20

100 = 0.20

Power answers the questions:
If H0 is false, what is the probability of correctly rejecting it?
Of all the experiments you could run in which H0 is false, what is the fraction
in which you will reach the conclusion that the results are statistically
significant?
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Significance level, power and false discovery rate

Reject H0 Do not reject H0
H0 is true A = 45 B = 855 A + B = 900
H0 is false C = 80 D = 20 C + D = 100

A + C = 125 B + D = 875 A + B + C + D = 1000

False Discovery Rate
FDR = A

A + C = 45
125 = 0.36

FDR answers the questions:
If a result is statistically significant, what is the probability that H0 is true?
Of all the experiments that reach a statistically significant conclusion, what is
the fraction in which H0 is true?
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Significance level, power and false discovery rate

Significance level, statistical power and FDR depend on the sample size, the effect
size and the population variance.

You send your child into the basement to find a tool. He
comes back and says “It isn’t there”. What do you
conclude? Is the tool there (H0) or not (H1)?
Your conclusion depends on:

How long the kid has been looking for. (sample size)
How large the tool is (it is easier to find a snow
shovel than a small screw-driver to fix glasses).
(effect size)
How messy the basement is. (population variance)

3. P-values and statistical significance August 13, 2017 27 / 39



Informal accounting for prior probabilities
Experiment 1: The experiment makes biological sense and the p-value is
0.04. I would tend to believe that H0 is false and that the data confirms my
alternative hypothesis.
Experiment 2: The experiment does not make biological sense and the
p-value is 0.04. I would tend to believe that H0 is true and that the
observations are significant just by chance.
Experiment 3: The experiment does not make biological sense and the
p-value is 0.0000004. Although, for me, the experiment goes against my
biological knowledge, the data evidence is so strong that probably H0 is false
and I have to revise my knowledge base.
(Extraordinary claims require extraordinary proofs (Carl Sagan)).
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Post-hoc power analysis (Don’t)

Post-hoc power analysis is the estimation of the statistical power once the
experiment has been performed. We have observed some effect size, and now we
calculate what would be the statistical power if the true underlying effect size was
the one observed.

Unfortunately, post-hoc power is simply another way of reporting the p-value.
There is a close relationship between the observed power and the observed
p-value. If you want to look at your experiment retrospectively, look at the CI.
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Hypothesis testing
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Not significant results

The other day Michael Jordan and me shot baskets. He
shot 7 straight free throws. I hit 3 and missed 4. Being a
statistician, I rushed to the sideline, calculated the
p-value by Fisher’s exact test which resulted to be 0.07.
That meant, there was no statistically significant
difference between Michael Jordan and me!!!

A high p-value does not make the null hypothesis true. It
may be that the experiment was not large enough.
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Not significant results
Two groups of pregnant women:

One of the groups received routine ultrasound twice
during pregnancy. In 4.98% (=383/7685) of the
cases, an adverse outcome was detected.
The other group received ultrasound only when
indicated by clinical reasons. In 4.91% (=373/7596)
of the cases, an adverse outcome was detected.

The null hypothesis is that the risk of adverse outcome is the same in both
groups. The relative risk is 1.01 (=4.98/4.91) and has a 95% confidence interval
[0.88,1.17] and the p-value is 0.86.
Possible interpretations:

1 The CI contains 1. Routine ultrasounds are not helpful nor harmful. They
could be skipped.

2 The CI is compatible with a relative risk of 0.88, that is there is a 12%
reduction in the risk of adverse outcome by routine use of ultrasounds.

3 The CI is compatible with a relative risk of 1.17, that is there is an increase
of 17% in the risk of adverse outcome. May the increase because ultrasounds
are harmful to the fetus?
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P-values
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Significance vs. equivalence tests
Significance tests:

H0 : µ1 = µ2
HA : µ1 6= µ2

Equivalence tests:
H0 : µ1 6= µ2
HA : µ1 = µ2
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Use CI to determine equivalence

To verify bioequivalence check that the 95% CI is within the bioequivalent area.
Standard significance testing is not valid. Equivalence tests translate into two
significance tests (H0 : R < 0.8 and H0 > 1.25).
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Statistical truth
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Small number of tests

If the fishing expedition catches a boot, the fishermen should throw it back and
not claim they were fishing for boots. (James Mills)

In an experiment with DNA microarrays, 20.000 genes are tested for association
with disease, condition, etc. If the confidence level is 0.05, on average, even if no
gene is related to the disease, 1.000 genes will be identified as related to it.
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Small number of tests
Corrections for multiple, K , comparisons:

Bonferroni: Lower the confidence level to α/K . E.g., a gene is identified as
related to the disease if its p-value is below

0.05
20000 = 2.50e − 6

The family-wise confidence level is still 0.05. Bonferroni is sometimes too
conservative.
Benjamini and Hochberg FDR: Sort the p-values in ascending order. E.g., the
i-th gene is identified as related to the disease if its p-value is smaller than
i α

K . For example,
p-value i Threshold Significant
1e-9 1 2.50e − 6 Yes
1e-8 2 5.00e − 6 Yes
1e-7 3 7.50e − 6 Yes
1e-6 4 1.00e − 5 Yes
1e-5 5 1.25e − 5 Yes
1e-4 6 1.50e − 5 No
1e-3 7 1.75e − 5 No
... ... ... No
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Multiple subgroups

We study the effect of drugs A and B on the survival time of patients
with coronary heart disease. We may analyze the data as

Comparison between 2 groups: A and B
Comparison between 2 groups within subgroups of patients
depending on the number of arteries with disease, the ventricle
contraction and ECG findings

#Arteries Ventricle ECG
1 Normal Normal
1 Normal Abnormal
1 Abnormal Normal
1 Abnormal Abnormal
2 Normal Normal
2 Normal Abnormal
2 Abnormal Normal
2 Abnormal Abnormal

The number of comparisons starts to be high for not making any
multiple testing correction and we may find a small p-value in
one of the groups just by chance.
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Multiple sample sizes

If you run an experiment and the result is not quite significant, it is tempting to
add a few more samples to the experiment and test again. You repeat this
procedure until the result is significant

The problem with this approach is that you keep collecting data only when the
result is not statistically significant and stop when the result is statistically
significant. If the experiment were continued a little bit longer, you might be back
to not statistically significant, but you will never know because you stopped.

Lookup sequential data analysis for a rigorous way of carrying out an experiment
by adding samples (the trick is to change the significance level at each
comparison).
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Multiple geographical areas
5 children in a particular school developed leukemia last year. Is that a
coincidence? or does the clustering of cases suggest the presence of an
environmental toxin that caused the disease?

What is the probability that 5 children in a particular school would all get
leukemia this year?
We may estimate this probability if we know the overall incidence rate of leukemia
in children and the number of children enrolled in the school (Binomial
distribution). The probability is very low and parents are alarmed.

But you have asked the wrong question once you have observed the cluster. The
school only came to your attention because of the cluster of cases. The right
question is

What is the probability that 5 children in any school would all get leukemia this
year?
You would have to define the geographical area to include and the number of
schools, size of schools, ... but, this probability is much higher.
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Multiple secondary outcomes

When a clinical trial is designed, there must be some clearly defined primary
outcomes (variables we care the most, and where the statistical analysis will
be focused).
During the clinical trial, we will measure many other variables. But they
should be treated as secondary outcomes (they may strengthen the scientific
argument of the primary outcomes and lead to new hypotheses to study).
But, if you measure many secondary outcomes, you should expect some of
them to be significantly different between groups just by chance (Type I
error).
If a better understanding of the disease is achieved during the clinical trial,
we may change the primary outcomes, but without looking at the data first.
You cannot change your primary outcomes after looking at the data and
choosing those variables with lowest p-values.

4. Statistical assumptions August 12, 2017 9 / 24



Multiple ...

You shall not ... after looking at the data
... decide the definition of groups (comparing drugs A and B in Pisces
patients; if you inspect many different ways of grouping, some of them will be
significant by chance)
... choose the important variables for regression (drug response as a function
of mother’s age and Real Madrid score that week; if you inspect many
different combinations of predictors, some of them will be significant by
chance)
... preprocess the data in multiple ways (smoothing, outlier rejection,
logarithmic transformation, ...; if you inspect many different preprocessing
schemes, some of them will be significant by chance)
... analyze the data in multiple ways (testing all analysis possibilities of a
program; if you try many different hypothesis tests, some of them will be
significant by chance)

Be skeptical of results obtained by data torture or p-hacking.
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Multiple testing

4. Statistical assumptions August 12, 2017 11 / 24



Outline

4 Statistical assumptions
Small number of tests
Gaussian distribution
A single population (no outliers)

4. Statistical assumptions August 12, 2017 12 / 24



Gaussian distribution

Data Gaussianity is assumed by many parametrical tests:
Student’s t tests (about means)
ANOVA and Snedecor’s F tests (about means and variances)
χ2 (depending on the source of data)
Some tests and sample size formulas for proportions
...

Gaussian functions are easy to deal mathematically and they approximate well
many processes (especially those that are the result of the sum of many
contributions; Central Limit Theorem).

4. Statistical assumptions August 12, 2017 13 / 24



Gaussian distribution
The Gaussian is an idealization of a random process (e.g., it extends to infinity,
but in practice blood pressures, weights, heights, concentrations, ... cannot). The
question is whether real data is well approximated by a Gaussian distribution.

Gaussian data may not necessarily look Gaussian.
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Normality tests

There are a number of statistical tests (D’Agostino-Pearson, Shapiro-Wilk,
Kolmogorov-Smirnov, Darling-Anderson) that help to quantify if the data
contradicts the Gaussian assumption.

If the p-value is high, then the observed data is not incompatible with a
Gaussian distribution.
If the p-value is low, then the observed data contradicts the hypothesis that
the data was drawn from a Gaussian distribution (null hypothesis).

If the data is not normal, you may:
Transform it (taking logarithms from log-normal data (dillutions, number of
cells, ...)).
Identify and remove outliers.
Switch to a non-parametric test that does not assume normality.
Ignore small departures from the Gaussian ideal (many parametric tests are
robust to mild violations).
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Normality tests

Should I use a normality test to decide whether to perform a parametric or
non-parametric analysis?

Make sure that the data is not log-normal.
Make sure that there are no outliers.
The decision on parametric or non-parametric is most important with small
sample sizes, but with small sample sizes most normality tests cannot show
that the data is not Gaussian (high p-values). This gives a false confidence
on the use of parametric analysis.
Remind that in a long term analysis, data should be analyzed in the same way.
Remind that non-parametric tests are less powerful than parametric ones.

Overall, the decision to go parametric or not is hard and requires experience,
thinking and perspective.
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Non-parametric tests

To choose the right statistical test, visit this Statistical test selection guide.
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A single population

Tests assume that the observed data come from a single population. Outliers
seem to come from a different population.

It is an outlier if it comes from
Invalid data (transposed digits,
shifted decimal point, sensor
blackout, ...)
Experimental mistake (bad
pipetting, a voltage spike, a hole in
a filter)

It is not an outlier if it comes from
Random chance (just by chance
some values are larger/smaller than
rest)
Biological diversity (the population
is really variable)
Invalid assumption (I assume it is
normal, but it is log-normal)
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Is it legitimate to remove outliers?

Removing data because it does not fit our “expectations” is cheating.
Leaving outliers may lead to invalid results, it is another way of “cheating”.
It is not cheating when the decision to remove an outlier is based on rules
and methods established before the data was collected.

