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Why this course?
You need to study 40 animals (20 female, 20 male; 20 treated, 20 untreated).
Only 4 animals/day can be processed, so you need 10 days to perform the
experiment. What is the optimal way of distributing the animals?
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Why this course?

You are studying the effect of a new drug. How will you perform the experiment
and how will you analyze the data?
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Why this course?
You are looking for the optimal way of irrigating and fertilizing land to grow
sunflowers. You have 5 different ways of irrigation (CAE) and 5 different levels of
fertilizer.
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Why this course?

You cannot fix by analysis, what you have bungled by design.
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Summary

Mead’s Resource equation:

T + B + E = N − 1

where
N: Number of experimental units
T : Number of treatments
N: Number of blocks
E : Number of degrees of freedom for the residual error. It must be between
10 and 20. Below 10, the experiment lacks of statistical power. Above 20, it
may be a waste of resources.
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Completely Randomized Design

Example 0
We are testing a new drug (X 325mg) for blood pressure
versus a placebo on 1000 people. We divide the group of
people in two equal groups of 500 people. Each person
will be randomly assigned to the treatment or the
placebo.

y11 y21
y12 y22
... ...

y1,500 y2,500

y1·, y2·: Means of each one of the groups
y··: Overall mean
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Completely Randomized Design

The data (blood pressure) is supposed to be generated as

yjk = µ+ tj + εjk

µ is the average blood pressure of the whole population.
t1 and t2 are the effects of the drug (t1) and the placebo (t2). It must be∑

j
tj = 0

yjk is the measurement observed for the k-th individual who has been given
treatment j .
εjk is the part of the observed measurement that cannot be explained by the
average and the treatment.
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Completely Randomized Design

yjk = µ+ tj + εjk

y··: average of all observations

y·· = 1
n
∑

jk
yjk ≈ µ

yj·: average of observations in treatment j

yj· = 1
nj

∑
k

yjk ≈ µ+ tj
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Completely Randomized Design

The total variation of the data is

SS =
∑
jk

(yjk − y··)2 =
∑
jk

(
y2

jk + y2
·· − 2yjky··

)
=

∑
jk

y2
jk +

∑
jk

y2
·· −

∑
jk

2yjky·· =
∑
jk

y2
jk + ny2

·· − 2y··
∑
jk

yjk

=
∑
jk

y2
jk + ny2

·· − 2ny2
·· =

∑
jk

y2
jk − ny2

··

=
∑
jk

y2
jk − n

(
1
n
∑
jk

yjk

)2

=
∑
jk

y2
jk −

(∑
jk

yjk

)2

n =
∑

jk
y2

jk −
Y 2

··
n
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Completely Randomized Design

The treatment effect is estimated as

t̂j = yj· − y·· ≈ (µ+ tj)− µ = tj

and its associated variance

SST =
∑
jk

t̂2
j =

(∑
j

Y 2
j·

nj

)
− Y 2

··
n

Similarly, for the residuals

ε̂jk = yjk − yj· ≈ (µ+ tj + εjk)− (µ+ tj) = εjk

the sum of squares of the residuals (within the treatments)

SSε =
∑
jk
ε̂2jk =

∑
jk

y2
jk −

∑
j

Y 2
j·

nj
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Completely Randomized Design

The sum of squares of all measurements can be decomposed into a sum of
different components

SS = SST + SSε∑
jk

(yjk − y··)2 =
∑
jk

(yj· − y··)2 +
∑
jk

(yjk − yj·)2

and similarly for the degrees of freedom

n − 1 =
∑

j
(nj − 1) + (t − 1)

Remind in our example, n = 1000 (=total population), t = 2 (two treatments:
drug and placebo), and n1 = n2 = 500 (500 individuals in each treatment).
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Completely Randomized Design

Normally this is presented in a table

Source Sum of Squares Degrees of freedom Mean squares
(SS) (df) (MS=SS/df)

Treatments SST =
∑
jk

(yj· − y··)2 t − 1 MST = SST
dft

Residuals SSε =
∑
jk

(yjk − yj·)2 ∑
j

(nj − 1) = n − t MSε = SSε

dfε

Total SS =
∑
jk

(yjk − y··)2 n − 1

If the residuals are normally distributed, then the Linear Model checks whether the
treatments have a significant contribution explaining the variance through a
F-Snedecor statistic with t − 1 and

∑
j

(nj − 1) degrees of freedom.

F = MST
MSε
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Completely Randomized Design

Example 1
Let us assume that the table in our case is

Source SS df MS=SS/df
Treatments 256.88 1 256.88
Residuals 13600.28 998 13.61
Total 13857.16 999

Note
13857.16 = 256.88 + 13600.28

999 = 1 + 998

In this case

F = 256.88
13.61 = 18.87� 3.85 = F0.95,1,998
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Randomized Complete Block Design
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Randomized Complete Block Design
Blocks are groups of experimental units that are formed to be as homogeneous as
possible with respect to the block characteristics. The term block comes from the
agricultural heritage of experimental design where a large block of land was
selected for the various treatments, that had uniform soil, drainage, sunlight, and
other important physical characteristics. Homogeneous clusters improve the
comparison of treatments by randomly allocating levels of the treatments within
each block. (SAS)
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Randomized Complete Block Design

Within each block, experimental units must be randomly assigned to treatments.
When several variables must be blocked, each combination (e.g. >55, Diabetes,
Center 1) can be treated as a block. Alternatively, each block may be treated
independently (we will see how later).
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Randomized Complete Block Design
The data (blood pressure) is supposed to be generated as

yijk = µ+ bi + tj + εijk

µ is the average blood pressure of the whole population.
b1 and b2 are the differences in blood pressure between men (b1) and women
(b2), the blocks. It must be ∑

i
bi = 0

t1 and t2 are the effects of the drug (t1) and the placebo (t2). It must be∑
j

tj = 0

yijk is the measurement observed for the k-th individual of the i-th block who
has been given treatment j .
εijk is the part of the observed measurement that cannot be explained by the
average, block and treatment.
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Randomized Complete Block Design

We now have the relationships

µ̂ = y···
b̂i = yi·· − y··· ≈ (µ+ bi )− µ = bi
t̂j = y·j· − y··· ≈ (µ+ tj)− µ = tj
ε̂ijk = yijk − yi·· − y·j· + y··· = yijk − (µ̂+ b̂i + t̂j)

≈ (µ+ bi + tj + εijk)− (µ+ bi )− (µ+ tj) + µ = εijk

SS =
∑
ijk

(yijk − y···)2 =
∑
ijk

y2
ijk −

Y 2
···
n

SSB =
∑
ijk

b̂2
i

SST =
∑
ijk

t̂2
j

SSε =
∑
ijk
ε̂2ijk

SS = SSB + SST + SSε
n − 1 = (b − 1) + (t − 1) + (n − b − t + 1)
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Randomized Complete Block Design

The table of the linear model becomes

Source SS df MS=SS/df
Blocks SSB b − 1 MSB = SSB

dfB

Treatments SST t − 1 MST = SST
dfT

Residuals SSε n − b − t + 1 MSε = SSε

dfε

Total SS n − 1

If the residuals are Gaussian, we may test whether the contribution of the blocks
or treatments are significant through the same F-Snedecor as before (pay
attention to use the corresponding degrees of freedom).
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Randomized Complete Block Design

Example 2
Let us assume that in our case it becomes

Source SS df MS=SS/df
Blocks 1500.04 1 1500.04

Treatments 256.88 1 256.88
Residuals 12100.24 997 12.13
Total 13857.16 999

Note

13857.16 = 1500.04 + 256.88 + 12100.24
999 = 1 + 1 + 997

In this case

F = 256.88
12.13 = 21.17� 3.85 = F0.95,1,997
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Randomized Complete Block Design

Example 3
We want to analyze the optimal spacing (in
terms of yield measured in kilos) between plants
(10 treatments: 30× 30, 30× 24, 30× 20,
30× 15, 24× 24, 24× 20, 24× 15, 20× 20,
20× 15, 15× 15). To avoid possible land effects,
we divide the land in 4 blocks, and within each
block we randomly apply the 10 treatments.

We may compute the difference between many
pairs of treatments, creating a problem of Type I
error inflation by multiple testing. Instead, we
may analyze the data converting the treatments
to a numerical variable (area per plant, e.g.
30× 30 = 900) and performing a
regression analysis of yield versus area and
making the hypothesis testing only on a single
parameter, the slope.
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Randomized Complete Block Design

If there are clear variables to block, they should be blocked. Litters are
normally chosen as blocks (and birth weight as covariate).

If there are no obvious blocking variables, but we may create blocks, we may
do as an “insurance” against possible patterns not yet identified.

(e.g. 4 block, 12 treatments)
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Factorial Design

Let’s imagine a design where we have an educational program where we would like
to look at a variety of program variations to see which works best. For instance,
we would like to vary the amount of time the children receive instruction with one
group getting 1 hour of instruction per week and another getting 4 hours per
week. And, we’d like to vary the setting with one group getting the instruction
in-class (probably pulled off into a corner of the classroom) and the other group
being pulled-out of the classroom for instruction in another room.
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Factorial Design

The data is supposed to be generated as

yijk = µ+ pi + qj + εijk

Treatment variables are P(=amount of
time) and Q (=setting). In case that there is no effect of any of

the variables, we should not observe
differences amongst the groups.

5+0+0 5+0+0 q1 = 0
5+0+0 5+0+0 q2 = 0
p1 = 0 p2 = 0 µ = 5
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Factorial Design

Main effects are the consistent differences observed for the levels of each one of
the factors.

Outcome example if the amount of time
has an effect but the setting does not.

6-1+0 6+1+0 q1 = 0
6-1+0 6+1+0 q2 = 0

p1 = −1 p2 = 1 µ = 6

Outcome example if the amount of time
and the setting have an effect.

7-1-1 7+1-1 q1 = −1
7-1+1 7+1+1 q2 = 1

p1 = −1 p2 = 1 µ = 7
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Factorial Design
Interaction effects exist when differences on one factor depend on the level you
are on another factor. The interactions are between factors and not between levels.

yijk = µ+ pi + qj + (pq)ij + εijk

6+0+0+1(= (pq)11) 6+0+0-1(= (pq)12) q1 = 0
6+0+0-1(= (pq)21) 6+0+0+1(= (pq)22) q2 = 0

p1 = 0 p2 = 0 µ = 6
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Factorial Design

5.5-0.5-0.5+0.5(= (pq)11) 5.5+0.5-0.5-0.5(= (pq)12) q1 = −0.5
5.5-0.5+0.5-0.5(= (pq)21) 5.5+0.5+0.5+0.5(= (pq)22) q2 = 0.5

p1 = −0.5 p2 = 0.5 µ = 5.5
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Factorial Design
Given the linear model

yijk = µ+ pi + qj + (pq)ij + εijk

The model constraints are∑
i

pi =
∑

j
qj =

∑
i

(pq)ij =
∑

j
(pq)ij = 0

and we may estimate each one of the components as

µ̂ = y··· SS =
∑
ijk

(yijk − µ̂)2 df = n − 1

p̂i = yi·· − y··· SSP =
∑
ijk

p̂2
i dfP = p − 1

q̂j = y·j· − y··· SSQ =
∑
ijk

q̂2
j dfQ = q − 1

(̂pq)ij = yij· − yi·· − y·j· + y··· SSPQ =
∑
ijk

(̂pq)
2
ij dfPQ = (p − 1)(q − 1)

ε̂ijk = yijk − yij· SSε =
∑
ijk
ε̂2ijk dfε = n − pq
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Factorial Design

The analysis table may be represented as

Source SS df MS=SS/df
P main effects SSP p − 1 MSP = SSP

dfP

Q main effects SSQ q − 1 MSQ = SSQ
dfQ

PQ interactions SSPQ (p − 1)(q − 1) MSPQ = SSPQ
dfPQ

Residuals SSε n − pq MSε = SSε

dfε

Total SS n − 1
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Factorial Design

Example 4
We are testing water uptake by amphibia. Frogs and toads
(species factor S) are kept in most or dry conditions before the
experiment (moisture factor M) and half of the animals are
injected with a mammalian water balance hormone
(hormone factor H). A full factorial experiment is performed with
2 animals per treatment combination (cell).

yijkl = µ+ si + mj + hk + (sm)ij + (sh)ik + (mh)jk + εijkl
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Factorial Design
Factors and blocks: Factors and blocks may be combined, the difference between
a block and a factor is that it makes no sense to study the interaction of blocks

yijkl = µ+ bi + pj + qk + (pq)jk + εijkl

The model constraints are∑
i

bi =
∑

j
pj =

∑
k

qk =
∑

j
(pq)jk =

∑
k

(pq)jk = 0

and we may estimate each one of the components as

µ̂ = y···· SS =
∑
ijkl

(yijkl − µ̂)2 df = n − 1

b̂i = yi··· − y···· SSB =
∑
ijkl

b̂2
i dfB = b − 1

p̂j = y·j·· − y···· SSP =
∑
ijkl

p̂2
j dfP = p − 1

q̂k = y··k· − y···· SSQ =
∑
ijkl

q̂2
k dfQ = q − 1

(̂pq)jk = y·jk· − y·j·· − y··k· + y···· SSPQ =
∑
ijkl

(̂pq)
2
jk dfPQ = (p − 1)(q − 1)

