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Why this course?

“In God we trust.
All others must
bring data”.

W. Edwards Deming
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Why this course?

You need to study 40 animals (20 female, 20 male; 20 treated, 20 untreated).
Only 4 animals/day can be processed, so you need 10 days to perform the
experiment. What is the optimal way of distributing the animals?

Week One

Week Two
W

T = treated, C = control, pink = female, blue = male

0. Introduction to experimental design October 14, 2016 6/ 65



Why this course?

You are studying the effect of a new drug. How will you perform the experiment
and how will you analyze the data?

| Group 1 |—b|Pn=.tesI|—b‘ Treatment ‘—b—b—-—b
| Group 2 |—b|Pre'tesI|—b-—b—b| Treatment |—D|H9s.ursr|
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Why this course?

You are looking for the optimal way of irrigating and fertilizing land to grow
sunflowers. You have 5 different ways of irrigation (CAE) and 5 different levels of
fertilizer.
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Why this course?

You cannot fix by analysis, what you have bungled by design.
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Types of experiments
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Types of experiments

[ Main Study ]

Pilot experiments are small studies (1-20 experimental subjects) used to:
Test the logistics of a proposed larger study

Gain familiarity with the experimental material,

Ensure that treatments are not obviously excessively mild or severe
Check that staff are sufficiently well trained in the necessary procedures
Ensure that all steps in a proposed future experiment are feasible.

Gain some information on variability, although this will not usually be
sufficiently reliable to form the basis of power analysis calculations of
sample size.

o ULHBNRE
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Types of experiments

Exploratory experiments can be used to generate data with which to develop hypotheses
for future testing. They may “work” or “not work”. They may have no clearly stated
hypothesis (“let’s see what happensif ...” is not a valid hypothesis on which to base an
experiment).

Often they will measure many outcomes (characters). Picking out “interesting looking
differences” (known as data snooping) and then doing a hypothesis test to see if the
differences are statistically significant will lead to serious overestimation of the magnitude
of a response and excessive numbers of false positive results. Such differences should
always be tested in a controlled experiment where the hypothesis is stated a priori before
the results are published.

Depending on the nature of the data, statistical analysis will often be done using an
analysis of variance (ANOVA)
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Types of experiments

Control Group

Experimental Groups
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Confirmatory experiments are used to test some relatively simple hypothesis stated a

priori. This is the type of experiment mainly considered in this course. The basic

principles are:
Experiments involve comparisons between two or more groups
Their aimis to test a “null hypothesis” thatthere is no difference among the groups

1.
2.

for the specified outcome.

If the null hypothesis is rejected at a certain level of probability (often 5%) this
means that the probability of getting a result as extreme as this or more extreme in
the absence of a true effect is 5% (assuming also that the experiment has been
properly conducted). So it is assumed that such a difference is likely to be the result
of the treatment. But, it could be a false positive resulting from sampling variation.
Failure to reject the null hypothesis does not mean that the treatment has no effect,
only that if there is a real effect this experiment failed to detect it. “Absence of
evidence is not evidence of absence”.
Experimental subjects need to be independently replicated because individuals (of
whatever type) vary. Two subjects can normally be regarded as being independent if
they can theoretically receive different treatments.
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Types of experiments

Control Group

Experimental Groups
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6. Subjects need to be assigned to groups, held in the animal house and measured at
random in order to minimise the chance of bias (a systematic difference between
groups)

7. As far as possible the experimenter should be “blind” with respect to the treatment
group in order to minimise bias.

8. The experiments need to be powerful, i.e. they should have a high probability of
detecting an effect of clinical or scientific importance if it is present.

9. In many cases a formal experimental design such as a “completely randomised”,
“randomised block”, “Latin square” etc. design will be used.

10. In most cases it is useful if the experiment has a wide range of applicability. In other
words the results should hold true under a range of different conditions (different
strains, both sexes, different diets, different environments etc.). At least some of
these factors should be explored using factorial and randomised block designs.

October 14, 2016 15/
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Experimental units
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Experimental units

Experimental units

“The smallest division of the experimental material such that
any two experimental units can receive different treatments”

In this study the animals are all
housed in one cage and the

£ 7
@ @ treatment is given by injection.

Any two animals can receive different

d @{M@ treatments, so the animal is the experimental
unitand the total number of subjects is N=8

In this study the animals are housed two per

W N
% % % @ cage and the treatment is given in the food or
Higy | San| S| de

water. N=4

October 14, 2016
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Experimental units

Experimental units

h §
N The experiment on the left has seven fish in each of
): & two tanks. The left-hand tank has been treated with a
- ); test substance poured into the water and the right-
Yy el hand has only the vehicle as a control. The aim is to
r= re measure the level of an enzyme in the fish. N=2.

In a crossover experiment an animal could be given a treatment for a period,
then rested and given a different treatment for a period. It is assumed that the
treatment doesn’t alter the animal, so it has to be very mild. N=12.
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Experimental units

Experimental units

In a teratology experiment the pregnant
female is treated with the test compound or
2 -‘ a placebo. The pregnant females are killed
at about mid-gestation and the pups are
M @% weighed, measured and studied for

abnormalities. N=2.

Strain WKY rats are sometimes used as a model of depression, whereas
Wistar rats are not depressive. The goal is to see if there is a relationship
between depression and pain sensitivity. So he obtains 10 rats of each
strain, houses them two per cage for three weeks and tests them inrandom
order using a standard test of pain threshold. N=2.
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Experiment design

“There's a flaw in your experimental design.
All the mice are scorpios.”

October 14, 2016 22/



Experiment design

Experiment design

A good experiment must:

1. Have a clear specification of the aims of the experiment. The hypothesis
to be tested needs to be clearly formulated before starting any detailed
planning. It should be one which the experiment is capable of answering.

It would be a serious error to look at the results of the experiment and then
adjust the hypothesis to fit them!

N
-
N ;
Let's see if the subject
responds to magnetic

stimuli.. ADMINISTER
THE MAGNET!

Interesting..there seems
1o be a significant
decrease in heart rate.
The fish must sense the
magnetic field.
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Experiment design

Experiment design

2. Be unbiased. There should be no systematicdifferences between the
treated and control groups apart from the effects of the treatment.

Bias may result in false positive results when the effects of some other factor
are confounded (mixed with) the treatment effect.

Bias is minimised by
1. correct choice of the experimental unit
2. randomisation ofthe units to treatments and in the order in which
subjects are housed and outcomes are measured
3. blindingwhere possible, using coded samples.

- — 1.Smoking is a
- Confounder known cause of CVD
o (e.g. smoking) \ Disease outcome
\ (e.g. CVD)

2. Coffee drinking could o /
be common among smokers

(not a causal link) i ESctor
(coffee drinking)

3.1f so, drinking coffee will | =

appear to be linked to CVD ' /




Experiment design

Experiment design

3. Be powerful. If the treatment really has an effect, there should be a high
chance that it can be detected. Experiments which lack power will have too
many false negative results. Power is increased by

1. Larger sample sizes

2. Good control of variability

3. Use of sensitive subjects.

However, large sample sizes cost animals and money so emphasis should be
placed on the last two of these.
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Experiment design

Experiment design

4. Have a wide range of applicability. An experiment where the results
can only be replicated in some animal houses but not in others lacks
generality. The range of applicabilityis explored using factorial and
randomised block designs which can sample different situations.

Internal validity External validity

It has a high probability of getting the The results can be generalised to
correct answer. Basically, this means other conditions or situations. Note
that it should be unbiased and that it can not have high external
powerful so that it is unlikely to validity unless it first has high
produce either a false positive or a internal validity.

false negative result.

As an example, an experiment which uses only a single strain of mice may have high
internal validity, but if the same results are not seen with other strains of mice, then
it will have low external validity.

It is acceptableto do an experiment with high internal validity but no exploration of
its external validity, provided it is made clear that the external validity is unknown.
But note that in many cases randomised block and factorial designs can be done at
little or no extra cost
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Experiment design

Experiment design

5. Experiments should be simple. They should not be so complex that
mistakes are made, the statistical analysisis excessively complex or they
are impossible to interpret.

Clearly written protocolsand stand operating procedures should be
used. In some cases it may be necessary to work to “Good Laboratory
Practice” standards
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Experiment design

Experiment design

6. It should be possible to statisticallyanalysethe result of an experiment. The
statistical analysis and the experiment should be planned at the same time.

1. Aninvestigatorshould never start an experiment without knowing how it
is going to be analysed.

2. The results of each experiment should be analysed before starting the
next one so thatthe findings from the first experiment can be taken into
account.

3. The most powerful available statistical methods should be used, such as
parametric rather than non parametric tests, where applicable.
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Avoiding bias

J Chron Dis Vol. 32, pp. 51 10 63
Pergamon Press Lid 1979, Printed in Great Britain

57 types of bias

BIAS IN ANALYTIC RESEARCH

DavID L. SACKETT

INTRODUCTION
‘Case-CONTROL studies are highly attractive. They can be executed
cost, even when the disorders of interest are rare. Furthermore, the

1 studies is b H ies have been de:
puter scanning’ of large files of hospital admission diagnoses and pril
with more detailed analyses carried out in the same data set on ai
As evidence of their growing popularity, when one original article was
from each issue of The New England Journal of Medicine, The Lan
of the American Medical Association for the yeurs, 1956, 1966 and 19
reporting case-control analytic studies increased fourfold over these t
whereas the proportion reporting cohort analytic studies fell by half
tally, a general trend toward fewer study subjects but more study
noted [2].

duction to experi



Avoiding bias

Avoiding bias

Randomisation ensures that each experimental unit has an equal probability
of receiving a particular treatment.
A successful randomisation does not allow to predict the group in advance.

Original =zrand() Sorted on =rand(} Animal number
A 0.527 A 0.067 1
A 0.100 A 0.100 2
A 0.067 A 0.122 3
A 0.122 c 0.210 4
B 0.665 B 0.248 i)
B 0.875 C 0.265 6
B 0.478 B 0.478 T
B 0.248 A 0.527 8
o 0.210 C 0.628 9
C 0.628 B 0.665 10
c 0.265 B 0.875 1"
C 0.895 C 0.895 12

0. Introduction to experimental design October 14, 2016 31



Avoiding bias

Avoiding bias

Randomisinga randomised block design

In a randomised block design the experiment is split up into a number of
small parts or “blocks”. Typically each block has one experimental unit of each
treatment (but it may have more). So if there are four treatments, block size
is four experimental units.