Alternatively, use robust statistics
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Common mistakes with outliers

Not realizing that the data is log-normal, instead of normal.
Using a test designed to detect a single outlier when there are several outliers.
Applying multiple times a test to detect a single outlier does a poor job.
Eliminating outliers only when you don’t get the results you want
Truly eliminating outliers from your notebook.
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Outliers
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Comparing two proportions
A research group tested whether apixaban 2.5 mg, twice a
day reduced the recurrence of thromboembolism. They
randomly assigned 1669 patients to a placebo or treatment
and checked the number of thromboembolisms after 1 year.
The results were (contigency table)

Recurrence No recurrence Total
Placebo 73 756 829

Treatment 14 826 840
Total 87 1582 1669

Fisher’s exact test showed that the proportion of recurrence
in both groups was different with a p-value<0.0001. This
p-value answers the question: if the null hypothesis were true
(H0 : papixaban = Hplacebo , apixaban does not have any effect
on the thromboembolism recurrence), what is the probability
of observing 14 or less recurrences out of 840 patients?

Fisher’s exact test with large samples is difficult to calculate
and can be approximated by a χ2 test.
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Comparing two proportions

The 95% confidence intervals for the proportion of recurrence
in each group were

Placebo: p=73/829=8.8%, 95% CI=[7.0,10.9]
Treatment: p=14/840=1.7%, 95% CI=[0.9,2.8]

The difference between 8.8 and 1.7 (=7.1%) is called the
attributable risk.

The relative risk is the ratio between the two,
RR=1.7/8.8=0.19 (95% CI=[0.11,0.33]). This means that
the treatment reduces the risk of recurrence by a factor
between 0.11 and 0.33.

Secondary results:
This reduction was similar by age and sex.
Patients receiving the treatment did not have more
bleeding than those with the placebo.
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Assumptions

Random sample: The sample is representative of the whole population. The
subjects in the study were not randomly selected (they may come from the
same hospital), but they were randomly assigned to receive the drug or
placebo.
Independent observations: Selecting one member of the population should
not change the chance of selecting anyone else, and the results of one person
is not correlated to the result of any other person in the study. This is
violated if the study included several members of the same family.
No difference between the two groups except treatment: The researchers had
to show that there was no significant difference in terms of age, weight, sex,
kidney function, etc.
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Comparing two proportions
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Comparing proportions to theoretical values
Mendel studied the shape and color of peas.

In an experiment with 556 peas, these are the observed and the expected results
Phenotype # Observed Expected proportion # Expected

Round and yellow 315 9/16 312.75
Round and green 108 3/16 104.25
Wrinkle and yellow 101 3/16 104.25
Wrinkle and green 32 1/16 34.75

Does the observed data contradict our theory?
5. Statistical tests August 15, 2017 9 / 56



Comparing proportions to theoretical values
The correct way of analyzing a multinomial distribution (9/16,3/16,3/16,1/16) is
by the exact test of goodness-of-fit. Its mathematics are relatively complicated
and if the number of samples is large enough it can be approximated by χ2 test of
goodness-of-fit.

X 2 =
∑

i

(Oi − Ei)2

Ei

The number of degrees of freedom is N − 1 where N is the number of categories
(in the peas example N = 4). In the example X 2 = 0.470 and the p-value is 0.93,
so the observed data does not contradict our theory.

For N = 2, the exact test of goodness-of-fit becomes the binomial test.
Common mistakes

Mixing the two approximations by χ2. It is not the same comparing two
groups than comparing one group to theory.
Constructing observed values that are real counts but “normalized” counts
(normalized to 1, 100 or 1000).
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Comparing proportions to theoretical values
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Case-control studies
Some researchers investigated whether cholera was effective.

Prospective approach: 1) Recruit unvaccinated people. 2)
Randomly assign them to be vaccinated or not. 3) Follow both
groups for many years to compare the incidence of cholera. But
this study would require many years and would withhold the
vaccine from many people.
Retrospective approach (case-control): Pick cases and controls
and annotate whether they had been vaccinated or not.

The results of a case-control study on cholera vaccination were

Cases (cholera) Controls
Vaccinated 10 94
Unvaccinated 33 78
Total 43 172

Fisher’s exact test is still applicable. The null hypothesis is that the variables
Vaccination and Disease state are independent. The corresponding (two-sided)
p-value was 0.0003. The two-sided implies that we don’t know whether cholera
incidence will be higher or lower in the vaccinated group.
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Case-control studies

Note that the number of controls is chosen by the researchers, so it does not
make sense to calculate the relative risk (analysis by rows) as we did with the
prospective study on apixaban.
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Case-control studies

Instead we must calculate the odds ratio (analysis by columns)

Meaning that vaccinated people are 25% as likely to get cholera as unvaccinated
people. The 95% CI for the Odds Ratio is [0.12,0.54].

The effectiveness of the vaccine is 1 − OR = 1 − 0.251 = 74.9%, and its 95% CI
is calculated by subtracting the 95% CI of the OR from 1, that is,
[1 − 0.54, 1 − 0.12] = [46%, 88%].
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Problems of Case-control studies

In the cholera example, the researchers picked the controls visiting homes near the
area of the patient, but ...

Controls were picked because they were of the same gender and age as the
subject. They could not determine if the vaccine was more or less effective
depending on the gender and age.
Patients knew they had cholera and may remember their vaccination more
vividly than controls.
Interviewers knew who had cholera and who did not. They may inadvertently
pose the questions differently leading to different responses on vaccination.
Patients may want to help researchers, while controls just want to finish the
interview.
Patients were chosen because they attended to the Cholera Treatment
Center. Patients with mild symptoms did not seek medical attention.
Controls were at home when the interviewer came. So the study was biased
towards people who stay at home a lot.
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Validation of Case-control studies

In the cholera example, the researchers performed a second case-control study to
validate the cholera study.

They tested if there was an association between cholera vaccination and
other patients with bloody diarrhea not caused by cholera.
Controls were chosen in the same way as in the 1st cholera study, so they
shared the same biases.
The OR was 0.64 (95% CI=[0.34,1.18]).

Because of these problems it is recommended to be skeptical of OR between 0.33
and 3, even between 0.25 and 4. Case-control studies can be trusted if they can
be repeated and make sense biologically.
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Common mistakes

Confusing relative risk with odds ratio. The relationship is

RR = OR
(1 − p0) + p0OR

being p0 the prevalence of the disease (the fraction of the control group that
has the disease).
Entering normalized data instead of the actual counts of observed events.
Trying to compute an OR when one of the four values is 0.
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Case-control studies
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Survival data
Some researchers are comparing the survival time with two different treatments.
The study spans 4 years.
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Assumptions of Survival Analysis

Random (or representative) sample.
Independent subjects.
Consistent entry criteria.
Consistent definition of the end point.
Clear definition of the starting point.
Time of censoring is unrelated to survival.
Average survival does not change during study.
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Assumptions of Survival Analysis

When comparing two survival curves, additionally
Treatment groups are defined before data collection began. It is not valid to
take a single group of patients, all equally treated, and split them in two
subgroups depending on whether they response.
Groups are defined consistently as data are accrued. If the study spans
several years, the diagnostic groups must be defined consistently. For
instance, we are comparing the survival of cancer patients with and without
metastases. During the study a new scanner is acquired that is able of
detecting metastases much earlier, so these patients are moved to the
metastase group. The survival of the non-metastasic group improves,
because the patients with small metastases are moved to the other group.
But, the survival time of the metastase group also improves, because the new
patients have much smaller metastases than they used to have with the old
scanner. (Will Rogers phenomenon: “When the Okies left Oklahoma and
moved to California, they raised the average intelligence in both states”.)
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Assumptions of Survival Analysis
When comparing two survival curves, additionally

Proportional hazards. Hazard is the slope of the survival curve. The hazard
ratio compares the hazard of both treatments, most tests assume that this
ratio is constant over time and differences are simply due to random
sampling. This assumption is violated when hazard changes over time. For
instance, comparing surgery (high initial risk, lower later risk) with medical
therapy (less initial risk, higher later risk).
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Survival Analysis

If the proportional hazard
assumption is accepted, you may
use a Hazard Ratio analysis
(related to Cox model). In this
example the death hazard in one
of the groups is 0.38 lower than
in the other group. The log-rank
method or Mantel-Cox method)
calculates a p-value under this
assumption

If the hazard is constant over
time, then we may also use the
Ratio of median survival times
(RMST, related to an
exponential decay). In this
example, RMST = 906

2206 = 0.41.
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Survival Analysis

Survival bands help to decide at
each time whether the two
curves are significantly different.

5. Statistical tests August 15, 2017 26 / 56



Why Survival Analysis?
Is it not simpler to compare the mean or median survival times or five-year
survival?

Mean survival time: Cons:
It does not consider people that have not died or has been censored during the
experiment.
The survival time is not Gaussian so you cannot construct useful confidence
intervals.

Median survival time or 5-year survival: They solve the problem of not all
subjects dying. Cons:

They loose the information richness of the full survival curve. For instance,
these treatments have similar median and survival at 9 months, but very
different behavior after 9 months.
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Intention to treat

Imagine a study that randomly assigns patients with severe angina to surgery or
medical treatment. But some of the patients assigned to surgery die before being
operated. Should we remove them from the analysis since they did not get the
treatment? No. If we remove them from this group, we would be removing early
deaths from one group (surgery), but not the other (medical treatment), and this
would bias the results.

The Intention-to-Treat approach can be summarized as “analyze as randomized”
even if

Later the patient does not meet the entry criteria.
The treatment was not given.
They stopped the treatment for any reason.

We may also analyze the data with the intention-to-treat approach or removing
the data from samples that did not receive the fully assigned treatment. If there is
not a significant difference, we know that the dropouts did not affect the analysis.
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Survival data
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Comparing two independent means

Some researchers are comparing a signal between two independent groups: male
and female. In the example below, we see that they did not find a significant
difference between both groups because the CI of the difference includes 0.0.

The fact that the mean±SD overlap is not enough for not being significantly
different.
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Comparing two independent means
The CI is constructed as [

d̂ − t1−α
2 ,df sd , d̂ + t1−α

2 ,df sd

]
where

d̂ = x̄1 − x̄2

sd =
√

n1s2
1 +n2s2

2
n1+n2−2

df =

(
s2
1

n1
+

s2
2

n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

s2
1 = 1

n1−1
∑

i
(x1i − x̄1)2

s2
2 = 1

n2−1
∑

i
(x2i − x̄2)2

If we assume equal variances in both groups, the number of degrees of freedom
simplifies to (this test is more powerful than the one with unequal variances)

df = n1 + n2 − 2

The CI is depends on
Variability: The higher the scatter, the larger the CI.
Sample size: The larger the sample size, the smaller the CI.
Confidence: The larger the confidence, the larger the CI.
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Comparing two independent means

The null hypothesis is that both data sets have been drawn from populations with
the same mean. The p-value answers the question:

If the null hypothesis were true, what is the chance of randomly observing a
difference as large or larger than that observed in this experiment?

The p-value depends on the variability, sample size and mean difference.
Assumptions:

Random (or representative) data.
Independent observations.
Accurate data.
Populations with Gaussian distributions.
Equal standard deviation of the two populations.
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Assumption on the same variance

It can be verified through another test for equal variance (F ratio or Snedecor’s
F). If it fails, we can

Ignore the result. The t test is fairly robust to violations of this assumption
as long as the sample size is large enough and equal in both groups.
Emphasize that the two distributions are different, since at least the variance
is different (its mean may or may not be different).
Transform the data to reduce the variance (problem: data snooping).
Running the unequal variance t test (Welch) or non-parametric
(Mann-Whitney) (both are less powerful).

After checking that the variances are different (problem: data snooping).
Systematically.
Depending on some prior knowledge on the kind of experiment.
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Common mistakes

If the result is almost statistically significant, collect more data to increase
the sample size and then recalculate the t test. Problem: multiple testing,
and stopping when the difference becomes significant.
If the experiment has three or more treatment groups, use the unpaired t test
to compare two groups at a time. Use ANOVA and post-hoc analysis, instead.
If the experiment has three or more treatment groups, compare the largest
with the smallest means. Problem: data snooping, the decision of largest and
smallest are taken looking at the data.
If the p-value is larger than 0.05, try other tests to see whether they give a
lower p-value. Problem: multiple testing.
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Comparing two groups
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Comparing two paired means

A variable is measured in each subject before and after an intervention.
The left and right eyes of a person are treated with different eye drops.
Subjects are recruited in pairs matched for age, postal code, or diagnosis.
Twins or siblings are recruited as pairs.
Each run in a laboratory has a control and treated preparation handled in
parallel.