ε̂ijkl = yijkl − yi··· − y·jk· + y···· SSε =
∑
ijkl
ε̂2ijkl dfε = n − pq − b − 1
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Factorial Design

Advantages of factorial design:
Interactions between factors can be estimated and their significance tested.
Wider validity of main effects: they have been tested in many different cases
(e.g. the effect of moisture have been tested with frogs and toads, and with
and without hormone)
Several experiments are done simultaneously: the variance of pairwise
comparisons is minimal, as shown in the following experiment
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Factorial Design

Example 5
Assume that we have resources for 24 observations and we assume that there is
no interaction between factors

yijkl = µ+ si + mj + hk + εijkl

Three different experiment designs are considered:
1 One variable changes at a time

(Frogs,Dry,NoHormone) vs (Toad,Dry,NoHormone): 4 animals each
(Frogs,Dry,NoHormone) vs (Frogs,Wet,NoHormone): 4 animals each
(Frogs,Dry,NoHormone) vs (Frogs,Dry,Hormone): 4 animals each

2 Do not repeat (Frogs,Dry,NoHormone) in each comparison:
(Frogs,Dry,NoHormone): 6 animals
(Toads,Dry,NoHormone): 6 animals
(Frogs,Wet,NoHormone): 6 animals
(Frogs,Dry,Hormone): 6 animals

3 Factorial design (all possible combinations) with 3 animals each.
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Factorial Design

Example 6(continued)
We now want to test if there is a difference induced by the hormone injection, for
which we construct the statistic

∆h = h0 − h1

Its variance in the three experiments are
1 σ2

∆h = 2σ
2
ε

4

2 σ2
∆h = 2σ

2
ε

6

3 σ2
∆h = 2σ

2
ε

12
The factorial design yields the smallest variance for the comparison of any of its
components.

Factorial design: Hold all factors constant except the one those whose effects
we are investigating.
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Non-orthogonal Designs

Example 6
We are testing 2 spray treatments (tk) using 2 different
concentrations of a chemical growth regulator. We also
include a control spray without the chemical. We have 9
plots (3× 3) for the experiment and we allow for row (ri)
and column (cj) differences

yijkl = µ+ ri + cj + tk + εijkl

Results are
A 3.72 B 3.39 C 2.95
C 3.50 A 3.08 B 1.72
B 4.18 C 4.36 A 0.81

This is a latin square and the analysis techniques are not
the same as in the randomized complete block design
(the reason is that in block designs, for each block (in
our case row and column) we assume that we have all
treatments, and this is not the case.
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Non-orthogonal Designs

Example 6(continued)
The solution comes through Least Squares fitting

3.72 = µ+ r1 + c1 + tA
3.39 = µ+ r1 + c2 + tB
2.95 = µ+ r1 + c3 + tC
3.50 = µ+ r2 + c1 + tC
3.08 = µ+ r2 + c2 + tA
1.72 = µ+ r2 + c3 + tB
4.18 = µ+ r3 + c1 + tB
4.36 = µ+ r3 + c2 + tC
0.81 = µ+ r3 + c3 + tA
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Non-orthogonal Designs

Example 6(continued)
y = Aθ

3.72
3.39
2.95
3.50
3.08
1.72
4.18
4.36
0.81


=



1 1 0 0 1 0 0 1 0 0
1 1 0 0 0 1 0 0 1 0
1 1 0 0 0 0 1 0 0 1
1 0 1 0 1 0 0 0 0 1
1 0 1 0 0 1 0 1 0 0
1 0 1 0 0 0 1 0 1 0
1 0 0 1 1 0 0 0 1 0
1 0 0 1 0 1 0 0 0 1
1 0 0 1 0 0 1 1 0 0





µ
r1
r2
r3
c1
c2
c3
tA
tB
tC


However we have not introduced yet the constraints

r3 = −r1 − r2, c3 = −c1 − c2, tC = −tA − tB
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Non-orthogonal Designs

Example 6(continued)
With the constraints, the LS problem becomes



3.72
3.39
2.95
3.50
3.08
1.72
4.18
4.36
0.81


=



µ r1 r2 c1 c2 tA tB

1 1 0 1 0 1 0
1 1 0 0 1 0 1
1 1 0 −1 −1 −1 −1
1 0 1 1 0 −1 −1
1 0 1 0 1 1 0
1 0 1 −1 −1 0 1
1 −1 −1 1 0 0 1
1 −1 −1 0 1 −1 −1
1 −1 −1 −1 −1 1 0





µ
r1
r2
c1
c2
tA
tB



Note that for any pair of factor, their corresponding columns in the design matrix
are orthogonal

〈µ, ri〉 = 〈µ, cj〉 = 〈µ, tk〉 = 〈ri , cj〉 = 〈ri , tk〉 = 〈cj , tk〉 = 0
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Non-orthogonal Designs

Example 7
We are now given 3 extra plots (another row), which we
employ to replicate the treatments and have better
estimates.

Results are now

A 3.72 B 3.39 C 2.95
C 3.50 A 3.08 B 1.72
B 4.18 C 4.36 A 0.81
C 5.45 B 5.26 A 4.85
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Non-orthogonal Designs

Example 7(continued)



3.72
3.39
2.95
3.50
3.08
1.72
4.18
4.36
0.81
5.45
5.26
4.85



=



µ r1 r2 r3 c1 c2 tA tB

1 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1
1 1 0 0 −1 −1 −1 −1
1 0 1 0 1 0 −1 −1
1 0 1 0 0 1 1 0
1 0 1 0 −1 −1 0 1
1 0 0 1 1 0 0 1
1 0 0 1 0 1 −1 −1
1 0 0 1 −1 −1 1 0
1 −1 −1 −1 1 0 −1 −1
1 −1 −1 −1 0 1 0 1
1 −1 −1 −1 −1 −1 1 0





µ
r1
r2
r3
c1
c2
tA
tB



Factor columns in the design matrix are no longer orthogonal
(in particular 〈cj , tk〉 6= 0).
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Non-orthogonal Designs

Orthogonal designs are insensitive to the order in which the parameters are
fitted. We may fit all of them at the same time (as shown), or

1 fit first µ, produce a new experiment dataset removing the part we have
already fitted (µ)

2 fit then ri and cj , produce a new experiment dataset removing the part we
have already fitted (µ, ri , cj)

3 fit finally the treatments (tk)
Non-orthogonal designs depend on the order in which parameters are fitted
(nothing terrible, but something to keep in mind).
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Covariates

Researchers cannot control covariates, but can measure them and use them to
increase the predictive power of the Linear Model.

Example 8
We suspect that the effect of the growth chemical
depends on the ambient temperature, we extend the
model with this covariate

yijkl = µ+ ri + cj + tk + βTijkl + εijkl

Tijkl is the ambient temperature measured when the
spray was applied.
A 3.72 (T=28) B 3.39 (T=22) C 2.95 (T=23)
C 3.50 (T=24) A 3.08 (T=25) B 1.72 (T=26)
B 4.18 (T=20) C 4.36 (T=22) A 0.81 (T=26)
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Covariates

Example 8(continued)
y = Aθ

3.72
3.39
2.95
3.50
3.08
1.72
4.18
4.36
0.81


=



1 1 0 0 1 0 0 1 0 0 28
1 1 0 0 0 1 0 0 1 0 22
1 1 0 0 0 0 1 0 0 1 23
1 0 1 0 1 0 0 0 0 1 24
1 0 1 0 0 1 0 1 0 0 25
1 0 1 0 0 0 1 0 1 0 26
1 0 0 1 1 0 0 0 1 0 20
1 0 0 1 0 1 0 0 0 1 22
1 0 0 1 0 0 1 1 0 0 26





µ
r1
r2
r3
c1
c2
c3
tA
tB
tC
β


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Contrasts

Example 9
Remind that our simplified parameter vector is

θ = (µ, r1, r2, c1, c2, tA, tB)T

We want to know whether there is a difference in the
spray treatment

tA − tB = 0 = (0, 0, 0, 0, 0, 1,−1)T θ

or if there are differences in the rows

r1 − r2 = 0 = (0, 1,−1, 0, 0, 0, 0)T θ
r2 − r3 = 0 = r2 − (−r1 − r2) = 2r2 + r1

= (0, 1, 2, 0, 0, 0, 0)T θ

In general, many interesting tests are of the form cT θ = 0.
If 1Tc = 0, c is called a contrast.
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Least squares

The linear model is of the form

y = Aθ + ε

and it assumes
E{ε} = 0

Σε = σ2
ε I

Consequently
E{y} = Aθ

And the deviations from the expected value is the sum of squares

SS = (y− Aθ)T (y− Aθ)

The minimizer of this Sum of Squares is

θ̂ = (AT A)−1ATy
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Least squares
The covariance matrix of the fitting parameters (assuming that ε is a multivariate
normal) is

Cov{θ̂} = σ2
ε (AT A)−1

If we diagonalize AT A, then after some suitable rotation P

Cov{Pθ̂} =


σ2

ε

λ2
1

0 ... 0

0 σ2
ε

λ2
2

... 0
... ... ... ...

0 0 ...
σ2

ε

λ2
M


being λ1, λ2, ... λM the Singular Values of the matrix A

The goal of the Experimental Design is to construct a matrix A such that: 1)
AT A has a determinant as small as possible; or 2) the variance of a specific
parameter is as small as possible. We would also like the matrix A to be
well-conditioned (otherwise some parameter will be too variable).
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Least squares

If in our experiment the most important test is of the form

c = cT θ = 0

we may design our experiment such that the variance of c is minimized

Var{c} = σ2
εcT (AT A)−1c

The goal of the Experimental Design is to construct a matrix A such that: ...
or 3) the variance of a specific statistic is as small as possible.

Particular structures (Factorial Design, Completely Randomized Design,
Randomized Complete Block Design) are “precooked” A constructions, which
additionally allow very easy Least Squares fitting.
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Experimental units

Experimental units are the smallest division of the experimental material such
that any two experimental units can receive different treatments.
Each experimental unit gives a single observation.

Example 10
Microarrays are used to analyze the differences between the
transcription of different genes. Depending on the technology 1,
2 or more samples can be hybridized to the array probes.

yijk = estrogeni (Yes/No) + timej(10h/48h) + εijk

Considering the gene as a treatment suggests that each spot is
considered as the experimental unit

yijkl = estrogeni + timej + genek + εijkl
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Experimental units

Example 11
A clinical trial for a new ointment is designed as follows. There
will be 3 groups:

1 Group 1: use the new gel for 12 months.
2 Group 2: use first the new gel for 6 months and a placebo

for 6 months.
3 Group 3: use first a placebo for 6 months and the new gel

for 6 months.
The experimental unit are not the people in the experiment, but
the period of 6 months of each person.
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Experimental units

Example 12
In agricultural crop trials, the experimental unit cannot
be each plant, but it is normally a plot. Plots must be
large enough to be representative of large fields and
remove the inter-plant variability, and small enough to be
manageable and remove variability between soil
differences. Long thin plots are normally preferrable.

Example 13
Trees are normally treated independently, so that they are
the experimental unit.

In a clinical trial in which every patient is given a new
drug or the best current treatment (or placebo), each
patient is the experimental unit.
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Experimental units

Example 14

In animal feeding experiments, the experimental unit is
normally the pen (or cage), unless each animal can be fed
independently of the rest. Experiments in which the
whole group is the experimental unit are called cluster
randomisation.

Example 15

Educational systems normally group children together in
a way that each student cannot receive an individual
treatment, the whole class is considered the experimental
unit.
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Experimental units

Example 16

Keith Smolkowski

Consider a study designed to test a parenting
intervention that addresses child behavior at home. The
parenting program teaches parents specific behaviors
through classes with six to ten parents and two trainers.
Assume that the content of the classes, the specific
behaviors taught to parents, have been chosen through a
program of research that has previously shown their
efficacy with individual families. Do changes to a child’s
environment, through changes in his or her parents’
behaviors, result in improved child behavior at home?
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Experimental units

Example 16(continued)

Keith Smolkowski

This question assumes that the intervention will change
parent behavior, and then it asks if those parenting
behaviors influence children. Here the family represents
the unit because the IV represents the change in the
behavior of the parent(s) within a home and the DV
accounts for the behavior of the child(ren). Individual
children or parents would not do because they are not
independent within a household. Parents influences each
other, they influence children, and children influence
parents.
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Experimental units

Example 17

Keith Smolkowski

Does instruction in parenting skills change parents’
behaviors at home, assuming those new parenting
behaviors will lead to improved child behavior?