Animal__“=rand()" Treatmen Block
1 0.75D 1 Block 1 Block 2 Block 3
2 0.40 A 1
3 073 C 1 Group 1 Group 5 Group 9
4 0.708 1 bV |tRTB VU |rTD 0 |mrTD
e Iy NN NN
6 0.60 D 2 Group 2 Group 6 Group 10
7 0.088 2] bV | TRT A VU | rre W [rTB
8 oac 2 [N ) b
9 0.07 B 3 Group 3 Group 7 Group 11
10 0.04 A 3 V0 |RTD ¥ ) |TRTA I | |TRTC
u 0.54¢C 3 L UL UL
12 084D 3 Group & Group 8 Group 12
13 0.94D 4 V1 |mre 4 4 |mrs 11 |mrra
I S il AL [ L
15 0.80 C 4
16 0.708 4
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Avoiding bias

Avoiding bias

Randomisingand blocking two variables

1,000 Patients
400
Females
300 100
Young Old

180 + 120 + 150 + 50 180 + 120 + 150 + 50
=500 =500

Stratify By Sex:

Stratify By Age:

360
Young Old

Randomize
Each
Sub-Group:

New Treatment Current Treatment
s EMHMM, Ath Edition.
Copyright © 2008 by Saunders, an imprint of Elsevier, Inc. All ights reserved
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Avoiding bias

Treatment  Randomnumber Animal
(randomised) now sorted number
A 0.067

0.100
0122
0210
0248
0.265
0478
0527
0628
0.665
0875
0895

ODDOTPTO@EOR >
P R NN

It is not a good idea to house all
the controls in one cage, all of
treatment A in a second cage etc.
as then the cage becomes the
experimental unit. There can be
“cage effects” due to social
interactions which could seriously
bias the results (e.g. if all the
controls are fighting, but the
treated animals are not).

Avoiding bias

There is no one answer to the numbers of animals housed per cage.
It depends on species and the nature of the experiment.

How shouldthe animals be caged?

Single animalicage (shortterm)

Severalicage atrandom

[1234] [5678]

[9.10,11,12]

Randomised block design (but different randomisation
neededseelater)

|A,B,c \

ABC

|A,B,c \ |A,B,C

If animals receiving different treatments (or
genetically modified and wild type animals)
can be housed together, then a randomised
block design might be used as shown at the
bottom of the figure (above).

Introduction to

Single housing of mice and rats may be stressful

and is strongly discouraged for welfare reasons. But

male mice may fight, depending on the strain and
husbandry conditions.

Very valuable animals such as those fitted with
telemetry apparatus, or ones with a genetic
modification are sometimes housed with a
companion which is not part of the experiment.

Group housing poses problems if treatment is
given in the food or water as the cage is then
the experimental unit unless sophisticated

~N

apparatus is used so that each animal can have
a different diet. This is sometimes done with
farm animals.

Group housing may also be a problem if drug
treatments are involved as rats and mice are
coprophageous so control animals may
consume metabolites of the test compound if
animals of different treatment groups are
housed together.

October 14, 2016



Avoiding bias

Avoiding bias

Blinding \EVE. DESIGNED A DOUBLE-BLIND
TRIAL.To TEST THE EFFECT OF SEXUAL
We usually have a vested interest in the ACTIY ON CARDIOVASCULAR HEAUTH.
outcome of our experiments. We might want BOTH GROUPS WILL THIMK THEYRE
to find “significant” differences between HAVING (O3 OF SEX, BUT ONE GROUP

groups, or in some cases no significant WLL ACTUALLY BE GETIING SUGAR PILLS.

differences (particularly if we are toxicologists).
So, having done the randomisation, wherever

— j
possible use the animal numbers as codes to
“blind” everyone to the treatment.

This is particularly important when making
measurements, scoring histological sections or
measuring behaviour. Blinding may be difficult
in some cases such as when comparing two
mouse strains which differ in coat colour.

THE LIMITRTIONS OF BLIND TRIALS
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Avoiding bias

Avoiding bias

Types of Binding Cressd Iy Temy Shaneyfek MD. MPH

I'ma patient
If you blind

If you ALSO

1# you ALSO
blind the o

me... researchers
SINGLE BLIND DOUBLE BLIND

Thio coic s reed 8 ke BebefComicom. Go e b ke ot youroif!

681 Bitarta ot al. » BLINDING AND RANDOMIZATION IN ANIMAL STUDAES

BRIEF REPORTS

Emergency Medicine Animal Research: Does Use of
Randomization and Blinding Affect the Results?

Vik Bebarta, MD. Dylan Luyten, MD, Kennon Heard, MD

290 animal studies were scored for blinding, randomisation and whether the outcome was positive or
negative, as defined by authors. The results are shown below:

Odds ratio
Blind/not blind 3.4 (95%C11.7-6.9)
Random/not random 3.2 (95%Cl 1.3-7.7)
Both/neither 5.2 (95% C12.0-13.5)

An odds ratio of one implies that blinding or randomisation was not associated with the outcome of an
experiment. These positive odds ratios show that on average studies which were not blinded and/or
randomised produced excessive numbers of (presumably false) positive results.
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Reducing variance

Low Variance High Variance

Low Bias

High Bias
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Reducing variance

Reducing variance

Randomized block designs

Eigure 3
Randomized Block
Design for Example 2

5 Treatment1

300 Subjects Drug X 325 mg
Random / Compare
Assignment Drop in
\ Temperature
Group 2 Treaiment 2

300 Subjects * Placebo

500
Men

—_—

1200
Subjects

upl _,  Treament1

Gro
300 Subjects Drug % 325 mg
/ Compare
500 Random

Dropin

Assignment /' Temperature
\ Gowp2 — . Trealment2

i i Randomized Block Design
Total Variation Partitioning

Women

‘Assignment to biocks is not random

Total Variation

SS(Total)

Variation Due
to Blocks

duction to exp
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Reducing variance

Reducing variance

Randomized block designs (blocking time)

20 female, 20 male. 20 treated, 20 untreated.
Only 4 animals/day can be processed — 10 days

Week One Week Two
W

T = treated, C = control, pink = female, blue = male
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Reducing variance

Reducing variance

Randomized block designs (blocking time)

20 female, 20 male. 20 treated, 20 untreated.
Only 4 animals/day can be processed — 10 days

Week One Week Two

T = treated, C = control, pink = female, blue = male
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Reducing variance

Reducing variance

Randomized block designs (blocking time)

20 female, 20 male. 20 treated, 20 untreated.
Only 4 animals/day can be processed — 10 days

Week One Week Two

T = treated, C = control, pink = female, blue = male
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Reducing variance

Reducing variance

Randomized block designs

3) and Randomize the rest
what you cannot,

1) Control whatyou can,

* Randomize positionin the shelf
+ Randomize order of feeding

+ Randomize time of treatment

* Randomize order of treatment
* Randomize ...
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Reducing variance

Reducing variance

Change experimental conditions

Chvedoff M et al (1980). Effects on mice of numbers of animal per cage: an 18-month
study. (preliminary results). Archives of Toxicology, Supplement 4:435-438

Body weight of mice housed 1, 2, 4 or 8 per cage

Crecof e 3l (1980) Aron Taxkol. Suppl 4435

t
Mice/cage o ¥ .
1 £ e
: P
. .
H
1
oYy
S R
- 1 3 ] 1 -
. .
Y :
A
L3 1 e 3 1 1 - 1]
; ;
. 3 H ¥ i
[ T B
. .
& P
Weight
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Reducing variance

Reducing variance

Choose subjects with less variability

Sleeping time under barbiturate anesthetic is sometimes used to indicate whether a
test drug alters drug metabolising enzymes. All mice receive the barhiturate and half of
them receive the test compound while the other are used as controls. A difference in
sleepingtime would indicate that the test substances alters drug metabolism.

The table below shows the number, Strain N Mean SD Noneeded* Power™
i AN 25 48 4 2307 86
mean.and. star?da.rd c!e\natlon of BALBIC 63 41 2 7 =99
sleeping time in five inbred strains C57BLHeN 29 3 3 13 b8
(A/N to SWR/HeN) and two outbred ~ C3HHe 30 2 3 13 98
stocks (CFW and Swiss) of mice SWRTHeN 38 i 4 - &8
CFW 47 48 12 @ 17
under hexobarbital anesthetic. Swiss 47 43 15 29 13

* Power analysis: number neededin a two-sample ttestto detect a 4 min.
change inthe mean (2-sided) witn a=0.05 and a power of 90%

** power of an experimentto detecta 4 min. change inthe meanifthe sample
sizeis fixed at 20 mice/group

Datafrom Jay 1955 Proc Soc. Exp Biol Med 90:378
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Reducing variance

Reducing variance

Choose subjects with less variability

Inbred strain: homozygosity

100~

Homozygosit
Effect of » .

acton of | Alleles

inbreeding on " fixed genome ] Strainl:a/a, b/b, c/c, ...

. B Strain2: A/A, B/B, C/C, ...
homozygosity &

e 40
and allele
fixation »
1] J

5 10 15
Generations of inbreeding
There is no genetic variability, all differences must be due

to environmentor treatment. J fj ‘\

But, can it be extrapolated to the whole population? They

reproduce poorly, they are not a model for all genetic
diseases.
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Reducing variance

Reducing variance

Choose subjects with less variability

Hybrid F1: homozygosity

Alleles
Strainl:a/a, b/b, c/c, ...
+
Strain2: A/A, B/B, C/C, ...

Hybrid FL: /A, b8, /C, .. J i’{ ‘\

There is no genetic variability, all differences must be due to
environment or treatment. Gain in hybrid vigor.

But, can it be extrapolated to the whole population?
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Reducing variance

Reducing variance

Choose subjects with less variability

Outbred stock: heterozygosity, but reduced genetic variability

There is limited genetic variability. More viable animals. Special care is
taken to keep the genetic variability at a maximum within the colony.

But, can it be extrapolated to the whole population?
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Reducing variance

Reducing variance

Choose subjects with less variability

Mixed stock: heterozygosity, wide genetic variability

This is more similar to the “mouse species”
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Reducing variance

Reducing variance

Genetics of Mouse Behavior:
Interactions with Laboratory
Environment
John C. Crabbe,’* Douglas Wahlsten,? Bruce C. Dudek®

Strains of mice that show characteristic patterns of behavior are critical for
research in genetics. Possible influences of the
laboratory environment were studied in several inbred strains and one null
mutant by testing in three on a battery of six
behaviors. Apparatus, test pratocols, and many environmental variables were
rigorously equated. Strains differed markedly in all behaviars, and despite
standardization, there were systematic differences in behavior across labs. For
some tests, the magnitude of genetic differences depended upon the spe
testing lab. Thus, experiments characterizing mutants may yield results that are
idiosyncratic to a particular laboratory.

Same starting time
Same protocol order
ut significantly different results

1. Same research team

2. Same inbred strains

3. Equallycalibrated apparatus
4. Equatedhusbandry

5. Same testing protocols

6. Same age

7

8.