This data should be analyzed with paired t test or the non-parametric
Mann-Whitney if the data is continuous, or McNemar’s test if the data is binary.

The better control of other variables (genotype/phenotype, individual,
environmental conditions, ...) helps to reduce the variance. They key is reducing
each data from each pair to a single variable (difference estimate).
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Comparing two paired means

The CI is constructed on the difference and it depends on the usual suspects
(variability, sample size and confidence). If it includes 0, then the two groups are
not significantly different. For instance Darwin measured the growth of 15 seeds
of plants when they were cross-fertilized and self-fertilized. The difference in
growth was 2.62 inches (the average height was 17.6 inches, ∼15%). The 95% CI
was [0.0037, 5.230]. The result was significant (it does not include 0), but with
very little margin.

The null hypothesis is that there is no difference in the two groups. The p-value
answers the question if the null hypothesis were true, which would be the
probability of observing a difference as large or larger than the one observed in this
experiment. The p-value depends on the variability, sample size and mean
difference. For Darwin’s experiment, the p-value was 0.0497.
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Comparing two paired means

How effective was the pairing?
You do the paired analysis because you expect that there is a strong correlation
(positive) between the measurements in the two groups. To check this end, you
may

Estimate the correlation coefficient, its CI and the p-value of the one-sided
null hypothesis of no correlation.
For Darwin’s data (r = −0.3348, it is rare that both variables are negatively
correlated), the one-sided p-value 0.1113 (not significant).
Check the p-value if the data is analyzed unpaired.
For Darwin’s data, the p-value was 0.02

Assumptions
Random (representative) samples.
Pairs are independent of other pairs.
The difference between matched values follow a Gaussian distribution.
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Logarithmic transformations

Some variables may need to be transformed before being analyzed. For instance,
enzymatic activity before and after a treatment with a drug has a multiplicative
model. This can be easily seen in the plot below, after log-transforming the paired
lines are “more parallel”.
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Paired binary variables (McNemar’s test)

Examples
Case-control studies where each case has a matching control (matched on
age, gender, race, ...)
Twins studies
Before-after data, the outcome is absence or presence of some characteristic.

We want to know if a drug helps to reduce the prevalence of a symptom (e.g.
running nose with a cold). For a number of people we measure the effect of the
drug before and after treatment.

After: present After: absent
Before: present A B
After: absent C D

Measures are correlated because they are taken from the same subject. This is not
a standard contigency table where counts in each cell are independent.
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Common mistakes

If the result is almost statistically significant, collect more data to increase
the sample size and then recalculate the t test. Problem: multiple testing,
and stopping when the difference becomes significant.
If the experiment has three or more treatment groups, use the unpaired t test
to compare two groups at a time. Use repeated measures ANOVA and
post-hoc analysis, instead.
Not log-transforming the data if it makes sense in this experiment
(multiplicative model).
Analyzing the absolute value of the differences instead of the differences.
Deciding on the pairing only after seeing the data.
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Comparing two paired means
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Calculating correlation
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Calculating correlation
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Calculating correlation
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Calculating correlation
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Calculating correlation

5. Statistical tests August 15, 2017 50 / 56



Calculating correlation
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Calculating correlation
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Calculating correlation
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Calculating correlation
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Calculating correlation
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Regression models
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Common mistakes

Fitting smoothed/moving average data.
Smoothing the data artificially increases the R2 and reduces the p-value.
Smoothing can artificially create trends where there is no relationship.
Smoothing violates the assumption of data independence.
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Common mistakes
Extrapolating beyond the data. Models are valid only within the range of
observed X values. Extrapolation beyond this range is at the user’s own risk.
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Common mistakes

Overinterpreting a small p-value. A small p-value indicates that the model
fits the data better than a constant. However, this is not enough to be a
good model. A linear model (y = a + bx) of the data in the figure below has
a p-value of 0.000105 (very significant), but R2 = 0.003005, that is, the
model does not explain even 0.5% of the observed variance.
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Residual analysis
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Residual analysis

Residuals should follow a Gaussian distribution (there should not be large
outliers).
Residuals should not depend on the predicted variable (Y ).
Residuals should not depend on the predictor variables (X ).

If these conditions are not met
Revise the data for outliers and very influential points.
Revise the model, probably this model cannot explain well the data.
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Influence of points

We may measure
the influence of
each individual
point through
different statistics.

Leverage. How much xi is an outlier? Between 0 (not an outlier) and 1
(totally outlying).
Studentized residual. How much yi is an outlier? In terms of the standard
deviation of the residuals (0=not an outlier)
Cook’s D How much the regression would change if we remove that point?
(0=no change)
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Meaning of R2

R2 is the fraction of the total variance explained by the regression model. It is
between 0 and 1, the larger the better.
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Meaning of R2
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Nonlinear regression
Diagnostic tools are the same for nonlinear regression

v = vmax
[S]

Km + [S]
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Choosing between models
Choosing the best model is not easy. R2 is not enough because models with more
parameters will tend to have lower R2 simply by overfitting.

A solution is to penalize by the number of parameters (p) with respect to the
number of samples (N), the R2 is said to be adjusted

R2 = 1− SSresiduals
SStotal

R2
adjusted = 1− SSresiduals/(N−p)

SStotal/(N−1) = 1− (1−R2)(N−1)
N−p−1

There are other penalization schemes: Akaike’s Information Criterion, Schwarz’s
Bayesian Information Criterion (BIC), Minimum Description Length (MDL),
Mallow’s Cp.
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Choosing between models

In their standard forms, many of the expressions for these methods are thought for
nested models (y = a, y = a + bx , y = a + bx + cx2, ...). But this is not
necessarily so. For nested models we can also use:

Partial F test

F =
SSreduced

residuals −SS full
residuals

pfull −preduced

SS full
residuals

N−pfull

AIC, BIC, MDL
Likelihood ratio test
Wald test
Score (Lagrange multiplier) test

For non-nested models we can use:
AIC
Relative likelihood test

You cannot compare models fitted to different datasets.
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Choosing between models

Common mistakes
You cannot compare models fitted to different datasets.
You cannot use techniques designed for nested model for non-nested models.
You cannot compare models whose predictions are undistinguishable in the
range of X .
Fitting models that do not make scientific sense.
Fitting lots of models and accepting the one that fits best. This is a kind of
multiple testing.
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Regression models
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Multiple regression
We are studying the relationship between several factors and kidney function,
measured through creatining clearance. For women (second column) we have
found

CrCl =99− 12.64 logCPb−0.05Age−0.006Age2 + 0.92BMI − 7.56Therapy

Staessen, J.A. et al. New England J. Medicine, 327: 151-156 (1992)
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Multiple regression

Diagnostic tools are also valid for multiple regression.
Interactions are modeled by new variables merging both variables

Age · BMI, BMI
Age ,Age2 · BMI,Ageα · BMI, ...

The way of analyzing interactions can be tricky, and the fitting assumes that
there is no other form of interaction other than that specified.
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Multiple regression

Other authors defend 10− 20 observations per predictor.
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Multiple regression

Be careful with R2 inflation by multiple testing.
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Multiple regression

Be careful with Multicollinearity since it results in ill defined models (wide CI).
Solution: Partial Least Squares.
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Multiple regression

Some simple forms of multicollinearity can be easily seen in scatterplots.
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Regression does not imply causation
Assume we perform an experiment and discover that there is a relationship
between lead concentration in blood and kidney function (measured by creatinine
clearance).

CrCl = 101[mL/min]− 9.51 logCPb[µg/L]

Can we assess that lead exposure causes kidney malfunctioning?

No, it could be the opposite. Kidney malfunctioning causes lead raise in blood.
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Checking for causation
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Causation
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Logistic regression

We try to predict a binary variable (0 or 1) from other binary or continuous
variables.

Obese = f (Residence,Age,Education,Smoking ,Married , LowIncome)

Residence: binary (0=rural, 1=urban)
Age: continuous (years)
Education: continuous (years)
Smoking: binary (0=No, 1=Yes)
Married: binary (0=No, 1=Yes)
LowIncome: binary (0=No, 1=Yes)

We will rather predict the probability of obese taking the value 1.
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Logistic regression

Remind the relationship between probability and odds (ratio of the probability of
something happening vs. not happening)

OR = p
1− p = logit(p)

We will transform the problem into

ORObese = OR0ORResidenceORAgeOREducationORSmokingORMarriedORLowIncome

Taking logarithms

logit(pObese) = β0 + βResidenceResidence + βAgeAge + βEducationEducation + ...

pObese is the probability of being obese.
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Logistic regression

We may interpret the βs in the standard way (if the CI includes 0, then that term
is not significant) or in terms of OR. Example:

Residence: βResidence = 0.3218⇒ exp(0.3218) = 2.13, that is a person living
in a urban environment has 2.13 times the odds of being obese than someone
living in a rural environment.
Age: βAge = 0.0086⇒ exp(0.0086) = 1.02, for every year, there is an odds
ratio increase by a factor 1.02.
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Proportional hazards (Cox) regression
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Proportional hazards (Cox) regression

Remember that the hazard is related to the slope of the survival curve
(λ(t) = −S′(t)

S(t) ). The proportional hazards model proposes

λ = exp(β0 + βHE HE + βDE DE )

Taking logarithms
log(λ) = β0 + βHE HE + βDE DE
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ANOVA
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ANOVA
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Sample size

N=...
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Why this course?

How many mice do I need to put in each group to show that a new vaccine is
effective?

Too few is a waste of time (=money) and money, it is unethical
Too many is a waste of time (=money) and money, it is unethical
I need just enough
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Basics of statistical inference

Research hypothesis:
The new vaccine reduces the number of infected animals in a population.

H0 : π ≥ π0 One-tail test
H1 : π < π0

Research hypothesis:
The new drug increases survival for patients with this disease in the next 5 years.

H0 : S ≤ S0 One-tail test
H1 : S > S0

Research hypothesis:
The new machine does not produce tablets with the prescribed concentration

H0 : c = c0 Two-tail test
H1 : c 6= c0
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Basics of statistical inference

Research hypoteheses never use “All”, “Some”, “None” or “Not all”.

Research hypothesis:
All hypertense patients benefit from a new drug.
No hypertense patient benefits from a new drug.
Problem: We would have to measure absolutely ALL hypertense patients

Research hypothesis:
Not all hypertense patients benefit from a new drug.
Some hypertense patients benefit from a new drug.
Problem: Too imprecise, being true does not provide much information
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Basics of statistical inference

Post-mortem analysis:
1 Design hypothesis research
2 Collect data
3 Hypothesis test

Safe analysis:
1 Design hypothesis research
2 Calculate number of samples
3 Collect data
4 Hypothesis test
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Basics of statistical inference

You CAN reject the null hypothesis and accept the alternative hypothesis
You CAN fail to reject the null hypothesis because, there is not sufficient
evidence to reject it
You CANNOT accept the null hypothesis and reject the alternative because
you would need to measure absolutely all elements (for instance, all
hypertense patients).

It’s like in legal trials:
The null hypothesis is the innocence of the
defendant.
You CAN reject his innocence based on proofs
(always with a certain risk).
You CAN fail to reject his innocence.
You CANNOT prove his innocence (you would need
absolutely all facts)
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Basics of statistical inference

The goal of hypothesis testing is to disprove the null hypothesis! We do this by
proving that if the null hypothesis were true, then there would be a very low
probability of observing the sample we have actually observed.

