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Why this course?



Why this course?

“In God we trust.
All others must
bring data”.

W. Edwards Deming




Statistics is not intuitive.
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Our evolutionary pressure was not on solving statistical problems ...

so Statistics normally escapes from our intuition.




Statistics is not intuitive

We don't realize that coincidences are common.

@ We rank the grades of people in a class and study
the characteristics of the people in the top 5. We
realize that they are all scorpio, so we conclude that
being born in November gives people an academic
advantage.

We cannot conclude anything a posteriori. A different
story is having the hypothesis that being scorpio gives an
academic advantage, and verifying the hypothesis by
analyzing the data from grades. Otherwise we may had
found any other characteristic amongst the top 5 (being
girls, wearing jeans, coming to school by bus, ...).




Statistics is not intuitive

We don't naturally do Bayesian calculations.

e HIV affects 0.1% of blood donors. The antibody test
correctly identifies 99% of infected samples, but it
also incorrectly concludes that 1% of the
noninfected samples have HIV. When this test
identifies a problematic sample, what is the chance
that it effectively has HIV?

If we have 100,000 donors, on average, only 100 (=0.1%)
of them will have HIV. If we apply the test to these
patients, 99 of them will be correctly identified (and 1
will escape). Of the remaining 99,900 donors (not having
HIV), the test will be positive on 999 of them (=1%). Of
the 99-+999=1,098 positive tests, only 99 of them are
HIV carriers. That is, the chance of being HIV carrier if
the test is positive is only 99/1,098=9%.




Statistics is not intuitive

We are fooled by extreme values and regression to the

. mean.
ooy~ IS @ An athlete performs this season extremely well.
: Y E'm; Then he appears on the cover of Sports lllustrated.
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DAVIS athletes!!
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The basics



I have thought of

number for your
drug response,

I will not tell.




Discrete vs continuous variables

DSy Discrete data: Number of eosinophils per microscopy
JLQ %o o field: 0, 1, 2, ...

W @ ;:*f;”’ o Continuous data: pH of viable eosinophils: 6.00, 6.01,
B o “é 6.02, ..., 7.49, 7.50
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37.0, 36.0, 37.1, 37.1, 36.2, 37.3, 37.0, 37.0, 36.1

We may calculate a measure of centrality:

° Mean: 'a — 3?.0+36.0+3T.1—|—37.1+3E‘\3.2+37.3+37.0+37.0+36.1 — 36.76

@ Median: g = (36.0,36.1,36.2,37.0,37.0,37.0,37.1,37.1,37.3) = 37.0
o Trimmed mean: fi = 3670736.1+36.2+37.0+37.0+37.0+37.1437.14323 _ 3¢ 79
°

7
Geometric mean:
ﬁ' = exp (log 36.0+log 36.1+log 36.2+log 3?.0+|0g§7.0+|og 37.0+log 37.1+log 37.1+log 3?.3) — 36.75
e Harmonic mean: fi= ——————— .- — 3675
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e Mode: 4 = (36.0,36.1,36.2,37.0,37.0,37.0,37.1, 37.1,37.3) = 37.0




Outliers
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Reference population

* World population
* Europeans

* Spanish

e Spanish women

* Spanish women aged between
20-40

* Spanish women aged between
20-40 with vitiligo

* Spanish women aged between
20-40 with vitiligo and with
stressful jobs

Skin levels of tyrosinase, TRP-1, TRP-2 and melanin




Different measures of centrality

@ Mean: Average of the input samples. The best for normal variables (heights,
volumes, weights, ...)

@ Median: Half the samples are below this value, and half the samples are
above this value.

@ Trimmed mean: Average removing the lowest and highest values. Robust to
outliers.

@ Geometric mean: Average in the logarithmic scale. The best for log-normal
variables (number of cells, gene expression, ...)

@ Harmonic mean: Average in the inverse scale. The best for speeds.

@ Mode: The most frequent value (it does not necessarily be in the middle of
the distribution).




Types of variables: Ordinal variables

ORDINAL VARIABLE - INTERVALS ARE UNKNOWN

“Good’—— 3 “Good"— 3 “Good"—— 3 (POSITIVE)
| o5 25 “Neutral™—— 2.5 T
2 “Neutral™— 2 — 2 SENTIMENT
“Neutral'—— 1.5 —1.5 13 |
“Bad"—— 1 “Bad™—L— 1 ‘Bad™——1 (NEGATIVE)
Situation A Situation B Situation C

@ Ordinal variables only express a relative rank between variables.

@ Differences or ratios are meaningless.




Types of variables: Categorical variables

@ Categorical variables represent labels (male, female;
no, yes; false, true; red, green, blue, ...; cat, dog,
horse, ...)

@ No mathematical operation is allowed even if they
are encoded as numbers (0, 1, ...)




Variability and bias
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Variability may have different sources:
@ Biological: There is an intrinsic variability associated to individuals.

@ Experimental random errors: Reading (e.g. height) is subject to
measurement errors (normally assumed to be Gaussian, but not necessarily)

Bias may have different sources:

@ Systematic errors: The instrument is wrongly used by the experimenter (zero
offset, calibration, scale factors, ...), defective instruments, software bugs, ...

Bias data is not accurate.




Plots: 1D Scatter plots, histograms and boxplots
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Plots: 2D Scatter plots
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Standard Deviation

Large standard
deviation

V.,

The standard deviation (SD) expresses how samples differ from the average. For
example, the average human temperature is 36.82°C with a SD of 0.41°C.




Standard Deviation

0.15% 0.15%

-15D Mean +1 5D

About 68% of the samples normally fall between £1SD.
About 95% of the samples normally fall between £2SD.




Distributions

Gaussian, Normal Height, BMI, Blood pressure

Log-normal Length of hospital stays, Concentration of a chemical in
blood, Viral load in patients

Binomial Number of patients responding to a treatment, Incidence of a
genetic trait, Success/failure of surgical procedures

Poisson Number of new cases of a disease in a time period, Count of
bacteria in a sample, Number of mutations in a DNA
sequence

Exponential Time until relapse of a disease, Survival time after a critical
diagnosis, Time to infection after exposure

Chi-squared Genetic linkage analysis, Analysis of vaccine adverse effects

Gamma Time until failure of a biological system, Survival times in

cancer research, Time between successive neuronal spikes




Distributions

Uniform
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Standard Deviation

The sample mean and standard deviation are calculated as

n 1

i = §2X

=1
I

N
o = ﬁ Q(X; — ,11}3)2

Note that sample variance is the square of the standard deviation, 62

Means and standard deviations are sensitive to outliers. The equivalent robust
estimates are the median and median absolute deviation (MAD)

med = med(x;)
mad = med(|x; — med|)




1) Mean

a) Pythagorean Mean
i) Arithmetic Mean
ii) Geometric Mean
iii) Harmonic Mean

b) Weighted Mean

¢) Truncated Mean

d) Interquartile Mean

2) Mode
3) Median

1) Standard Deviation 1) Skewness

2) Variance

3) Range

4) Interquartile Range

5) Absolute deviation

6) Mean Absolute
difference

7) Distance Standard
Deviation

2) Kurtosis

3) Distance Skewness

Dependence

1) Covariance
2) Pearson Correlation
3) Kendall Correlation

4) Spearman Correlation




Probability
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Probability is a number between 0 and 1 (=100%) that expresses our certainty
about the occurrence of an event.
We may arrive to this probability by: 1) a model, or 2) by gathering data.




Probability as a prediction from a model

We may establish a model for understanding the world:

@ Each ovum has an X chromosome and none has a Y
chromosome.

e Half the sperm have an X chromosome and the
other half have a Y chromosome.

fsita—

@ Only one sperm will fertilize the ovum.
(u' ) ('.', @ Each sperm has an equal chance of fertilizing the
v d - ovum.
] ? e If the winning sperm has a Y chromosome, then the
CQM = BUY. embryo will be XY (boy).

@ If the winning sperm has a X chromosome, then the
embryo will be XX (girl).

@ Any miscarriage or abortion is equally likely to
happen to male or female fetuses.

Our prediction with this model is that there is 50% chances of being a boy or a
girl.




Probability based on data

In 2012, 51.7% of all babies born in the world were boys.

For a particular pregnant woman, the probability of
having a boy is 51.7% (=0.517).

If we take a group of 1000 pregnant women, we would
expect to observe on average 517 male fetuses and 483
female fetuses.

This does not mean that if we take 1000 pregnant
women, we should observe 517 male fetuses and 483
female fetuses.

It means that if we take many (many) groups of 1000
pregnant women, and we average the number of male
and female fetuses of all these groups, as the number of
groups go to infinity, the average of male fetuses will
approach to 517 and the average of female fetuses will
approach to 483.




Understanding the assumptions of probability

Since in 2012 we have observed 51.7% of babies to be
male, the probability of a new born being male is 51.7%.
Is that correct? It is if:

o If the probabilities from the past can be used to
predict the future. There is no change of the
probability over the years.

@ There is no change of the probability along the year
(the male probability in January is the same as in

July).
@ There is no change of the probability along the race

(the male probability for Africans is the same as for
Asians).

@ There is no change of the probability along region
(the male probability in China is the same as in
Japan).




Well-defined probabilities (probability of what?)

Pralabilfy: — Positive results

All possible outcomes

In our example

#Male new borns

0.517 =
#All new borns

A lab test for VIH is 98% accurate.

What does it mean? With this information alone it is
meaningless because it is an undefined probability. We
don't know which are the positive cases and all possible
outcomes!!




Well-defined probabilities (probability of what?)

Interpretation 1: Sensitivity.

Numerator: Correctly identified VIH cases in a group of
people with VIH.

Denominator: Number of tested people (all of them had VIH).

Interpretation 2: Specificity.

Numerator: Correctly identified non-VIH cases in a group of
people not having VIH.

Denominator: Number of tested people (none of them had

VIH).

Interpretation 3: Predictive value of positive test.
Numerator: Correctly identified VIH cases.

Denominator: Number of people whose result with this test
was positive.

Interpretation 4: Predictive value of negative test.
Numerator: Correctly identified non-VIH cases.
Denominator: Number of people whose result with this test
was negative.