B

Introduction to

Crabbe, J. C.; Wahlsten, D. & Dudek, B. C. Genetics of mouse behavior:
interactions with laboratory environment. Science, 1999, 284, 1670-1672

Portland
O Edmonten
SQ%O E W Albany

Open field

Y U

under cocaine herizontal activity

Activity change

BALB/cByJ
129/SvEvTY
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Statistical Experimental Design

|FACI'ORS | [ LEVELS |

(VARIABLES, (SETTINGS) (OUTCOMES,
INPUTS) CHARACTERISTICS)

5000
—@—

EXAMPLES OF
CHARACTERISTICS:
TASTE
COLOR
CONSISTENCY
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Statistical Experimental Design

Statistical Experimental Design

The completely randomised design

123 456 7 8 910 11121314151617181920

JORERENRERNRNRNDDDD

This is the simplest design. Each experimental unit is assigned to a treatment strictly at
random without taking account of any individual characteristics. It is best used when
relatively homogeneous experimental units are available. It can tolerate unequal
numbers in each group and is perfectly adequate in many experimental situations.
Followingtreatment investigators should (where possible) be blinded by using only the
animal numbers when making measurements

If, for example, surgery is involved skill may increase, leadingto a bias against gray. If
the experiment needs to be split up, (e.g. if applyingthe treatments or if making the
measurements takes several hours or days) then this can be done in any way as the
subjects have already been randomised. However, if splitting the experiment up in this
way is likely to introduce an unknown source of variation, then the design loses power.
In such circumstances a randomised block design might be preferable.
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Statistical Experimental Design

Statistical Experimental Design

The randomised block design

Block 1 Block 2 Block 3 Block 4 Block 5
12 34 5678 910 11 12 13 14 1516 1718 19 20

NI mmnm FHAN Domm nmmn

In this design the experimental materialis split up into a number of “mini-
experiments”, typically with one subject on each treatment. It is assumed that
differences between treatments are of interest while differences between blocks,
which are random effects are of no interest.

Subjects are matched using any criteria available at the time the experiment is started.
This might be on size (as above), space (e.g. location within the animal house such as
shelf level) or time (as in within-litter experiments, where litters are infrequent). Blocks
can differ in several ways at the same time. For example, block 1 might be large animals
held on the top shelf and processed on day 1.

Although it is usual to have only a single experimental unit of each treatment in a block,
it is possible to have two or more.
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Statistical Experimental Design

Statistical Experimental Design

1V = sleep
1. 2.
2 hours sleep 10 hours skeep Matched-pairs design
Group A Group B P:II’S of |n.d|\lndualsv.\.'|th mmll:lrff
(10 students) (10 students, matched for characteristics are given two different
age, gender, normal treatments.
sleeping lenath)
DV
Reaction Time Reaction Time Randomize

treatment

treatment

Subject #22_|—{ control

l.

control

compare |

(Rt pars - blect 8 ),
\foubiectr |

Subject #4

Subject #n-1

Subject #n

treatment
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Statistical Experimental Design

Statistical Experimental Design

Cross-over design

In which the experimental unit is the animal (or other entity) for a period of time. Each
subject receives different treatments sequentially and it is assumed that the treatment does
not permanently alter the subject. The blocking factor is time, with all animals being

measured at each time. Time 1 Time2 Time 3
animal 1 (NN
nimal 2 [ ]
il > [ I

Individual animals can be “blocks”. In this case different treatments are appliedto the
shaved back of an animal. The experimental unitis an area of skin and it is assumed that the

treatments do not interact with each other. |

Blocks can be set up at different times (even weeks apart) and/or housed in different
locations.
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Statistical Experimental Design

Statistical Experimental Design

Latin squares design

Capable of removing the effect of two blocking variables (e.g., operators and
machines) and concentrate on the treatment (A,B,C,D). The following example
is a replicated latin squares design.

1 Freres 4 1 Prerey 4 1 Frerton 4
1A|B|C|D|sD|A[B|C|°C|D|A|B
ﬁz B C D A Es A B C D §M D A c
e olalB|iB|c|Dp|AalifAa]B
4 D|A|B]|C sy C|D|A|B | B|C|D|A

Rep1 Rep 2 Rep3
Factory 1 Factory 2 Factory 3
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Statistical Experimental Design

Statistical Experimental Design

Factorial design

Capable of analyzingthe effect of two or more fixed effects variables (treatments)

1 2 factor levels
< trial A B
e 1 + -
s
E 2 + +
& 3 - N
37 factorB 4 4 - +
factor levels
2 3 trial A B C
i T o+ - -
2+ - +
4
< 3+ + +
2 4 + o+ -
6
& 5 (7_’ s - - - pc X
B < 6 - - o+ pe) p.c
factor B @ 7 - + +
8 - - X X
Full factorial Fractional factorial
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Statistical Experimental Design

Statistical Experimental Design

A factorial design in which some factors are easy to change, and some others are
not. The hard-to-change factors are assigned to a whole-plot. Within this plot, the
easy-to-change factors are analyzed in a factorial way.

Easy-
asy-to-Change Altman, N. & Krzywinski, M. Split plot

design. Noture methods, 2015, 12, 165-166

5 a Split plot + CRD C split-split plot + CRD/RCBD
8 -
®
H ® e DD
O Mouse Drug  AB Tissue Housingunit [l ll Temperature

"How to Recognize a Split Plot Experiment" by Scott M. Kowalski and Kevin J. Potcner, Quality Progress, November 2003.
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Statistical Experimental Design

Statistical Experimental Design

Repeated Measures design

In which each experimental unit is measured several times without different
treatments being applied and time effects are of interest. Note that some authors
use the term “repeated measures designs” for crossover experiments in which a
subject receives different treatments over a period of time.

Time Point 1 Time Point 2 Time Point 3
Measure Variable ‘A" Measure Variable ‘A’ Measure Variable ‘A’
{e.g. blood pressure) {e.g. blood pressure) (e.g. blood pressure)
wm same people are inoaoh group (Subjects Ato E)

Level1 Level 2 Level 3
L | |

Levels (sometimes called related groups)
of the Independent Variable ‘Time”

0. Introduction to experil



Statistical Experimental Design

Statistical Experimental Design

Hierarchical design Mice: 3 treated andthree controls

In these designs more than one sample M @%@
is taken from each experimental unit, +

and in some case the samples are
sub-sampled, as illustrated, where the
liver of each individual is split into three
parts, homogenised and then o0 k:;’;';;mf;z:ﬁﬁgg“”mm’ aliquets
determinations done on two aliquots i

from each part. The usual aim is to increase power by reducing measurement error.
Sometimes the terms “technical replication” and “biological replication” are used.
The former refers to replication of measurements on the same experimental unit.

Liver splitinto 3 parts

These designs help to answer questions such as whether it is better to do more
measurements on each experimental unit (which could be relatively inexpensive) or
use more experimental units, if the aim is to increase power. In general if the
measurements on each experimental unit are variable, then that is where there
should be more replication. If they are similar, then more experimental units should
be used (ethical considerations being taken into account).
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Outline

@ Introduction to experimental design

@ Summary
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Design Guidelines

Number Comparative Screening Objective | Response Surface

of Factors | Objective Objective

1 1-factor completely
randomized design

2-4 Randomized block | Full or fractional Central composite or
design factorial Box-Behnken

5 ormore | Randomized block | Fractional factorial Screen first to reduce
design or Plackett-Burman | number of factors

Design Selection Guidelines

0. Introduction to experimental design
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Mead's Resource equation:

T+B+E=N-1

where
@ N: Number of experimental units
@ T: Number of treatments
@ N: Number of blocks
°

E: Number of degrees of freedom for the residual error. It must be between
10 and 20. Below 10, the experiment lacks of statistical power. Above 20, it
may be a waste of resources.
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@ Introduction to experimental design
@ Why this course?
@ Types of experiments
@ Experimental units
@ Experiment design
@ Avoiding bias
@ Reducing variance
o Statistical Experimental Design
@ Summary
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@ Basic designs
@ Completely Randomized Design (CRD)
o Randomized Complete Block Design (RCBD)
o Factorial design (FD)
@ Non-orthogonal designs
@ Covariates and contrasts
@ Least Squares
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@ Basic designs
@ Completely Randomized Design (CRD)
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Completely Randomized Design

Example 0

We are testing a new drug (X 325mg) for blood pressure
versus a placebo on 1000 people. We divide the group of
people in two equal groups of 500 people. Each person
will be randomly assigned to the treatment or the
placebo.

Y11 Y21
Y12 Y22

Y1,500 | Y2,500

@ yi.,¥».: Means of each one of the groups
@ y..: Overall mean
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Completely Randomized Design

The data (blood pressure) is supposed to be generated as

Yik =+t + €k

@ u is the average blood pressure of the whole population.
@ t; and t, are the effects of the drug (¢;) and the placebo (t2). It must be

2 45=0
J

@ yji is the measurement observed for the k-th individual who has been given
treatment j.

@ ¢ is the part of the observed measurement that cannot be explained by the
average and the treatment.
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Completely Randomized Design

Yik =+t + €k
@ y... average of all observations
1
Y. = " Z)’jk ~p
jk
@ y;.: average of observations in treatment j

1
V=D kRt
Ik
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Completely Randomized Design

The total variation of the data is
SS = Sl -y )2 =3 (va+2 - 2mr.)
Jjk Jjk
= VA Y = vy = Vi i =2y >y
Jjk Jjk Jk Jk jk

= Ekyﬁ( +ny? —2ny? = Zkyfk — ny?
j j

2

2 Zyjk> >

— Yy on(iyy, _Zz_</k _Zz_L

- _yjk n'-ka 7.yjk n - .yjk n
Jjk Jjk Jjk ik
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Completely Randomized Design

The treatment effect is estimated as

=y —y.mptt)—pn=t

and its associated variance

SSr = Y@= <Z:’j> .

Similarly, for the residuals

€k =Yk — Y = (L +t +ei) — (1 +t;) = e

the sum of squares of the residuals (within the treatments)

SSE = Z Ejk - Z-yjk Z n;
J
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Completely Randomized Design

The sum of squares of all measurements can be decomposed into a sum of
different components

Jjk

sS SSt + SS.
Sl —y.)? = Zk?(yj~ -y )+ Zk(yJ'k — )
J J:

and similarly for the degrees of freedom

n—l:Z(nj—l)—l—(t—l)

j

Remind in our example, n = 1000 (=total population), t = 2 (two treatments:
drug and placebo), and n; = ny = 500 (500 individuals in each treatment).
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Completely Randomized Design

Normally this is presented in a table

Source Sum of Squares Degrees of freedom | Mean squares
(SS) (df) (MS=SS/df)
Treatments | S51 = Ek:(yj —y.)? t—1 MST — Sdetr
J
Residuals | SSc=>(yx—.)? | (nj—1)=n—t | MS, = 2=
JK j ‘
Total SS=> (v —y.)? n—1
Jk

If the residuals are normally distributed, then the Linear Model checks whether the
treatments have a significant contribution explaining the variance through a
F-Snedecor statistic with t — 1 and ) _(n; — 1) degrees of freedom.

j

. Msr

MS,
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Completely Randomized Design

Example 1

Let us assume that the table in our case is

Source SS df | MS=SS/df
Treatments 256.88 1 256.88
Residuals | 13600.28 | 998 13.61

Total 13857.16 | 999
Note
13857.16 = 256.88 + 13600.28
999 = 1+998
In this case

_256.88
~ 1361

= 18.87 > 3.85 = F.95,1,908
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@ Basic designs

o Randomized Complete Block Design (RCBD)
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Randomized Complete Block Design