We have assumed that the parenting behaviors taught
will lead to changes in child behavior, if implemented
appropriately. The study, then, represents an attempt to
show that a specific form of parent training, the
parenting classes led by two trainers, can teach parents to
master the skills and apply them at home. In particular,
to generalize to any pair of sufficiently prepared trainers,
the unit in this study must capture the parent trainers.
Furthermore, parents within a class all meet at the same
place, at the same time, and with the same pair of
trainers. They influence each other, so groups of parents
cannot be considered independent if they have the same
instructors.
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Experimental units

Example 18
We want to detect a rare disease in a population. Blood
samples are pooled into groups and the pooled sample is
tested for the disease. If we cannot find it, none of the
individuals in the pool has the disease. The experimental
unit is the pool.

If we find the disease, we may analyze each blood sample
individually to identify the person having it. The
experimental unit is now the individual.

Pooling is a very effective way of cutting down costs.
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Experimental units

Example 19
Using parts of a whole as experimental units reduces the
variability of the measurements, e.g.,

Two leaves from the same tree may receive two
different fungicide treatments.
Two fruits from the same tree may receive two
different storage treatments.
Different parts of the same bake mix may receive
different cooking treatments.
Each eye of the same person may receive different
surgical procedures.
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Experimental units

Example 20
Crossover experiments

1 Group 1: use first the new gel for 6 months and a placebo
for 6 months.

2 Group 2: use first a placebo for 6 months and the new gel
for 6 months.
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Experimental units

1 A trial in which a patient receives a sequence of different drugs cannot provide
legitimate information for future treatment in which a patient will receive
only a single drug. Does the washout period revert to the initial condition?

2 Once a patient has received one drug, that patient is changed, and therefore
does not provide the same condition for the second drug. Does the washout
period revert to the initial condition?

3 Treating a patient with a time-cocktail of drugs may provide a more
dangerous situation for the patient, for which the dangers are difficult to
predict. The experiment must be conceived as a whole, including a previous
pharmacological study.

4 The order in which treatments are presented may affect the apparent benefits
of different treatments. The order of treatments must be randomized from
patient to patient.

5 It may be difficult to prevent the patient making judgements about which
treatment she is receiving at a particular time and this may bias the results
(whether or not these judgements are correct). Objective measurements are
preferred.
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Experimental units

Repeated measure design:

Treatment → Measure(Time=t1) → Measure(Time=t2) → Measure(Time=t3)

The experimental unit is the subject, and the different measures are observations
at different times. This kind of designs are treated as split-plot designs.
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Replication

Example 21
The following two tables show two extreme cases which should be avoided (having
too few observations so that it is difficult to show the value of our experiment or
so many that it was a waste of resources)

SS df MS
Treatments 16 7 1.14

Errors 16 8 2
All 32 15

F = 1.14
2 = 0.57

SS df MS
Treatments 500 7 71.4

Errors 500 492 1.02
All 1000 499

F = 71.4
1.02 = 70.28

Replicates will help in an ANOVA test to determine if at least one of the
treatments makes a difference or not.

2. Foundations revisited October 14, 2016 17 / 90



Replication

If we have a completely randomized design, that responds to the model

yij = µ+ ti + εij

and there are ni replicates of the treatment i and ni′ of the treatment i ′, then the
test to check whether one of the treatments is significantly better/worse than the
other will use the statistic

∆t = ti − ti′

whose variance is
σ2

∆t = σ2
ε

(
1
ni

+ 1
ni′

)

Replicates will help in pairwise tests to determine if one of the treatments is
significantly different from another.
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Replication

Example 22

Giving a drug to two different people is a true
replicate, but giving a drug twice to the same person
is not.
A microarray technical replicate is not a true
replicate, but biological replicates are.
In an animal feeding experiment, pigs within the
same litter are not replicates. The experimental unit
is the litter, and a true replicate is another litter.
Automatic measurements on the same subject do
not provide replicates, but time measures (see
Repeated Measures Design).
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Replication

Let us illustrate the effect of dealing with non-replicates as replicates.

Example 23
We want to determine the effect of 3 different teaching
styles on student learning. To do so 9 classes are given
one of the 3 teaching styles and a final assessment is
performed. Depending on the time of the assessment
along the day, there is some pattern so that in the
afternoon students are more tired.
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Replication

Example 23(continued)
The results of a single test are

Treatment 1 Treatment 2 Treatment 3
A B C D E F G H I
27 43 38 41 30 47 46 34 50

whose ANOVA table is
SS df MS

Treatments 81 2 40
Errors 447 6 74

F = 40
74 = 0.54

which is not too convincing.
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Replication

Example 24
Assume that now we repeat the test on 4 consecutive
days at the same time (to avoid the diurnal pattern)

Treatment 1 Treatment 2 Treatment 3
A B C D E F G H I
27 43 38 41 30 47 46 34 50
25 43 36 43 35 42 48 37 44
30 46 37 44 31 46 46 38 52
31 44 41 45 35 48 45 35 49

whose ANOVA table is
SS df MS

Treatments 288 2 144
Errors 1394 33 42

F = 144
42 = 3.4

much more convincing now, but we are essentially
measuring 4 times the same thing, measures are not
independent and they are not a true replicate.
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Replication

Example 25
Assume that only one class can be tested at a time, so
that each class is tested at a different time according to
the pattern

Time
8 9 10 11 12 13 14 15 16

Day 1 A D G E B H I F G
Day 2 H E I A F C D B G
Day 3 I C F G D A B H E
Day 4 F B E H C I G D A

whose ANOVA table is
SS df MS

Treatments 322 2 162
Errors 2464 33 75

F = 162
75 = 2.2

The apparent effect has been wiped out by the diurnal
pattern, and still that was incorrect because the 4 tests
were not independent.
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Replication

Example 25(continued)
If the tests were true replicates it would have been better
to introduce a blocking variable time:

yijk = µ+ treatmenti + timej + εijk

If results are not too conclusive, the solution is to apply
the 3 methods to more than 3 classes each, not to take
several tests on the same class. The experimental unit is
the whole class, and true replicates are more classes.
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Replication

Example 26
The effectiveness of two fungicides is being tested. The
fungicide may be applied on the upper or lower side of
young or old leaves. This gives a total of 8 treatments (2
fungicides × 2 sides × 2 leave ages). The experimenter
measures the amount of fungi in a small disc of the leave.
Each treatment is replicated 10 times, obtaining F = 500
(which seems a little overkill).

But, fungicide 1 was applied to Tree 1, and fungicide 2
was applied to Tree 2. The 8 treatments were applied to
8 leaves, and the replicates were obtained by cutting 10
discs from the same leave. The differences could be due
to the tree, and each treatment was applied only once.
The 10 replicates are not true replicates, but they are
measuring essentially the same thing (they come from
the same leave).
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Replication

Example 27

We are interested on the effect of hormones in animals. Two designs are proposed.
The measure will be the weight of the animals when they are 6 months old.
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Replication

Example 27(continued)
Both designs look fine (assuming that we will account for the pen effect). But the
bottom design has a drawback. Let’s say that A makes pigs to be more
aggressive, and B more docile. So the extra A weight is not due to growth effect
of A, but to the growth effect when they are fed with B animals. A animals grown
alone would not have extra weight because they are all equally aggressive.

If there is an interaction between the two levels of a factor, this design is not able
to detect it.
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Replication

Example 28
We are interested in the effect of 3 temperature levels in
the growth of greenhouse plants. Typically, there are
only, at most 6 greenhouse sections with independent
heating. In order to have a replicate, each treatment can
be applied only to two sections. The experimental unit is
the greenhouse section and two replicates is not much.
Can we use individual plants as the experimental unit?
Technically no.
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Replication

Example 28(continued)
But since there is no other way of carrying out the
research, we may if we assume that

greenhouse sections do not affect the plant growth.
the variation between plants are essentially due to
plant-to-plant variation.
there is no competitive variation (like in the pig
case) between plants within a section, induced by
the treatment.
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Blocking

Example 29

The idea of blocking is to reduce the
variance due to some known
(uninteresting) factor, and letting most
of the variance to come from the
treatments. To compare A and B, we
may design

Treatments
Male A B
Female A B

These comparisons can be performed
even if both treatments are not applied
to the same block, as long as there is a
common third treatment.

Treatments
Male A C
Female B C

These comparisons are more accurate as
the number of intermediaries increases:

Treatments
Male A C D
Female B C D

2. Foundations revisited October 14, 2016 31 / 90



Blocking (simple case)

Let us analyze the first example.

Treatments
Block 1 A B
Block 2 A B

We assume that the data is generated according to

yijk = µ+ bi + tj + εijk

Let us also assume that the design is balanced and there are K replicates for each
block-treatment combination.

E{Y1..} = E{Y1A. + Y1B.} = K (µ+ b1 + tA) + K (µ+ b1 + tB) = 2K (µ+ b1)
E{Y2..} = E{Y2A. + Y2B.} = K (µ+ b2 + tA) + K (µ+ b2 + tB) = 2K (µ+ b2)
E{Y...} = E{Y1.. + Y2..} = 4Kµ
E{Y.A.} = 2K (µ+ tA)
E{Y.B.} = 2K (µ+ tB)
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Blocking (simple case)

We may write the least squares equations (taking into account the zero-mean
constraints) 

4K 0 0
2K 2K 0
2K −2K 0
2K 0 2K
2K 0 −2K


µ

b1
tA

 =


Y...
Y1..
Y2..
Y.A.
Y.B.


Or equivalently

1 0 0
0 1 0
0 0 0
0 0 1
0 0 0


µ

b1
tA

 =


Y.../4K

Y1../2K − Y.../4K
(Y1.. + Y2.. − Y...)/2K = 0

Y.A./2K − Y.../4K
(Y.A. + Y.B. − Y...)/2K = 0


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Blocking

The estimates of the differents contributions of the model can be calculated as

µ̂ = Y.../4K = y...
b̂1 = Y1../2K − Y.../4K = y1.. − y...
t̂A = Y.A./2K − Y.../4K = y.A. − y...

For b̂2 = −b̂1 and t̂B = −t̂A. But it is also convenient to note the relationship

Y1..
2K + Y2..

2K −
Y...
2K = y1.. + y2.. − 2y... ⇒ y... = y1.. + y2..

2 , y1.. = 2y... − y2..

Consequently
b̂2 = −b̂1 = y... − y1.. = y2.. − y...

Similarly
t̂B = −t̂A = y... − y.A. = y.B. − y...
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Blocking (simple case)
If we want to test whether there is a significant difference between the treatments
A and B we will construct the statistic

∆AB = t̂A − t̂B = y.A. − y.B.

whose variance is

σ2
∆AB

= σ2
y.A. + σ2

y.B. = σ2
ε

2K + σ2
ε

2K = σ2
ε

K

The number of replicates needed for a two-sided hypothesis test with confidence
level 1− α, power 1− β and effect size ∆ must be

∆ >
(
z1−α2 + z1−β

)
σ∆AB

from where we can easily solve for the number of replicates

K >

( (z1−α2 + z1−β)σε
∆

)2
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Blocking (more complicated)
Let us analyze the second example.

Treatments
Block 1 A C
Block 2 B C

We assume that the data is generated according to

yijk = µ+ bi + tj + εijk

Let us also assume that the design is balanced and there are K replicates for each
block-treatment combination.

E{Y1..} = E{Y1A. + Y1C .} = K (µ+ b1 + tA) + K (µ+ b1 + tC )
= 2K (µ+ b1) + K (tA + tC )

E{Y2..} = E{Y2B. + Y2C .} = K (µ+ b2 + tB) + K (µ+ b2 + tC )
= 2K (µ+ b2) + K (tB + tC )

E{Y...} = E{Y1.. + Y2..} = 4Kµ+ KtC
E{Y.A.} = K (µ+ b1 + tA)
E{Y.B.} = K (µ+ b2 + tB)
E{Y.C .} = 2K (µ+ tC )
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Blocking (more complicated)

We may write the least squares equations (taking into account the zero-mean
constraints) 

4K 0 −K −K
2K 2K 0 −K
2K −2K −K 0
K K K 0
K −K 0 K
2K 0 −2K −2K



µ
b1
tA
tB

 =


Y...
Y1..
Y2..
Y.A.
Y.B.
Y.C .