Conditional probabilities (probability of what?)

p(A|B(given)) # p(B|A(given))

@ The probability that a Statistics book (given) is
boring is not the same as the probability of a boring
book (given) being about Statistics.

p(boring|Statistics) # p(Statistics|boring)

i [

Thomas Bayes

@ The probability that someone with abdominal pain
(given) has appendicitis is not the same as the
probability of someone with appendicitis (given)
having abdominal pain.

p(appendicitis|pain) # p(pain|appendicitis)




Conditional probabilities (probability of what?)

p(AlB) # p(B|A)

@ The probability that a heroin addict (given) first
used marijuana is not the same as the probability of
a marijuana user (given) will later become addicted
to heroin

p(marijuanalheroin) # p(heroin|marijuana)

Thomas Bayes

@ The probability of a study for which the null
hypothesis is true (given) having a p-value smaller
than 0.05 is not the same as the probability of the
null hypothesis being true for a study in which the
p-value is smaller than 0.05 (given)

p(pval < 0.05|Hy) # p(Ho|pval < 0.05)




Odds is different from probability

The odds is a ratio between two probabilities

@ The odds of being a boy is

O p(boy) 0.517

— = = 1.07
p(girl)  0.483

@ The odds of developing a lung cancer if you smoke is
10 times larger than if you don't smoke.

O = 70 = p(lung cancer|smoke)

p(lung cancer|don’t smoke)

p(lung cancer|smoke) = 10p(lung cancer|don’t smoke)




From a sample to the population

The Proportion of White Respondents in a Population and in a Sample

Population

Lo Y -
ik SR R ST
Lok R | SR
LSRR |

40 4 40 4

Parameter Statistic
Proportion of white respondents Proportion of white respondents
in the population in the sample
15 4
T=—=.60 =—= 67
25 P=%

From our calculations (statistics) performed on our sample we want to infer (inference)
the true population parameters. In Biostatistics, we normally assume that our sample is
small (<10%) than the population (normally considered to be infinite).




Random sampling error

?Hng\\
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Population (or
Inference

Experiment)

Random sampling error. Just by chance your sample might have a higher (or
lower) mean/proportion/variance/correlation than that of the population.

Random sampling error decreases with the sample size.




Systematic errors

@ Non-response bias: Individuals who do not respond to a call to participate in
research studies behave differently from those who do respond.

@ Selection bias: Studies performed in a hospital are not representative from
the general population. The admissibility criteria may not represent the
population.

@ Publicity bias: Some individuals refer themselves to the investigator following
publicity of the study (they have a particular interest in the disease being
studied).

@ Healthy worker bias: Voluntaries in studies may be particularly healthier as

they are concerned about their own health and are predisposed to follow

medical advice.

Overcoverage: Including data from outside the population.

Undercoverage: Sampling does not cover the whole population.

Measurement error: Respondents fail to understand a question.

Processing error: Mistakes in data coding.

Information bias: Systematic misclassification of subjects.

Confounding: The effect of one variable is mixed up with the effect of

another variable (e.g., assessing the effect of smoking on lung cancer, but the

average ages of the smoking and non-smoking groups are very different).




Bias and variance

Figure 5. Bias and variability
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D. Figuereido, et al. When is statistical significance not significant? Braz. Polit. Sci. Rev. 7 (2013)

Bias invalidate inference.




Stratified sampling

Stratified sampling helps undercoverage.




Understanding the logic
behind Statistical Inference



Statistical hypothesis testing

Statistical hypothesis testing helps to automate decision
making:

@ In a pilot experiment, we must decide whether to
proceed to further experimentation with this drug.

@ At Phase Il, we must decide whether to go to Phase
1.

@ At production quality control, we must decide if a
batch can be released.




Innocent until proven guilty

A juror starts with the presumption
of innocence of the defendant.

A juror bases his decision only on
factual evidence presented at the
trial and should not consider any
other information (e.g., newspaper
stories).

A juror reaches the verdict of guilty
when the evidence is inconsistent
with the assumption of innocence.

Otherwise, the juror reaches the
verdict of non-guilty.

If the juror is not convinced, he can
say “I'm not sure”.

@ A scientist starts with the

presumption that the null hypothesis
“there is no difference” is true.

A scientist bases his decision only
on data from one experiment,
without considering what other
experiments have concluded.

A scientist reaches the conclusion of
statistical significant difference when
the p-value is small enough to make
the null hypothesis very unlikely.

Otherwise, the scientist reaches the
conclusion of non-significantly
different.

If the scientist is not sure, he can
collect more data.




Some concepts

Table 7.2 Type | and Type |l Errors
True State of Nature
The null The null
hypothesis is | hypothesis is
true false
We decide to Typ ror t
reject the (rej rue B
null hypothesis |null h esis)
Decision

We fail to
reject the
null hypothesis

o

Type |l error
(fail ject
a ull
hypothesis)




Some concepts

Figure 4: Type I and Type II Errors in Hypothesis Testing

True Condition
Decision H,, is true H,, is false
Do not reject H,, Correct decision Incorrect decision
Type II error

Reject H, Incorrect decision Correct decision

Type I error Power of the test

Significance level, o, = 1 — P(Type 1l error)
= P(Type I error)

Symbols Phrase p-value
ns Not significant p>0.05
g Significant p<0.05
T Highly significant p<0.01
*ok ok

Extremely significant p<0.001




Basics of statistical inference

Research hypothesis:

The new vaccine reduces the number of infected animals in a population.
Ho: m>m9 One-tail test
H : 7 <mo

Research hypothesis:

The new drug increases survival for patients with this disease in the next 5 years.
Hy: S<5; One-tail test
Hi: S§>5

Research hypothesis:

The new machine does not produce tablets with the prescribed concentration
Ho: ¢ =c¢ Two-tail test
Hi: c# ¢




Basics of statistical inference

@ You CAN reject the null hypothesis and accept the alternative hypothesis

@ You CAN fail to reject the null hypothesis because, there is not sufficient
evidence to reject it

@ You CANNOT accept the null hypothesis and reject the alternative because
you would need to measure absolutely all elements (for instance, all
hypertense patients).

It's like in legal trials:

@ The null hypothesis is the innocence of the
defendant.

@ You CAN reject his innocence based on proofs
(always with a certain risk).

@ You CAN fail to reject his innocence.

@ You CANNOT prove his innocence (you would need
absolutely all facts)




Basics of statistical inference

The goal of hypothesis testing is to disprove the null hypothesis! We do this by
proving that if the null hypothesis were true, then there would be a very low
probability of observing the sample we have actually observed.

However, there is always the risk that we have been unlucky with our sample, this

is our confidence level (the p-value is also related to this risk: the lower the
p-value, the lower the risk).
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Not significant results

The other day Michael Jordan and me shot baskets. He
shot 7 straight free throws. | hit 3 and missed 4. Being a
statistician, | rushed to the sideline, calculated the
p-value by Fisher’s exact test which resulted to be 0.07.
That meant, there was no statistically significant
difference between Michael Jordan and me!!!

A high p-value does not make the null hypothesis true. It
may be that the experiment was not large enough.




@ Stargazing: Considering results in a paper only important if they have 1, 2, 3,
. stars. p-values are not as reproducible as Cls, and they only mean at
showing that the result is not generated under the null hypothesis, not that
the result is relevant.

@ Significance is not relevance: Being statistically significant does not mean
that the result is relevant. 4.9999 # 5.0000

@ p-hacking to obtain significance: Trying different hypothesis tests to see if
one of them proves to be significant, dynamic sample size (adding more and
more data until the result is significant), taking subsets of the data on which
the difference is significant, playing with the definition of outliers, changing
from a two-sided hypothesis to a one-sided.




Cls and hypothesis testing

These two techniques are based on the same theory
@ Cls compute a range that 95% of the time will contain the population value
(given some assumptions).

@ Hypothesis testing computes a range that you can be 95% sure would
contain the experimental results if the null hypothesis were true. Any result
within this range is considered not statistically significant, and any result
outside this range is considered statistically significant.

Remember

@ If the 95% Cl does not contain the value of the null hypothesis, then the
result must be statistically significant (with p < 0.05).

@ If the 95% Cl does contain the value of the null hypothesis, then the result is
not statistically significant (with p < 0.05).




Cls and hypothesis testing

With N = 12 measurements we observe some difference between the average

observed temperature and the reference (null) value (37°C). However, this result
is not significant

Observed Valuel I Null hypothesis

ns pval>0.05 N=12
Cl 95%
1

|
| | |
36.5°C 37°C

37.5°C




Cls and hypothesis testing

With N = 120 measurements the result becomes significant

I
Observed valuel I Null hypothesis

o
N=120
pval<0.05
!
|
Cl 95% |
|

36.5°C 37°C 37.5°C




Statistical significance does not imply relevance

We compare the responding proportion in a control and treatment group

Sample size per group | Control | Responding | pval Cl 95%
10 10% 80.0% 0.006 | [44.39,97.48]%
100 10% 26.0% 0.006 | [17.74,35.73]%
1000 10% 14.1% 0.006 | [12.00,16.41]%
10000 10% 11.2% 0.006 | [10.59,11.83]%

They all have the save p-value, but their relevance are rather different (e.g., the
last one is seldom interesting, the effect is too small).




Not significant results

Two groups of pregnant women:

@ One of the groups received routine ultrasound twice
during pregnancy. In 4.98% (=383/7685) of the
cases, an adverse outcome was detected.

@ The other group received ultrasound only when
indicated by clinical reasons. In 4.91% (=373/7596)

of the cases, an adverse outcome was detected.
The null hypothesis is that the risk of adverse outcome is the same in both

groups. The relative risk is 1.01 (=4.98/4.91) and has a 95% confidence interval

[0.88,1.17] and the p-value is 0.86.
Possible interpretations:

© The Cl contains 1. Routine ultrasounds are not helpful nor harmful. They
could be skipped.

@ The Cl is compatible with a relative risk of 0.88, that is there is a 12%
reduction in the risk of adverse outcome by routine use of ultrasounds.

© The Cl is compatible with a relative risk of 1.17, that is there is an increase
of 17% in the risk of adverse outcome. May the increase because ultrasounds
are harmful to the fetus?