Reducing variance

Randomized block designs

Fiqure 3
Randomized Block
Design for Example 2
300 Subjects

500 Random
—

Wen Assignment \
Group 2
300 Subjects

1200
Subjects

Group 1
Women Assignment

Group 2
300 Subjects

‘Assignment to biocks is not random

—

e
/ 300 Subjects
500 Random

Treatment 1

Drug 326 mg
Compare
Temperature
Treatment 2

Placebo

Treatment 1

Drug % 325 mg
Compare

/v Temperature
Treatment 2

Placebo

Dropin

Dropin

Randomized Block Design
Total Variation Partitioning

Total Variation

SS(Total)




Randomized Complete Block Design

Blocks are groups of experimental units that are formed to be as homogeneous as
possible with respect to the block characteristics. The term block comes from the
agricultural heritage of experimental design where a large block of land was
selected for the various treatments, that had uniform soil, drainage, sunlight, and
other important physical characteristics. Homogeneous clusters improve the

comparison of treatments by randomly allocating levels of the treatments within
each block. (SAS)

2X2 4x1 1x4

4 6 9 8 3 6 8 3 6 2 4 5 a4 6 9 9 4 1 8 3 6
207 | 208 | 209 | 407 | 408 | 409 407 | 408 | 409 107 | 108 | 109 | 207 | 208 | 209 | 307 | 308 | 309 | 407 | 408 | 409
AEREREREE T o Ts 7|7 238 321 2]>
20 | 205 | 206 | 04 | ao5 | aos aoa | a05 | a0 104 | 105 | 106 | 208 | 205 | 206 | 308 | 305 | 306 | aoa | aos | a0
sTils|7]5]2 BERE o365 1 s]als]z]7 5]z
| 201 | 202 | 205 [ aon | a0o | aos | | o1 | a2 | a0 | 101 [ 102 | 103 | 201 | a02 | 205 | s0n | 502 | 305 | aon | 02 | ao|
2 a4 5 9 a4 1 9 a4 1

107 | 108 | 109 | 307 | 308 | 309 307 | 308 | 309

Tl 7632 RERER

10 | 105 | 106 | 304 | 305 | 305 304 | 305 | 306

sls[s|s]5]7 s [ 5|7

201 | 102 | 105 | so1 | 302 | 503 | | 201 | 302 | s03

107 | 108 | 109

104 | 105 | 106
ERIERIG
101 | 102 | 103
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Randomized Complete Block Design

Diabetes No diabetes Diabetes

Mo diabetes
mellitus mellitus mellitus mellitus
Center Center Center Center Center Center Center Center
1 2 1 1 1 1 2
Random- Random- Random- Random- Random- Randem- Random- Random-
ization in ization in ization in ization in ization in ization in ization in ization in
i | i experil p i I P experimental experimental
and control and control and control and contral and control and control and control and control
groups groups groups groups groups groups groups groups

Within each block, experimental units must be randomly assigned to treatments.
When several variables must be blocked, each combination (e.g. >55, Diabetes,
Center 1) can be treated as a block. Alternatively, each block may be treated
independently (we will see how later).

1. Basic designs October 14, 2016 15 / 51



Randomized Complete Block Design

The data (blood pressure) is supposed to be generated as

Yigk = 1+ bi + b + €k

@ y is the average blood pressure of the whole population.

@ by and b, are the differences in blood pressure between men (b;) and women
(b2), the blocks. It must be
> bi=0

i

@ t; and t, are the effects of the drug (¢;) and the placebo (t2). It must be
2 4=0
J

@ yjk is the measurement observed for the k-th individual of the i-th block who
has been given treatment j.

@ € is the part of the observed measurement that cannot be explained by the
average, block and treatment.
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Randomized Complete Block Design

We now have the relationships

o=y
[fi = yi..—y.=(u+b)—pn=0b
i = yj—y.=pu+t)—p=t )
ik = Yik—Yie —Yj TV =Yk — (L + bi + 1))
~ (u+b,~+tj+e,-jk)—(u+1;,-2)_(ﬂ+tj)+uzeijk
Y ij
ijk
ijk
SS. = Uzkjelgjk

S5 = 55+ 557+ SS.
n—-1 = (b-1)+(t-1)+(n—-b—-t+1)
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Randomized Complete Block Design

The table of the linear model becomes

Source SS df MS=SS/df
Blocks SSg b—1 MSg = .%B
Treatments | S5+ t—1 MSt = -%r
Residuals | SS. | n—b—t+1 | MS, = -ZZ
Total SS n—1

If the residuals are Gaussian, we may test whether the contribution of the blocks
or treatments are significant through the same F-Snedecor as before (pay
attention to use the corresponding degrees of freedom).

1. Basic designs
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Randomized Complete Block Design

Example 2

Let us assume that in our case it becomes
Source SS df | MS=SS/df
Blocks 1500.04 1 1500.04
Treatments 256.88 1 256.88
Residuals 12100.24 | 997 12.13
. € o Total 13857.16 | 999
k] ] a&
: uun Note
13857.16 = 1500.04 + 256.88 + 12100.24
999 = 1+4+1+997
In this case
256.88
F = ﬁ =21.17 > 3.85 = F0‘95’1’gg7
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Randomized Complete Block Design

Example 3

We want to analyze the optimal spacing (in
terms of yield measured in kilos) between plants
(10 treatments: 30 x 30, 30 x 24, 30 x 20,

30 x 15, 24 x 24, 24 x 20, 24 x 15, 20 x 20,

20 x 15, 15 x 15). To avoid possible land effects,
we divide the land in 4 blocks, and within each
block we randomly apply the 10 treatments.

We may compute the difference between many
pairs of treatments, creating a problem of Type |
error inflation by multiple testing. Instead, we
may analyze the data converting the treatments
to a numerical variable (area per plant, e.g.

30 x 30 = 900) and performing a

regression analysis of yield versus area and
making the hypothesis testing only on a single
parameter, the slo_pe.
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Randomized Complete Block Design

@ If there are clear variables to block, they should be blocked. Litters are
normally chosen as blocks (and birth weight as covariate).

e b 356 £ VI
g AT B v
¥ S/ T 4

A
e N
~

%

@ If there are no obvious blocking variables, but we may create blocks, we may
do as an “insurance” against possible patterns not yet identified.

(a) (b)

==

(© (d

(e.g. 4 block, 12 treatments)
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@ Basic designs

o Factorial design (FD)
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Factorial Design

Let's imagine a design where we have an educational program where we would like
to look at a variety of program variations to see which works best. For instance,
we would like to vary the amount of time the children receive instruction with one
group getting 1 hour of instruction per week and another getting 4 hours per
week. And, we'd like to vary the setting with one group getting the instruction
in-class (probably pulled off into a corner of the classroom) and the other group
being pulled-out of the classroom for instruction in another room.

Factors:
Major Independent Yariables

Levels:

Subdivisions ime In Instruction
of Factors

| 1 hour/week ‘ ‘ 4 hours/week |
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Factorial Design

The Null Case

Time
Ahr  dhrs

E -.
in

The data is supposed to be generated as :
& ==1hr
Z _ ——4hrs
Yijk = pb+ pi + qj + €ijk ]‘

Treatment variables are P(=amount of
time) and Q@ (=setting).

The lines in the graphs
below overlap each

Setting

other

In case that there is no effect of any of
the variables, we should not observe
differences amongst the groups.

5+040 | 5+04+0 | g =0
5+0+0 | 5+0+0 | o =0
p1 = 0 P2 = 0 o= 5
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Factorial Design

Main effects are the consistent differences observed for the levels of each one of

the factors.

Main Effects
Time
1hr ar
W Eann

——out
—=in

Il
g5
H
s
.

Outcome example if the amount of time
has an effect but the setting does not.

6-140 | 6+140 | g1 — 0
6-14+40 | 6+1+0 | g =0
pP1 = -1 P2 = 1 Hn = 6

1h

semng

woeowow D

Tlme

Main Effects

wAmooD

——1hr
——ahrs

out Main Effects of
Time and Setting

——out
—=in

Outcome example if the amount of time
and the setting have an effect.

7-1-1 | 7+1-1 | g — 1
7-1+1 | 74141 | g =1
pP1 = -1 P2 = 1 o= 7
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Factorial Design
Interaction effects exist when differences on one factor depend on the level you

are on another factor. The interactions are between factors and not between levels.

Yie = 1+ pi+ g+ (Pq) + €ijk

Interaction Effects

The 1 hour amount works
well with pull-outs while

the 4 hour works as well
with in-<class

>< ——out
—=in

6+0-+0+1(= (pg)i1) | 64+0+0-1(= (pg)i2)
6-+0+0-1(= (pg)21) | 64+0+0+1(= (pg)22) | g2 =0
p2=0 p="0

A1

q =0

October 14, 2016
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Factorial Design

Interaction Effects

1 I1r 4I1ra
The in-class 4 hour per
week group differs

from all the others

- ==put
==in

5.5—0.5—0.5+0.5(: (pC/)H) 5.540.5-0.5-0.5 (pq)lg) g1 =—-0.5
(

(=
5.5-0.5+0.5-0.5(= (pg)21) | 5.540.54+0.54+0.5(= (pg)22) | g» =05
pP1 = —-0.5 P2 = 0.5 o= 5.5

(RN

in
Ahr
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Factorial Design

Given the linear model
Yijk = i+ pi + q + (Pq)ij + €k

The model constraints are

ZP'*Z"J*ZP%*Z(W)UZO

Jj

and we may estimate each one of the components as

p=y. SS = Z( Vik —p)* df =n-1
pPi = Yi. = y.. ssp_zp, dfp = p—1
ijk
QG =Yy =y SSQ:;QJ? dfg=qg—1
Ul
(PCI),-J- =Yj —Yi.—Yj+y.. SSpqg= Xk:(pq) dfpg = (p—1)(q — 1)
ij
Eijk = Yijk = Yij- SS.=y &, df. = n— pg
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The analysis table may be represented as

Factorial Design

Source SS df MS=SS/df
P main effects SSp p—1 MSp = 55”
Q main effects | SSq g-1 MSq = jﬁg
PQ interactions | SSpg | (p—1)(q —1) | MSpg = ‘Zi:g
Residuals SS. n—pq MS, = ‘Z‘Z
Total SS n—1
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Factorial Design

Example 4

We are testing water uptake by amphibia. Frogs and toads
(species factor S) are kept in most or dry conditions before the
experiment (moisture factor M) and half of the animals are
injected with a mammalian water balance hormone

(hormone factor H). A full factorial experiment is performed with
2 animals per treatment combination (cell).

Yijkl = [ + s + m; + hi + (sm),J - (Sh),’k = (mh)jk aF Eijkl

Source S df MS Source ss df MS
Species 515.06 1 Specics 515.06 1

Moisture 471.33 1 Moisture 471.33 1

Hormone 218.01 1 Hormone 218.01 1

SM 39.50 1 SH 165.12 1

SH 165.12 I Lack of fit 140.71 3 46.90

MH 57.73 1 Error 276.05 8 57 =34.51
SMH 4343 1 sor A -

Error 276.05 8 2= 3451 Total 178633 15

Total 1786.33 15
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Factorial Design

Factors and blocks: Factors and blocks may be combined, the difference between
a block and a factor is that it makes no sense to study the interaction of blocks

Vit = p+ bi + pj + g + (pq)jk + €iju

The model constraints are
dob=>p= qu Z quk—Z(pq k=0
i j

and we may estimate each one of the components as

p=y.. SS=>(yju—p)*> df=n-—1
ijkl
b,' =Vi..—Yy.. SSB = Z b,-2 de =b-1
ikl
Bi=vyj. —y.. SSp:%:lﬁjz dfp=p—1
ij
Gk = Yook = Yo 55o=Zklfli dfg=q—1
I
— —2
(PQ)j = Vijk- = Yjoo = Yok + Yoo SSpq = % (P@)y  dfrg=(p—1)(q—1)
.