However, there is always the risk that we have been unlucky with our sample, this
is our confidence level (the p-value is also related to this risk: the lower the
p-value, the lower the risk).
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Basics of statistical inference: Significance and Statistical
power
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Basics of statistical inference

An engineer works for MyPharma. He knows that the
manufacture of each tablet has a standard deviation of 1
mg. (the manufacturing process can be approximated by
a Gaussian). Knowing this, he sets the machine to a
target amount of 250 mg. In a routine check with 20
tablets, he measures an average of 250.66 mg. Is it
possible that the machine is malfunctioning?

Step 1: Define the hypotheses

H0 : µ = 250

H1 : µ 6= 250
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Basics of statistical inference

E{x1} = µ,Var{x1} = σ2

µ̂ = x1 ⇒ E{µ̂} = µ,Var{µ̂} = σ2
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Basics of statistical inference

E{x2} = µ,Var{x2} = σ2

µ̂ = x1 + x2
2 ⇒ E{µ̂} = µ,Var{µ̂} = σ2

2
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Basics of statistical inference

E{x3} = µ,Var{x3} = σ2

µ̂ = x1 + x2 + x3
3 ⇒ E{µ̂} = µ,Var{µ̂} = σ2

3
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Basics of statistical inference

E{x4} = µ,Var{x4} = σ2

µ̂ = x1 + x2 + x3 + x4
4 ⇒ E{µ̂} = µ,Var{µ̂} = σ2

4
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Basics of statistical inference

µ̂ = 1
5

5∑
i=1

xi ⇒ E{µ̂} = µ,Var{µ̂} = σ2

5
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Basics of statistical inference

µ̂ = 1
5

10∑
i=1

xi ⇒ E{µ̂} = µ,Var{µ̂} = σ2

10
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Basics of statistical inference

µ̂ = 1
5

20∑
i=1

xi ⇒ E{µ̂} = µ,Var{µ̂} = σ2

20
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Basics of statistical inference

Step 2: Find the distribution of a suitable statistic if H0 is true

xi ∼ N(µ, σ2)⇒ µ̂ ∼ N
(
µ,
σ2

N

)
⇒ Z = µ̂− µ

σ√
N
∼ N(0, 1)

Step 3: Plug-in the observed data if H0 is true

z = 250.66− 250
1√
20

= 2.9721
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Basics of statistical inference

Step 4: Calculate the p-value Probability of observing a value as extreme as
this one if H0 is true.

p− value = Pr{|Z | > 2.9721} = Pr{Z < −2.9721}+ Pr{Z > 2.9721}
= 0.0030 = 0.3%
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Basics of statistical inference

Step 5: Reject or not reject H0

p − value = 0.003(∗∗) < 0.05⇒ Reject H0

p<0.05 *
p<0.01 **
p<0.001 ***
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Types of tests

Significance tests:
H0 : µ = µ0
HA : µ 6= µ0

Equivalence tests:
H0 : µ 6= µ0
HA : µ = µ0

Superiority tests:
H0 : µ ≤ µ0
HA : µ > µ0

Non-inferiority tests:
H0 : µ < µ0
HA : µ ≥ µ0
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Sample size determination: Confidence level

1 Step 1: Define the null hypothesis

H0 : µ = 250

2 Step 2: Distribution under the null
hypothesis

Z = µ̃− µ
σ√
N

= ∆
σ√
N
∼ N(0, 1)

3 Step 3: Plug-in observed data

z = 2.9721

4 Step 4: Calculate p-value

Pr{|Z | > 2.9721} = 0.3%

5 Step 5: Decide on H0

0.3% < 0.5%⇒ Reject

1 Step 1: Define the minimum meanigful
difference

∆ = 0.5(mg)

2 Step 2: Determine population variance

σ2 = 12(mg2)

3 Step 3: Determine significance and
statistic threshold

α = 0.05⇒ Pr{|Z | > 1.96} = 0.05

4 Step 4: Solve for N

∆
σ√
N
> 1.96⇒ N >

(1.96σ
∆

)2
= 15.4
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Sample size determination: Confidence level

Factors that affect sample size:

N >
(z1−α

2
σ

∆

)2
(1)

1 Confidence level: 1− α ↑⇒ z1−α
2
↑⇒ N ↑

More confidence requires more samples.
2 Sample variance: σ2 ↑⇒ N ↑

If the sample variance increases, it is more difficult to detect the diference ∆.
3 Effect size: ∆ ↓⇒ N ↑

If we want to detect more subtle differences, we need more samples.
4 One- or Two-sided test: Two-sided ⇒ N ↑

If the test is one-sided, z1−α
2
should be replaced by z1−α, which is smaller.
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Sample size determination: Test power (right)

µ0+z1−α
2

σ√
N
< µ1−z1−β

σ√
N
⇒ N >

( (z1−α
2

+ z1−β)σ
µ1 − µ0

)2

=
( (z1−α

2
+ z1−β)σ
∆

)2
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Sample size determination: Test power (left)

µ1+z1−β
σ√
N
< µ0−z1−α

2

σ√
N
⇒ N >

( (z1−α
2

+ z1−β)σ
µ1 − µ0

)2

=
( (z1−α

2
+ z1−β)σ
∆

)2
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Sample size determination: Test power (two-sided)

H0 : µ = µ0
H1 : µ < µ0 ∪ µ > µ0

}
⇒ N >

( (z1−α
2

+ z1−β)σ
∆

)2

(2)
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Sample size determination: Test power (one-sided)

H0 : µ < µ0
H1 : µ > µ0

}
⇒ N >

(
(z1−α + z1−β)σ

∆

)2
(3)
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Sample size determination: Confidence level+Test power

Factors that affect sample size:

N >

( (z1−α
2

+ z1−β)σ
∆

)2

1 Confidence level: 1− α ↑⇒ z1−α
2
↑⇒ N ↑

More confidence requires more samples.
2 Population variance: σ2 ↑⇒ N ↑

If the population variance increases, it is more difficult to detect the diference
∆.

3 Effect size: ∆ ↓⇒ N ↑
If we want to detect more subtle differences, we need more samples.

4 One- or Two-sided test: Two-sided ⇒ N ↑
If the test is one-sided, z1−α

2
should be replaced by z1−α, which is smaller.

5 Test power: 1− β ↑⇒ N ↑
If we want to increase the power of the test, we need more samples.
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Test power calculation: Confidence level+Sample size

If we fix the sample size, then

z1−β = ∆
σ√
N
− z1−α

2
⇒ Power , π = Pr{z > −z1−β} = 1− β (4)

1 Confidence level: 1− α ↑⇒ z1−α
2
↑⇒ z1−β ↓⇒ π ↓

More statistical confidence implies less statistical power.
2 Population variance: σ2 ↑⇒ z1−β ↓⇒ π ↓

If the population variance increases, the statistical power decreases.
3 Effect size: ∆ ↓⇒ z1−β ↓⇒ π ↓

If we want to detect more subtle differences, the statistical power decreases.
4 One- or Two-sided test: Two-sided ⇒ z1−α

2
> z1−α ⇒ z1−β ↓⇒ π ↓

Two-sided tests have less power than one-sided tests.
5 Sample size: N ↓⇒ z1−β ↓⇒ π ↓

If we use fewer samples, the statistical power decreases.
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Population variance 6= sample variance

N >

( (z1−α
2

+ z1−β)σ
∆

)2

Population mean , µ

Sample mean , µ̂ = 1
N

N∑
i=1

xi

Population variance , σ2

Sample variance , σ̂2 = s2 = 1
N−1

N∑
i=1

(xi − µ̂)2

µ 6= µ̂
σ2 6= s2
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Population variance 6= mean variance

Population variance , σ2 = Var{xi}
Mean variance , σ2

µ̂ = Var{µ̂} = σ2

N
Sample mean variance , s2

µ̂

σ2 6= σ2
µ̂ 6= s2

µ̂
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Components of the population variance: repeated measures

xim = bpi + εim

σ2 = σ2
BP + σ2

ε

If we repeat the measurement process M times
and average the results

xi = 1
M

M∑
m=1

xim = 1
M

M∑
m=1

(bpi + εim)

= bpi + 1
M

M∑
m=1

εim

σ2 = σ2
BP + 1

M σ2
ε (5)
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Finite population effects
Very large population:

Blood pressure in Spain:
µ, σ2

We study a group of N = 30 people:

µ̂, σ2
µ̂ = σ2

N
Small population:

Blood pressure in this class:
µ, σ2

We study a group of N = 30 people (out of 32!!):

µ̂, σ2
µ̂ = σ2

N

(
1− N

Npopulation

)
(6)

This formula is only valid for the mean. In this example,

σ2
µ̂ = σ2

30

(
1− 30

32

)
= σ2

30
1
16
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Repeated measures 6= Replication

Repeated measures:
σ2 = σ2

BP + 1
Mσ

2
ε

Replication: Allows estimating σ2
µ̂

0. Introduction to sample size calculations September 15, 2016 68 / 85



Components of the population variance: blocking variables

No blocking:
σ2 = σ2

gender + σ2
BP + σ2

treatment + σ2
ε

Blocking:

σ2 =��
�HHHσ2

gender + σ2
BP + σ2

treatment + σ2
ε
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Replication 6= Replicates

Replication: Allows estimating σ2
µ̂

xij = µ+ αj + εij

Replicates: Allows estimating σ2
αj

xij = µ+ αj + εij
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Sample size determination fails if ...

1 The estimate of the sample variance is wrong.
2 The distribution of the samples does not follow the hypothesis.
3 Two populations are assumed to have the same variance, when they do not.
4 Two populations are assumed to have the same distribution, when they do

not.
5 Variable transformation does not fully solve a distribution problem.
6 Large-sample approximation does not apply.
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If the sample size is too large ...

1 Improve the measurement repeatability and reproducibility.
2 Introduce a blocking variable to reduce the precision error.
3 Use a variable with a better precision.
4 Replace a categorical response (yes/no; pass/fail; ...) by an ordinal or

continuous variable.
5 Identify covariates that can help to reduce the uncertainty in the model.
6 Reduce the confidence level.
7 Reduce the test power.
8 Repeat measurements on the same subject as a way to reduce measurement

variance.
9 Use paired-sample methods instead of two-independent-sample methods.
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Non-parametric tests

In many ocasions we do not know the distribution of the underlying data and
non-parametric tests are used
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Non-parametric tests

The number of samples needed for a non-parametric test is larger than for a
parametric one (because it throws away information, e.g., the sign test only uses
the sign). The sample size must be increased by a factor that is inversely
proportional to the “Asymptotic Relative Efficiency”:

Nnon−parametric = Nparametric
ARE (7)

Mann-Whitney U test 3/π = 0.955
Wilcoxon signed-rank test 3/π = 0.955
Spearman correlation test 0.91

Kruskal-Wallis test 0.864
Friedman ANOVA 0.955J/(J + 1)

If not in this table, use a conservative value 0.85

where J is the number of repeated measures.
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Bad practices I

1 There is one magic sample size (say, N = 10) for all
situations.

2 Use N = 30 because Student’s t distribution is
approximately normal for that size.

3 Use N =
√

Ntotal + 1 in a single sampling from a
population with Ntotal individuals.

4 Use a table based on Cohen’s d = ∆
s . Reason: it

assumes normality in the data.
5 Sample size and power calculations are exact.

Reason: they are calculated in a conext with high
uncertainty (the experiment has not been performed
yet).

6 The sample variance is unknown. Reason: look for
previously published results or perform a pilot study.
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Bad practices II
7 Zero acceptance number sampling plans are superior to other samplings.

Reason: they are often poorly understood, and they maybe appropriate or
not.

8 Postexperiment power is a useful indicator of the value of an experiment.
Reason: postexperiment power calculation assumes that the parameter
estimates are the true value of the parameters. Post-experiment high power
is a necessary condition for supporting the goal of the experiment, but it is
not a sufficient condition.

9 Special software is required to calculate sample size and test power. Reason:
accurate values are better calculated by software, but approximate values can
be calculated on paper.

10 We do not need to know how the collected data will be analyzed. Reason:
Every sample size calculation is matched to an analysis method and decision
criterion.