Statistical power

Significance tests

power= 0.8 |80% test positive

(80 true pos tests)
Real effect /
\\

in 10% =
100 tests

20% test negative
P(real) = EV (20 false neg tests)

1,000 tests

gia s ® 95% give negative
o % = 855 true neg tests
No effect

in90% =
900 tests ~————__|5% postests
= 45 false positives
Total number of positive tests = 80 + 45
45

=34 percent (NOT 5%)

False discovery rate (proportion of false positives) 45+ 80




Significance level, power and false discovery rate

Reject Hy Do not reject Hp
Hp is true A =45 B — 855 A+ B =900
Ho is false C =80 D =20 C+ D =100
A+ C =125 B+ D =875 A+ B+ C+ D= 1000

Significance level
A 45

“TATB 900
Significance answers the questions:
@ If Hp is true, what is the probability of incorrectly rejecting it?

@ Of all the experiments you could run in which Hp is true, what is the fraction
in which you will reach the conclusion that the results are statistically

significant?

= 0.05




Significance level, power and false discovery rate

Reject Hy Do not reject Hy

Ho is true A =45 B — 855 A+ B =900
H, is false C =380 D =20 C + D =100
A+ C =125 B + D = 875 A+ B+ C+ D = 1000
Power c 20
1=F=¢2p =100 = 0%
D 20
=0.20

3 — _
" C+D 100

Power answers the questions:
e If Hy is false, what is the probability of correctly rejecting it?

@ Of all the experiments you could run in which Hy is false, what is the fraction
in which you will reach the conclusion that the results are statistically

significant?




Significance level, power and false discovery rate

Reject Hy Do not reject Hy
Hg is true A =45 B = 855 A+ B =900
Hy is false C =80 D =20 C+ D =100
A4 C =125 B+ D =875 A+ B+ C+ D= 1000

False Discovery Rate

A 45
FDR = = = 0.36
A+C 125

FDR answers the questions:
e If a result is statistically significant, what is the probability that Hy is true?

@ Of all the experiments that reach a statistically significant conclusion, what is
the fraction in which Hy is true?




Significance level, power and false discovery rate

Significance level, statistical power and FDR depend on the sample size, the effect
size and the population variance.

You send your child into the basement to find a tool. He
comes back and says “lt isn't there”. What do you
conclude? Is the tool there (Hy) or not (H;)?

Your conclusion depends on:

e How long the kid has been looking for. (sample size)

e How large the tool is (it is easier to find a snow
shovel than a small screw-driver to fix glasses).
(effect size)

@ How messy the basement is. (population variance)




Post-hoc power analysis ( )

Post-hoc power analysis is the estimation of the statistical power once the
experiment has been performed. We have observed some effect size, and now we
calculate what would be the statistical power if the true underlying effect size was
the one observed.

obs_pwr
02 04 06 08 10

0.0 0.2 0.4 0.6 08 1.0

Unfortunately, post-hoc power is simply another way of reporting the p-value.
There is a close relationship between the observed power and the observed
p-value. If you want to look at your experiment retrospectively, look at the Cl.




Informal accounting for prior probabilities

@ Experiment 1: The experiment makes biological sense and the p-value is
0.04. | would tend to believe that Hy is false and that the data confirms my
alternative hypothesis.

@ Experiment 2: The experiment does not make biological sense and the
p-value is 0.04. | would tend to believe that Hy is true and that the
observations are significant just by chance.

@ Experiment 3: The experiment does not make biological sense and the
p-value is 0.0000004. Although, for me, the experiment goes against my
biological knowledge, the data evidence is so strong that probably Hy is false
and | have to revise my knowledge base.

(Extraordinary claims require extraordinary proofs (Carl Sagan)).

Posterior Beliefs

Evidence

Prior Beliefs




Sample size calculation

N=..



Drug research

* We want to determine the differences between the
dissolution in two delivery vehicles. How many samples do
we need to observe to show that there is a statistically

significant difference of at least 20% between any two
groups. The nominal value in the reference drug is 40

|

ug/min/cm?2. The standard deviation is 7. We want to have
a statistical power of 90% and a confidence level of 95%.

—_—

e Using too many or too few samples is a loss of time and o it gititin () dscteion
money.

* We must use what it takes; in this example,18 per group.




Sample size

4000 . . . T . . . . T

Cost of incorrect decision
Sampling cost L
Total cost

Ja0o

3000

2500

2000

Cost (F)

1500

1000

s00

|
a 10 20 a0 A0 4l B0 70 a0 a0 100
Sample size




Experimental unit

* The experimental unit is the smallest fraction of the experimental

material where we can change the treatment.

Lddd
& &l &

X

b

e

.
s
g

“es

Yo

Treatment is injected

Treatment is in the water




Experimental units

Biological Technical
replicates replicates




Randomization and blocking

1,000 Patients

Stratify By Sex:

400
Females
Stratify By Age:
Randomize Young Old
Each
Sub-Group:
180 + 120 + 150 + 50 180 + 120 + 150 + 50
=500 = 500

New Treatment Current Treatment
Gordis: Epidemiology, 4th Edition.
Copyright © 2008 by Saunders, an imprint of Elsevier, Inc. All rights reserved




Experiment design

All samples

Female

Blocks Treatments
Female Old  Tumourl | TreatmentA  NoAdjuvant
Female Old  Tumourl | TreatmentA Adjuvant
Female Old  Tumourl | TreatmentB  NoAdjuvant
Female Old  Tumourl | TreatmentB  NoAdjuvant
Female Old  Tumourl | TreatmentB  NoAdjuvant
Female Old  Tumourl | TreatmentB Adjuvant
Female Old  Tumourl | TreatmentC  NoAdjuvant
Female  Old  Tumour2 | TreatmentA  Adjuvant
Female  Old  Tumour2 | TreatmentB  NoAdjuvant
Female  Old  Tumour2 | TreatmentB Adjuvant
> Blocks Female Old  Tumour2 | TreatmentC  NoAdjuvant
Female Old  Tumour2 | TreatmentC Adjuvant
Female Young Tumourl | TreatmentA  Adjuvant
Female Young Tumourl | TreatmentB NoAdjuvant
+ Female Young Tumourl | TreatmentB Adjuvant
Female Young Tumourl | TreatmentC NoAdjuvant
Female Young Tumour2 | TreatmentA  Adjuvant
Factors Female Young Tumour2 | TreatmentB  NoAdjuvant
( Randomization ) Female Young Tumour2 | TreatmentB Adjuvant
Female Young Tumour2 | TreatmentC NoAdjuvant
Female Young Tumour2 | TreatmentC  Adjuvant
. . Male Old  Tumourl | TreatmentA  NoAdjuvant
EXperlment DeSIgn Male Old  Tumourl | TreatmentA Adjuvant
Male Old Tumourl | TreatmentB  NoAdjuvant
Male Old Tumourl | TreatmentB Adjuvant
Male Old  Tumourl | TreatmentC  NoAdjuvant
Male Old  Tumourl | TreatmentC Adjuvant




Randomization and blocking

Blocking time
20 females, 20 males. 20 treated, 20 controls. We can
only process 4 animals/day—> 10 days

Week One Week Two
W W

T = treated, C = control, pink = female, blue = male




Randomization and blocking

Blocking time
20 females, 20 males. 20 treated, 20 controls. We can
only process 4 animals/day—> 10 days

Week One Week Two
W W

T = treated, C = control, pink = female, blue = male




Randomization and blocking

Blocking time
20 females, 20 males. 20 treated, 20 controls. We can
only process 4 animals/day—> 10 days

Week One Week Two
W W

T = treated, C = control, pink = female, blue = male




Randomization and blocking

Randomized block design

3) Randomize the rest.
2) Block what you cannot.

1) Control what you can.

= Randomize the position in the shelf.
= Randomize feeding order.

= Randomize treatment time.

= Randomize treatment order.

= Randomize ...




Sample size calculation

Unfounded fear ..4%

* Fear: A statistical design of the experiment will
require “thousands” of mice.

* Reality: A statistical design of the experiment

relates -
Number ;
of
samples
e




Sample size calculation

How many mice do | need for my
experiment?

It depends on:
— Experimental constraints (How the data is collected)

* | need a minimum amount of material

* Some mice die before | can measure
* | cannot handle more than 100 mice at a time
* Sometimes mice move while I'm injecting

— Statistical constraints (How the data will be used)
* | will perform a comparison to a control group
* | will compare the mean of the two groups
* The datais normallydistributed

* This is the first experiment ever!




Sample size calculation

Stage 1: Arrival

| have been told that I have to talk to
you to write in this form the number of
mice for my experiment. | have enough

with 3000.




Sample size calculation

Stage 1: Arrival

| hate all this writing for the
Ethical approval of my
experiment.




Sample size calculation

Stage 1: Arrival

And why should | bother with a
statistician? He doesn’t know
anythingabout my experiment,
nor Biology.




Sample size calculation

Stage 2: Value of Experimental Design

You may be right.




Sample size calculation

Stage 2: Value of Experimental Design

Maybe you need LESS:
you lose some of your
time, some of your
money, and
some mice lives.




Sample size calculation

Stage 2: Value of Experimental Design

Maybe you need MORE:
you lose all of your time,
all of your money, and all

mice lives.




Sample size calculation

Stage 3: Experimental Design

Why don’t you calculate?
What are you doing?
I’'m studying how the Are there previous
area of a lesion changes experiences?
with a new drug.

Of course, there is no
previous experience, THIS IS
SCIENCE!! It’'s NOVEL.

What a stupid

guestion! | was
sure it was a bad
idea to talk to this

guy.




Sample size calculation

Stage 4: Gathering prior information

Well, it has to be around




Sample size calculation

Stage 5: Setting a target for success

| don’t know, | just want
to see what comes out
from the experiment.




Sample size calculation

Stage 5: Setting a target for success

No, to be of any use, it
has to decrease, at least,

below 25 mm?2.




Sample size calculation

Stage 6: Gathering variance information

| don’t know, the
experiment is new. If it
were not new, | would
not have anything to
publish.




Sample size calculation

Stage 6: Gathering variance information




Sample size calculation

Stage 6: Gathering variance information

| don’t have any clue.