Eijkl = Yijkl — Yiew — Yjk- + Yoot S5 =) €y dff=n—pg—b—1
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Factorial Design

Advantages of factorial design:
@ Interactions between factors can be estimated and their significance tested.

o Wider validity of main effects: they have been tested in many different cases
(e.g. the effect of moisture have been tested with frogs and toads, and with
and without hormone)

@ Several experiments are done simultaneously: the variance of pairwise
comparisons is minimal, as shown in the following experiment
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Factorial Design

Example 5

Assume that we have resources for 24 observations and we assume that there is
no interaction between factors

}/ijk/:,ll+5,'+mj—|—hk+6,'jk/

Three different experiment designs are considered:
@ One variable changes at a time

o (Frogs,Dry,NoHormone) vs (Toad,Dry,NoHormone): 4 animals each
o (Frogs,Dry,NoHormone) vs (Frogs,Wet,NoHormone): 4 animals each
o (Frogs,Dry,NoHormone) vs (Frogs,Dry,Hormone): 4 animals each
@ Do not repeat (Frogs,Dry,NoHormone) in each comparison:
o (Frogs,Dry,NoHormone): 6 animals
o (Toads,Dry,NoHormone): 6 animals
o (Frogs,Wet,NoHormone): 6 animals
o (Frogs,Dry,Hormone): 6 animals

@ Factorial design (all possible combinations) with 3 animals each.
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Factorial Design

Example 6(continued)

We now want to test if there is a difference induced by the hormone injection, for
which we construct the statistic

Ah=hy—h
Its variance in the three experiments are
Q dAp= 2%
Q UzAh = 2%5
Q day= 2%

The factorial design yields the smallest variance for the comparison of any of its
components.

Factorial design: Hold all factors constant except the-one those whose effects
we are investigating.
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Outline

@ Basic designs

@ Non-orthogonal designs
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Non-orthogonal Designs

Example 6

We are testing 2 spray treatments (tx) using 2 different
concentrations of a chemical growth regulator. We also
include a control spray without the chemical. We have 9
plots (3 x 3) for the experiment and we allow for row (r;)
and column (¢;) differences

Yijkl = p = ri + G 4 i + €jjk

A372 B339 C29
Results are C 350 A 3.08 B1.72
B418 C436 AO081

This is a latin square and the analysis techniques are not
the same as in the randomized complete block design
(the reason is that in block designs, for each block (in
our case row and column) we assume that we have all
treatments, and this is not the case.
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Non-orthogonal Designs

Example 6(continued)

The solution comes through Least Squares fitting
372 = pu+n—+c+ta
339 = u+n+o+ts
295 = pu+n+ac+tc
350 = pu+nmn+a+tc
308 = pu+nt+o+tta
1.72 = W+ rn+c +ts
418 = pu+nmn+c+ts
436 = p+n+o+tc
08l = pu+m+c+ta
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Non-orthogonal Designs

Example 6(continued)

y = A6
3.72 1100100710 0\/("
3.39 11000100T1o0]|]|"™
2.95 1100007100 1]|]|"7
3.50 10101000017
308 = |1 01001010 0/[]|%
1.72 1010001010]|]|®
4.18 10011000010]|]|%
4.36 1001010001?
0.81 1001001100t’j

However we have not introduced yet the constraints

r=—n—n0=-—Cc—0o,tc=—ta—tp
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Non-orthogonal Designs

Example 6(continued)
With the constraints, the LS problem becomes

“w n r a [} ta tg

3.72 (1 1 0 1 0 1 0

3.39 1 1 0 0 1 0 1 m
2.95 1 1 o -1 -1 -1 -1 n
3.50 1 0 1 1 0 -1 -1 r
3.08 = 1 0 1 0 1 1 0 a
1.72 1 0 1 -1 -1 0 1 (o)}
4.18 1 -1 -1 1 0 0 1 ta
4.36 1 -1 -1 0 1 -1 -1 tg
0.81 1 -1 -1 -1 -1 1 0 |

Note that for any pair of factor, their corresponding columns in the design matrix
are orthogonal

{1y 1) = (1, 65) = (s tie) = (ri, ) = (rj, t) = (¢j, tk) = 0
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Non-orthogonal Designs

Example 7

We are now given 3 extra plots (another row), which we
employ to replicate the treatments and have better
estimates.

A372 B339 C295
C350 A308 B1.72
B418 C436 AO081
C545 B526 A485

Results are now
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Non-orthogonal Designs

Example 7(continued)

=

L o W = Gy S Gy Sy T = S S

3.72
3.39
2.95
3.50
3.08
1.72
4.18
4.36
0.81
5.45
5.26
4.85

Factor columns in the design
(in particular (c;j, tx) # 0).

n r r3 a e ta tg
1 0 0 1 0 1 0
1 0 0 0 1 0 1
1 0 O -1 -1 -1 -1
0 1 0 1 0 -1 -1
0 1 0 0 1 1 0
0 1 0 -1 -1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 -1 -1
0 0 1 -1 -1 1 0

(.
==
|
—
(I
==
—
o
|
—_
|
—_

-1
-1 -1 -1 -1 -1 1 0

o
—
o
—

matrix are no longer orthogonal
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@ Orthogonal designs are insensitive to the order in which the parameters are
fitted. We may fit all of them at the same time (as shown), or
@ fit first u, produce a new experiment dataset removing the part we have
already fitted (u)
@ fit then r; and ¢, produce a new experiment dataset removing the part we
have already fitted (u, ri, ¢j)
© fit finally the treatments (tx)

@ Non-orthogonal designs depend on the order in which parameters are fitted
(nothing terrible, but something to keep in mind).
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Outline

@ Basic designs

@ Covariates and contrasts
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Covariates

Researchers cannot control covariates, but can measure them and use them to
increase the predictive power of the Linear Model.

Example 8

We suspect that the effect of the growth chemical

depends on the ambient temperature, we extend the
model with this covariate

Yiiid = b+ i + 6 + te + B Tjjia + €

Tijki is the ambient temperature measured when the
spray was applied.
A 372 (T=28) B339 (T=22) C2095(T=23)
C3.50(T=24) A3.08 (T=25) B 1.72 (T=26)
B 4.18 (T=20) C4.36(T=22) A 0.81 (T=26)
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Covariates
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Contrasts

Example 9

Remind that our simplified parameter vector is
0= (H’a rn, n,c, c, ta, tB)T

We want to know whether there is a difference in the
spray treatment

ta—tg =0=(0,0,0,0,0,1,-1)"8
or if there are differences in the rows

h—rp—=0 — (0,1,-1,0,0,0,0)78
n—r=0 = rg—(—rl—rg):2r2+r1
— (0,1,2,0,0,0,0)76

In general, many interesting tests are of the form ¢78 = 0.
If 17c =0, cis called a contrast.
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Outline

@ Basic designs

@ Least Squares
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Least squares

The linear model is of the form

y=A0+¢€
and it assumes
E{e} = 0
Yo = o2l
Consequently
E{y} = A

And the deviations from the expected value is the sum of squares
SS=(y—A8)"(y — A6)
The minimizer of this Sum of Squares is

0= (ATA) ATy
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Least squares

The covariance matrix of the fitting parameters (assuming that € is a multivariate
normal) is
Cov{0} = o?(ATA)!

If we diagonalize AT A, then after some suitable rotation P

SN

[oa

o0 o
Cov{PB} = X 0
00 . %

being A1, A2, ... Ay the Singular Values of the matrix A

The goal of the Experimental Design is to construct a matrix A such that: 1)
AT A has a determinant as small as possible; or 2) the variance of a specific
parameter is as small as possible. We would also like the matrix A to be
well-conditioned (otherwise some parameter will be too variable).
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Least squares

If in our experiment the most important test is of the form
c=c’0=0
we may design our experiment such that the variance of ¢ is minimized

Var{c} = o?c" (ATA)"lc

The goal of the Experimental Design is to construct a matrix A such that: ...
or 3) the variance of a specific statistic is as small as possible.

Particular structures (Factorial Design, Completely Randomized Design,
Randomized Complete Block Design) are “precooked” A constructions, which
additionally allow very easy Least Squares fitting.

1. Basic designs October 14, 2016 50 / 51



@ Basic designs
@ Completely Randomized Design (CRD)
o Randomized Complete Block Design (RCBD)
o Factorial design (FD)
@ Non-orthogonal designs
@ Covariates and contrasts
@ Least Squares
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9 The basics of Experiment Design revisited
@ Experimental units
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Experimental units

Experimental units are the smallest division of the experimental material such
that any two experimental units can receive different treatments.
Each experimental unit gives a single observation.

Example 10

Microarrays are used to analyze the differences between the
transcription of different genes. Depending on the technology 1,
2 or more samples can be hybridized to the array probes.

yijk = estrogen;( Yes/No) + time;(10h/48h) + €;j

Considering the gene as a treatment suggests that each spot is
considered as the experimental unit

Yijki = estrogen; + timej + geney + €
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Experimental units

[ETI ]

A clinical trial for a new ointment is designed as follows. There
will be 3 groups:

© Group 1: use the new gel for 12 months.

—‘ Q Group 2: use first the new gel for 6 months and a placebo
G for 6 months.

< © Group 3: use first a placebo for 6 months and the new gel

for 6 months.
The experimental unit are not the people in the experiment, but
the period of 6 months of each person.
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Experimental units

Example 12

In agricultural crop trials, the experimental unit cannot
be each plant, but it is normally a plot. Plots must be
large enough to be representative of large fields and
remove the inter-plant variability, and small enough to be
manageable and remove variability between soil
differences. Long thin plots are normally preferrable.

e K

Trees are normally treated independently, so that they are
the experimental unit.

In a clinical trial in which every patient is given a new
drug or the best current treatment (or placebo), each
patient is the experimental unit.
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Experimental units

Example 14

In animal feeding experiments, the experimental unit is
normally the pen (or cage), unless each animal can be fed
independently of the rest. Experiments in which the
whole group is the experimental unit are called cluster
randomisation.

Educational systems normally group children together in
a way that each student cannot receive an individual
treatment, the whole class is considered the experimental
unit.
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Experimental units

Example 16

Consider a study designed to test a parenting
intervention that addresses child behavior at home. The
parenting program teaches parents specific behaviors
through classes with six to ten parents and two trainers.
Assume that the content of the classes, the specific
behaviors taught to parents, have been chosen through a
program of research that has previously shown their
efficacy with individual families. Do changes to a child’s
environment, through changes in his or her parents'’
behaviors, result in improved child behavior at home?