11 An experiment may be practically significant but not statistically significant.
Reason: to be practically significant, the experiment must be first statistically
significant. The converse is not true: an experiment may be statistically
significant, but not practically significant.
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Good practices

1 Calculate the sample size, power and/or effect size before collecting data.
Reason: Make sure you will have enough (and not too much) data to meet
the goal of the experiment.

2 If necessary, perform a pilot study to estimate variance.
3 Increase the sample size to compensate for anticipated losses at random.
4 Before collecting your data, make sure that the experiment design meet the

goals. You may even simulate the data collection and analysis.
5 Use power calculation to design the experiment and confidence intervals to

report the results.
6 Use at least two methods (two softwares, or manual and software) to make

sure there is no mistake.
7 Write up a summary describing all the steps taken to design the experiment.

It will be useful for future designs and to review the outcome of the
experiment if it fails.
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Further reading

Introductory tests:
G. van Belle. Statistical rules of thumb: Chapter 2. Wiley, 2008
A. Gelman, J. Hill. Data analysis using regression and multilevel/hierarchical
models: Chapter 20. Cambridge Univ. Press, 2007
Fox N., Hunn A., and Mathers N. Sampling and sample size calculation The
NIHR RDS for the East Midlands / Yorkshire & the Humber, 2007

Statistical software:
PASS manual
G* Power manual
Stata power and sample size manual
MLPowSim manual
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Further reading

Web calculators:
http://powerandsamplesize.com

http://cran.r-project.org/web/views/ClinicalTrials.html
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Summary

1 Sample size calculations are particularized to the way the data will be
analyzed.

2 The goal of hypothesis testing is to prove that the null hypothesis is false.
Our research hypothesis should be in the alternative hypothesis.

3 There are five variables strongly related: sample size, population variance,
confidence level, test power, effect size (relevance)

4 We can measure the variance of many different, but related, variables
(population, sample, sample mean, ...)
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Summary
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A single sample with known variance

µ0+z1−α2
σ√
N
< µ1−z1−β

σ√
N
⇒ N >

( (z1−α2 + z1−β)σ
µ1 − µ0

)2

=
( (z1−α2 + z1−β)σ

∆

)2
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A single sample with known variance
Let us focus on the limit µ̂ value, the one that separates the values within the
confidence interval and values outside:

µ̂ = µ0 + z1−α2
σ√
N ⇒ z1−α2 = µ̂−µ0

σ√
N

µ̂ = µ1 − z1−β
σ√
N ⇒ z1−β = µ1−µ̂

σ√
N

If we add now both equations, we reach the same result as in the previous lecture

z1−α2 + z1−β = µ1 − µ0
σ√
N
⇒ N =

(z1−α2 + z1−β

∆̃

)2
(1)

where ∆̃ = ∆
σ is the normalized effect size. However, note that the first ratio

z = µ̂− µ0
σ√
N

is distributed as a N(0, 1) and that z1−α2 is the z value of this distribution below
which there is a probability 1− α

2 . The same applies to the second ratio.
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A single sample with known variance

Example 1
Let us assume that we are manufacturing syrup with 3
mg/mL of a drug. The standard deviation of the
manufacturing process is 0.1 mg/mL, and the deviations
from the target amount follows a Gaussian distribution.
How many samples do we have to screen if we want to
detect a deviation from target of ∆ = 0.03 mg/mL, with
a power of 90% and a confidence level of 95%?

Solution:

Power , 1− β = 0.9⇒ β = 0.1⇒ z1−β = z0.9 = 1.2816
Significance , 1− α = 0.95⇒ α = 0.05⇒ z1−α2 = z0.975 = 1.9600
Effect size , ∆ = 0.03
Population variance , σ2 = 0.12 = 0.01

N >
( z1−α2

+z1−β

∆/σ

)2
=
(

1.9600+1.2816
0.03/0.1

)2
= 116.75⇒ N = 117
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A single sample with known variance

Example
Let us assume that the measurement process
(determination of the concentration of drug in each
sample) has a coefficient of variation of 15%. How does
this measurement error increase the variance of the
samples?

Solution:

CV = σε
µ0
⇒ σ2

ε = (CVµ0)2 = (0.15 · 3)2 = 0.2025

The variance of the measurements is given by the variance of the manufacturing
and the variance of the measurement process

σ2 = σ2
manufacturing + σ2

ε = 0.01 + 0.2025

σ =
√
σ2 = 0.4610
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A single sample with known variance

Example 2

What is the sample size now if we want to be as precise
as before detecting the malfunctioning of the
manufacturing process?

Solution:

N >

(z1−α2 + z1−β

∆/σ

)2
=
(
1.9600 + 1.2816
0.03/0.4610

)2
= 2481.2

N = 2482
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A single sample with known variance

Example 3

We wonder if we can reduce the cost of the experiment
by dividing each syrup sample in 4 aliquotes, and
determining the concentration of the sample by averaging
the estimation of the concetration in the 4 aliquotes?

Solution:
The variance of the samples now reduces to

σ2 = σ2
manufacturing + σ2

ε

4 = 0.01 + 0.2025
4 = 0.0606⇒ σ = 0.2462

N >

(z1−α2 + z1−β

∆/σ

)2
=
(
1.9600 + 1.2816
0.03/0.2462

)2
= 707.67⇒ N = 708

However, the total number of concentration determinations is
4N = 4 · 708 = 2832 > 2482. That is, it is cheaper to perform independent
concentration determinations than 4 concentration determinations from the same
sample.
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A single sample with unknown variance

Example 4
1-month old babies awake by night every 3 hours with a
standard deviation of 0.5 h (the sleeping period is
supposed to be normally distributed). We hypothesize
that babies in a orphanage adapt already at this age and
sleep longer (the mean shifts at least 1 hour). We do not
know the standard deviation of the sleeping time since
this may have also changed with respect to the general
population, but it cannot be too far from 0.5. We plan to
estimate the standard deviation of the sleeping time of
babies in an orphanage from the data itself. How many
children do I have to examine in order to prove my
hypothesis?

Solution:
We cannot apply the calculations above because we do not know the population
variance, but make a new theoretical development.
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A single sample with unknown variance

We may substitute σ2 (the true population variance) by s2 (the sample variance)
in the design equations above

z1−α2 = µ̂−µ0
σ√

N
→ t1−α2 ,0,N−1 = µ̂−µ0

s√
N

z1−β = µ1−µ̂
σ√

N
→ t1−β, ∆

s√
N
,N−1 = µ1−µ̂

s√
N

If we add now both equations

t1−α2 ,0,N−1+t1−β, ∆
s√
N
,N−1 = µ1 − µ0

s√
N
⇒ N =

 t1−α2 ,0,N−1 + t1−β, ∆
s√
N
,N−1

∆̃

2

(2)
where the normalized effect size is ∆̃ = ∆

s .
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Central Student’s t distributions

tν : ν degrees of freedom
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Noncentral Student’s t distributions

tµ,ν : ν degrees of freedom, µ non-centrality parameter
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A single sample with unknown variance

Example (continued)
Solution:
Our hypothesis test is one-sided:

H0 : µ ≤ 3
HA : µ > 3

We need to solve the equation

N =

 t1−α,0,N−1 + t1−β, ∆
s√
N
,N−1

∆̃

2

We will use α = 0.05, β = 0.1, and ∆ = 1. We do not
know s yet, we will use sguess = σ = 0.5 instead. This
gives

∆̃ = ∆
sguess

= ∆
σ

= 1
0.5 = 2
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A single sample with unknown variance

Example (continued)
Substituting

N =
( t0.95,0,N−1 + t0.9, 2√

N
,N−1

2

)2

This is a non-linear equation with no analytical form. We
can solve it iteratively. For the first iteration we will use
the Gaussian parameters:

Iter. t0.95,0,N−1 t0.9, 2√
N
,N−1 N

1 ≈ z0.95 = 1.65 ≈ z0.9 = 1.28 2.14
2 5.14 9.05 50.36
3 1.68 1.59 2.66
4 3.37 5.39 19.17
... ... ... ...
30 1.98 2.69 5.63→ N = 6
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A single sample with unknown variance

An approximate formula for this case is given by

N =
( t1−α2 ,0,N−1 + t1−β,0,N−1

∆̃

)2
(3)

where the non-centrality parameter is disregarded.

Example (continued)

The iterative procedure for this approximate method
converges to 3.99, which would make N = 4 . As seen in
the exact formula (with non-centrality parameter), N = 4
would result in an insufficient level of confidence and/or
test power.
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Test power improvement

Example (continued)
Due to the increase from N = 5.63 to N = 6, we increase a little bit the test power
(if we keep fixed the confidence level in our hypothesis test). To calculate the new
test power we need to find 1− β such that the following equation is satisfied

N =

 t1−α,0,N−1 + t1−β, ∆
s√
N
,N−1

∆̃

2

6 =
( t0.95,0,5 + t1−β, 2√

6
,5

2

)2

We find 1− β = 0.9282 , that is the power has slightly increased from 90% to
92.82%.
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Test power improvement

Example (continued)
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Paired samples

Example 5
We are developing a cough mixture and we would like to
know its effectiveness. For doing so, we will take N
different people with cough. Measure the frequency of
coughing (coughs/min) before taking the mixture and 1
hour after taking the mixture. For a severe allergic
response, this value is about 5 coughs/min. We would
like to detect a reduction to at most 3.5 coughs/min.
The standard deviation in the population of people with
severe allergic response is 0.4 coughs/min. Let us assume
that due to the limited time of observation, we may have
a standard deviation due to measurements of 0.1
coughs/min. Confidence level=95%, Power=90%.

Solution:
We will see that with a small transformation of the data, we can use the case of
one sample with known or unknown means.
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Paired samples

Let us denote as xi1 and xi2 the two measurements for the i-th individual. Each
measurement alone has a variance

Var{X1} = Var{X2} = σ2
total = σ2

population + σ2
measurement

Let us define now the difference between the two measurements

∆xi = xi1 − xi2

If the two measurements are independent from each other, then the variance of
the difference is given by

Var{∆x} = 2σ2
total ⇒ σ∆x =

√
2σtotal (4)

If there is no difference in the treatment, then

µ∆x = 0
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Paired samples

Example (continued)
The hypotheses in our case are

H0 : ∆x ≤ 0
HA : ∆x > 0

For simplicity, let us assume a design with known
variance. The design values are ∆ = 1.5,
σ2

total = 2 · (0.42 + 0.12) = 0.34, ∆̃ = ∆
σ = 2.57,

α = 0.05 (z1−α = 1.65), β = 0.1 (z1−β = 1.28).
With these values we have

N =
(

z1−α + z1−β

∆̃

)2
= 1.30→ N = 2
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Two-samples with known variance

Example 6
We are interested in knowing if two competitive drugs
taken by pregnant women has an effect on the
birthweight of their babies. We presume that the
standard deviation of the birthweight is σ = 800 g, and
the mean of the whole population µ = 3 kg. We are
interested in detecting differences larger than 300 g.
Confidence level=95%, Power=90%.

For this experiment we plan to observe a group of N1
women taking drug 1 and N2 women taking drug 2.
Then, we will calculate the mean of each group and
check if their difference is significant or not.