Sample size calculation

Stage 6: Gathering variance information

Well, ... there is a paper where they perform
something similar to my experiment, but with
a different drug. They report a variance of
1000. And for the treatment, it is less clear,
but we may assume we will have similar
fluctuations.




Sample size calculation

Stage 6: Gathering variance information




Sample size calculation

Stage 7: Setting error tolerances

Yes, this is fine, it’s
quite standard.




Sample size calculation

Stage 7: Setting error tolerances

Yes, this is fine, it’s
quite standard.




Sample size calculation

Stage 7: Setting error tolerances




Sample size calculation

Stage 8: Calculating the number of mice




Sample size calculation

Stage 8: CaIcuIatlng the number of mice

HA9- -+  Plantilla Diser T Student [Mada de 31~ Mhcrosot Excel o 53 M
m Inicio. Insertar Disefio de pAgina Formulas Datos Revisar Vista. Arrobat -3 0 =& 8
A * = et | W || e = = E ﬁ i T T autosuma - }

_J | caliont 1n A A -!_ b3 S Ajustar texto General E @ =) - _r ﬂ
PR g |NXa-(H-|2-A- K %R DL oo | 8- % ]8R T, S e | M | 2 tomre e seecrina-
Portapap. Fuente . Alineacidn Nimero Estilos Celdas Madificar
| B10 - £~ 3

A | B Cc D E B G H 1 i1 K L M N o P a

1 Onesided t-student

2

3

4

5

&

7 TR

NplNp-1) Np(Ny-D

8 Control

9 Tratamiento
o]

11 | DOF 4400

12 |Alpha 0,05 t{1-alpha) 1,64520009 The probability of commiting the error of rejecting the null hypothesis when it is true

13 Beta 0,1 t{beta) -1,28174404 The probability of commiting the error of not rejecting the null hypothesis when it is false u
14 \MuD observable 79.26

15 MuX 50,00 %Variacion 158,524

16

17

18

19 31 e

2 Ney=N.=N2> (sx+s,.)

21

22

23 |% Variacidn deseado 50%

24 MuD deseada 25,00

25 |N requerida E)

26 M usada 38,75 B
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| 100% (= %5 &

i, G*Power 3.1.9.7 - x
File Edit View Tests Calculator Help
Central and noncentral distributions  Protocol of power analyses
critical t = 1.65366
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0.1 4 B \
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-3 = -1 0 1 2 3 4 5 [
Test family Statistical test
|t tests w | | Means: Difference between two independent means (two groups) w |
Type of power analysis
|A priori: Compute required sample size - given o, power, and effect size w |
Input Parameters Cutput Parameters
Tail(s) One ~ Noncentrality parameter & 3.3166248
Effect size d 0.5 Critical t 1.6536580
o err prob 0.05 Df 174
Power (1-f err prob) 0.95 Sample size group 1 88
Allocation ratio N2 /N1 1 Sample size group 2 88
Total sample size 176
Actual power 0.9514254
| X-Y plot for a range of values | | Calculate |




Sample size calculation

Stage 8: Calculating the number of mice




Sample size calculation

Stage 8: Calculating the number of mice

But sometimes, some mice get a cold, or die
from something not related to my experiment,
or they are for any reason useless.

About
20% of the




Sample size calculation

Stage 8: Calculating the number of mice

| also want to test
several drugs




Sample size calculation

Stage 8: Calculating the number of mice

What could I do if | get an
unreasonable number of mice?




Sample size calculation

Replicates

Should I replicate the
experiment to be blaS blas
sure of the result? |
would like to repeat
it 3 times. Baja
varianza
Greenwald, A. G.; Gonzalez, R.; Harris, R. J. & Guthrie, D.
Alta
varianza
@
&

Effect sizes and p values: what should be reported and what

Bajo Alto

should be replicated? Psychophysiology, 1996, 33, 175-183




Blocks: mini-experiments

w we ws BT

Treatment
Block SSB 2 MSB
Error SSE 74 MSE
Total SST 77

IR

Treatment

Error SSE 76 MSE

Total SST 77




Sample size calculation

Summarizing

After all, it was not
that bad to talk to
this guy.




Variance reduction

Change the experimental conditions

Chvedoff, M. et al. (1980). Effects on mice of numbers of animal per cage: an 18-month
study. (preliminary results). Archives of Toxicology, Supplement 4:435-438

Body weight of mice housed 1, 2, 4 or 8 per cage

Crmedof et al (1930} Arch Tankol Suppl 4°435

¥
e s5Dh=29_= ! ! I !
| ¥
I ) *I I I
/ i i i Y i e 1
. t - : - :
Weight




Variance reduction

Crabbe, J. C.; Wahlsten, D. & Dudek, B. C. Genetics of mouse behavior: interactions

Ll L
Genetics of Mouse Behavior: with laboratory environment. Science, 1999, 284, 1670-1672.
Interactions with Laboratory
Environment & Portiand
ortian
John C. Crabbe,’ Douglas Wahlsten,? Bruce C. Dudek® -E' 5000 0 Edmonton
Strains of mice that show characteristic patterns of behavior are critical for % '('5 cm
research in neurobehavioral genetics. Possible confounding influences of the = o
laboratory environment were studied in several inbred strains and one null c E
mutant by simultaneous testing in three laboratories on a battery of six @ =
behaviors. Apparatus, test protocols, and many environmental variables were O'n g
rigorously equated. Strains differed markedly in all behaviors, and despite el
standardization, there were systematic differences in behavior across labs. For ]
some tests, the magnitude of genetic differences depended upon the specific = 0
testing lab. Thus, experiments characterizing mutants may yield results that are 8’ @ 10000 — —
idiosyncratic to a particular laboratory. = c cm B
q %
1. Same research team 58 5000
. . o B
2. Same inbred strains £
. = -
3.  Equally calibrated apparatus E E - iy
4.  Equated husbandry < 00— 2 2 = T+ o
5.  Same testing protocols < % o 3 = L o o
- 0 [¥2]
6. Same age EEDEQE%
7.  Same starting time c s =
8 &

. Same protocol order
But significantly different results




Basics of statistical inference

An engineer works for MyPharma. He knows that the
manufacture of each tablet has a standard deviation of 1
mg. (the manufacturing process can be approximated by
a Gaussian). Knowing this, he sets the machine to a
target amount of 250 mg. In a routine check with 20
tablets, he measures an average of 250.66 mg. Is it
possible that the machine is malfunctioning?

@ Step 1: Define the hypotheses

H & i =250

Hy 5 55250




Basics of statistical inference

E{x} = pu, Var{x;} = o?
p=xi = E{i} = p, Var{ji} = 0
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Basics of statistical inference

E{x} = p, Var{x,} = o*

~ X1t X R R o
fH=—5—= E{ji} = p, Var{ji} = )
04 T T
03rF // \\
02+ I \
i // ]\
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Basics of statistical inference

E{x3s} = p1, Var{x3} = o*

2
~ X1+ X2+ X3 . . a
fi = = E{i} = p, Var{ji} = —
3 3
04 .
03 // \\
02+ 7 \
01 / .
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Basics of statistical inference

E{xs} = pu, Var{xs} = o>

2
X1+ Xo + X3 + X4 o

1 = E{fi} = p, Var{jiy = -

ﬁ:

0 1 1 1 T
246 247 248 248 250 25 252 253 254
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Basics of statistical inference

5
=z ?_1 xi = E{fi} = p, Var{ji} = T
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Basics of statistical inference

10
1 o2
At .r. o~ — . y — —_—
A=15 ;Zl xi = E{fi} = p, Var{ji} = 10

0.4

I /
03 N
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Basics of statistical inference

20
1 o2
= — E = E{ii} = p. Var{i} = —
A= 3 xi = E{fi} = p, Var{ji} 0
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Basics of statistical inference

e Step 2: Find the distribution of a suitable statistic if Hy is true

2 f —
xj~ N(p,0%) = ji~N (pz, g—) S z=1" N(0,1)

N N
@ Step 3: Plug-in the observed data if Hy is true
250.66 — 250
z= T = 2.9721
V20




Basics of statistical inference

e Step 4: Calculate the p-value Probability of observing a value as extreme as
this one if Hy is true.

p—value = Pr{|Z|> 209721} =Pr{Z < —-2.9721} + Pr{Z > 2.9721}
= 0.0030 = 0.3%

0.4

0351

03F

025+

0.2r

0158 F

01

0.0sr




Basics of statistical inference

@ Step 5: Reject or not reject Hy

p — value = 0.003(xx) < 0.05 = Reject Hy

p<0.05 | *
p<0.01 | **
p<0.001 | ***




Sample size determination: Confidence level

© Step 1: Define the null hypothesis
@ Step 1: Define the minimum meanigful
difference

Ho - p =250

@ Step 2: Distribution under the null A = 0.5(mg)
hypothesis

@ Step 2: Determine population variance

7Bk _ B o1
VN VN o = 1°(mg”)

© Step 3: Plug-in observed data © Step 3: Determine significance and

2 — 29791 statistic threshold

a =0.05= Pr{|Z| > 1.96} = 0.05
Q Step 4: Calculate p-value

Step 4: Solve for N
Pr{|Z| > 2.9721} = 0.3% @ Step 4: Solve for

A 1.960 \ 2
©@ Step 5: Decide on Hp — > 1.96 = N > ( A ) =154

3

0.3% < 5% = Reject




Sample size determination: Confidence level

Factors that affect sample size:

(1)

@ Confidence level: 1 —a 1= 2z_¢ 1= N7
More confidence requires more samples.

@ Sample variance: 0% 1= N 1
If the sample variance increases, it is more difficult to detect the diference A.

© Effect size: A |= N T
If we want to detect more subtle differences, we need more samples.

@ One- or Two-sided test: Two-sided = N 7
If the test is one-sided, z_g should be replaced by z;_,, which is smaller.