=
Keith Smolkowski
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Experimental units

Example 16(continued)

This question assumes that the intervention will change
parent behavior, and then it asks if those parenting
behaviors influence children. Here the family represents
the unit because the IV represents the change in the
behavior of the parent(s) within a home and the DV
accounts for the behavior of the child(ren). Individual
children or parents would not do because they are not
independent within a household. Parents influences each
other, they influence children, and children influence
parents.
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Experimental units

Example 17

Keith Smolkowski

Does instruction in parenting skills change parents’
behaviors at home, assuming those new parenting
behaviors will lead to improved child behavior?

We have assumed that the parenting behaviors taught
will lead to changes in child behavior, if implemented
appropriately. The study, then, represents an attempt to
show that a specific form of parent training, the
parenting classes led by two trainers, can teach parents to
master the skills and apply them at home. In particular,
to generalize to any pair of sufficiently prepared trainers,
the unit in this study must capture the parent trainers.
Furthermore, parents within a class all meet at the same
place, at the same time, and with the same pair of
trainers. They influence each other, so groups of parents
cannot be considered independent if they have the same
instructors.
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Experimental units

Example 18

We want to detect a rare disease in a population. Blood
samples are pooled into groups and the pooled sample is
tested for the disease. If we cannot find it, none of the
individuals in the pool has the disease. The experimental
unit is the pool.

If we find the disease, we may analyze each blood sample
individually to identify the person having it. The
experimental unit is now the individual.

Pooling is a very effective way of cutting down costs.
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Experimental units

Example 19

Using parts of a whole as experimental units reduces the
variability of the measurements, e.g.,

@ Two leaves from the same tree may receive two
different fungicide treatments.

@ Two fruits from the same tree may receive two
different storage treatments.

o Different parts of the same bake mix may receive
different cooking treatments.

o Each eye of the same person may receive different
surgical procedures.
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Experimental units

Crossover experiments
@ Group 1: use first the new gel for 6 months and a placebo
for 6 months.
@ Group 2: use first a placebo for 6 months and the new gel
for 6 months.

Intervention Control
under study intervention

. Randomized Wash-out
Population : : Follow-up
allocation period

—> Result

Control Intervention

: . —> Result
intervention under study
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Experimental units

@ A trial in which a patient receives a sequence of different drugs cannot provide
legitimate information for future treatment in which a patient will receive
only a single drug. Does the washout period revert to the initial condition?

@ Once a patient has received one drug, that patient is changed, and therefore
does not provide the same condition for the second drug. Does the washout
period revert to the initial condition?

© Treating a patient with a time-cocktail of drugs may provide a more
dangerous situation for the patient, for which the dangers are difficult to
predict. The experiment must be conceived as a whole, including a previous
pharmacological study.

@ The order in which treatments are presented may affect the apparent benefits
of different treatments. The order of treatments must be randomized from
patient to patient.

@ It may be difficult to prevent the patient making judgements about which
treatment she is receiving at a particular time and this may bias the results
(whether or not these judgements are correct). Objective measurements are
preferred.
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Experimental units

Repeated measure design:

Treatment — Measure(Time=t;) — Measure(Time=t;) — Measure(Time=t3)

The experimental unit is the subject, and the different measures are observations
at different times. This kind of designs are treated as split-plot designs.
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9 The basics of Experiment Design revisited

@ Replication
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Replication

Example 21

The following two tables show two extreme cases which should be avoided (having
too few observations so that it is difficult to show the value of our experiment or

so many that it was a waste of resources)

SS | df | MS

SS df MS
Treatments | 16 | 7 | 1.14 Treatments | 500 7 71.4
Errors 16 | 8 2 Errors 500 | 492 | 1.02
All 32 | 15 All 1000 | 499
1.14 71.4
F—T—O.SY F—m—70.28

Replicates will help in an ANOVA test to determine if at least one of the

treatments makes a difference or not.

2. Foundations revisited

October 14, 2016
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Replication

If we have a completely randomized design, that responds to the model
Yi =B F it €

and there are n; replicates of the treatment i and n; of the treatment i/, then the
test to check whether one of the treatments is significantly better/worse than the
other will use the statistic

At =t; — t;

1 1
Tar =00 <n-+n-/>
1 !

Replicates will help in pairwise tests to determine if one of the treatments is
significantly different from another.

whose variance is
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Replication

Example 22

THE RIGHT SIDE OF
WRONG

Giving a drug to two different people is a true
replicate, but giving a drug twice to the same person
is not.

A microarray technical replicate is not a true
replicate, but biological replicates are.

In an animal feeding experiment, pigs within the
same litter are not replicates. The experimental unit
is the litter, and a true replicate is another litter.

Automatic measurements on the same subject do
not provide replicates, but time measures (see
Repeated Measures Design).
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Replication

Let us illustrate the effect of dealing with non-replicates as replicates.

Example 23

We want to determine the effect of 3 different teaching
styles on student learning. To do so 9 classes are given
one of the 3 teaching styles and a final assessment is
performed. Depending on the time of the assessment
along the day, there is some pattern so that in the
afternoon students are more tired.
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Replication

Example 23(continued)
The results of a single test are

Treatment 1 Treatment 2 Treatment 3
A B C [ D E F TG H [
27 43 38 I 41 30 47 I 46 34 50

whose ANOVA table is

SS | df | MS
Treatments | 81 2 40
Errors 447 | 6 74

40

F=—
74

=0.54

which is not too convincing.
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Example 24

Assume that now we repeat the test on 4 consecutive
days at the same time (to avoid the diurnal pattern)

Treatment 1 Treatment 2 Treatment 3
A B C D E F G H [
27 43 38 41 30 47 46 34 50
25 43 36 43 35 42 48 37 44
30 46 37 44 31 46 46 38 52
31 44 41 45 35 48 45 35 49

whose ANOVA table is

SS df | MS
Treatments 288 2 144
Errors 1394 | 33 42

144
F=—=34
42

much more convincing now, but we are essentially
measuring 4 times the same thing, measures are not
independent and they are not a true replicate.
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Replication

Example 25

Assume that only one class can be tested at a time, so
that each class is tested at a different time according to
the pattern

Time
8 9 10 11 12 13 14 15 16
Day 1 A D G = B H [} F G
Day 2 H E | A F C D B G
Day 3 | C F G D A B H B
Day 4 F B B H C | G D A
whose ANOVA table is
SS df | MS

Treatments 322 2 162
Errors 2464 | 33 | 75

F= o
75

The apparent effect has been wiped out by the diurnal
pattern, and still that was incorrect because the 4 tests

were not independent.
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Example 25(continued)
If the tests were true replicates it would have been better
to introduce a blocking variable time:

Yijk = [+ treatment; + time; + €

If results are not too conclusive, the solution is to apply

the 3 methods to more than 3 classes each, not to take

several tests on the same class. The experimental unit is
the whole class, and true replicates are more classes.

October 14, 2016 24 /90
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Replication

Example 26

The effectiveness of two fungicides is being tested. The
fungicide may be applied on the upper or lower side of
young or old leaves. This gives a total of 8 treatments (2
fungicides x 2 sides x 2 leave ages). The experimenter
measures the amount of fungi in a small disc of the leave.
Each treatment is replicated 10 times, obtaining F = 500
(which seems a little overkill).

But, fungicide 1 was applied to Tree 1, and fungicide 2
was applied to Tree 2. The 8 treatments were applied to
8 leaves, and the replicates were obtained by cutting 10
discs from the same leave. The differences could be due
to the tree, and each treatment was applied only once.
The 10 replicates are not true replicates, but they are
measuring essentially the same thing (they come from
the same leave).
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Replication

Example 27

We are interested on the effect of hormones in animals. Two designs are proposed.
The measure will be the weight of the animals when they are 6 months old.
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Replication

Example 27(continued)

Both designs look fine (assuming that we will account for the pen effect). But the
bottom design has a drawback. Let's say that A makes pigs to be more
aggressive, and B more docile. So the extra A weight is not due to growth effect
of A, but to the growth effect when they are fed with B animals. A animals grown
alone would not have extra weight because they are all equally aggressive.

If there is an interaction between the two levels of a factor, this design is not able
to detect it.
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Replication

Example 28

We are interested in the effect of 3 temperature levels in
the growth of greenhouse plants. Typically, there are
only, at most 6 greenhouse sections with independent
heating. In order to have a replicate, each treatment can
be applied only to two sections. The experimental unit is
the greenhouse section and two replicates is not much.
Can we use individual plants as the experimental unit?
Technically no.
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Replication

Example 28(continued)

But since there is no other way of carrying out the
research, we may if we assume that

@ greenhouse sections do not affect the plant growth.

@ the variation between plants are essentially due to
plant-to-plant variation.

o there is no competitive variation (like in the pig
case) between plants within a section, induced by
the treatment.
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9 The basics of Experiment Design revisited

@ Blocking
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Blocking

Example 29

These comparisons can be performed
even if both treatments are not applied

The idea of blocking is to reduce the to the same block, as long as there is a
variance due to some known common third treatment.
(unlnteres.tlng) factor, and letting most Treatments
of the variance to come from the
Male AC
treatments. To compare A and B, we
. Female B C
may design
These comparisons are more accurate as
Treatments . ...
the number of intermediaries increases:
Male AB
Female AB Treatments

Male ACD
Female BCD

2. Foundations revisited October 14, 2016 31 /90



Blocking (simple case)

Let us analyze the first example.

Treatments
Block 1 AB
Block 2 AB

We assume that the data is generated according to

y,jk:/Ja+b,'+tj+€,'jk

Let us also assume that the design is balanced and there are K replicates for each

block-treatment combination.

E{Yi.} = E{Yia +Yig}=K(u+bi+ta)+ K(n+ b1+ tg) =2K(p+ b1)
E{Yo.} = E{Yoa + Yo} =K(pu+ b+ ta) + K(pu+ b2+ tg) =2K(u + b2)
E{Y.} = E{M.+Y2}=4Kpu

E{Ya} = 2K(u+ta)

E{Ys} = 2K(u+tg)

32

/ 90
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Blocking (simple case)

We may write the least squares equations (taking into account the zero-mean
constraints)

4K 0 0 Y.
2K 2K 0 1 Yi.
2K 2K 0 b | =| Ya.
2K 0 2K ta Ya.
2K 0 2K Y.
Or equivalently
1 00 Y. /AK
01 0| /p Y1 /2K — Y. /4K
0 0O bi|=|(Yi.+Y2 =Y )/2K=0
0 01 ta Ya/2K-Y /4K
000 (Ya+ Y5 —Y_)j2K=0

2. Foundations revisited October 14, 2016
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Blocking

The estimates of the differents contributions of the model can be calculated as

o= Y. /AK =y
by = Yi.2K=Y [AK =y —y.
th = Ya2K=Y [AK=ya —y.
For Eg = —131 and T = —t4. But it is also convenient to note the relationship
Yi. Y. Y. ity _
K + SK oK Viotya =2y, =y, = #7}/1.. =2y. —y.