Solution:
We need to derive a new theoretical framework, although it is very similar the
one-sample case.
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Two-samples with known variance

Measurements in group 1: x1,1, x1,2, ..., x1,N1 → µ̂1 = 1
N1

N1∑
i=1

x1,i

Measurements in group 2: x2,1, x2,2, ..., x2,N2 → µ̂2 = 1
N2

N2∑
i=1

x1,i

∆̂µ = µ̂1 − µ̂2

Var{∆̂µ} = σ2
1

N1
+ σ2

2
N2

(5)

Optimal sampling:

argmin
N1,N2

Var{∆̂µ} s.t. N1 + N2 = ct ⇒ N2 = N1
σ2
σ1

(6)

Hypothesis test:
H0 : ∆µ = 0
HA : ∆µ 6= 0
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Two-samples with known variance
We can solve this problem as we did for the one-sample case through the use of
statistics with known distributions

z1−α2 = ∆̂µ√
σ2

1
N1

+
σ2

2
N2

z1−β = ∆−∆̂µ√
σ2

1
N1

+
σ2

2
N2

Adding both equations we have

z1−α2 + z1−β = ∆√
σ2

1
N1

+ σ2
2

N2

Using the relationship given by the optimal sampling we reach to

N1 =

z1−α2 + z1−β
∆√

σ1(σ1+σ2)

2

N2 =

z1−α2 + z1−β
∆√

σ2(σ1+σ2)

2

(7)
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Two-samples with known variance

Example (continued)
We note that σ1 = σ2, so N1 = N2 = N. The data
provided yields

α = 0.05⇒ z1−α2 = 1.96
β = 0.1⇒ z1−β = 1.28
∆ = 300
σ1 = σ2 = 800
∆̃ = ∆√

σ2(σ1+σ2)
= 0.2652

N =
( 1.96+1.28

0.2652
)2 = 149.4→ N = 150
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Two-samples with unknown variance: σ1 = σ2

Since the variance of both groups is presumed to be the same, we can estimate
the variance from both at the same time as

s2
12 = s2

1 + s2
2

2

The sample variance of the difference sought is

s2
∆̂µ

= s2
12

N1
+ s2

12
N2

= s2
12

2
N

The statistics defined as

t1−α2 ,0,df = ∆̂µ

s12

√
2
N

t1−β, ∆
s
∆̂µ
,df = ∆− ∆̂µ

s12

√
2
N

follow Student’s t distributions (central and noncentral, respectively) with
df = 2(N − 1) degrees of freedom.
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Two-samples with unknown variance: σ1 = σ2

Adding both equations and solving for N we get

N = 2

 t1−α2 ,0,df + t1−β, ∆
s
∆̂µ
,df

∆̃

2

(8)

where the normalized effect size is ∆̃ = ∆
s12
. Remind that for sample size

calculation s12 is normally unknown (yet) and it is substituted by sguess , the
standard deviation of the two populations (assumed to be the same in both).
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Two-samples with unknown variance: σ1 6= σ2

The sample variance of the difference sought is

s2
∆̂µ

= s2
1

N1
+ s2

2
N2

The statistics defined as

t1−α2 ,0,df = ∆̂µ√
s2

1
N1

+ s2
2

N2

t1−β, ∆
s
∆̂µ
,df = ∆− ∆̂µ√

s2
1

N1
+ s2

2
N2

follow Student’s t distributions (central and noncentral, respectively) with
(Welch–Satterthwaite)

df =

(
s2

1
N1

+ s2
2

N2

)2

1
N1−1

(
s2

1
N1

)2
+ 1

N2−1

(
s2

2
N2

)2
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Two-samples with unknown variance: σ1 6= σ2

We exploit now the optimal allocation for unequal variances, which states that

σ2
σ1

= N2
N1

to obtain

N1 =

 t1−α2 ,0,df + t1−β, ∆
s
∆̂µ
,df

∆̃1

2

N2 =

 t1−α2 ,0,df + t1−β, ∆
s
∆̂µ
,df

∆̃2

2

(9)
where ∆̃1 = ∆√

s1(s1+s2)
and ∆̃2 = ∆√

s2(s1+s2)
.
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Equivalence test for one mean

Example 7
We are manufacturing tablets with a target amount of
drug of 250 mg. We have introduced a new
manufacturing process, and we want to show that the
new system is equivalent to the old system. How many
tablets we need to analyze in order to show that both
system perform equally? Presume that the variance of
the new manufacturing process has to be estimated from
the data itself. We want to detect departures from the
mean of at least 2.5mg (δ = 2.5mg), and the standard
deviation of the old manufacturing process is 3mg. We
want to have a power of 90% if the difference is larger
than ∆ = 5 mg. Confidence level=95%.

Solution:
This is an equivalence test with hypotheses

H0 : µ 6= 250
HA : µ = 250

1. Sample size for the mean January 28, 2017 35 / 57



Equivalence test for one mean

Actually, the hypotheses tested are

H0 : |µ− µ0| > δ
HA : |µ− µ0| ≤ δ

where δ is a deviation from µ0. This is equivalent to

H0 : µ− µ0 < −δ or µ− µ0 > δ
HA : µ− µ0 ≥ −δ and µ− µ0 ≤ δ

Applying the Two One-Sided Tests (TOST) methodology, we decompose the
hypotheses above into two subproblems

H01 : µ− µ0 < −δ
HA1 : µ− µ0 ≥ −δ

H02 : µ− µ0 > δ
HA2 : µ− µ0 ≤ δ
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Equivalence test for one mean
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Equivalence test for one mean

Known variance:

N =
(

z1−α + z1−β

∆̃

)2
(10)

Unknown variance:

N =

 t1−α,0,N−1 + t1−β,∆+δ
s√
N
,N−1

∆̃

2

(11)

where ∆̃ = ∆−δ
σ is the normalized effect size.
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Equivalence test for one mean

Example (continued)
Substituting in our example: sguess = 3,
∆̃ = 5−2.5

3 = 0.83

N =
( t0.95,0,N−1 + t0.9, 0.83√

N
,N−1

0.83

)2

⇒ N = 16
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Equivalence test for two means

Example 8
We want to show the bioequivalence of two different
drugs, i.e., the mean effect of the two drugs are similar.
The diastolic blood pressure taking a reference drug is
about 96 mmHg, and with an experimental drug, it is
presumed to be similar. The population variation is
σ = 18 mmHg. The two drugs are supposed to be similar
if their difference is smaller than ∆ = 19.2 = 20% · 96.
α = 0.05, β = 0.1. The minimum detectable difference
should be δ = 10 mmHg.

Solution:
This is an equivalence test with hypotheses

H0 : µ1 − µ2 6= 0
HA : µ1 − µ2 = 0
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Equivalence test for two means

Sample size formulas are the same as in the case of the significance tests (Eq. 7,
Eq. 8, and Eq. 9) but substituting ∆ by |∆− δ| and α

2 by α.

Example (continued)
α = 0.05
β = 0.1
sguess = 18
∆̃ = |∆−δ|

sguess
= |19.2−10|

18 = 0.51

s∆̂µ = sguess

√
2
N

df = 2(N − 1).
Finally we need to solve for N the equation

N = 2

 t1−α,0,df + t1−β, ∆
s
∆̂µ
,df

∆̃

2

⇒ N = 83
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1-way ANOVA contrasts

Example 9
We are studying the effect of two different drugs on the
blood pressure of patients. We have three study groups:
placebo (drug 0), drug 1 and drug 2. We wonder which is
the sample size for each group if we want to test:

1 There is no difference between placebo and the
other two treatments.

2 There is no difference between the two treatments
Let us assume that the variance of the population for
each of the treatments is σ = 18 mmHg, and that we
want to be able to detect effect sizes of ∆ = 10 mmHg.

Solution:
The two problems above can be addressed through an ANOVA contrast given by

1 µ0 − µ1+µ2
2 = 0

2 µ1 − µ2 = 0
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1-way ANOVA contrasts
The following table shows an example of the expected measurements observed for
the balanced (all cells have the same size) experiment.

Placebo Drug 1 Drug 2
x01, x02, ..., x0N x11, x12, ..., x1N x21, x22, ..., x2N

µ̂0· = 1
N

N∑
j=1

x0j µ̂1· = 1
N

N∑
j=1

x1j µ̂2· = 1
N

N∑
j=1

x2j µ̂·· = 1
TN

T∑
i=1

N∑
j=1

xij

Each observation is modelled as

xij = µ̂·· + αi + εij

The α’s are the effect of each of the treatments and it is calculated as

αi = µ̂i· − µ̂··

Note that the sum of αi ’s is 0 and that

µ̂i· = µ̂·· + αi
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1-way ANOVA contrasts
The ANOVA table accounts for the contributions of the different sources of
variation to the total variation. The total variation is measured by the variance of
all observations. This variance is decomposed as the sum of different sources

SStot = SSα + SSε
T∑

i=1

N∑
j=1

(xij − µ̂··)2 =
T∑

i=1

N∑
j=1

(µ̂i· − µ̂··)2 +
T∑

i=1

N∑
j=1

(xij − µ̂i·)2

Source SS MS F df
Total SStot dftot = NT − 1
ε SSε MSε = SSε

dfε dfε = T (N − 1)
α SSα MSα = SSα

dfα F = MSα
MSε dfα = T − 1

Example
45 = 40 + 5⇒ Treatments are significant
45 = 5 + 40⇒ Treatments are not significant
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1-way ANOVA contrasts

The following formulas show the true underlying contrast and how it can be
estimated

µc =
T∑

i=1
ciµi µ̂c =

T∑
i=1

ci µ̂i·

The variance of the estimate is given by

Var{µ̂c} =
T∑

i=1
c2

i
σ2
ε

Ni

If all cells have the same number of observations Ni = N

Var{µ̂c} = σ2
ε

N

T∑
i=1

c2
i
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1-way ANOVA contrasts
We may design the sample size through a one-sample mean design with the
hypotheses:

H0 : µc = 0
HA : µc 6= 0

This is equivalent to the derivation of Eqs. 1 and 2 to give

N =
(z1−α2 + z1−β

∆̃

)2
(12)

or

N =

 t1−α2 ,0,dfε + t1−β, ∆
s√
N
,dfε

∆̃

2

(13)

with ∆̃ = ∆

σε

√
T∑

i=1

c2
i

or ∆̃ = ∆

sε

√
T∑

i=1

c2
i

.
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1-way ANOVA contrasts

Example (continued)
Design for µ0 − µ1+µ2

2 = 0

∆̃ = 10
18
√

12+(− 1
2 )2+(− 1

2 )2 = 0.45

N =
( z0.975+z0.9

0.45
)2 = 51.07→ N = 52

Design for µ1 − µ2 = 0

∆̃ = 10
18
√

02+12+(−1)2
= 0.39

N =
( z0.975+z0.9

0.39
)2 = 68.08→ N = 69

The most limiting comparison is the second one, so we

use N = 69 .

1. Sample size for the mean January 28, 2017 49 / 57



Outline

1 Sample size for the mean
A single sample with known variance
A single sample with unknown variance
Paired samples
Two-samples with known variance
Two-samples with unknown variance
Equivalence test for one mean
Equivalence test for two means
ANOVA contrasts
Multiple testing correction
Summary

1. Sample size for the mean January 28, 2017 50 / 57



Multiple testing correction

Example 10
Let us suppose that we are screening 1000 compounds vs
a control, and that we have a confidence level of 95%
(α = 0.05) in each test. Let us assume that none of the
compounds is effective for our disease. However, on
average, we will reject the null hypothesis for 50
compounds, and we will incorrectly assume that these 50
compounds make a difference with respect to the control.

This problem is known as multiple testing.