Sample size determination: Test power (right)

(72 Zlﬁ)0)2 B ((Zlg + Zlﬁ)ff)z
p1 — Ko A
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Sample size determination: Test power (left)

2 y
o o (Z1_g — 215)0> ((Zlcx + 215)(7)
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Sample size determination: Test power (two-sided)

2
Ho = 0 = po } N ((213 -+ Zlﬁ)0> 2)

Hi o < g U e > pg

A

0a- —
06— —

04— —

1}
2485 249 2425 250 2505 241 2515




Sample size determination: Test power (one-sided)

Ho = j1 < pio }:>N>((zla+215)0>2 (3)

A

0e—
06—
#0 +zl—am

04—

02

0
243 2435 250 2608 261 2814




Sample size determination: Confidence level+ Test power

Factors that affect sample size:

2
Zq_ + z,_
N>(1a/2 1B>
Ao

Q@ Confidence level: 1 —at=z_o T= N T

2
More confidence requires more samples.

@ Population variance: ¢ 1= N 1

If the population variance increases, it is more difficult to detect the diference
A.

© Effect size: A |= N1
If we want to detect more subtle differences, we need more samples.

© One- or Two-sided test: Two-sided = N 1
If the test is one-sided, 7 «a should be replaced by z;_, which is smaller.

@ Test power: 1 -3 1= N1
If we want to increase the power of the test, we need more samples.




Signal-to-noise Ratio

SIGNAL




Sample size calculation

A researcher wanted to explore the
submarine world. He used a net with
squares of size 5x5 cm. After fishing
thousands of wonderful creatures he
came to the conclusion that in the
Deep sea there are no creatures
smaller than 5 cm.
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Density

0.02 0.04 0.06 0.08 0.10

0.00

Confidence interval (Snedecor’s F)

0.2

0.05

Exact confidence interval (Binomial)

Binomial
distribution
usingupper
bound P =0.81

\

Binomial
distribution
using lower
bound P =0.50

90% confidence interval: (0.50, 0.81)
o= 100%-90% = 10%

Y ()ra-mrr=as

p=0.81

k=x

30

> (ra-pri=op



Confidence interval of a mean

Assume that we measure the temperature to 9 people
and get the data:

3¥.0.. 860, 871, 87-1, B6.B, 37 .8, 3¥.0, 3F.0,. 86.1

The mean is 36.76°C and its 95% confidence interval
[36.37,37.14]°C. This means that with probability 95%,
this interval contains the true mean. Note that this
interval is symmetric around 36.76.

The confidence interval is calculated as

. h-g N-16 | N ti—a N-10
K= ) [
VN VN

where t; o, N —1is the 1 — & percentile of a Student’s t distribution with N —1
degrees of freedom.




Confidence interval of a standard deviation

Assume that we measure the temperature to 9 people
and get the data:

310, 86.0, 371, 371, 30.2.-37.83; 3F.0; 81.0. 36.1

The sample standard deviation is 0.50°C and its 95%
confidence interval [0.34,0.96]°C. This means that with
probability 95%, this interval contains the true standard

deviation. Note that this interval is not symmetric
around 0.50.

The confidence interval is calculated as

. N—-1 . | N-1
ag S , O 5
G U | Xg ,N—1

where x?_o p_q isthe 1 — 5 percentile of a central \? distribution with N — 1
23
degrees of freedom.




Assumptions of confidence intervals

e Random (representative) sample. In clinical studies, patients are not
randomly sampled from the patient population. They are included in the
study because they were at the clinic at the right moment (convenience
sampling). This assumption would also be violated if the body temperature is
from people who joint the study because they suspected their body
temperature was normally too high or too low (voluntaries in clinical studies
are not random samples!)

@ Independent samples. All subjects are sampled from the same population and
independently selected from others. This assumption is violated if two
siblings are included in the study, or if the same person is measured twice.

@ Accurate data. Violated if the thermometer was not correctly placed or it was
misread.

@ Population distribution. Confidence intervals can only be constructed if the
underlying, population distribution is known. The formulas in the previous
slides are valid only for Gaussian populations.




Properties of confidence intervals

@ More samples. The larger the experiment, N, the narrower the Cl (we have
less uncertainty about the underlying parameter).

@ More confidence. The larger the confidence, 1 — «, the wider the Cl (we need
to enlarge it to be surer that it contains the true parameter).

What if the assumptions are violated?

Asanwiea apherioal sow ofuniirraensty. In many situations, these assumptions
are not strictly true. Then, the Cl may
still be a reasonable approximation of the
range of the underlying parameter
(depending on the severity of the

' violation). But the confidence will, for
sure, not be the one we think (95%).




Confidence interval (Arbitrary)

Estimated Population
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Non-parametric tests

In many ocasions we do not know the distribution of the underlying data and
non-parametric tests are used

Some Commonly Used Statistical Tests

Corresponding

nonparametric test Purpose of test

Normal theory based test

Mann-Whitney U test: Compares two independent

t test ' :
test for independent samples Wilcoxon rank-sum test samples

Wilcoxon matched pairs

; Examines a set of differences
signed-rank test

Paired £ test

Spearman rank correlation | Assesses the linear association

Pearson correlation coefficient . )
coefficient between two variables.

Omne way analysis of variance | Kruskal-Wallis analysis of

(F test) variance by ranks Compares three or more groups

Friedman Two way analysis of | Compares groups classified by

Two way analysis of variance ) ;
y Y variance two different factors




Non-parametric tests

The number of samples needed for a non-parametric test is larger than for a
parametric one (because it throws away information, e.g., the sign test only uses
the sign). The sample size must be increased by a factor that is inversely
proportional to the “Asymptotic Relative Efficiency”:

Nnon—parametr.ic — % (7)
Mann-Whitney U test 3/m = 0.955
Wilcoxon signed-rank test 3/m = 0.955
Spearman correlation test 0.91
Kruskal-Wallis test 0.864
Friedman ANOVA 0.955J/(J+1)
If not in this table, use a conservative value 0.85

where J is the number of repeated measures.




One sample: Test on proportion (from a large population)

Example 17

The probability of suffering from De Quervain
tenosynovitis (Blackberry finger) in the general
population is pp = 0.01. |t is suspected that amongst
heavy smartphone users, this probability is larger. How
many subjects (heavy smartphone users) do we need to
study to determine if this is true? We want a power of
0.9 when p is at least 0.03. a = 0.05.

Solution:

Our test is of the form

Ho : p < po
Ha : p > po




One sample: Test on proportion (from a large population)

We need to find N and X such that

> (M-t =amma (V) ia-pro s | o)

x=X+1




Example (continued)

In our example pg = 0.01 and p; = 0.03. The solution is

N=390,X=7

That is, we will evaluate 390 individuals. If the number
of individuals with De Quervain syndrome is 7 or less, we
cannot reject the null hypothesis (Hp : p < po).

o

2495 260 2606

251 15 1} i 10 15 ] 25
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Sample size calculation

B GrPower 3197 - B
File Edit View Tests Calculator Help
Central and noncentral distributions Protocol of power analyses
critical t = 1.67065
Lot
4 ’ N
4 \
013 / g
J 0 AN
/ N\
0.2 " \
1 / N
AS
0.1 4 y o .
] 2 B ~
- Tt
0 = . . o . v - r — =
-3 =2 -1 0 1 2 3 4 5 5]
Test family Statistical test
|t tests w ‘ |Means: Difference between two independent means (two groups) w ‘
Type of power analysis ® n1 1= n2
A priori: Compute required sample size - given o, power, and effect size e ‘ Mean group 1 0
Input Parameters output Parameters LR !
Tail(s) | One o Noncentrality parameter & 2.9705195 SD o within each group 0.5
Effectsized |  0.7545127 Critical t 1.6706489 ®
nl =n2
o err prob 0.05 Df 60
Mean group 1
Power (1-§ err prob) 0.90 Sample size group 1 il
. ; : Mean group 2
Allocation ratio N2/N1 1 Sample size group 2 3
Total sample size 62 SD o group 1
Actual power 0.9018052 5D o group 2
Effect sized | 07545127
| Calculate and transfer to main window |
| X-Y plot for a range of values | | Calculate




Sample size calculation
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Sample size calculation

PASS Sample Size Software NCSS.com

Chapter 422

Two-Sample T-Tests
Assuming Equal
Variance (Enter Means)

PASS Sample Size Software NCSS.com
Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Test Assumptions

When running a two-sample equal-variance t-test, the basic assumptions are that the distributions of the two
populations are normal. and that the variances of the two distributions are the same. If those assumptions are not
likely to be met. another testing procedure could be used. and the corresponding procedure 1n PASS should be
used for sample size or power calculations.

Introduction

This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the
variances of the two groups (populations) are assumed to be equal. This 1s the traditional two-sample t-test
(Fisher. 1925). There are two PASS procedures for two-sample t-tests assuming equal variance. In this procedure,
the assumed difference between means is specified by entering the means for the two groups and letting the
software calculate the difference. If you wish to enter the difference directly, vou can use the Two-Sample T-
Tests Assuming Equal Variance (Enter Difference) procedure.

The design comresponding to this test procedure is sometimes referred to as a parallel-groups design. This design
15 used 1 situations such as the comparison of the mcome level of two regions, the mtrogen content of two lakes,
or the effectiveness of two drugs.

There are several statistical tests available for the comparison of the center of two populations. This procedure is
specific to the two-sample t-test assuming equal vaniance. You can examine the sections below to identify
whether the assumptions and test statistic you intend to use 1n your study match those of this procedure, or if one
of the other PASS procedures may be more suited to your situation.

Other PASS Procedures for Comparing Two Means or Medians

Procedures in PASS are primarily built upon the testing methods, test statistic, and test assumptions that will be
used when the analysis of the data 1s performed. You should check to identify that the test procedure described
below mn the Test Procedure section matches your intended procedure. If your assumptions or testing method are
different. you may wish to use one of the other two-sample procedures available in PASS. These procedures are

Test Procedure
If we assume that g, and g, represent the means of the two populations of interest. the null hypothesis for
comparing the two means is H; | g, = i, . The alternative hypothesis can be any one of

H o=

Hy= > i

Hy <

depending upon the desire of the researcher or the protocol instructions. A suitable Type I error probability (&) is
chosen for the test, the data 1s collected, and a f-statistic 1s generated using the formula:

¥, - X,

t=— _
;{nl—l)rf+(nz—1)s§[i+iJ

\I m+n, =2 n,oon,

Thus t-statistic follows a ¢ distribution with 7, + 1, — 2 degrees of freedom. The null hypothesis 1s rejected 1n
favor of the alternative 1f.

for Hy gy #= i, .
<t or t>0 0.
for H, - gy > g1,
t=t ..
or. for H - p < .

t<t




Sample size calculation

Power Calculation

This section describes the procedure for computing the power from 1, and »,. & the assumed g and 4, . and
the assumed common standard deviation. 0; = @, = 0 . Two good references for these methods are Juhous
(2010) and Chow, Shao. and Wang (2008).