Or equivalently

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0



µ
b1
tA
tB

 =


(y.A. + y.B. + 4y...)/6

(4y1.. − y.A. + y.B. − 4y...)/2
y1.. + y2.. − 2y... = 0

(4y.A. − 6y1.. − 2y.B. + 4y...)/3
(6y1.. − 2y.A. + 4y.B. − 8y...)/3
y.A. + y.B. + 2y.C . − 4y... = 0


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Blocking (more complicated)
If we want to test whether there is a significant difference between the treatments
A and B we will construct the statistic

∆AB = t̂A − t̂B = 2y.A. − 2y.B. − 4y1.. + 4y...

whose variance is

σ2
∆AB

= 4σ2
y.A. + 4σ2

y.B. + 16σ2
y1..

+ 16σ2
y... = 4σ

2
ε

K + 4σ
2
ε

K + 16 σ
2
ε

2K + 16 σ
2
ε

4K = 20σ
2
ε

K

For the comparison between A and C, we have

∆AC = t̂A − t̂C = 2t̂A + t̂B = 2y.A. − 2y1..

whose variance is

σ2
∆AC

= 4σ2
y.A. + 4σ2

y1..
= 4σ

2
ε

K + 4 σ
2
ε

2K = 6σ
2
ε

K

Comparisons within the same block are more precise than amongst blocks.
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Blocking (more complicated)

We will not analyze the third example.

Treatments
Block 1 A C D
Block 2 B C D

But let us mention that the more treatments in common between Block 1 and
Block 2 (in this case C and D), the smaller the variance of the statistics for the
tests.
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Blocking (incorrect design)

Let us analyze an incorrect design.

Treatments
Block 1 A C
Block 2 B D

The design is incorrect because there is no way to distinguish the effect of the
block from the treatments. Let us perform the same analysis as we did in the
previous cases.

E{Y1..} = E{Y1A. + Y1C .} = 2K (µ+ b1) + K (tA + tC )
E{Y2..} = E{Y2B. + Y2D.} = 2K (µ+ b2) + K (tB + tD)
E{Y...} = E{Y1.. + Y2..} = 4Kµ
E{Y.A.} = K (µ+ b1 + tA)
E{Y.B.} = K (µ+ b2 + tB)
E{Y.C .} = K (µ+ b1 + tC )
E{Y.D.} = K (µ+ b2 + tD)
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Blocking (incorrect design)
We may write the least squares equations (taking into account the zero-mean
constraints) 

4K 0 0 0 0
2K 2K K 0 K
2K −2K −K 0 −K
K K K 0 0
K −K 0 K 0
K K 0 0 K
K −K −K −K −K




µ
b1
tA
tB
tC

 =



Y...
Y1..
Y2..
Y.A.
Y.B.
Y.C .
Y.D.


Or equivalently

1 0 0 0 0
0 1 0 0 1
0 0 0 0 0
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0




µ
b1
tA
tB
tC

 =



y...
2y1.. − y.A. − y...

y1.. + y2.. − 2y... = 0
2y.A. − 2y1..

2y1.. − y.A. + y.B. − 2y...
y.A. + y.C . − 2y1.. = 0

2y1.. + y.B. + y.D. − 4y... = 0


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Blocking and Orthogonality

Of the four designs in this Section the only one with an orthogonal matrix is

Treatments
Block 1 A B
Block 2 A B

Orthogonality keeps calculations very simple (which is good for manual
calculation, but irrelevant for computers).
It makes the estimates to be independent of the order in which they are fitted
(although the variations are small).

Consequently non-orthogonality should not be considered as a major drawback of
a design.
Balance (see next section) is a much more important issue.
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Outline

2 The basics of Experiment Design revisited
Experimental units
Replication
Blocking
Balanced Incomplete Block Designs (BIBD)
Multiple blocking
Split-unit designs
Randomization
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Balanced Incomplete Block Designs

A design is balanced if:
All treatments are applied the same number of times
All pairs of treatments appear in the same number of blocks

For instance, the following design is balanced

Treatments
Block 1 A B C
Block 2 A B D
Block 3 A C E
Block 4 A D F
Block 5 A E F
Block 6 B C F
Block 7 B D E
Block 8 B E F
Block 9 C D E
Block 10 C D F

Each treatment is applied 5 times.
Each pair (AB, AC, AD, AE, AF, BC, BD, BE, BF,
CD, CE, CF, DE, DF, EF) appears 2 times.
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Balanced Incomplete Block Designs

Example 30
6 treatments (A-F) are to be compared in 24 units, for which a natural blocking
system gives 4 blocks of 6 units each. How can the treatments be allocated?

Treatments
Block 1 A B C D E F
Block 2 A B C D E F
Block 3 A B C D E F
Block 4 A B C D E F

Any other allocation would repeat one treatment in one of the blocks so that pair
comparisons cannot be performed in the same block making them less efficient.

If possible, apply all treatments in each block.

2. Foundations revisited October 14, 2016 45 / 90



Balanced Incomplete Block Designs

Example 31
6 treatments (A-F) are to be compared in 30 units, for which a natural blocking
system gives 6 blocks of 5 units each. How can the treatments be allocated?

Treatments
Block 1 A B C D E
Block 2 A B C D F
Block 3 A B C E F
Block 4 A B D E F
Block 5 A C D E F
Block 6 B C D E F

Only 5 (instead of 6) treatments can be applied in a block, so that 1 treatment
has to be skipped in each block. We may do so by removing F in the 1st block, E
in the 2nd, D in the 3rd, ... Keeping a symmetric design will not favor any
treatment comparison (all will have the same variance).

Keep the design as symmetric as possible.
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Balanced Incomplete Block Designs

Example 32
6 treatments (A-F) are to be compared in 24 units, for which a natural blocking
system gives 6 blocks of 4 units each. How can the treatments be allocated?

Treatments
Block 1 C D E F
Block 2 A D E F
Block 3 A B E F
Block 4 A B C F
Block 5 A B C D
Block 6 B C D E

We now have to skip two treatments from each block. If this is done in a cycle,
symmetry is better preserved (e.g., set of omissions (AB), (BC), (CD), (DE),
(EF), (FA))

Keep the design as symmetric as possible (cycles help in this regard).
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Balanced Incomplete Block Designs

Let us define these designs in general

v No. Treatments (varieties)
b No. Blocks
ri No. of blocks containing treatment i

For a balanced design ri = r for all treatments
k Size of the block
λii′ No. of blocks containing treatments i and i ′

For a balanced design λii′ = λ for all pairs

The designs are named (v , b, r , k, λ)-designs. A balanced design must fulfill:

bk = vr
r(k − 1) = λ(v − 1)

The first equation simply states that the number of blocks times their size must
be equal to the number of treatments and their repeats. r − λ is the order of the
design.
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Balanced Incomplete Block Designs
Not all possible designs exist and there are different approaches to their
construction
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Balanced Incomplete Block Designs

A necessary condition to be balanced is that the row and column sums of the
incidence matrix are all equal

Treatments
Block 1 A B C
Block 2 A B D
Block 3 A C E
Block 4 A D F
Block 5 A E F
Block 6 B C F
Block 7 B D E
Block 8 B E F
Block 9 C D E
Block 10 C D F

XXXXXXXXXBlock
Treatment A B C D E F

Block 1 1 1 1 3
Block 2 1 1 1 3
Block 3 1 1 1 3
Block 4 1 1 1 3
Block 5 1 1 1 3
Block 6 1 1 1 3
Block 7 1 1 1 3
Block 8 1 1 1 3
Block 9 1 1 1 3
Block 10 1 1 1 3

5 5 5 5 5 5
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Balanced Incomplete Block Designs

However, this condition is not sufficient

Treatments
Block 1 A C
Block 2 B D
Block 3 A C
Block 4 B D

XXXXXXXXXBlock
Treatment A B C D

Block 1 1 1 2
Block 2 1 1 2
Block 3 1 1 2
Block 4 1 1 2

2 2 2 2

The pair AC appears 2 times (λAC = 2), while AB or AD do not appear
(λAB = λAD = 2).
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Balanced Incomplete Block Designs (Cyclic design)

An easy way to design experiments is by starting with an initial block and adding
1 to each treatment modulo the number of treatments (this is called a cyclic
design). For example, for 5 blocks of size 3 with 5 treatments we would have

Treatments
Block 1 (initial) A B D

Block 2 B C E
Block 3 C D A
Block 4 D E B
Block 5 E A C
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Balanced Incomplete Block Designs
(Lattice design=Youden squares)

Another easy way to generate balanced incomplete designs are based on lattices
(lattice design). For example, for 7 blocks of size 3 with 7 treatments, we
construct a Latin square with 7 treatments (a Latin square is a square in which
each treatment appears only once in each row and column). Then, we take 3
columns (not any 3 are valid) and construct the different blocks. These rectangles
are called Youden squares.
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Balanced Incomplete Block Designs (Lattice design)
If the number of treatments is large (and a perfect square, i.e., v = x2), then we
may use a different kind of designs also based on Latin squares. This design
assumes that the experiment will be replicated several times. At each replication
the block composition changes and different treatments are used in the same
block.
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Balanced Incomplete Block Designs (Many treatments)

Although outside of the scope of this course, for a large number of treatments (a
few hundreds), the interested reader may look for

Cubic lattice designs
Alpha lattice designs for large-scale variety trials
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Outline

2 The basics of Experiment Design revisited
Experimental units
Replication
Blocking
Balanced Incomplete Block Designs (BIBD)
Multiple blocking
Split-unit designs
Randomization
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Multiple blocking

Example 33
We are interested in the pattern of variation over time of
a constituent of blood (=treatment). We need sampling
blood from 9 chickens (=replication, 1st blocking
variable) on 25 weekly occasions. Only 6 samples can be
analyzed at a time, and there can be a substantial
difference between batches of samples (=2nd blocking
variable).
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Latin squares

Example 34
We are interested in the wearing performance of 4 tyre brands (=treatment).
There can be differences depending on the car (=1st blocking variable) and the
position within the car (=2nd blocking variable). The organization of this
experiment can be done through a Latin square design.

XXXXXXXXXPosition
Car 1 2 3 4

1 A B C D
2 B C D A
3 C D A B
4 D A B C

df
Treatments (t − 1) = 3
Blocking 1 (t − 1) = 3
Blocking 2 (t − 1) = 3

Errors (t − 1)(t − 2) = 6
All t2 − 1 = 15

Since the number of degrees of
freedom for the error is relatively low
for a Latin square design, the
experiment must be replicated
several times with independent latin
squares.
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Latin squares
The Latin square model for the l replicate is

yijkl = µ+ rl(i) + cl(j) + tk(ijl) + εijkl
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Latin squares

Replicates may share one of the blocking variables (Latin rectangle) ...

Example 35
For instance, the two replicates may be performed on the same cars

XXXXXXXXXPosition
Car 1 2 3 4

1 A B C D
2 B C D A
3 C D A B
4 D A B C
5 B D A C
6 A B C D
7 D C B A
8 C A D B
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Latin squares

... or not

Example 36
For instance, the two replicates may be performed on different cars

XXXXXXXXXPosition
Car 1 2 3 4 5 6 7 8

1 A B C D
2 B C D A
3 C D A B
4 D A B C
5 B D A C
6 A B C D
7 D C B A
8 C A D B
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Sequences of experiments: Orthogonal Latin Squares

Sometimes we need to reuse the experimental units from one experiment to the
next (fruit trees, agricultural plots, patients in a clinical trial, ...) The solution is
to use two orthogonal latin squares (if both designs are superimposed each pair
appears only once; not all Latin squares have orthogonal squares). Examples of
these orthogonal designs are Graeco-Latin squares. The idea is to eliminate the
long-term effects of the first experiment on the second experiment.

Example 37
Experiment 1: A, B, C, D

Experiment 2: α, β, γ, δ
XXXXXXXXXBlock1

Block2 1 2 3 4

1 Aα Dδ Bγ Cβ
2 Cδ Bα Dβ Aγ
3 Dγ Aβ Cα Bδ
4 Bβ Cγ Aδ Dα
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Non-orthogonal row-and-column designs

Latin squares can successfully block two variables whose number of levels is equal
between them and equal to the number of treatments (c=4 cars, r=4 positions
and t=4 tyre brands). Row-and-column designs address those cases with different
number of levels in each one of the blocks.

If the number of rows, r , or columns, c, is equal to t, we may use Youden squares

Example 38
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Non-orthogonal row-and-column designs

However, more complicated patterns may appear: the number of rows and
columns is not a multiple of the number of treatments or some combinations of
blocks are unfeasible (some plots in a field are useless).

In the design of row-and-column designs:
1 The goal should be to achieve orthogonality in each one of the blocking

variables.
2 Balance, if ortohogonality is not possible.
3 if balance is not possible, then the joint occurrences of treatments in rows

and columns should be made as equal as possible.
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Non-orthogonal row-and-column designs

Example 39
t = 9 treatments in r = 5 rows and c = 7 columns

``````Block1
Block2 1 2 3 4 5 6 7

1 I B A G C D H
2 A F G E B C D
3 G I B H F E A
4 C H I D E G F
5 E D F A H B C

Example 40
t = 6 treatments in r = 6 rows and c = 8 columns with useless cells

``````Block1
Block2 1 2 3 4 5 6 7 8

1 C E B F A E D
2 E A D F C B
3 F E A D B C
4 D C A B E F
5 B D F E A C F
6 A B C D
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Blocking time: Cross-over designs
The different treatments are applied in sequence to the same experimental unit
(common in clinical trials).