Consequently

bo==bi=y.—yi.. =y —y.
Similarly

tp=—ta=y. —ya=y5 .
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Blocking (simple case)

If we want to test whether there is a significant difference between the treatments
A and B we will construct the statistic

Apg=ta—t5=ya —yB

whose variance is
2 2 2
2 _ 2 2 _ g ag _ g
Ohme = Oya TO0yg = ﬁ i - We
The number of replicates needed for a two-sided hypothesis test with confidence
level 1 — a, power 1 — /3 and effect size A must be
A > (Zl_% +21—B) OApg

from where we can easily solve for the number of replicates

(Zl_g —I—Zl_,g)de 2
K -2 @0 - "7
- (S
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Blocking (more complicated)

Let us analyze the second example.

Treatments
Block 1 AC
Block 2 B C

We assume that the data is generated according to

y,jk:ll+b;+tj+€,'jk

Let us also assume that the design is balanced and there are K replicates for each
block-treatment combination.

E{v1.}

E{Ya2.}

E{Y_ }
E{Ya}
E{Ys.}
E{Yc}

E{Yia + Yic.} = K(u+ b1 + ta) + K(p + b1 + tc)
2K(/L+b1)+K(tA+tc)

E{Y2s. + Yoc.} = K(u+ by + tg) + K(1n + b2 + tc)
2K(p + bo) + K(tg + tc)

E{Yi. 4+ Yo} = 4Ku + Ktc

K(/L+b1+tA)

K(p+ bo + tg)

2K (p+ tc)

2. Foundations revisited October 14, 2016
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Blocking (more complicated)

We may write the least squares equations (taking into account the zero-mean
constraints)

4K 0 -K —-K Y.

2K 2K 0 —-K m Yi..

2K 2K —-K 0 bi| | Ya.

K K K 0 tal | Ya

K -K 0 K ts 3

2K 0 2K —2K Yec

Or equivalently

1000 (YA +yB +4y.)/6
0100| /u (4y1.. —ya +ye —4y.)/2
000 O0f(b] yi.+ys. =2y =0
0 01 0| |ta|] |(4ya —6y1.—2yp +4y.)/3
0 001 tg (6y1.. —2ya +4y —8y.)/3
0 00O YA +ys +2yc —4y. =0
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Blocking (more complicated)

If we want to test whether there is a significant difference between the treatments
A and B we will construct the statistic

Apg=ta—tg=2ya —2yp —4y1. +4y.
whose variance is

5 2 5 5 s o2 o2 o2 o2 o2
Ohe = 40y, thoy,, +160), +160) =43 +4% + 165 + 1670 = 20%
For the comparison between A and C, we have

Apc =th—tc=2ta+ 1t =2ya — 2y1.

whose variance is

2 2 2
2 _ 2 2 __N%¢ 9 _ [
ODac = 4UY.A. + 40}’1,‘ =4 K + 4'2K =6

Comparisons within the same block are more precise than amongst blocks.
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Blocking (more complicated)

We will not analyze the third example.

But let us mention that the more treatments in common between Block 1 and

Treatments

Block 1 ACD

Block 2 BCD

Block 2 (in this case C and D), the smaller the variance of the statistics for the

tests.
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Blocking (incorrect design)

Let us analyze an incorrect design.

Treatments
Block 1 AC
Block 2 B D

The design is incorrect because there is no way to distinguish the effect of the
block from the treatments. Let us perform the same analysis as we did in the

previous cases.

E{Yi.}
E{Y>2.}
E{Y.}
E{Ya}
E{Ypg}
E{Yc}
E{Yp.}

E{Yia + Yic.} = 2K(pu+ b1) + K(ta + tc)
E{Y2p + Yap.} = 2K(p + b2) + K(ts + tp)
E{Yi. + Y, }=4Kpu

K(,LLJr b + tA)

K(u-l- by + tB)

K(p+ b1+ tc)

K+ b2 + tp)

40 / 90
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Blocking (incorrect design)

We may write the least squares equations (taking into account the zero-mean
constraints)

4K 0 0 0 0 Y.

2K 2K K 0 K n Y1

2K 2K —-K 0 —-K by Y,

K K K 0 0 tal=1|Ya

K —-K 0 K 0 tg YB

K K 0 0 K tc Yec.

K -K —-K —-K —-K Yobp.

Or equivalently

1 0 00 O Y.
01 00 1 I 201, = YA — Y.
0000 O by vi.ty.. —2y. =0
0010 -1 th | = 2y.a = 2)1.
0001 1 ts 21, —ya +yB —2y.
0000 O tc ya+yc —2n.=0
0000 O 21 +yB +yp —4y. =0

2. Foundations revisited October 14, 2016

41 / 90



Blocking and Orthogonality

Of the four designs in this Section the only one with an orthogonal matrix is

Treatments
Block 1 AB
Block 2 AB

o Orthogonality keeps calculations very simple (which is good for manual
calculation, but irrelevant for computers).

@ It makes the estimates to be independent of the order in which they are fitted
(although the variations are small).

Consequently non-orthogonality should not be considered as a major drawback of
a design.
Balance (see next section) is a much more important issue.
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9 The basics of Experiment Design revisited

@ Balanced Incomplete Block Designs (BIBD)
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Balanced Incomplete Block Designs

A design is balanced if:

@ All treatments are applied the same number of times

o All pairs of treatments appear in the same number of blocks
For instance, the following design is balanced

Treatments
Block 1 ABC
Block 2 ABD
Block 3 ACE

Block 4 ADEF @ Each treatment is applied 5 times.

Block 5 AEF e Each pair (AB, AC, AD, AE, AF, BC, BD, BE, BF,
Block 6 BCF CD, CE, CF, DE, DF, EF) appears 2 times.

Block 7 BDE

Block 8 BEF

Block 9 CDE

Block 10 CDF
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Balanced Incomplete Block Designs

Example 30

6 treatments (A-F) are to be compared in 24 units, for which a natural blocking
system gives 4 blocks of 6 units each. How can the treatments be allocated?

Treatments
Block1 | ABCDEF
Block2 | ABCDEF
Block 3| ABCDEF
Block4 | ABCDEF

Any other allocation would repeat one treatment in one of the blocks so that pair
comparisons cannot be performed in the same block making them less efficient.

If possible, apply all treatments in each block.
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Balanced Incomplete Block Designs

Example 31

6 treatments (A-F) are to be compared in 30 units, for which a natural blocking
system gives 6 blocks of 5 units each. How can the treatments be allocated?

Treatments
Block1 | ABCDE
Block2 | ABCDF
Block 3 | ABCEF
Block 4 | ABDEF
Block 5 | ACDEF
Block 6 | BCDEF

Only 5 (instead of 6) treatments can be applied in a block, so that 1 treatment
has to be skipped in each block. We may do so by removing F in the 1st block, E
in the 2nd, D in the 3rd, ... Keeping a symmetric design will not favor any
treatment comparison (all will have the same variance).

Keep the design as symmetric as possible.
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Balanced Incomplete Block Designs

Example 32

6 treatments (A-F) are to be compared in 24 units, for which a natural blocking
system gives 6 blocks of 4 units each. How can the treatments be allocated?

Treatments
Block 1 CDEF
Block 2 ADEF
Block 3 ABEF
Block 4 ABCF
Block 5 ABCD
Block 6 BCDE

We now have to skip two treatments from each block. If this is done in a cycle,
symmetry is better preserved (e.g., set of omissions (AB), (BC), (CD), (DE),
(EF). (FA))

Keep the design as symmetric as possible (cycles help in this regard).
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Balanced Incomplete Block Designs

Let us define these designs in general

v | No. Treatments (varieties)

b | No. Blocks

ri | No. of blocks containing treatment j

For a balanced design r; = r for all treatments
k | Size of the block

Xiiv | No. of blocks containing treatments i and /’
For a balanced design \;; = A for all pairs

The designs are named (v, b, r, k, \)-designs. A balanced design must fulfill:

bk = wvr
rtk—=1) = Mv-1)

The first equation simply states that the number of blocks times their size must
be equal to the number of treatments and their repeats. r — A is the order of the
design.
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Balanced Incomplete Block Designs

Not all possible designs exist and there are different approaches to their
construction

3.4.2.2 Existence table for BIBDs

Some of the most fruitful construction methods for BIBD are dealt with in sepa-
rate sections, difference sets (page 167), finite geometry (page 170), Steiner triple
systems (page 173), and Hadamard matrices (page 81). The table below gives all
parameters for which BIBDs exist with & < v/2 and b < 30,

v| b r|k|A vl O] | k[A vl b 7| kA
6110 5132 10118 9]5]4 1503014 7]6
61201103 |4 10130 9132 6|16 6] 62
6130|1536 1013012144 1620 5| 4|1
T 71 331 11| sf(s5)2 1624 9] 63
T114] 6(3]2 11221054 16 130(15] 87
71211 9(3]3 12(22(11(6]5 191191 9] 94
712811234 13(13| 4[4 1 21|21 5] 5|1
8|14 71413 13126 6131 2113010 713
8128 (14146 13126 8(4]2 23 23|11 |11 |5
9112 4(3]1 13126112615 25125 9| 9|3
9118 8[43 1412613176 25130 6| 51
9124 8(3]2 5015 773 27127113 |13|6
10([(15] 642
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Balanced Incomplete Block Designs

A necessary condition to be balanced is that the row and column sums of the
incidence matrix are all equal

Sk Treatment AlBlcliplElF
Treatments
Block 1 ABC Block 1 1 1 1 3
Block 2 ABD Block 2 1|1 1 3
Block 3 ACE Block 3 1 1 1 3
Block 4 ADF Block 4 1 1 1|3
Block 5 AEF Block 5 1 1113
Block 6 BCE Block 6 1|1 13
Block 7 BDE Block 7 1 1 1 3
Block 8 BEF Block 8 1 1113
Block 9 CDE Block 9 111 3
Block 10 CDE Block 10 1|1 13
5|5 5
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Balanced Incomplete Block Designs

However, this condition is not sufficient

B Treatment Alslclp
Treatments
Block 1 AC Block 1 1 1 2
Block 2 BD Block 2 1 1|2
Block 3 AC Block 3 1 1 2
Block 4 BD Block 4 1 1|2
2121212

The pair AC appears 2 times (Aac = 2), while AB or AD do not appear
()\AB = >\AD = 2)
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Balanced Incomplete Block Designs (Cyclic design)

An easy way to design experiments is by starting with an initial block and adding
1 to each treatment modulo the number of treatments (this is called a cyclic
design). For example, for 5 blocks of size 3 with 5 treatments we would have

Treatments
Block 1 (initial) ABD
Block 2 BCE
Block 3 CDA
Block 4 DEB
Block 5 EAC
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Balanced Incomplete Block Designs

(Lattice design=Youden squares)

Another easy way to generate balanced incomplete designs are based on lattices
(lattice design). For example, for 7 blocks of size 3 with 7 treatments, we
construct a Latin square with 7 treatments (a Latin square is a square in which
each treatment appears only once in each row and column). Then, we take 3
columns (not any 3 are valid) and construct the different blocks. These rectangles
are called Youden squares.