The figure below gives a visual representation for the calculation of power for a one-sided test.

Non-central t

distribution Example 1 — Finding the Sample Size

Researchers wish to compare two types of local anesthesia to determine whether there is a difference in time to
loss of pain. Subjects will be randomized to treatment. the treatment will be administered, and the time to loss of
0 . A pain measured. The anticipated time to loss of pain for one of the types of anesthesia is 9 minutes. The researchers
would like to generate a sample size for the study with 90% power to reject the null hypothesis of equal loss-of-
If we call the assumed difference between the means. & = 14 — 41, the steps for calculatmg the ft 1, 24)) (imje if the true difference is at least 2 minutes. How many participants are needed to achieve 90% power at

follows: ..
oroms significance levels of 0.01 and 0.05?
1. Find f,_, based on the central-f distribution with degrees of freedom,

Central t
distribution

Past experiments of this type have had standard deviations in the range of 1 to 5 minutes. It is anticipated that the

df =m+ny=2. standard deviation of the two groups will be equal.
2. Calculate th trality parameter: . . . . . ‘
e the non-eentrality par 5 It is unknown which treatment has lower time to loss of pain. so a two-sided test will be used.
A=
a IIi + L
w Hy Rz

3. Calculate the power as the probability that the test statistic 7 is greater than 7,__ under the non-central-
distnbution with non-centrality parameter A
(t>1_ ldf =n +n, =2,1).

Power =Pry, ..

The algonithms for calculating power for the opposite direction and the two-sided hypotheses are analogous to this
method.

When solving for something other than power, PASS uses this same power calculation formulation, but performs
a search to deternune that parameter.




Linear models



Completely Randomized Design

Example 0

We are testing a new drug (X 325mg) for blood pressure
versus a placebo on 1000 people. We divide the group of
people in two equal groups of 500 people. Each person
will be randomly assigned to the treatment or the
placebo.

Y11 Y21
Y12 Y22

Y1,500 | Y2,500

@ 1., Y».: Means of each one of the groups

@ y..: Overall mean




Completely Randomized Design

The data (blood pressure) is supposed to be generated as

Yik = 1t T Lj + €jk

@ /u is the average blood pressure of the whole population.

@ t; and t, are the effects of the drug (t;) and the placebo (t;). It must be
Z tj = 0
J

® yj is the measurement observed for the k-th individual who has been given
treatment j.

® ¢ji is the part of the observed measurement that cannot be explained by the
average and the treatment.




Completely Randomized Design

T
°q
e Ye. = U+ ¢
| e® - b4 tr=0
- y =l C T
| o0 yr. = U+itp
:o
| Control Treatment
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Completely Randomized Design

Normally this is presented in a table

Source Sum of Squares Degrees of freedom | Mean squares
(SS) (df) (MS=SS/df)
Treatments | SS7 = ;(yj. —y.)? t—1 MS+ = SdSﬂT
Residuals | SS. = i(yjk — )3 >(nj—1)=n—t MS, = f},—‘:i:
Total SS = jz:(yjk —y.)? J n—1
J

If the residuals are normally distributed, then the Linear Model checks whether the
treatments have a significant contribution explaining the variance through a

F-Snedecor statistic with t —1 and ) (n; — 1) degrees of freedom.
J

~ MSy
- MS.

F




Completely Randomized Design

Let us assume that the table in our case is
Source S5 df | MS=SS/df
Treatments 256.88 1 256.88
Residuals 13600.28 | 998 13.61
Total 13857.16 | 999
Note
13857.16 = 256.88 + 13600.28
999 = 1+ 998
In this case
256.88
= 13.61 = 18 87 = 3.85 = Fo'g5,1’ggg




Randomized Complete Block Design

All samples

“n

C il C T C T £ T ‘ -~ Randomization

- Blocks




Randomized Complete Block Design

The data (blood pressure) is supposed to be generated as

Yijk = i+ bi + tj + €5k

@ ;i is the average blood pressure of the whole population.

@ by and b, are the differences in blood pressure between men (b;) and women
(by), the blocks. It must be
> o-0

@ t; and t, are the effects of the drug (t;) and the placebo (t;). It must be
2.5=0
J

® ik is the measurement observed for the k-th individual of the i-th block who
has been given treatment j.

® ¢k is the part of the observed measurement that cannot be explained by the
average, block and treatment.




Randomized Complete Block Design

The table of the linear model becomes

Source SS df MS=SS/df
Blocks | SSp b—1 MSp = 32
Treatments | SS+ t—1 MS+ = %
Residuals | SS, | n—b—t+1| MS = 3
Total SS n—1

If the residuals are Gaussian, we may test whether the contribution of the blocks
or treatments are significant through the same F-Snedecor as before (pay
attention to use the corresponding degrees of freedom).




Randomized Complete Block Design

Example 2

Let us assume that in our case it becomes
Source SS df | MS=SS/df
Blocks 1500.04 1 1500.04
Treatments 256.88 1 256.88
Residuals 12100.24 | 997 12.13
. @ & Total 13857.16 | 999
. M& )
B ™ u“ Note
3 I 13857.16 = 1500.04 + 256.88 + 12100.24
999 = 1+1+4997
In this case
256.88
F = 1213 =21.17> 3.85 = Fo.g5,1’gg7




Factorial Design

We are measuring the effect of a treatment on a number of animals as a function
of age and sex. These are called factors, and their different values are called
levels. For each combination we have N = 6 animals. The numbers below show
the average of each one of the groups.

Y = U+ tyroup + €

All: 5 U

Group 1: young, male 7=5+2

Group 2: young, female 5=5+0 ;
Group 3:old, male 5=5+0 | “group
Group 4:0ld, female 3=5-2




Factorial Design

However, we could have analyzed the data differently gaining more insight into
the influence of each factor. This kind of analysis is called main effects.

Y = p+ tgroup + €

All: 5 u

Group 1: young, male 7=5+2 ) young
Group 2: young, female 5=5+4+0 [,

Group 3:old, male 5=5+0 | “group

Group 4: old, female 3=5-2 old

Y =+ toge + toex + €

male female
7=5+1+1 5=5+1-1
5=5-1+1 3=5—-1-1

tmate = 1 ffemaiez_l




Factorial Design

We may arrange the response graphically. Note the fact that the two lines are

parallel.

male female
young 7=5+1+1 5=5+1-1
old 5=5-1+1 [ 3=5-1-1
6=5+1 4=5-1

7 7

@ _ young & male

5 . 5

o o . *°
old 3 female — o3

male female young old




Factorial Design

In the following example, only one of the factors has an effect. The lines are still
parallel or coincident.

Y =p+tage +lsex +€
male female
young 6
6o —— @6 ®. male, female
1o - et "04'
old 4=5-140 | 4=5-1+0 [ 4=5-1
5=5+40 5=5+0 ft=>5 male fernale young  old




Factorial Design

Main effects alone are not able to explain the data. Lines are not parallel anymore.

male female
6 @ YOUung @6 2 male Py
young | 6#F5+0+0 [ 4#54+04+0 | 6=5+0
o -4
4@ 514 04 female Ld
old 4+540+0 [ 6#5+0+0 [ 4=5+0
5=5+0 5=540 p=>5 male female young  old




Factorial Design

We need to add interactions to be able to explain the data. Interaction effects
exist when differences on one factor depend on the level you are on another factor.
The interactions are between factors and not between levels.

Y=p+ tage T lsex T lagesex + €

male female
6 @ Young ®6 ﬁ male Py
young |6=5+0+0+1|4=5+0+0-1| 6=5+0 S~
@ old ® female L
old |a=5+0+0-1|6=5+0+0+1|*+=5+0
5=5+0 5=5+0 p=5 male female young  old




Factorial Design

The analysis table may be represented as

Source SS df MS=SS/df
P main effects SS5p p—1 MSp = Sa,—ii’
Q@ main effects 550 qg—1 MSq = %
PQ interactions | SSpg | (p—1)(g —1) | MSpg = ﬁfg
Residuals SS. n— pq MS, = fhsc:
Total SS n—1




Factorial Design

Example 4

Assume that we have resources for 24 observations and we assume that there is
no interaction between factors

Yijki = ¢+ Sj + m; + hi + €

Three different experiment designs are considered:

Q One variable changes at a time
o (Frogs,Dry,NoHormone) vs (Toad,Dry,NoHormone): 4 animals each
o (Frogs,Dry,NoHormone) vs (Frogs, Wet,NoHormone): 4 animals each
o (Frogs,Dry,NoHormone) vs (Frogs,Dry,Hormone): 4 animals each

Q@ Do not repeat (Frogs,Dry,NoHormone) in each comparison:

o (Frogs,Dry,NoHormone): 6 animals
o (Toads,Dry,NoHormone): 6 animals
o (Frogs,Wet,NoHormone): 6 animals
o (Frogs,Dry,Hormone): 6 animals

© Factorial design (all possible combinations) with 3 animals each.




Factorial Design

ellE

3

We are testing water uptake by amphibia. Frogs and toads
(species factor S) are kept in most or dry conditions before the
experiment (moisture factor M) and half of the animals are
injected with a mammalian water balance hormone

(hormone factor H). A full factorial experiment is performed with
2 animals per treatment combination (cell).

Vil = pt+ i + mj + hi + (sm)ij + (sh)ix + (mh)jk + €iju

Source SS df MS Source SS df MS
Species 515.06 I Species 515.06 1

Moisture 471.33 1 Moisture 47133 1

Hormone 218.01 ' Hormone 218.01 1

SM 39.50 L 165.12 1

SH 165.12 | — ——5 Lack of fit 140.71 3 4690
MH 57.73 I — Error 27605 8 2 =34.5]
SMH 43.43 1 -

Error 276.05 8 =345  Towl 1786.33 13

Total 1786.33 15




Factorial designs and single replicates

High-order interactions can be assimilated to the error, and single replicate
factorial designs may be conceived.