The aim to use the same subject is because by applying the more than 1
treatment to the same subject we remove inter-subject variability, gain in
statistical precision, and reduce the number of subjects.
However, the design assumes that there is no effect from one period to the
next (washout period between treatments; what if the subject is cured by the
first treatment?).

The experimental unit is redefined to be an observation for an individual subject
(=1st blocking variable) in a short period of time (=2nd blocking variable).

Example 41
``````Period

Subject 1 2 3 4 5 6 7 8 9 10 11 12

1 A B B A A B A B B B A A
2 B A A B B A B A A A B B

By having the

same number of subjects for the two orderings (AB or BA), we remove the effects
of treatment order.

But, the experiment (swapping treatment) is rather different from its future use
(one treatment). And many objections should be expected
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Blocking time: Cross-over designs

The different treatments are applied in sequence to the same experimental unit
(common in clinical trials).

The aim to use the same subject is because by applying the more than 1
treatment to the same subject we remove inter-subject variability, gain in
statistical precision, and reduce the number of subjects.
However, the design assumes that there is no effect from one period to the
next (washout period between treatments; what if the subject is cured by the
first treatment?).

The experimental unit is redefined to be an observation for an individual subject
(=1st blocking variable) in a short period of time (=2nd blocking variable).

Example 42
``````Period

Subject 1 2 3 4 5 6 7 8 9 10 11 12

1 A B B A A B A B B B A A
2 B A A B B A B A A A B B

By having the same number of subjects for the two orderings (AB or BA), we
remove the effects of treatment order.
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Blocking time: Cross-over designs

Example 43
The number of periods and treatments do not need to be the same and different
sequences can be applied (e.g. ABB or BAA)

``````Period
Subject 1 2 3 4 5 6 7 8 9 10 11 12

1 A B B A A B A B B B A A
2 B A A B B A B A A A B B
3 B A A B B A B A A A B B

or ABB, BAA, ABA and BAB
``````Period

Subject 1 2 3 4 5 6 7 8 9 10 11 12

1 A B A B B B A A B B B A
2 B A B A A A B B A A A B
3 B A A B B A A B B A B B
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Blocking time: Cross-over designs

But, the experiment (swapping treatment) is rather different from its future use
(one treatment). And many objections should be expected

Order effects: it is possible that the order in which treatments are
administered may affect the outcome. An example might be a drug with
many adverse effects given first, making patients taking a second, less
harmful medicine, more sensitive to any adverse effect.
Carry-over effects: can be avoided with sufficiently long washout periods and
designs to eliminate 1st order, 2nd order, ... carryover effects.
Learning effects: this is important where you have controls who are naive to
the intended therapy. In such a case e.g. you cannot make a group (typically
the group which learned the skill first) unlearn a skill such as yoga and then
act as a control in the second phase of the study.
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Blocking time: Cross-over designs

If there are no carry-over effects, these designs are like row-and-column
designs.
If there are carry-over effects, the design has to be performed to remove 1st
order (only from the treatment in the previous period) or higher order (from
treatments in the two, three, ... previous periods) carry-over effects.

A design is
uniform within sequences if each treatment appears the same number of
times within each sequence (e.g. AB/BA is uniform in sequence, but
ABA/BAB is not)
uniform within periods if each treatment appears the same number of times
within each period (this depends on the number of subjects assigned to each
sequence)
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Blocking time: Cross-over designs

A design is balanced with respect to 1st order carry-over effects if each treatment
precedes any other treatment the same number of times. Latin squares (although
not all of them) help to construct balanced designs.

Example 44
With t = 4 treatments
XXXXXXXXXSequence

Period 1 2 3 4

ABCD A B C D
BCDA B C D A
CDAB C D A B
DABC D A B C

This design is not balanced
(A precedes B 3 times,

but does not precede C or D)

XXXXXXXXXSequence
Period 1 2 3 4

ABCD A B C D
BDAC B D A C
CADB C A D B
DCBA D C B A
This design is balanced

(all pairs appear only once)
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Blocking time: Cross-over designs

If the number of treatments is even (e.g. t = 4), only 1 Latin square is
needed to produce a balanced design.
If the number of treatments is odd (e.g. t = 3), 2 Latin squares are needed
to produce a balanced design.

Example 45
With t = 3 treatments

XXXXXXXXXSequence
Period 1 2 3

ABC A B C
BCA B C A
CAB C A B
ACB A C B
BAC B A C
CBA C B A

This design is balanced
(all pairs appear 2 times)
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Blocking time: Cross-over designs

A design is strongly balanced with respect to 1st order carry-over effects if each
treatment precedes every other treatment (including itself) the same number of
times.

Example 46
With t = 4 treatments

XXXXXXXXXSequence
Period 1 2 3

ABB A B B
BAA B A A

This design is strongly balanced but
it is not uniform within sequences.

XXXXXXXXXSequence
Period 1 2 3 4

ABBA A B B A
BAAB B A A B
AABB A A B B
BBAA B B A A

This design is strongly balanced
and uniform within sequences.
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Blocking time: Cross-over designs

Let us analyze an example with carry-over effects
XXXXXXXXXSequence

Period 1 2

AB A B
BA B A

The expected values at each one of the cells are
XXXXXXXXXXSequence

Period 1 2

AB µ+ tA + oAB + p1 µ+ tB + oAB + p2 + λA
BA µ+ tB + oBA + p1 µ+ tA + oBA + p2 + λB

being oAB and oBA the effect size corresponding to the ordering block, p1 and p2
the effect size corresponding to the period block and λA and λB the carry-over
effects for having applied first A (λA) or B (λB).
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Blocking time: Cross-over designs

XXXXXXXXXXSequence
Period 1 2

AB µ+ tA + oAB + p1 µ+ tB + oAB + p2 + λA
BA µ+ tB + oBA + p1 µ+ tA + oBA + p2 + λB

The mean estimate for each one of the treatments is normally performed by
averaging the cells receiving that treatment

ŷA = yAB,1+yBA,2
2

= (µ+tA+oAB+p1)+(µ+tA+oBA+p2+λB)
2

= µ+ tA + λB
2

ŷB = yAB,2+yBA,1
2

= (µ+tB+oAB+p2+λA)+(µ+tA+oBA+p2+λB)
2

= µ+ tB + λA
2

Treatments are aliased with the carry-over effects.
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Blocking time: Cross-over designs