For K comparisons:
Bonferroni correction:

α = αfamily
K (14)

Dunn-Sidak correction:

α = 1− (1− αfamily )(1/K) (15)
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Multiple testing correction

When analyzing ANOVA data:

1 If we are to compare all effects vs all others: K =
(

T
2

)
= T (T−1)

2

2 If we are to compare all effects vs control: K = T − 1
ANOVA actually tests

H0 : µ1 = µ2... = µT
HA : At least one µi is different from the rest

Once the ANOVA test fails (not all treatments are the same), post-hoc
comparisons are used. Remind to use a method that compensates for the multiple
comparisons

All vs all: Tukey’s Honestly Significant Difference
All vs control: Dunnett’s test
All vs best: Hsu’s test
Unplanned constrasts: Scheffé’s test
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All vs control

Suppose we have T treatments (Groups 1, 2, ..., T ) that will be compared to a
control group (Group 0). These are contrasts of the form

µ0 − µ1 = 0
µ0 − µ2 = 0
...
µ0 − µT = 0

The variance of the contrast estimate is

Var{µ̂c} = σ2
ε

(
1

N0
+ 1

Ni

)
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All vs control

This variance is minimized (subject to N0 + TNi = ct) for

N0 = Ni
√

T (16)

and Ni given by the design formulas for ANOVA contrasts (Eqs. 12 and 13) with
∆̃ = ∆

σε

√
1

Ni

(
1+ 1√

T

) or ∆̃ = ∆

sε
√

1
Ni

(
1+ 1√

T

) .
Remind to correct α in some way (Bonferroni, Sidak, ...) to account for the
multiple (T ) comparisons, and that the number of degrees of freedom for ε of this
design is

dfε = (N0 − 1) + T (Ni − 1)
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Summary

N =
(z1−α2 + z1−β

∆̃

)2
∆̃ = ∆

σ
(17)

1 One-sided or two-sided alternative test?
2 1 or 2 independent samples?
3 2 samples that can be reduced to 1 independent sample? (paired, ANOVA

contrasts, ...)
4 Known or unknown variance?
5 Equivalence tests 6= significance tests
6 Increase group size if more variance N2 = N1

σ2
σ1
.

7 Decrease α for multiple comparisons.
8 Increase control size N0 = Ni

√
T .
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Completely Randomized Design

Example 0
We are testing a new drug (X 325mg) for blood pressure
versus a placebo on 1000 people. We divide the group of
people in two equal groups of 500 people. Each person
will be randomly assigned to the treatment or the
placebo.

y11 y21
y12 y22
... ...

y1,500 y2,500

y1·, y2·: Means of each one of the groups
y··: Overall mean
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Completely Randomized Design

The data (blood pressure) is supposed to be generated as

yjk = µ+ tj + εjk

µ is the average blood pressure of the whole population.
t1 and t2 are the effects of the drug (t1) and the placebo (t2). It must be∑

j
tj = 0

yjk is the measurement observed for the k-th individual who has been given
treatment j .
εjk is the part of the observed measurement that cannot be explained by the
average and the treatment.
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Completely Randomized Design

yjk = µ+ tj + εjk

y··: average of all observations

y·· = 1
n
∑

jk
yjk ≈ µ

yj·: average of observations in treatment j

yj· = 1
nj

∑
k

yjk ≈ µ+ tj
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Completely Randomized Design

The total variation of the data is

SS =
∑
jk

(yjk − y··)2 =
∑
jk

(
y2

jk + y2
·· − 2yjky··

)
=

∑
jk

y2
jk +

∑
jk

y2
·· −

∑
jk

2yjky·· =
∑
jk

y2
jk + ny2

·· − 2y··
∑
jk

yjk

=
∑
jk

y2
jk + ny2

·· − 2ny2
·· =

∑
jk

y2
jk − ny2

··

=
∑
jk

y2
jk − n

(
1
n
∑
jk

yjk

)2

=
∑
jk

y2
jk −

(∑
jk

yjk

)2

n =
∑

jk
y2

jk −
Y 2

··
n
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Completely Randomized Design

The treatment effect is estimated as

t̂j = yj· − y·· ≈ (µ+ tj)− µ = tj

and its associated variance

SST =
∑
jk

t̂2
j =

(∑
j

Y 2
j·

nj

)
− Y 2

··
n

Similarly, for the residuals

ε̂jk = yjk − yj· ≈ (µ+ tj + εjk)− (µ+ tj) = εjk

the sum of squares of the residuals (within the treatments)

SSε =
∑
jk
ε̂2jk =

∑
jk

y2
jk −

∑
j

Y 2
j·

nj
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Completely Randomized Design

The sum of squares of all measurements can be decomposed into a sum of
different components

SS = SST + SSε∑
jk

(yjk − y··)2 =
∑
jk

(yj· − y··)2 +
∑
jk

(yjk − yj·)2

and similarly for the degrees of freedom

n − 1 =
∑

j
(nj − 1) + (t − 1)

Remind in our example, n = 1000 (=total population), t = 2 (two treatments:
drug and placebo), and n1 = n2 = 500 (500 individuals in each treatment).
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Completely Randomized Design

Normally this is presented in a table

Source Sum of Squares Degrees of freedom Mean squares
(SS) (df) (MS=SS/df)

Treatments SST =
∑
jk

(yj· − y··)2 t − 1 MST = SST
dft

Residuals SSε =
∑
jk

(yjk − yj·)2 ∑
j

(nj − 1) = n − t MSε = SSε

dfε

Total SS =
∑
jk

(yjk − y··)2 n − 1

If the residuals are normally distributed, then the Linear Model checks whether the
treatments have a significant contribution explaining the variance through a
F-Snedecor statistic with t − 1 and

∑
j

(nj − 1) degrees of freedom.

F = MST
MSε
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Completely Randomized Design

Example 1
Let us assume that the table in our case is

Source SS df MS=SS/df
Treatments 256.88 1 256.88
Residuals 13600.28 998 13.61
Total 13857.16 999

Note
13857.16 = 256.88 + 13600.28

999 = 1 + 998

In this case

F = 256.88
13.61 = 18.87� 3.85 = F0.95,1,998
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Randomized Complete Block Design
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Randomized Complete Block Design
Blocks are groups of experimental units that are formed to be as homogeneous as
possible with respect to the block characteristics. The term block comes from the
agricultural heritage of experimental design where a large block of land was
selected for the various treatments, that had uniform soil, drainage, sunlight, and
other important physical characteristics. Homogeneous clusters improve the
comparison of treatments by randomly allocating levels of the treatments within
each block. (SAS)
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Randomized Complete Block Design

Within each block, experimental units must be randomly assigned to treatments.
When several variables must be blocked, each combination (e.g. >55, Diabetes,
Center 1) can be treated as a block. Alternatively, each block may be treated
independently (we will see how later).
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Randomized Complete Block Design
The data (blood pressure) is supposed to be generated as

yijk = µ+ bi + tj + εijk

µ is the average blood pressure of the whole population.
b1 and b2 are the differences in blood pressure between men (b1) and women
(b2), the blocks. It must be ∑

i
bi = 0

t1 and t2 are the effects of the drug (t1) and the placebo (t2). It must be∑
j

tj = 0

yijk is the measurement observed for the k-th individual of the i-th block who
has been given treatment j .
εijk is the part of the observed measurement that cannot be explained by the
average, block and treatment.
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Randomized Complete Block Design

We now have the relationships

µ̂ = y···
b̂i = yi·· − y··· ≈ (µ+ bi )− µ = bi
t̂j = y·j· − y··· ≈ (µ+ tj)− µ = tj
ε̂ijk = yijk − yi·· − y·j· + y··· = yijk − (µ̂+ b̂i + t̂j)

≈ (µ+ bi + tj + εijk)− (µ+ bi )− (µ+ tj) + µ = εijk

SS =
∑
ijk

(yijk − y···)2 =
∑
ijk

y2
ijk −

Y 2
···
n

SSB =
∑
ijk

b̂2
i

SST =
∑
ijk

t̂2
j

SSε =
∑
ijk
ε̂2ijk

SS = SSB + SST + SSε
n − 1 = (b − 1) + (t − 1) + (n − b − t + 1)
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Randomized Complete Block Design

The table of the linear model becomes

Source SS df MS=SS/df
Blocks SSB b − 1 MSB = SSB

dfB

Treatments SST t − 1 MST = SST
dfT

Residuals SSε n − b − t + 1 MSε = SSε

dfε

Total SS n − 1

If the residuals are Gaussian, we may test whether the contribution of the blocks
or treatments are significant through the same F-Snedecor as before (pay
attention to use the corresponding degrees of freedom).
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Randomized Complete Block Design

Example 2
Let us assume that in our case it becomes

Source SS df MS=SS/df
Blocks 1500.04 1 1500.04

Treatments 256.88 1 256.88
Residuals 12100.24 997 12.13
Total 13857.16 999

Note

13857.16 = 1500.04 + 256.88 + 12100.24
999 = 1 + 1 + 997

In this case

F = 256.88
12.13 = 21.17� 3.85 = F0.95,1,997
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Randomized Complete Block Design

Example 3
We want to analyze the optimal spacing (in
terms of yield measured in kilos) between plants
(10 treatments: 30× 30, 30× 24, 30× 20,
30× 15, 24× 24, 24× 20, 24× 15, 20× 20,
20× 15, 15× 15). To avoid possible land effects,
we divide the land in 4 blocks, and within each
block we randomly apply the 10 treatments.

We may compute the difference between many
pairs of treatments, creating a problem of Type I
error inflation by multiple testing. Instead, we
may analyze the data converting the treatments
to a numerical variable (area per plant, e.g.
30× 30 = 900) and performing a
regression analysis of yield versus area and
making the hypothesis testing only on a single
parameter, the slope.
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Randomized Complete Block Design

If there are clear variables to block, they should be blocked. Litters are
normally chosen as blocks (and birth weight as covariate).

If there are no obvious blocking variables, but we may create blocks, we may
do as an “insurance” against possible patterns not yet identified.

(e.g. 4 block, 12 treatments)
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Factorial Design

Let’s imagine a design where we have an educational program where we would like
to look at a variety of program variations to see which works best. For instance,
we would like to vary the amount of time the children receive instruction with one
group getting 1 hour of instruction per week and another getting 4 hours per
week. And, we’d like to vary the setting with one group getting the instruction
in-class (probably pulled off into a corner of the classroom) and the other group
being pulled-out of the classroom for instruction in another room.
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Factorial Design

The data is supposed to be generated as

yijk = µ+ pi + qj + εijk

Treatment variables are P(=amount of
time) and Q (=setting). In case that there is no effect of any of

the variables, we should not observe
differences amongst the groups.

5+0+0 5+0+0 q1 = 0
5+0+0 5+0+0 q2 = 0
p1 = 0 p2 = 0 µ = 5
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Factorial Design

Main effects are the consistent differences observed for the levels of each one of
the factors.

Outcome example if the amount of time
has an effect but the setting does not.

6-1+0 6+1+0 q1 = 0
6-1+0 6+1+0 q2 = 0

p1 = −1 p2 = 1 µ = 6

Outcome example if the amount of time
and the setting have an effect.