Example 5

We are interested in the survival of Salmonella typhimurium
under 3 experimental factors: 3 levels of sorbic acid (=Factor S),
6 levels of water activity (=Factor A), and 3 levels of pH

(=Factor P). The data will be the log (density/ml) measured
after 7 days after treatment started.

We have 3 x 6 x 3 = 54 treatments, and we will use a single
replicate for each treatment.




Factorial designs and single replicates

Example 5(continued)

The data analysis table would be
55 df MS =

Water activity (A) 81.57 5=(6-1) 16.31 473> Fo.95,5,20
Sorbic acid (5) 2.76 2:(3—1) 1.38 40> Fo.95,5,20
pH (P) 0.01 2:(3—1) 0.01 0.2<F0.g5,2,20
AS 1.32 10=(6-1)(3-1) 0.13  3.8>Fo.95,10,20
AP 0.45 10=(6-1)(3-1) 0.04  1.3<Fo.95,10,20
SP 0.23 4:(3—1)(3—1) 0.06 1.7<F0'g5,4,20
ASP =Error 0.69 20=(6-1)(3-1)(3-1) 0.03

Total 87.03 53

The problem with single replicate, factorial designs is that 1) it is difficult to
use blocking, 2) due to the lack of replication, there is no possibility to
construct an unbiased estimate of the noise.




Regression Design

>

Female

Y=pu+1tp+tsey +tpsex df =19

Dy Dy D5 Dy By D D: Dy Dy By

Doses can be analyzed as a 2-way ANOVA, although we will need more samples.




Regression Design

>

Female

Y = Ypaxtanh(u + bgex + (B + ﬁsexd)) df =35

D, Dy D Dy Dy D= Dz B Dy B

Doses can be analyzed as a regression, with fewer samples and located in different
positions.




Some specificities



Confidence intervals for the difference of two independent means
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Confidence intervals for the difference of two dependent means

T Pretest Posttest Delta
°o® 74 98 24
—ag Vo~ U+t 98 100 2
’ e A 85 98 13
l 7 Yy =U 68 90 22
. ~ 79 90 11
' —z':—yT-“’”'l'tT 52 91 39
b 80 84 4
| i 78 85 7
| Control Treatment e =L o

Mean 77.2 92.1 14.9

StdDev 11.8 5.4 11.0

StdDev Pooled 432

N ~ 2 StdDev Non-Pooled 9.15

A= lz A Ai N(MA' oA ) StdDev Dependent 11.0

N ! — df Pooled 16 t0.975  2.12

i=1 Cl, = [A + tl_g Ne1 SA] df Non-Pooled 16 2.12

2’ df Dependent 8 2.31

Cl 5.7 24.0

-4.5 34.3

-10.5 40.3




Confidence intervals for the difference of two independent
proportions

T o T restment

Exact solutions are complicated

Response A B
Approximate solution

Non-response C D

4 ) B Cl, = IA + Zl_% SA]

bc = Pr = 7~
N A A A A
e ' 2 P =pc)  Pr(1=pr)
A=pc-pr 4 Nc Ny




Confidence intervals for the difference of two dependent
proportions

Same blood sample treated with drug A or drug B
There are N blood samples.

Exact solutions are complicated
T o | Non-espomses s e
Approximate solution (Wald)

Response A A B
Non-response A C D
Cl, = [Z +2z as l
. A+B . A+C * 1-5 "4
Pa=—f—  Pe=—7—
N N , (A+D)(B+C)+4BC
_~ S =
—A A 3
A=pa-pg N
Response B Non-Response B
Response A 10 3 0.77
Non-Response A 5 8 0.38
0.67 0.27
Delta (Independent) 0.39 Cl 0.04 0.75
Delta (Dependent) 0.08 0.05 0.10
StdDev Delta (Independent) 0.18
StdDev Delta (Dependent) 0.01




Risk and related measures

Control Treatment
Event A B N =A+B
Non-event C D Nyg=C+D

Ne=A+C | Ny=B+D

p(EIC) _ p(E|C) A

Rate in control grou A A Odds in control grou O(E|C) = = = —
SR p(EI0) = = = —— group  O(EIC) = T 516y = pNEIC) ~ C
N, A+C
Rate in treated grou B B Odds in treated group  O(E|T) = pEIT) _ pEID _ E
BOUP p(EIT) = — = 1-p(EIT)  p(NE|T) D
N B+D
1
Absolute risk reduction ARR = p(E|C) — p(E|T) Number needed to Treat NTT = TRR
Relati isk reducti RRR ARR
elative risk reduction =
p(E|C)
. i p(E|C) . _O(ElC)
Risk ratio RR = Odds ratio OR =
p(E|T) 0(E|T)




Risk and related measures

2000 men with high cholesterol Control Treatment
W|thF)ut coronary heart disease were Event 79 55 134
studied over 5 years. Half of them
were given statins for the 5 years. Non-event 921 945 1866
We counted number of deaths from 1000 1000 2000
coronary disease within this period
Rate i trol 79 Odds i trol 0(E|C) = 7% = 0.086
ate in control group D(E|C) = _ 790 s in control group =921 %
1000
. . _55%
Rate in treated group D(EIT) = 55 o Odds in treated group  O(E|T) = 5250, —0-058
1000
1
Absolute risk reduction ARR = 7.9 — 5.5 = 2.49%, Number needed to Treat NTT = YT =417
. 0
Relative risk reducti RRR—2'4%—304(V
elative risk reduction = 790, S0A4%
79 _ 0.086
Risk ratio RR = E =14 Odds ratio OR = m =1.5




Risk and related measures

2000 men with high cholesterol Control Treatment
W|thF)ut coronary heart disease were Event 79 55 134
studied over 5 years. Half of them
were given statins for the 5 years. Non-event 921 945 1866
We counted number of deaths from 1000 1000 2000
coronary disease within this period

Absolute risk reduction ARR — 7.9 — 5.5 — 2.4% You need to treat 100 men with high cholesterol for 5 years with statins to

prevent 2.4 of them from dying from coronary disease.

— 417 You need to treat 41.7 men with high cholesterol for 5 years with statins to
2.4% - : prevent 1 of them from dying from coronary disease. This is the technically
preferred way.

Number needed to Treat NTT =

2.4%

) ) , RRR —
Relative risk reduction 79%

= 30.4% This is the preferred way to present by media.




Risk and related measures (rare events)

Study of thromboembolic events in Control Treatment
reproductlye—age women on oral Event 1 - 3
contraceptives.
Non-event 99999 99993 199992
100000 100000 200000

Absolute risk reduction ARR = 0.007 — 0.001 = 0.006% You need to stop oral c.ontraceptives in 100 women to prevent 0.006 of them
from a thromboembolic event.

Number needed to Treat — — You need to stop oral contraceptives on 16667 women to prevent 1 of
NTT 0.006% 16667 them from a thromboembolic event. This is the technically preferred way.
o , 0.006%
Relative risk reduction RRR = 0.007% = 86.4% This is the preferred way to present by media.
. 0




Survival data (Life table analysis)

Survival data measures the time to a
well-defined event such as

@ ... death
ol o B | @ ... occlusion of a vascular graft
89 Start G— Analysis . .
g I ocfsdy | o—— point @ ... first metastasis
g 5
= 21 * . . .
@y o @ ... rejection of a transplanted kidney
34 i
o i ; Data is censored
0 20 40 B0 80 100 120 i
uime @ ... when we stop observing the
TR subject at the end of the study.
* Event

@ ... if they cease to collaborate.

@ ... if they die from a different
reason from that of the experiment.




Kaplan-Meier analysis

Became
Time Unavailable
Period | At Risk | (Censored) | Died | Survived | Kaplan-Meier Survival Probability Estimate
Year 1| 100 3 5 a5 (95/100)=0.95
Year 2 92 3 10 82 (95/100)x(82/92)=0.8467
Year 3 79 3 15 64 (95/100)x(82/92)x(64/79)=0.70
Year 4 61 3 20 a1 (95/100)x(82/92)x(64/79)x(41/61)=0.4611
Year 5 38 3 25 13 (95/100)x(82/92)x(64/79)x(41/61)x(13/38)=0.1577

Kaplan-Meier Survival Curve

%_ﬁ%—__ In this plot, red and blue points indicate

g “EE LT :.::4._. censored data.
.g e
| .
£ ol e | At each point in time we may create a
g L L confidence interval as shown in the

il | =T figure.

10 16 |
™ 5 10 15 20 25 3

Months




Survival summary

Survival distribution function

09 1
08 +
07 4
06 +

2-year 05 1
04 1
03+
02 +
01+

0 5 Median 10 15 20 25 30 35 40
survival

. Time
time

Drug 6-MP Control

We may summarize survival data through:
e Median survival time (50% of the samples still survive)

@ Two-vyear survival (survival proportion at a given time)




@ Random sample. So that the sample is representative from the population.
@ Independent subjects. If the study pools from two different hospitals, each
hospital with different average survival, then the proportion of individuals

from each hospital will distort the survival curve.

If the studied disease has a genetic component, including family members in
one treatment group distorts the survival curve.

@ Entry criteria are consistent. If the study lasts for years, the enrollment
criteria cannot change over time. For instance, cancer patients are enrolled at
their first metastasis, but over the years new technology allows for earlier
diagnosis.

@ End point is consistent. In a cancer study, do we count deaths from car
accidents as deaths? Counting or not counting makes sense, but the decision
has to be taken before the study.

@ Average survival does not change over time. If the nature of the disease
changes over time (e.g., a rapidly evolving infectious pathogen), then results
are difficult to interpret. If the treatment (including supportive care) changes
over time, ...




@ Starting time clearly defined. For instance, the first hospital admission. Do
not rely on the patient remembering when he first had symptoms.

Do we remove patients that they before they could start treatment? This
leads to bias, especially if one treatment can start immediately (medication),
but the other requires preparation or scheduling (surgery). Most study follow
a policy of intention to treat.