Let us repeat it with a strongly balaced design
``````Sequence

Period 1 2 3

ABB µ + tA + oABB + p1 µ + tB + oABB + p2 + λA µ + tB + oABB + p3 + λB
BAA µ + tB + oBAA + p1 µ + tA + oBAA + p2 + λB µ + tA + oBAA + p3 + λA

The mean estimate for each one of the treatments is normally performed by
averaging the cells receiving that treatment

ŷA = yABB,1+yBAA,2+yBAA,3
3

= (µ+tA+oABB+p1)+(µ+tA+oBAA+p2+λB)+(µ+tA+oBAA+p3+λA)
3

= µ+ tA + oBAA
3

ŷB = yBAA,1+yABB,2+yABB,3
3

= (µ+tB+oBAA+p1)+(µ+tB+oABB+p2+λA)+(µ+tB+oABB+p3+λB)
3

= µ+ tB + oABB
3

Treatments are aliased with the treatment order effects.
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Split-unit designs

We have an experiment with two factors. One of them requires large experimental
units, while the other one small ones. Additionally, the second factor can be
applied to a “small portions” of the experimental units of the first factor.

Example 47
We are investigating the effect of light and diet on the
growth of mice.

The experimental unit for the light factor is the
whole room, all cages receive the same treatment
(number of light hours)
The experimental unit for the diet is the cage, all
mice in the same cage receive the same treatment.

These designs are called split-unit designs
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Split-unit designs

Let us call P the factor applied to large units and Q the factor applied to small
units. Assume that a large unit receives the treatment pj and it is allocated to the
i-th block.

From the point of view of the large unit the observations should respond to the
model

zij = µ+ bi + pj + ηij

Assume that a small unit receives the treatment qk .
From the point of view of the small unit

yijk = µ+ mij + qk + (pq)jk + εijk

where mij contains the main effects of the blocks and the P treatments and their
interactions.
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Split-unit designs

Both models can be integrated in a single model

yijk = µ+ bi + pj + ε′ij + qk + (pq)jk + εijk

with
zij = yij·
ηij = ε′ij + εij·

mij = bi + pj + ε′ij
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Split-unit designs

Example 48
We are investigating the effect of 5 irrigation systems
(large unit factor, P), and 3 rice variants.
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Split-split-unit designs
We may nest several variables requiring increasingly small experimental units like
the design in the example below.

Example 49
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Criss-cross designs

If both treatments require relatively large experimental units, we may apply one of
them on the columns, and another one on the rows.

Example 50
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Randomization

Example 51
8 students are divided in two groups, each student has
the same probability of being in each group. Group 1
(A,B,C,D) receives a special training program, while
Group 2 (E,F,G,H) receives the standard training. The
scores in a test are

F A C H E B G D
19 16 15 15 14 13 12 10

The probability of 4 students being at the top of the list
by chance is p-val=1/70 (= 1/C(8, 4)). The fact that we
have randomly assigned students to both groups make
the results “generalizable” to the whole population.
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Randomization

Example 52
We give a test to 8 students. The scores are

F A C H E B G D
19 16 15 15 14 13 12 10

We observe that the 4 top scores (F,A,C,H) correspond
to females, while the 4 bottom scores (E,B,G,D)
correspond to males. The fact that we have a
post-hoc observation makes the result less reliable
(case-studies). We might have found any other spurious
pattern (the 4 older people, the 4 blond people, the 4
people born from Aries to Virgo, ...)
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Randomization

If all units are known at the beginning of the experiment, randomization can
be performed simply by a random permutation (performed by a computer,
not by a person)

F A C H E B G D
If units arrive sequentially, we may assign randomly the treatment depending
on the number of already assigned units. We assign to Group 1 with
probability

p1 = 4− g1
8− g1 − g2

where we will have in total 8 units, 4 assigned to Group 1 and 4 to Group 2,
and g1 and g2 are the number of units assigned until this moment to each
one of the groups.

2. Foundations revisited October 14, 2016 87 / 90



Randomization

If units arrive sequentially, more complex schemes may be followed. The
probability of being assigned to A, which initially is 0.5, is modified by the
number of subjects in treatments A and B for each one of the characteristics.

Example 53
For instance, we are conducting a clinical trial with 2 treatments (A and B) in
which we classify patients by age, sex and occupation. Assume that a new patient
arrives with an age of 28 years, male, and occupation IV, and that the previous
patients have been allocated as

A B
Age
<30 10 6 → 6/10
30-50 12 12
50-70 4 5
>70 4 7
Sex
Male 17 14 → 14/17
Female 13 16
Occupation
I 5 8
II 9 13
III 7 2
IV 9 7 → 7/9

The probability of being assigned to
treatment A is

pA = 0.5 6
10

14
17

7
9 = 0.19
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Randomization

In clinical studies it is important that the patient
(=single blind) AND the doctor (=double blind)
do not know (cannot guess) which is the
treatment being applied, because this may bias
the results (doctors/patients tend to evaluate
differently if they know that they have been
given Treatment 1 instead of Treatment 2).
Doctors should not be able to distinguish which
patient is receiving which treatment.

For small number of treatments, blocks should
contain more than 1 replicate of each treatment.
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Factorial design

Example 50
We want to find the optimal combination of number of
meals and daily calories for a weight loss diet. We are
thinking of 3 or 5 meals, and 1500, 1700 or 1900 calories.
5 individuals will be given all possible combinations:

Meals Calories
Treatment 1 3 1500
Treatment 2 3 1700
Treatment 3 3 1900
Treatment 4 5 1500
Treatment 5 5 1700
Treatment 6 5 1900
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Factorial design

Factor Set of treatments of a single type (e.g., No.
Meals or Calories)

Level of a factor Particular treatment from the set (e.g.,
1500, 1700, 1900)

Experimental treatment A combination of one level from each factor
(e.g., 3 meals, 1500 calories)

Main effect Comparison between levels of a single factor
(e.g. 3 vs 5 meals)

Interaction
Comparison between levels of several factors
(e.g. 3 meals and 1500 calories vs 3 meals
and 1700 calories)

Factorial designs ...
test the main effects of each factor with a variety of other levels improving the
relevance of the study.
allow estimating interactions between factors.
reduce the number of samples with respect to the change only one variable at
a time.
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Incomplete factorial design

Designs must not be full factorial if some combinations of treatments make no
sense. If we remove some of the combinations we increasingly loose orthogonality,
but the loss may compensate for not performing nonsensical combinations

Example 51
Factor A Factor B Factor C

Treatment 0 no no no
Treatment 1 no no yes
Treatment 2 no yes no
Treatment 3 no yes yes
Treatment 4 yes no no
Treatment 5 yes no yes
Treatment 6 yes yes no
Treatment 7 yes yes yes
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Factorial design + Control
There can be designs similar to factorials but with an extra replicate control. The
way we perform the control has effects on the analysis.

Example 52
Given NA = 3 levels of Factor A and NB = 3 of Factor B, we have two possible
designs with an extra control.

Design I: Nreplicates = 6, (NANB + Control)Nreplicates = (3× 3 + 1)× 6 = 60 units
Design II: Nreplicates = 5, NA(NB + Control)Nreplicates = 3× (3 + 1)× 5 = 60 units

Design I Design II
Replicates Control 6 15

Replicates A 18 15
Replicates AB 6 5

Variance Control-AB 2σ2
6 = 0.33σ2 σ2

15 + σ2

5 = 0.27σ2

Variance Control-A σ2

6 + σ2

18 = 0.22σ2 2σ2
15 = 0.13σ2

Variance A1-A2
2σ2
18 = 0.11σ2 2σ2

15 = 0.13σ2

Variance AB1-AB2
2σ2
6 = 0.33σ2 2σ2

5 = 0.4σ2

3. Factorial designs October 14, 2016 7 / 68



Complicated “factorial” designs

Example 53
We want to compare two chemicals (E and O) versus a control. Chemical O is an
oil requiring a surfactant (S1 or S2). The application can be performed with two
different sprayers (SP1 or SP2). Three concentrations of the chemicals will be
used. The anticipated comparisons will be: O vs E; O or E vs Control; Main effect
of the surfactants; Main effect of the sprayers; Conc1 vs Conc2 vs Conc3. The
number of replicates could be

Chemical Surfactant Sprayer Conc1 Conc2 Conc3
O S1 SP1 ×1 ×1 ×1
O S1 SP2 ×1 ×1 ×1
O S2 SP1 ×1 ×1 ×1
O S2 SP2 ×1 ×1 ×1
E SP1 ×2 ×2 ×2
E SP2 ×2 ×2 ×2

Control SP1 ×5
Control SP2 ×5
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2k Two-level factorial designs
When each factor has only two levels, the design is called two-level k factorial
design (2k).

Example 54
We want to determine the effect of a mammalian water balance
hormone in amphibia. Two species (=Factor P) are studied (toads=0,
frogs=1), at two levels of hormone (=Factor Q, control=0,
hormone=1), and two pre-experiment moisture conditions (=Factor R,
wet=0, dry=1). We measure the percentage increase in weight after
immersion in water for 2h. 2 replicates are studied for each treatment
combination. The results are

Species(P) Moisture(Q) Hormone(R) Results
Toad wet control 2.31 -1.59
Toad wet hormone 28.37 14.16
Toad dry control 17.68 25.23
Toad dry hormone 28.39 27.94
Frog wet control 0.85 2.90
Frog wet hormone 3.82 2.86
Frog dry control 2.47 17.72
Frog dry hormone 13.71 7.38
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2k Two-level factorial designs
Let us call

(1) the mean of the observations with no treatment applied
(P = Q = R = −1)
P the effect size of applying P=1
p the mean of the observations that has P=1
PQ the effect size of applying P=1 and Q=1
pq the mean of the observations that have P=1 and Q=1
...

We may estimate the effect size of P as the difference between those observations
with P = 1 and P = −1. But this can be done in many different ways

P̂ = p − (1)
= p+pq

2 − 1+q
2

= p+pq+pr
3 − 1+q+r

3
= p+pq+pr+pqr

4 − 1+q+r+qr
4 = 1

4 (p − 1)(q + 1)(r + 1)
= pq+pr+pqr

3 − q+r+qr
3

= ...
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2k Two-level factorial designs

The following table shows how to choose the signs to estimate the different effects.
It is contructed by setting the signs for P, Q and R. Then the rest of columns
(PQ, PR, QR, PQR) are simply the multiplication of the corresponding signs.

Estimate µ P Q PQ R PR QR PQR
(1) + - - + - + + -
p + + - - - - + +
q + - + - - + - +
pq + + + + - - - -
r + - - + + - - +
pr + + - - + + - -
qr + - + - + - + -
pqr + + + + + + + +

For instance to estimate PQR we would have

P̂QR = 1
4 (−1 + p + q − pq + r − pr − qr + pqr)
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2k Two-level factorial designs
Similarly

P̂ = 1
4 (p − 1)(q + 1)(r + 1) = 1

2k−1 (p − 1)(q + 1)(r + 1)
Q̂ = 1

4 (p + 1)(q − 1)(r + 1)
R̂ = 1

4 (p + 1)(q + 1)(r − 1)
P̂Q = 1

4 (p − 1)(q − 1)(r + 1)
Q̂R = 1

4 (p + 1)(q − 1)(r − 1)
P̂R = 1

4 (p − 1)(q + 1)(r − 1)
P̂QR = 1

4 (p − 1)(q − 1)(r − 1)
µ̂ = 1

8 (p + 1)(q + 1)(r + 1) = pqr+pq+pr+qr+p+q+r+1
2k

General formulas for k factor and r replicates for each treatment

êffect = 1
2k−1 (p1 ± 1)(p2 ± 1)...(pk ± 1)

Var{effect} = σ2

r2k−2

SS{effect} = r2k−2(effect)2
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2k Two-level factorial designs

In matrix form

2k µ̂

2k−1P̂
2k−1Q̂
2k−1P̂Q
2k−1R̂
2k−1P̂R
2k−1Q̂R
2k−1P̂QR


=



+1 +1 +1 +1 +1 +1 +1 +1
−1 +1 −1 +1 −1 +1 −1 +1
−1 −1 +1 +1 −1 −1 +1 +1
+1 −1 −1 +1 +1 −1 −1 +1
−1 −1 −1 −1 +1 +1 +1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
−1 +1 +1 −1 +1 −1 −1 +1





1
p
q
pq
r
pr
qr
pqr


or equivalently

ŷ = Ux

U is an orthogonal matrix (the rows and columns of U are orthogonal to each
other, U−1 = 1

detU UT ), so

x = 1
detUUT ŷ
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2k Two-level factorial designs
The data generation model comes from this latter equation x = 1

detU UT ŷ and it
can be expressed as

xijkl = µ
+0.5

(
(−1)i−1P + (−1)j−1Q + (−1)k−1R

)
+0.5

(
(−1)i+j−2PQ + (−1)i+k−2PR + (−1)j+k−2QR

)
+0.5

(
(−1)i+j+k−3PQR

)
+εijkl

Example 55
xtoad,dry,control = x010 = µ

+0.5(−P + Q − R)
+0.5(−PQ − PR − QR)
+0.5(+PQR)

xtoad,dry,hormone = x011 = µ
+0.5(−P + Q + R)
+0.5(−PQ + PR + QR)
+0.5(−PQR)
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2k Two-level factorial designs

Example 56
We are interested in testing if there is a difference due to the
hormone in toads with a dry period before getting immersed in
water

c = xtoad,dry,hormone − xtoad,dry,control = x011 − x010
= R − PR + QR − PQR
= effecthormone
−effect(toad,hormone)
+effect(dry,hormone)
−effect(toad,dry,hormone)

Each effect in c has a variance σ2

r2k−2 = σ2

2·23−2 = σ2

4 . So the variance of
c depending on the model is

Full model 4σ24
No 3rd order interactions (PQR = 0) 3σ24
No 2nd order interactions (PQ = PR = QR = PQR = 0) σ2

4
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2k Two-level factorial designs

Example 56(continued)
The model we choose has consequences in the analysis results

Model Estimate of
x011 − x010

Std.Error of
estimate

95%
Confidence
interval

Full model 6.7 5.88 (−6.28, 20.28)
No 3rd order 10 5.09 (−1.76, 21.76)
No 2nd order 7.38 2.94 (0.59, 14.17)

Factorial designs allow estimating many interactions. But
the simpler the model, the better. The choice to remove interactions must
be done before the experiment, never after seeing the experiment results.
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3k , 4k , ... High-level factorial designs

High-level factorial designs are possible, but the analysis gets more and more
complicated. For example for the 32-factorial design

P̂ ′ = 1
3 (p2 − p0)(q2 + q1 + q0)

P̂ ′′ = 1
6 (p2 − 2p1 + p0)(q2 + q1 + q0)

Q̂′ = 1
3 (p2 + p1 + p0)(q2 − q0)

Q̂′′ = 1
6 (p2 + p1 + p0)(q2 − 2q1 + q0)