7-1-1 7+1-1 q1 = −1
7-1+1 7+1+1 q2 = 1

p1 = −1 p2 = 1 µ = 7
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Factorial Design
Interaction effects exist when differences on one factor depend on the level you
are on another factor. The interactions are between factors and not between levels.

yijk = µ+ pi + qj + (pq)ij + εijk

6+0+0+1(= (pq)11) 6+0+0-1(= (pq)12) q1 = 0
6+0+0-1(= (pq)21) 6+0+0+1(= (pq)22) q2 = 0

p1 = 0 p2 = 0 µ = 6
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Factorial Design

5.5-0.5-0.5+0.5(= (pq)11) 5.5+0.5-0.5-0.5(= (pq)12) q1 = −0.5
5.5-0.5+0.5-0.5(= (pq)21) 5.5+0.5+0.5+0.5(= (pq)22) q2 = 0.5

p1 = −0.5 p2 = 0.5 µ = 5.5
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Factorial Design
Given the linear model

yijk = µ+ pi + qj + (pq)ij + εijk

The model constraints are∑
i

pi =
∑

j
qj =

∑
i

(pq)ij =
∑

j
(pq)ij = 0

and we may estimate each one of the components as

µ̂ = y··· SS =
∑
ijk

(yijk − µ̂)2 df = n − 1

p̂i = yi·· − y··· SSP =
∑
ijk

p̂2
i dfP = p − 1

q̂j = y·j· − y··· SSQ =
∑
ijk

q̂2
j dfQ = q − 1

(̂pq)ij = yij· − yi·· − y·j· + y··· SSPQ =
∑
ijk

(̂pq)
2
ij dfPQ = (p − 1)(q − 1)

ε̂ijk = yijk − yij· SSε =
∑
ijk
ε̂2ijk dfε = n − pq
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Factorial Design

The analysis table may be represented as

Source SS df MS=SS/df
P main effects SSP p − 1 MSP = SSP

dfP

Q main effects SSQ q − 1 MSQ = SSQ
dfQ

PQ interactions SSPQ (p − 1)(q − 1) MSPQ = SSPQ
dfPQ

Residuals SSε n − pq MSε = SSε

dfε

Total SS n − 1
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Factorial Design

Example 4
We are testing water uptake by amphibia. Frogs and toads
(species factor S) are kept in most or dry conditions before the
experiment (moisture factor M) and half of the animals are
injected with a mammalian water balance hormone
(hormone factor H). A full factorial experiment is performed with
2 animals per treatment combination (cell).

yijkl = µ+ si + mj + hk + (sm)ij + (sh)ik + (mh)jk + εijkl

1. Basic designs October 14, 2016 30 / 51



Factorial Design
Factors and blocks: Factors and blocks may be combined, the difference between
a block and a factor is that it makes no sense to study the interaction of blocks

yijkl = µ+ bi + pj + qk + (pq)jk + εijkl

The model constraints are∑
i

bi =
∑

j
pj =

∑
k

qk =
∑

j
(pq)jk =

∑
k

(pq)jk = 0

and we may estimate each one of the components as

µ̂ = y···· SS =
∑
ijkl

(yijkl − µ̂)2 df = n − 1

b̂i = yi··· − y···· SSB =
∑
ijkl

b̂2
i dfB = b − 1

p̂j = y·j·· − y···· SSP =
∑
ijkl

p̂2
j dfP = p − 1

q̂k = y··k· − y···· SSQ =
∑
ijkl

q̂2
k dfQ = q − 1

(̂pq)jk = y·jk· − y·j·· − y··k· + y···· SSPQ =
∑
ijkl

(̂pq)
2
jk dfPQ = (p − 1)(q − 1)

ε̂ijkl = yijkl − yi··· − y·jk· + y···· SSε =
∑
ijkl
ε̂2ijkl dfε = n − pq − b − 1

1. Basic designs October 14, 2016 31 / 51



Factorial Design

Advantages of factorial design:
Interactions between factors can be estimated and their significance tested.
Wider validity of main effects: they have been tested in many different cases
(e.g. the effect of moisture have been tested with frogs and toads, and with
and without hormone)
Several experiments are done simultaneously: the variance of pairwise
comparisons is minimal, as shown in the following experiment
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Factorial Design

Example 5
Assume that we have resources for 24 observations and we assume that there is
no interaction between factors

yijkl = µ+ si + mj + hk + εijkl

Three different experiment designs are considered:
1 One variable changes at a time

(Frogs,Dry,NoHormone) vs (Toad,Dry,NoHormone): 4 animals each
(Frogs,Dry,NoHormone) vs (Frogs,Wet,NoHormone): 4 animals each
(Frogs,Dry,NoHormone) vs (Frogs,Dry,Hormone): 4 animals each

2 Do not repeat (Frogs,Dry,NoHormone) in each comparison:
(Frogs,Dry,NoHormone): 6 animals
(Toads,Dry,NoHormone): 6 animals
(Frogs,Wet,NoHormone): 6 animals
(Frogs,Dry,Hormone): 6 animals

3 Factorial design (all possible combinations) with 3 animals each.
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Factorial Design

Example 6(continued)
We now want to test if there is a difference induced by the hormone injection, for
which we construct the statistic

∆h = h0 − h1

Its variance in the three experiments are
1 σ2

∆h = 2σ
2
ε

4

2 σ2
∆h = 2σ

2
ε

6

3 σ2
∆h = 2σ

2
ε

12
The factorial design yields the smallest variance for the comparison of any of its
components.

Factorial design: Hold all factors constant except the one those whose effects
we are investigating.
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Non-orthogonal Designs

Example 6
We are testing 2 spray treatments (tk) using 2 different
concentrations of a chemical growth regulator. We also
include a control spray without the chemical. We have 9
plots (3× 3) for the experiment and we allow for row (ri)
and column (cj) differences

yijkl = µ+ ri + cj + tk + εijkl

Results are
A 3.72 B 3.39 C 2.95
C 3.50 A 3.08 B 1.72
B 4.18 C 4.36 A 0.81

This is a latin square and the analysis techniques are not
the same as in the randomized complete block design
(the reason is that in block designs, for each block (in
our case row and column) we assume that we have all
treatments, and this is not the case.
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Non-orthogonal Designs

Example 6(continued)
The solution comes through Least Squares fitting

3.72 = µ+ r1 + c1 + tA
3.39 = µ+ r1 + c2 + tB
2.95 = µ+ r1 + c3 + tC
3.50 = µ+ r2 + c1 + tC
3.08 = µ+ r2 + c2 + tA
1.72 = µ+ r2 + c3 + tB
4.18 = µ+ r3 + c1 + tB
4.36 = µ+ r3 + c2 + tC
0.81 = µ+ r3 + c3 + tA
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Non-orthogonal Designs

Example 6(continued)
y = Aθ

3.72
3.39
2.95
3.50
3.08
1.72
4.18
4.36
0.81


=



1 1 0 0 1 0 0 1 0 0
1 1 0 0 0 1 0 0 1 0
1 1 0 0 0 0 1 0 0 1
1 0 1 0 1 0 0 0 0 1
1 0 1 0 0 1 0 1 0 0
1 0 1 0 0 0 1 0 1 0
1 0 0 1 1 0 0 0 1 0
1 0 0 1 0 1 0 0 0 1
1 0 0 1 0 0 1 1 0 0





µ
r1
r2
r3
c1
c2
c3
tA
tB
tC


However we have not introduced yet the constraints

r3 = −r1 − r2, c3 = −c1 − c2, tC = −tA − tB
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Non-orthogonal Designs

Example 6(continued)
With the constraints, the LS problem becomes



3.72
3.39
2.95
3.50
3.08
1.72
4.18
4.36
0.81


=



µ r1 r2 c1 c2 tA tB

1 1 0 1 0 1 0
1 1 0 0 1 0 1
1 1 0 −1 −1 −1 −1
1 0 1 1 0 −1 −1
1 0 1 0 1 1 0
1 0 1 −1 −1 0 1
1 −1 −1 1 0 0 1
1 −1 −1 0 1 −1 −1
1 −1 −1 −1 −1 1 0





µ
r1
r2
c1
c2
tA
tB



Note that for any pair of factor, their corresponding columns in the design matrix
are orthogonal

〈µ, ri〉 = 〈µ, cj〉 = 〈µ, tk〉 = 〈ri , cj〉 = 〈ri , tk〉 = 〈cj , tk〉 = 0

1. Basic designs October 14, 2016 39 / 51



Non-orthogonal Designs

Example 7
We are now given 3 extra plots (another row), which we
employ to replicate the treatments and have better
estimates.

Results are now

A 3.72 B 3.39 C 2.95
C 3.50 A 3.08 B 1.72
B 4.18 C 4.36 A 0.81
C 5.45 B 5.26 A 4.85
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Non-orthogonal Designs

Example 7(continued)



3.72
3.39
2.95
3.50
3.08
1.72
4.18
4.36
0.81
5.45
5.26
4.85



=



µ r1 r2 r3 c1 c2 tA tB

1 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1
1 1 0 0 −1 −1 −1 −1
1 0 1 0 1 0 −1 −1
1 0 1 0 0 1 1 0
1 0 1 0 −1 −1 0 1
1 0 0 1 1 0 0 1
1 0 0 1 0 1 −1 −1
1 0 0 1 −1 −1 1 0
1 −1 −1 −1 1 0 −1 −1
1 −1 −1 −1 0 1 0 1
1 −1 −1 −1 −1 −1 1 0





µ
r1
r2
r3
c1
c2
tA
tB



Factor columns in the design matrix are no longer orthogonal
(in particular 〈cj , tk〉 6= 0).
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Non-orthogonal Designs

Orthogonal designs are insensitive to the order in which the parameters are
fitted. We may fit all of them at the same time (as shown), or

1 fit first µ, produce a new experiment dataset removing the part we have
already fitted (µ)

2 fit then ri and cj , produce a new experiment dataset removing the part we
have already fitted (µ, ri , cj)

3 fit finally the treatments (tk)
Non-orthogonal designs depend on the order in which parameters are fitted
(nothing terrible, but something to keep in mind).
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Covariates

Researchers cannot control covariates, but can measure them and use them to
increase the predictive power of the Linear Model.

Example 8
We suspect that the effect of the growth chemical
depends on the ambient temperature, we extend the
model with this covariate

yijkl = µ+ ri + cj + tk + βTijkl + εijkl

Tijkl is the ambient temperature measured when the
spray was applied.
A 3.72 (T=28) B 3.39 (T=22) C 2.95 (T=23)
C 3.50 (T=24) A 3.08 (T=25) B 1.72 (T=26)
B 4.18 (T=20) C 4.36 (T=22) A 0.81 (T=26)
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Covariates

Example 8(continued)
y = Aθ

3.72
3.39
2.95
3.50
3.08
1.72
4.18
4.36
0.81


=



1 1 0 0 1 0 0 1 0 0 28
1 1 0 0 0 1 0 0 1 0 22
1 1 0 0 0 0 1 0 0 1 23
1 0 1 0 1 0 0 0 0 1 24
1 0 1 0 0 1 0 1 0 0 25
1 0 1 0 0 0 1 0 1 0 26
1 0 0 1 1 0 0 0 1 0 20
1 0 0 1 0 1 0 0 0 1 22
1 0 0 1 0 0 1 1 0 0 26





µ
r1
r2
r3
c1
c2
c3
tA
tB
tC
β
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Contrasts

Example 9
Remind that our simplified parameter vector is

θ = (µ, r1, r2, c1, c2, tA, tB)T

We want to know whether there is a difference in the
spray treatment

tA − tB = 0 = (0, 0, 0, 0, 0, 1,−1)T θ

or if there are differences in the rows

r1 − r2 = 0 = (0, 1,−1, 0, 0, 0, 0)T θ
r2 − r3 = 0 = r2 − (−r1 − r2) = 2r2 + r1

= (0, 1, 2, 0, 0, 0, 0)T θ

In general, many interesting tests are of the form cT θ = 0.
If 1Tc = 0, c is called a contrast.
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Least squares

The linear model is of the form

y = Aθ + ε

and it assumes
E{ε} = 0

Σε = σ2
ε I

Consequently
E{y} = Aθ

And the deviations from the expected value is the sum of squares

SS = (y− Aθ)T (y− Aθ)

The minimizer of this Sum of Squares is

θ̂ = (AT A)−1ATy
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Least squares
The covariance matrix of the fitting parameters (assuming that ε is a multivariate
normal) is

Cov{θ̂} = σ2
ε (AT A)−1

If we diagonalize AT A, then after some suitable rotation P

Cov{Pθ̂} =


σ2

ε

λ2
1

0 ... 0

0 σ2
ε

λ2
2

... 0
... ... ... ...

0 0 ...
σ2

ε

λ2
M


being λ1, λ2, ... λM the Singular Values of the matrix A

The goal of the Experimental Design is to construct a matrix A such that: 1)
AT A has a determinant as small as possible; or 2) the variance of a specific
parameter is as small as possible. We would also like the matrix A to be
well-conditioned (otherwise some parameter will be too variable).
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Least squares

If in our experiment the most important test is of the form

c = cT θ = 0

we may design our experiment such that the variance of c is minimized

Var{c} = σ2
εcT (AT A)−1c

The goal of the Experimental Design is to construct a matrix A such that: ...
or 3) the variance of a specific statistic is as small as possible.

Particular structures (Factorial Design, Completely Randomized Design,
Randomized Complete Block Design) are “precooked” A constructions, which
additionally allow very easy Least Squares fitting.
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