@ Censoring is unrelated to survival. If some patients dropout the study
because they feel too sick or they thought the treatment was not useful, then
the censored data is related to the disease progression or response to therapy
and the analysis is invalid. In these cases it is recommended to analyze the
data censoring the dropouts and excluding them. If the results of both
analyses coincide, then the result is clear. If they do not coincide, then the
study results are ambiguous.




Survival, failure, and hazard curves
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One sample: Weibull survival

We may flexibilize the constant failure rate to a more general hazard function

The Weibull Hazard Function

B—1
h(t) = g(ﬁ) 1

B t 5 ape=0.
f(T) = g(ﬁ) e (i) % et

FT) = 1-e ()

s(r) = e () T
_d-__"—_—-————““'__.‘Shape=1 """""

Time ——— 3

3 is a shape parameter, ;1 a scale parameter and the mean survival time (MST) is

MST = ul (1 + ;)




One sample: Weibull survival
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Assumptions of Survival Analysis

When comparing two survival curves, additionally

@ Proportional hazards. Hazard is the slope of the survival curve. The hazard
ratio compares the hazard of both treatments, most tests assume that this
ratio is constant over time and differences are simply due to random
sampling. This assumption is violated when hazard changes over time. For
instance, comparing surgery (high initial risk, lower later risk) with medical
therapy (less initial risk, higher later risk).

I Proportional

Early Late

=

_/

Non-Proportional

Early

Late

Here, the effect is the same in
both time periods

Here, the effect is negative in
the early period and positive

in the late period




Survival Analysis

If the proportional hazard

08 Hazard Ratio for death in treatment group, assumption is accepted’ you may
0.38 (95% Cl, 0.28 - 0.53); p<0.0001 use a Hazar—d Ratio ana |y5| g
o gt il sk b (related to Cox model). In this
that comespondin rou .
75 - - e example the death hazard in one

each small vertical tick represents a censored observation (ie. of t h e gro u pS iS 0 b 38 |0We r t h a n

patientwho did not experience the eventof interest by the
last follow-up, this can be due tolost to follow-up, study

period ends without having an event or died froman in the Other group. The |Og_rank

unrelated cause)

Patients Surviving (%)

50 ----- method or Mantel-Cox method)
pad calculates a p-value under this
33&? assumption
25 -
If the hazard is constant over
0oL, -2;46 s | tim(.e, then W(? may allso usg the
0 2000 4000 6000 Ratio of median survival times
S . Jimeindays) — (RMST, related to an
E::;:;oms" %:fimmmi%mbmmgu'a:m mm's'mm? exponential decay). In this
| Treatment 105 | . 5 2_| example, RMST = 7% = 0.41.




Regression
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Regression

= PeCO2 G—=1— (8%
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The 85% confidence intervals for these estimates are

a €[0.76,0.96], B €[-2.06,—1.58].



Regression
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Regression
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Regression models

We climb to a couple of towers (one with a height of 30 meters
and another one with 60 meters), let a ball fall 10 times and
measure the time 1t takes to reach the floor. We know there 1s an
error 1 our tume measurement that 1s assumed to be normal.
with zero mean. and a standard deviation of 0.2s.

Which of the following regression models are valid?
h(t)=a,+at+at’ +&

h(t)=a, + a%\/; trat+at’+e
h(t)=a, + a%\/; +at+a,t’ +e
t(h)=a, + a;lh +a,h’ +¢
t(hy=a, + a%\/z +ah+ah’+e
t(hy=a, + ah%\/% +ah+a,h’+¢




Regression models

We climb to a few towers (with heights of 5, 10, 20, 30, 60 and
100 meters). let a ball fall 15 times and measure the time it takes
to reach the floor. We know there 1s an error in our time
measurement that 1s assumed to be normal, with zero mean, and
a standard deviation of 0.2s.

t(h)=a,+ a,?\/z +ah+a,h’ +&
t(h) =—0.33+0.623h +0.02h+0h* +& R’ =0.9773

t(h)=a, +a%\/z+alh+£

. : t(h)=-0.15+0.51Vh +0h+ & R*=0.9772
Yl : | r(h)=a0+al\/z+3
E z ; t(h)=0+045Vh + & R*=0.9766
L g@ 1 t(h) = G’-;\/E +g& +—— This is the true model!!!
%0 20 40 o0 80 100 t(h)= 0.-45\/5 +& R*=0.9766
Height




Regression models

We climb to a few towers (with heights of 5. 10, 20, 30, 60 and
100 meters), let a ball fall 15 times and measure the time it takes
to reach the floor. We know there 1s an error 1n our time
measurement that 1s assumed to be normal. with zero mean, and
a standard deviation of 0.2s.

t(h)=a, +‘:7l\/Z+alh+a:h2 +&
t(h)=—-0.33+0.62h +0.02h+0h* +&¢ R* =0.9773

| ey t(h) =[0:90-0:23] + [0.30,0.93W7
5 5 H—0:06:0:02]h +[-0.00-0:00]4" + &

Time

0 20 40 60 80 100
Height
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Regression

Journal of Controlled Release
Volume 113, Issue 3, 20 July 2006, Pages 216-225

ELSEVIER

A model for the drug release from a polymer
matrix tablet—effects of swelling and
dissolution

Per Borgquist ®, Anna Kérner °, Lennart Piculell °, Anette Larsson ©, Anders Axelsson ° L =

3.1. Polymer dissolution

The matrix dissolution of the drug-loaded polymer tablet is modelled in the same
manner as in the previously presented pure polymer case [27]. The dissolution of a
boundary volume (a volume in contact with the bulk phase) can be expressed by using a
dissolution coefficient, k4P:

dmj; ,_kpABppyp (3)

where A,-JB is the area available for dissolution (axial and/or radial) and ygP is the polymer
volume fraction at the boundary.

3.2. Water mass balance

The unsteady-state water mass balance over a finite volume (i,j), taking into account
diffusion and convection fluxes and polymer dissolution can be written [27]:

V;; duf es,0ut_ u dfg, esin_ w N 1 déy, ka; 4
o At g Yijn Ek 17dt Aﬂ;r Yij 21 T “Jyl—FIJ Ek—l “
8 i 1 dX}-‘.‘l' _ B es,out prDw es,in cs pfDw
A yzj k= - ytJA é"ﬁ + At_j' Nz,]+].~¥_]' o A N 3,j—+i—1 + A Arﬂ»l*ﬂj
cs pyDw
- A N’:Aa 1,47

where the contribution due to dissolution, @, is:

b;; =0, (5)




Regression

Rate laws: Michaelis-Menten
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Logistic regression

We try to predict a binary variable (0 or 1) from other binary or continuous
variables.

Obese = f(Residence, Age, Education, Smoking, Married, Lowlncome)

Residence: binary (O=rural, 1=urban)

Age: continuous (years)

Smoking: binary (0=No, 1=Yes)
Married: binary (0=No, 1=Yes)
@ Lowlncome: binary (0=No, 1=Yes)

°
°
e Education: continuous (years)
°
°

We will rather predict the probability of obese taking the value 1.




Logistic regression

Remind the relationship between probability and odds (ratio of the probability of
something happening vs. not happening)

OR = —— = logit(p)

We will transform the problem into
ORopese = ORy ORResidence ORage OREducation ORsmoking ORMarried ORLowincome
Taking logarithms
logit(pobese) = Bo + BResidence Residence + [z Age + BequcationEducation +- ...

Pobese IS the probability of being obese.




Logistic regression

We may interpret the s in the standard way (if the Cl includes 0, then that term
is not significant) or in terms of OR. Example:

@ Residence: [residence = 0.3218 = exp(0.3218) = 2.13, that is a person living
in a urban environment has 2.13 times the odds of being obese than someone
living in a rural environment.

o Age: Bage = 0.0086 = exp(0.0086) = 1.02, for every year, there is an odds
ratio increase by a factor 1.02.




Proportional hazards (Cox) regression
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Proportional hazards (Cox) regression

Remember that the hazard is related to the slope of the survival curve
(A(t) = —55((:))). The proportional hazards model proposes

A = exp(fo + Bre HE + BpeDE)

Taking logarithms
log(A\) = Bo + BueHE + Spe DE




Common mistakes

e Fitting smoothed /moving average data.

o Smoothing the data artificially increases the R? and reduces the p-value.
e Smoothing can artificially create trends where there is no relationship.
e Smoothing violates the assumption of data independence.
160 T
165

150

145 +

140 1 1 1 1 1 1 t t 1




Common mistakes

@ Extrapolating beyond the data. Models are valid only within the range of
observed X values. Extrapolation beyond this range is at the user's own risk.

Extrapolation

26.25 T
2500 +

2375 T

Men's Age al Firs! Marriage (yr)

22.50 ~

t t } .
1900 1925 1650 1075




Common mistakes

@ Overinterpreting a small p-value. A small p-value indicates that the model
fits the data better than a constant. However, this is not enough to be a
good model. A linear model (y = a + bx) of the data in the figure below has
a p-value of 0.000105 (very significant), but R = 0.003005, that is, the

model does not explain even 0.5% of the observed variance.




Regression does not imply causation

Assume we perform an experiment and discover that there is a relationship
between lead concentration in blood and kidney function (measured by creatinine

clearance).
CrCl = 101[mL/min] — 9.51 log Cpp[11g/L]

Can we assess that lead exposure causes kidney malfunctioning?

No, it could be the opposite. Kidney malfunctioning causes lead raise in blood.

16

DRY, HOT AND SUNNY
SUMMER WEATHER

200 250 300 350 400 450 500 550

Fresh Lemons Imported to USA from Mexico
SUNBURN (Metric Tons)

ICECREAM o 158
= E- 1997
8 156
e
& 154 _
z 1998 ® @ 1999
(=]
o E 15.2
correlatio g Sources:
15 | US. NHTSA, DOT HS 810 780
g U.S. Department of Agriculture 200(\
F 148 :




Conclusions



Conclusions

If you think that education is expensive, try ignorance.
* If you think that using Statistics is difficult, try not to use it.
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Conclusions

Go gle statistics X y @ Q
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