P̂ ′Q̂′ = 1
2 (p2 − p0)(q2 − q0)

P̂ ′Q̂′ = 1
4 (p2 − p0)(q2 − 2q1 + q0)

P̂ ′′Q̂′ = 1
4 (p2 − 2p1 + p0)(q2 − q0)

P̂ ′′Q̂′ = 1
8 (p2 − 2p1 + p0)(q2 − 2q1 + q0)

µ̂ = 1
9 (p2 + p1 + p0)(q2 + q1 + q0)
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Replication of factorial designs

Example 57
We may replicate a factorial design by simply repeating the sequence of
experiments. However, repeating in the same order is not a good idea,
randomisation is better (to avoid the influence of the order of treatments). For
example, for a 23-factorial design we may perform:

Design run Treatment Experimental run
0 000 7
1 001 2
2 010 15
3 011 10
4 100 1
5 101 3
6 110 5
7 111 13
8 000 9
9 001 8
10 010 14
11 011 0
12 100 6
13 101 12
14 110 4
15 111 11
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Factorial designs and single replicates

High-order interactions can be assimilated to the error, and single replicate
factorial designs may be conceived.

Example 58
We are interested in the survival of Salmonella typhimurium
under 3 experimental factors: 3 levels of sorbic acid (=Factor S),
6 levels of water activity (=Factor A), and 3 levels of pH
(=Factor P). The data will be the log (density/ml) measured
after 7 days after treatment started.

We have 3× 6× 3 = 54 treatments, and we will use a single
replicate for each treatment.
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Factorial designs and single replicates

Example 58(continued)
The data analysis table would be

SS df MS F
Water activity (A) 81.57 5=(6-1) 16.31 473>F0.95,5,20
Sorbic acid (S) 2.76 2=(3-1) 1.38 40>F0.95,5,20
pH (P) 0.01 2=(3-1) 0.01 0.2<F0.95,2,20
AS 1.32 10=(6-1)(3-1) 0.13 3.8>F0.95,10,20
AP 0.45 10=(6-1)(3-1) 0.04 1.3<F0.95,10,20
SP 0.23 4=(3-1)(3-1) 0.06 1.7<F0.95,4,20
ASP ≈Error 0.69 20=(6-1)(3-1)(3-1) 0.03
Total 87.03 53

The problem with single replicate, factorial designs is that 1) it is difficult to
use blocking, 2) due to the lack of replication, there is no possibility to
construct an unbiased estimate of the noise.
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Fractional replication

Example 59
We are interested in a cell line as biologics bioreactor, and we
want to optimize production. We have identified 7 variables we
may control (temperature, humidity, pH, O2 concentration, CO2
concentration, glucose concentration, aminoacid concentration).
For each variable we have 2 possible values. There are 27 = 128
possible treatments, but we can only afford 64. We do not foresee
3rd order interactions or higher. Can we perform this experiment?

The number of degrees of freedom needed to identify main effects
and 2nd order interactions is

df
Main effects 7
2nd Order Interactions 21=C(7,2)=7!/(2!5!)

So we need 28 samples plus sufficient replication for estimating
the error. For instance, if we perform 64 experiments, there would
be 37 df for the noise.
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2k−1 Factorial design

Let us perform 1/2 of a full 2k factorial design. We need to find an appropriate
subset and understand its consequences. Let us consider the full factorial design
with 3 factors:

Treatment P Q R PQ PR QR PQR
000 - - - + + + -
001 - - + + - - +
010 - + - - + - +
011 - + + - - + -
100 + - - - - + +
101 + - + - + - -
110 + + - + - - -
111 + + + + + + +

This matrix also defines how to estimate the different contributions. For instance

P̂ = 1
4 (−y000 − y001 − y010 − y011 + y100 + y101 + y110 + y111)

P̂QR = 1
4 (−y000 + y001 + y010 − y011 + y100 − y101 − y110 + y111)
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2k−1 Factorial design

We now choose 4 (one half) treatments that preserve column orthogonality
amongst the treatments

Treatment P Q R PQ PR QR PQR
001 - - + + - - +
010 - + - - + - +
100 + - - - - + +
111 + + + + + + +

Actually, the column for P is the same as the one for QR, meaning that when we
compute

P̂ + QR = −y001 − y010 + y100 + y111
we are confounding P with QR, we cannot distinguish between the effect of boths,
but we presume that the main effect of P is larger than the QR interaction. This
is also called aliasing.
In this design there are other aliasings (Q with PR, R with PQ, and the mean (1)
with PQR).
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2k−1 Factorial design

The previous design is not the only 2k−1 we can do with k =. Here we show other
two designs

Treatment P Q R PQ PR QR PQR
000 - - - + + + -
011 - + + - - + -
101 + - + - + - -
110 + + - + - - -

In the design above the aliasings are exactly the same as before (P with QR, Q
with PR, R with PQ, and (1) with PQR).

Treatment P Q R PQ PR QR PQR
001 - - + + - - +
010 - + - - + - +
101 + - + - + - -
110 + + - + - - -

In the design above the aliasings are P with PQR, PQ with PR, and (1) with QR.
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2k−1 Factorial design
Another way of constructing a 23−1 design is by starting with a 22 design (2=3-1).

Treatment P Q PQ
00 - - +
01 - + -
10 + - -
11 + + +

The we change PQ by R, knowing that we will be confounding R with PQ
Treatment P Q R≡PQ

001 - - +
010 - + -
100 + - -
111 + + +

Then automatically other confoundings will be caused
Treatment P Q R≡PQ PR≡Q QR≡P PQR≡ (1)

001 - - + - - +
010 - + - + - +
100 + - - - + +
111 + + + + + +
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2k−p Factorial design
The design R ≡ PQ can be written as 3 ≡ ±12 meaning that the third column is
the product of the first two (or minus the product of the first two). For a 2k−p

design we need p design equations, e.g., a 28−3 design can be achieved with

6 ≡ ±345
7 ≡ ±1245
8 ≡ ±1235

If we multiply again by the 6th, 7th, 8th columns, then we have the equations

(1) ≡ ±3456
(1) ≡ ±12457
(1) ≡ ±12358

That are called the generators of the design. The length of the shortest word
amongst the generators is called the resolution. In our example length(3456)=4,
so our design is of resolution IV

28−3IV design
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2k−p Factorial design and Resolution
Given the generator we may discover the rest of confounding terms associated to
that equation:

(1) ≡ 3456, 3 ≡ 456, 4 ≡ 356, 5 ≡ 346, 6 ≡ 345, 34 ≡ 56, 35 ≡ 46, 36 ≡ 45
Resolution Ability Example

I Not useful: an experiment of exactly one run only tests one level of a factor (1)≡1
and hence can’t even distinguish between the high and low levels of that factor

II Not useful: main effects are confounded with other main effects (1)≡12
III Estimate main effects, but these may be confounded with two-factor interactions (1)≡123
IV Estimate main effects unconfounded by two-factor interactions. (1)≡1234

Estimate two-factor interaction effects, but these may be confounded with other two-factor interactions
V Estimate main effects unconfounded by three-factor (or less) interactions. (1)≡12345

Estimate two-factor interaction effects unconfounded by two-factor interactions.
Estimate three-factor interaction effects, but these may be confounded with other two-factor interactions.

VI Estimate main effects unconfounded by four-factor (or less) interactions. (1)≡123456
Estimate two-factor interaction effects unconfounded by three-factor (or less) interactions.
Estimate three-factor interaction effects, but these may be confounded with other three-factor interactions.

Example 59 (continued)
We have identified 7 variables we may control, but we cannot afford more than 64
experiments. We do not foresee 3rd order interactions or higher. Can we perform this
experiment?
We can do with even less (32 experiments): 27−2

IV with generators 6 ≡ 123 and 7 ≡ 124
... But I can afford up to 64 experiments, and I don’t mind doing more than 32 to
increase results accuracy!!!
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Mirror-image foldover designs

Given a resolution III design we may increase its resolution to IV by mirroring it.
All we have to do is to replicate the experiment and change the signs of all
treatments

Example 61
For a 25−2 fractional factorial design we have

X1 X2 X3 X4 = X1X2 X5 = X1X3 X1 X2 X3 X4 X5
Run 1 - - - + + Run 9 + + + - -
Run 2 - - + + - Run 10 + + - - +
Run 3 - + - - + Run 11 + - + + -
Run 4 - + + - - Run 12 + - - + +
Run 5 + - - - - Run 13 - + + + +
Run 6 + - + - + Run 14 - + - + -
Run 7 + + - + - Run 15 - - + - +
Run 8 + + + + + Run 16 - - - - -

Original design Mirrored design
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Irregular fractions of 2k Factorial designs
We may adopt a regression approach to the analysis of 2k factorial designs. With
the -1 and 1 encoding, the regression model would look like

yijk = β0 + βppi + βqqj + βpqpiqj + βr rk + βprpi rk + βqrqj rk + βpqrpiqj rk
y = Aθ

Consider the fractional design

Treatment
001
010
100
111

−→

A =

1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 1 1 1 1 1 1 1



ATA =



4 0 0 0 0 0 0 4
0 4 0 0 0 0 4 0
0 0 4 0 0 4 0 0
0 0 0 4 4 0 0 0
0 0 0 4 4 0 0 0
0 0 4 0 0 4 0 0
0 4 0 0 0 0 4 0
4 0 0 0 0 0 0 4


Eigenvalues: 8(4), 0(4)
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Irregular fractions of 2k Factorial designs

We now add two extra measurements (000 and 011)

Treatment
000
001
010
011
100
111

−→

A =


1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 1 1 1 1 1 1 1



ATA =



6 −2 0 0 0 0 2 2
−2 6 0 0 0 0 2 2
0 0 6 −2 2 2 0 0
0 0 −2 6 2 2 0 0
0 0 2 2 6 −2 0 0
0 0 2 2 −2 6 0 0
2 2 0 0 0 0 6 −2
2 2 0 0 0 0 −2 6


Eigenvalues: 8(6), 0(2)
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Irregular fractions of 2k Factorial designs
Finally, we may compare it to the full factorial by adding two extra measurements
(101 and 110)

Treatment
000
001
010
011
100
101
110
111

−→

A =



1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1



ATA =



8 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0
0 0 8 0 0 0 0 0
0 0 0 8 0 0 0 0
0 0 0 0 8 0 0 0
0 0 0 0 0 8 0 0
0 0 0 0 0 0 8 0
0 0 0 0 0 0 0 8


Eigenvalues: 8(8)
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Screening designs

Example 62

We are screening drugs and we expect that most of them
do not have any effect. We also expect that there is no
interaction between compounds. Can we screen many
different compounds with as few runs as possible?

If very few effects are expected to have an effect, and we do not expect
interactions, we may opt for a Resolution III design (they can estimate main
effects, but confounded with 2nd order interactions).
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Saturated designs

Example 63
Let us design an experiment for screening 7 factors with just 8(= 23) treatments.

1) We start from a cyclic design to
compare 7 treatments in 7 blocks
of three units per block.

Block 1 2 3 4 5 6 7
Treatments 1 2 3 4 5 6 7

2 3 4 5 6 7 1
4 5 6 7 1 2 3

2) We now convert each block (i)
to a factor, and put +1 if the
treatment j was in block i . Finally
add a run with all factors

Factor 1 2 3 4 5 6 7
Run 1 + - - - + - +
Run 2 + + - - - + -
Run 3 - + + - - - +
Run 4 + - + + - - -
Run 5 - + - + + - -
Run 6 - - + - + + -
Run 7 - - - + + + +
Run 8 + + + + + + +
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Plackett-Burman designs

Plackett-Burman designs are also very
popular for screening a large number of
factors. They exist for a number of runs
that is a multiple of 4 (20 in the
example).

Example 64
Let us design an experiment for screening 16
factors with just 20 treatments.
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Blocking causes confounding

Example 65
Consider a 23 full factorial design with factors A,B,C . We need 8 runs to perform the
experiment. But we cannot run more than 4 experiments per day (and differences
between days can be expected). The day of the experiment acts as a blocking variable.

yijk = bblock(ijk) + β0 + βAai + βBbj + βABaibj + βCck + βACaick + βBCbjck + βABCaibjck

Treatment A B AB C AC BC ABC Day
(1) - - + - + + - Day 1
a + - - - - + + Day 2
b - + - - + - + Day 2
ab + + + - - - - Day 1
c - - + + - - + Day 2
ac + - - + + - - Day 1
bc - + - + - + - Day 1
abc + + + + + + + Day 2
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Blocking causes confounding

Example 65(continued)
We now reorganize treatments in the same block together

Treatment A B AB C AC BC ABC Day
(1) - - + - + + - Day 1
ab + + + - - - - Day 1
ac + - - + + - - Day 1
bc - + - + - + - Day 1

a + - - - - + + Day 2
b - + - - + - + Day 2
c - - + + - - + Day 2

abc + + + + + + + Day 2

In Day 1 we only have - signs in ABC, while in Day 2 we only have + signs. This means
that the ABC effect has been confounded with the blocks. For the rest of variables, each
block contains the same number of + and - signs.

The only way of escaping from confounding is by replication.
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Blocking causes confounding

Example 66
Assume that we cannot perform more than 2 experiments per day, and we decide to
sacrifice BC interactions. Now the blocks may look like

Treatment A B AB C AC BC ABC Day
(1) - - + - + + - Day 1
bc - + - + - + - Day 1

ab + + + - - - - Day 2
ac + - - + + - - Day 2

a + - - - - + + Day 3
abc + + + + + + + Day 3

b - + - - + - + Day 4
c - - + + - - + Day 4
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Blocking causes confounding

Once we decide to confound a treatment, other treatments get also confound. In
the example we have decided to confound BC and ABC. However, any other
treatment that can be reached by generalized interaction also gets confounded

Given any two interactions, the generalized interaction is obtained by
multiplying the factors (in capital letters) and ignoring all the terms with an
even exponent.

ABC × BCD = AB2C2D = AD
AB × BC × ABC = A2B3C2 = B

In our example
BC × ABC = AB2C2 = A

A has also been confounded!!!
A better choice would have been AB and BC.
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Blocking 2k factorial designs

Let us show the procedure through an example

Example 67
We have an experiment with 5 two-level factors (A,B,C,D,E) and consequently there are
25 = 32 treatments to be estimated. The runs need to be allocated in 8 = 23 blocks of
size 4 = 22. We need to confound 7 = 23 − 1 treatments. But these confounded
treatments are not independent.

1) Choose 3 treatments to confound: AD, BE, ABC
2) Construct the remaining 4 treatments by generalized interaction:

AD × BE = ABDE
AD × ABC = BCD
BE × ABC = ACE
AD × BE × ABC = CDE
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Blocking 2k factorial designs

Example 67(continued)
3) Write the treatments in the standard order

(1) a b ab c ac bc abc
d ad bd abd cd acd bcd abcd
e ae be abe ce ace bce abce
de ade bde abde cde acde bcde abcde

4) Construct a principal block:
A treatment belongs to the principal block if it has an even number of letters in
common with the generating, confounded treatments (AD, BE, ABC).
If two treatments belong to the principal block, so does their generalized interaction.

The principal block is not unique. In this case we will use

Block 1
(1)
acd
bce

abde(=acd× bce)
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Blocking 2k factorial designs

Example 67(continued)
5) Construct the rest of blocks by multiplying the first block by the “head” of the
columns in the standard table

(1) a b ab c ac bc abc
d ad bd abd cd acd bcd abcd
e ae be abe ce ace bce abce
de ade bde abde cde acde bcde abcde

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8
(1) a b ab c ac bc abc
acd cd abcd bcd ad d abd bd
bce abce ce ace be abe e ae
abde bde ade de abcde bcde acde cde
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Blocking mixed-level factorial design

Example 68
We want to test the effect in maize growth of

2 levels of nitrogen (N)
3 spatial arrangements (S)
2 management systems (M)
2 maize genotypes (G, if possible)

We have 4 blocks of 12 plots each. We want to estimate
all main effects and the interactions NS, NM, NSM, GN,
GS, GM.
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Blocking mixed-level factorial design

Example 68(continued)
If the 2 genotypes are not tested we have 12 treatments
that will be allocated in the 12 plots and replicated 4
times. The ANOVA table in this case would be

df
Blocks 3

Nitrogen (N) 1
Spacings (S) 2

Management (M) 1
NS interactions 2
NM interactions 1
SM interactions 2
NSM interactions 2

Error 33
Total 47

33 df for the error is a lot, so we try to introduce the
genotypes.
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Blocking mixed-level factorial design

Example 68(continued)
1 To be able to estimate main effects of a factor (e.g. G), each level must

appear the same number of times in each block and appear with each of the
combinations of the rest of factors (e.g. NSM).

Block I Block II
n1s1m1g1 n1s1m1g2
n1s2m2g2 n1s2m2g1
n1s3m1g1 n1s3m1g2
n1s1m2g2 n1s1m2g1
n1s2m1g1 n1s2m1g2
n1s3m2g2 n1s3m2g1
n2s1m1g1 n2s1m1g2
n2s2m2g2 n2s2m2g1
n2s3m1g1 n2s3m1g2
n2s1m2g2 n2s1m2g1
n2s2m1g1 n2s2m1g2
n2s3m2g2 n2s3m2g1

2 replicates of the following design will
be performed.

It can be easily verified that N, S and M
fulfill this condition. G is the most

compromised factor and looking at the
table this condition is fulfilled.
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Blocking mixed-level factorial design

Example 68(continued)
2 To be able to estimate 2nd order interactions (e.g. GN), each combination

must appear the same number of times in each block and appear with each
of the combinations of the rest of factors (e.g. SM).

Block I Block II
n1s1m1g1 n1s1m1g2
n1s2m2g2 n1s2m2g1
n1s3m1g1 n1s3m1g2
n1s1m2g2 n1s1m2g1
n1s2m1g1 n1s2m1g2
n1s3m2g2 n1s3m2g1
n2s1m1g1 n2s1m1g2
n2s2m2g2 n2s2m2g1
n2s3m1g1 n2s3m1g2
n2s1m2g2 n2s1m2g1
n2s2m1g1 n2s2m1g2
n2s3m2g2 n2s3m2g1

n1g1 and n1g2 fulfill this condition as has
been highlighted. n2g1, n2g2 also do as
can be easily verified.

NS, NM, SM, GS and GM interactions
also fulfill this criterion.
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Blocking mixed-level factorial design

Example 68(continued)
3 To be able to estimate 3rd order interactions (e.g. NSM), each combination

must appear the same number of times in each block and appear with each
of the combinations of the rest of factors (e.g. G).

Block I Block II
n1s1m1g1 n1s1m1g2
n1s2m2g2 n1s2m2g1
n1s3m1g1 n1s3m1g2
n1s1m2g2 n1s1m2g1
n1s2m1g1 n1s2m1g2
n1s3m2g2 n1s3m2g1
n2s1m1g1 n2s1m1g2
n2s2m2g2 n2s2m2g1
n2s3m1g1 n2s3m1g2
n2s1m2g2 n2s1m2g1
n2s2m1g1 n2s2m1g2
n2s3m2g2 n2s3m2g1

n1s1m1 fulfills this condition as has been
highlighted. The rest of NSM
combinations also do as can be easily
verified.

But s3m1g1 does not.
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Blocking mixed-level factorial design

Example 68(continued)

24 df for the error is enough and we have
gain much analytical capabilities.

df
Blocks 3

Nitrogen (N) 1
Spacings (S) 2

Management (M) 1
NS interactions 2
NM interactions 1
SM interactions 2
GN interactions 1
GS interactions 1
GM interactions 1
NSM interactions 2
NSG interactions 2
SMG interactions 2

Error 24
Total 47
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Incompletely confounded designs
Classical designs have concentrated in completely confounded (e.g. NSM in the
example above) or completely unconfouded effects (e.g. SMG in the example
above). However, with computers we may have partially confounded parameters

Example 69(continued)
With the same experiment as above

Block I Block II
n1s1m1g1 n1s1m1g2
n1s2m2g2 n1s2m2g1
n1s3m1g2 n1s3m1g1
n1s1m2g1 n1s1m2g2
n1s2m1g1 n1s2m1g2
n1s3m2g2 n1s3m2g1
n2s1m1g2 n2s1m1g1
n2s2m2g1 n2s2m2g2
n2s3m1g1 n2s3m1g2
n2s1m2g2 n2s1m2g1
n2s2m1g2 n2s2m1g1
n2s3m2g1 n2s3m2g2

The GNM effect is estimated as
GNM = (g2 − g1)(n2 − n1)(m2 − m1)(s1 + s2 + s3)

= +(n1m1g2 + n1m2g1 + n2m1g1 + n2m2g2)(s1 + s2 + s3)
−(n1m1g1 + n1m2g2 + n2m1g2 + n2m2g1)(s1 + s2 + s3)

GNM is not totally confounded with the blocks, it is only
partially confounded.
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Completely confounded mixed-level factorials
Consider an experiment with k factors. There is no restriction on the number of
levels of each factor (2, 3, 4, ...). If the number of experiments is restricted to 1
full replicate of the factorial, then some interactions must be confounded with the
blocks and will be inestimable.

The model of a blocked factorial experiment can be written as

y = Xθ + Zβ + ε

where θ is the vector of estimable treatment effects, and β is the vector of block
effects (confounded with the inestimable treatment effects).

The goal of the Ds -optimal design is to minimize the covariance matrix of the LS
estimator, or equivalently maximize the determinant of

X∗,Z∗ = argmax
X ,Z

XT (I − Z (ZTZ−1Z ))X

Lawson, Schaalje, Collings. Blocking Mixed-Level Factorials with SAS. J. Statistical Software, 32, 1 (2009)
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Factorial designs for quantitative factors

Example 69
We are preparing a formulation for a drug that must be
delivered as an emulsion. We may dissolve the drug in 3
compounds simltaneously. The goal is to determine the
optimal concentration of each of the three compounds
such that the amount released is maximized. We will
study 3 levels of each of the 3 compounds.

First we need to choose which function will be used to model the data
Y = β0 + β1X1 + β2X2 + ε Plane: Allows linear estimation
Y = β0 + β1X1 + β2X2 +
β11X 2

1 + β12X1X2β12X 2
2 + ε

Quadratic: Allows linear estimation

Y = A(1−e−β1X1−β2X2)+ε Asymptotic response high
Y = e−β1X1−β2X2 + ε Asymptotic response low

Y = 1
1+e−(β0+β1X1+β2X2) + ε Logistic function
1
Y = β0 + β1

X1
+ ε Michaelis-Menten

... ...
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Factorial designs for quantitative factors

Example 70
The goal of the experimental design is to distribute the samples in X1 and X2 such
that the observations, Y , obtained at this locations allow estimating with the
“maximum precision” the coefficients describing the response surface.
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Optimal designs

Our regression model, in general, will be of the form

Y = f (X,θ) + ε

The regression will find the Θ̂ that better fits the experimental data, and we
should have an expected value of the covariance matrix of Θ

Σθ

The inverse of this matrix is called Fisher’s Information Matrix

Iθ = Σ−1θ

This inverse depends solely on X (fixed by our experimental design) and σ2ε (the
experimental noise). So, by judiciously choosing the X values we should be able to
minimize the uncertainty about the regression parameters.
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Optimal designs

For linear models
Y = Xθ + ε

Σθ = σ2ε (XTX )−1
Iθ = 1

σ2
ε
XTX

The covariance of the predictions is given by

ΣY = XT ΣθX

There are several optimization criteria

D-optimal Maximize the determinant of Iθ
A-optimal Minimize the trace of Σθ

T-optimal Maximize the trace of Iθ
E-optimal Maximize the minimum eigenvalue of Iθ
G-optimal Minimize the maximum entry of ΣY
I-optimal Minimize the trace of ΣY

None of them is necessarily better than the rest and it depends on our
experimental objectives.
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(Nelder) Systematic designs

Systematic designs aim at minimizing the effect of a gradient of an interfering
variable. They are used in agricultural experiments.
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(Nelder) Systematic designs

The following design blocks two orthogonal gradients.
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Linear models and 2k factorial designs
If the model to be estimated includes only main effects and second order
interactions

Y = β0+β1X1+β2X2+β11X 2
1 +β12X1X2+β22X 2

2 +β3X3+β13X1X3+β23X2X3+β33X 2
3

then pure 2k factorial designs cannot estimate the quadratic terms of the form
X 2

i . Extra samples need to be added, converting each factor into a 3-level factor
(3k -factorial design).
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Linear models and 2k factorial designs
Centerpoints are added for

To provide a measure of process stability and inherent variability.
To check for curvature.

Centerpoint runs should begin and end the experiment, ...
... and should be dispersed as evenly as possible throughout the design
matrix.
The centerpoint runs are not randomized! There would be no reason to
randomize them as they are there as guardians against process instability and
the best way to find instability is to sample the process on a regular basis.

As a rough guide, you should generally add approximately 3 to 5 centerpoint runs
to a full or fractional factorial design.

(NIST Engineering statistics handbook)
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Linear models and 2k factorial designs

The full 3k -factorial design allows estimating 3rd order interactions

Y = β0 + β1X1 + β2X2 + β3X3 (main effects)
+β11X 2

1 + β12X1X2 + β22X 2
2 + β13X1X3 + β23X2X3 + β33X 2

3 (2nd order)
+β111X 3

1 + β112X 2
1X2 + β113X 2

1X3 + β122X1X 2
2 + β123X1X2X3 (3rd order)

+β133X1X 2
3 + β222X 3

2 + β223X 2
2X3 + β333X 3

3 (3rd order)

But the full factorial experimental quickly calls for many experiments, we may stay
at the level of the quadratic function

k Full 3k Quadratic terms
2 9 6
3 27 10
4 81 15
5 243 21
6 729 28

A fractional design is required. Typical designs are Box-Wilson central composite
designs (CCC, CCI, or CCF) or Box-Behnken designs.
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Box-Wilson Central Composite Designs

Central composite design complements a full 2k design with middle point, with a
star (axial observations).

CCC=Circumscribed
CCI=Inscribed
CCF=Face centered

The distance from the points in
the star to the center is

α = (2k)1/4

An example with k = 2 blocks.
X1 X2
-1 -1
-1 1
1 -1
1 1
0 0
0 0
−
√
2 0√
2 0
0 −

√
2

0
√
2

0 0
0 0
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Box-Behnken Designs

These designs are like the full 2k factorial with a middle sample, but the samples
are at the edges of the cube (hypercube).

The advantage is that it requires fewer runs than the
Box-Wilson designs.

CCF Box-Behnken
X1 X2 X3 X1 X2 X3
- - - 0 - -
- - + 0 - +
- + - 0 + -
- + + 0 + +
+ - - - 0 -
+ - + - 0 +
+ + - + 0 -
+ + + + 0 +
0 0 - - - 0
0 0 + - + 0
0 - 0 + - 0
0 + 0 + + 0
- 0 0 0 0 0 (3 repl)
+ 0 0
0 0 0(6 repl)

20 runs 15 runs
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Blocking Response Surface Designs

CCC allows blocking
CCF does not. Box-Behnken allows blocking only in limited circumstances.

For a CCC design, b = 2 blocks are easily obtained by separating the full factorial
design and the axial design

Block X1 X2
1 -1 -1
1 -1 1
1 1 -1
1 1 1
1 0 0
1 0 0
2 −

√
2 0

2
√
2 0

2 0 −
√
2

2 0
√
2

2 0 0
2 0 0

3. Factorial designs October 14, 2016 66 / 68



Blocking Response Surface Designs

For a CCC design, b = 3 blocks the full factorial design is split in two and the
axial design is not split.

Block X1 X2 X3
1 -1 -1 -1
2 -1 -1 1
2 -1 1 -1
1 -1 1 1
2 1 -1 -1
1 1 -1 1
1 1 1 -1
2 1 1 1
1 0 0 0
1 0 0 0
2 0 0 0
2 0 0 0
3 −23/4 0 0
3 23/4 0 0
3 0 −23/4 0
3 0 23/4 0
3 0 0 −23/4

3 0 0 23/4
3 0 0 0
3 0 0 0

3. Factorial designs October 14, 2016 67 / 68



Outline

3 Factorial designs
Factorial designs
2k Factorial designs
Fractional factorial designs
Screening designs
Blocking factorial designs
Factorial designs for quantitative factors: Response Surface

3. Factorial designs October 14, 2016 68 / 68



Conclusions

C.O.S. Sorzano
coss@cnb.csic.es

National Center of Biotechnology (CSIC)

October 14, 2016

Conclusions October 14, 2016 1 / 10

coss@cnb.csic.es


Outline

4 Conclusions
Conclusions

Conclusions October 14, 2016 2 / 10



Outline

4 Conclusions
Conclusions

Conclusions October 14, 2016 3 / 10



Experiment selection key

NIST Handbook of Statistics
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Experiment selection key

Cavazzutti, M. Optimization methods: From theory to design. Chap. 2
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Conclusions

Define the objectives of the experiment.
Identify all sources of variation, including:

treatment factors and their levels
experimental units
blocking factors, noise factors, and covariates

Choose appropriate rule for assigning the experimental units to the
treatments. Remind:

Randomization
Orthogonality
Replication
Blocking

Specify the measurements to be made.
Run a pilot study if possible.
Specify the model.
Outline the analysis.
Calculate the number of observations that need to be taken.
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