A|B |C|D|E |F |G A|B D
B |C|D|E|[F |G |A B |C|E
C|D|E|F |G |A|B C|D|F
D|E |F |G|A|B |C # D|E |G
E|F |G|A[B |C|D E|F |A
F|G|A|B |[C|D|E F |G |B
G |A|B|C|D|E|F G |A|C
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Balanced Incomplete Block Designs (Lattice design)

If the number of treatments is large (and a perfect square, i.e., v = X2), then we
may use a different kind of designs also based on Latin squares. This design
assumes that the experiment will be replicated several times. At each replication
the block composition changes and different treatments are used in the same

block.

Block 1: AB C

, Replicatel — Block2:DEF
! Block3: GH |
/ Block 1: AD G
’ 7 Replicatell - Block2: BEH
Block 3: CF |

' Block 1: AF H
. Replicatelll - Block2:BD |
\ Block 3: CEG

" Block 1: AE |
" ReplicatelV — Block 2: BF G
Block3: CDH
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Balanced Incomplete Block Designs (Many treatments)

Although outside of the scope of this course, for a large number of treatments (a
few hundreds), the interested reader may look for

@ Cubic lattice designs
@ Alpha lattice designs for large-scale variety trials
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9 The basics of Experiment Design revisited

@ Multiple blocking
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Multiple blocking

Example 33

We are interested in the pattern of variation over time of
a constituent of blood (=treatment). We need sampling
blood from 9 chickens (=replication, 1st blocking
variable) on 25 weekly occasions. Only 6 samples can be
analyzed at a time, and there can be a substantial
difference between batches of samples (=2nd blocking
variable).
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Latin squares

Example 34

We are interested in the wearing performance of 4 tyre brands (=treatment).
There can be differences depending on the car (=1st blocking variable) and the
position within the car (=2nd blocking variable). The organization of this
experiment can be done through a Latin square design.

Car
Position L1234
1 A|lB|C|D
2 B|C|D]|A
3 C|D|A|B
4 D|IA|B|C
df Since the number of degrees of
Treatments (t—1)=3 freedom for the error is relatively low
Blocking 1 (t—1)=3 for a Latin square design, the
Blocking 2 (t—1)=3 experiment must be replicated
Errors (t=1)(t—2)=6 several times with independent latin

2. Foundations revisited October 14, 2016 58 / 90



Latin squares

The Latin square model for the / replicate is
Yijkt = [ nigiy + Cigy + iy + €k

Google: Latin square generator
(http://hamsterandwheel.com/grids/index2d.php)

Finished in 0.0017% seconds with 36 inserts attempted, 0 of which had to be replaced.

Square Size (2-15): 6 @ (Will bail cut after 10000 attempted inserts, successful or otherwise.)
Memory allocation - current:1024Kb - peak:1024Kb

Memory usage - current:949Kb - peak:972Kb

‘chart by amCharts. com

- Number of Inserts by Location

o W N
alm|w| | =|ole
N CEEEEE
| | o] O W
[SI=1F NN ARSI
o|w|a| =] ==«
w|ofm| o] 6] e
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Latin squares

Replicates may share one of the blocking variables (Latin rectangle) ...

Example 35

For instance, the two replicates may be performed on the same cars

Car
Position 5 S
1 A|B|C|D
2 B|{C|D]|A
3 C|D|A|B
4 DA |B|C
5 B|D|A]|C
6 A|B|C|D
7 DIC|BJ|A
8 C|A|D|B
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Latin squares

. or not

Example 36

For instance, the two replicates may be performed on different cars
Car

Position 1 Sla] e BT
A|B|C|D
B|{C|D]|A
C|D|A|B
DA |B|C

O N|[O| O B|W| N~

0| O > W
> O™ O
O|m| O| >
w| > OO
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Sequences of experiments: Orthogonal Latin Squares

Sometimes we need to reuse the experimental units from one experiment to the
next (fruit trees, agricultural plots, patients in a clinical trial, ...) The solution is
to use two orthogonal latin squares (if both designs are superimposed each pair

appears only once; not all Latin squares have orthogonal squares). Examples of

these orthogonal designs are Graeco-Latin squares. The idea is to eliminate the

long-term effects of the first experiment on the second experiment.

Example 37

Experiment 1: A, B, C, D
Experiment 2: «, 3,7, 0
Block2

Block1l

Aa | D§ | By | CB
C5 | Ba | DB | Ay
Dy | A | Ca | Bé
BA | Cy | Ad | Da

HIWIN| =
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hogonal row-and-column designs

Latin squares can successfully block two variables whose number of levels is equal
between them and equal to the number of treatments (c=4 cars, r=4 positions
and t=4 tyre brands). Row-and-column designs address those cases with different
number of levels in each one of the blocks.

If the number of rows, r, or columns, ¢, is equal to t, we may use Youden squares

Example 38

MmO (O|m@| >
> I O(Mmmig|0O|m
w| > a|m|mlio|o
O|®@|>» | 6|T| M| O
olo|lwm|x|a|m|m
mo|lo|lo|(> | o|m
MmO 0| W >0
G|Tm|m o(n|w| >

o mimio|ln|®m
O|®|>» | o|Tm|(m|Qg
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ogonal row-and-column designs

However, more complicated patterns may appear: the number of rows and
columns is not a multiple of the number of treatments or some combinations of
blocks are unfeasible (some plots in a field are useless).

In the design of row-and-column designs:

@ The goal should be to achieve orthogonality in each one of the blocking
variables.

@ Balance, if ortohogonality is not possible.

@ if balance is not possible, then the joint occurrences of treatments in rows
and columns should be made as equal as possible.
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Non-orthogonal row-and-column designs

Example 39

t = 9 treatments in r = 5 rows and ¢ = 7 columns

Blockl

Block2

o 5[ w|n| =

mo|of>[—| =
o| x| =[n|w| ~
|| w| o> «
>(Oo[T|m o &
I|m| n|w| o] «
w|o|m(n[o]| o

o> o] ~

Example 40

t = 6 treatments in r = 6 rows and ¢ = 8 columns with useless cells

Block2

Blockl 1 2 3 4 5 6 7 8
1 © E B F A E D
2 E A D F € B
3 F E A D B ©
4 D < A B £ F
5 B D F E A C F
6 A B < D
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Blocking time: Cross-over designs

The different treatments are applied in sequence to the same experimental unit
(common in clinical trials).

@ The aim to use the same subject is because by applying the more than 1
treatment to the same subject we remove inter-subject variability, gain in
statistical precision, and reduce the number of subjects.

@ However, the design assumes that there is no effect from one period to the
next (washout period between treatments; what if the subject is cured by the
first treatment?).

The experimental unit is redefined to be an observation for an individual subject
(=1st blocking variable) in a short period of time (=2nd blocking variable).

Example 41
Subject [ [ 5 [ 3|4 |s |6 78] o] w]|un]r
Period .
1 A|B|B|A|[A[B|A|B]|[B][B][A][RA By having the
2 BE[A[A[B[B[A[B[A[A]A[BE]B

same number of subjects for the two orderings (AB or BA), we remove the effects
of treatment order.

But, the experiment (swapping treatment) is rather different from its future use
(one treatment). And many objections should be expected
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Blocking time: Cross-over designs

The different treatments are applied in sequence to the same experimental unit
(common in clinical trials).

@ The aim to use the same subject is because by applying the more than 1
treatment to the same subject we remove inter-subject variability, gain in
statistical precision, and reduce the number of subjects.

@ However, the design assumes that there is no effect from one period to the
next (washout period between treatments; what if the subject is cured by the
first treatment?).

The experimental unit is redefined to be an observation for an individual subject
(=1st blocking variable) in a short period of time (=2nd blocking variable).

Example 42
) Swiect | 3 [ 2 | 34|56 |7 ]8]o|w]|un]|nrn
Period
T A B B[ A|A|[B|[A[B BB A A
) B [A [ A B[ B A[B|[A[A[A]B B

By having the same number of subjects for the two orderings (AB or BA), we
remove the effects of treatment order.
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Blocking time: Cross-over designs

Example 43

The number of periods and treatments do not need to be the same and different
sequences can be applied (e.g. ABB or BAA)
o Subject |y 1 5 1 3 [ 4 |5 6|7 |8 o] n|uw
eriod
1 A B B A A B A B B B A A
2 B A A B B A B A A A B B
3 B A A B B A B A A A B B
or ABB, BAA, ABA and BAB
o Swiect | 3 [ o | 3 a]s |6 |7 ][8]ofw]|un]|nrn
eriod
1 A B A B B B A A B B B A
2 B A B A A A B B A A A B
3 B A A B B A A B B A B B
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Blocking time: Cross-over designs

But, the experiment (swapping treatment) is rather different from its future use
(one treatment). And many objections should be expected

@ Order effects: it is possible that the order in which treatments are
administered may affect the outcome. An example might be a drug with
many adverse effects given first, making patients taking a second, less
harmful medicine, more sensitive to any adverse effect.

@ Carry-over effects: can be avoided with sufficiently long washout periods and
designs to eliminate 1st order, 2nd order, ... carryover effects.

@ Learning effects: this is important where you have controls who are naive to
the intended therapy. In such a case e.g. you cannot make a group (typically
the group which learned the skill first) unlearn a skill such as yoga and then
act as a control in the second phase of the study.
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Blocking time: Cross-over designs

@ If there are no carry-over effects, these designs are like row-and-column
designs.

o If there are carry-over effects, the design has to be performed to remove 1st
order (only from the treatment in the previous period) or higher order (from
treatments in the two, three, ... previous periods) carry-over effects.

A design is
@ uniform within sequences if each treatment appears the same number of
times within each sequence (e.g. AB/BA is uniform in sequence, but
ABA/BAB is not)
@ uniform within periods if each treatment appears the same number of times
within each period (this depends on the number of subjects assigned to each
sequence)
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Blocking time: Cross-over designs

A design is balanced with respect to 1st order carry-over effects if each treatment
precedes any other treatment the same number of times. Latin squares (although
not all of them) help to construct balanced designs.

Example 44
With t = 4 treatments

Period =
Sequence 112]3]4 S Period 1|2 |3]|4
ABCD A[B|C|D S
ABCD A|B|C|D
BCDA B|C|D]|A
BDAC B|D|A]|C
CDAB C|D|A|B
CADB C|A|D|B
DAES D]|AIB|C DCBA D|C|BJ|A
This design is not balanced

This design is balanced

(A precedes B 3 times, .
(all pairs appear only once)

but does not precede C or D)
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Blocking time: Cross-over designs

o If the number of treatments is even (e.g. t = 4), only 1 Latin square is
needed to produce a balanced design.

o If the number of treatments is odd (e.g. t = 3), 2 Latin squares are needed
to produce a balanced design.

Example 45
With t = 3 treatments

Period 11213
Sequence

ABC A|B|C
BCA B|C|A
CAB C|A|B
ACB A|lC|B
BAC B|A|C
CBA C|B|A

This design is balanced
(all pairs appear 2 times)
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Blocking time: Cross-over designs

A design is strongly balanced with respect to 1st order carry-over effects if each
treatment precedes every other treatment (including itself) the same number of
times.

Example 46
With t = 4 treatments
: Period 1121314
Period 11213 Sequence
Sequence ABBA A|B|B|A
ABB A|lB|B BAAB B|A|A|B
BAA B|A|A AABB A|A|B|B
This design is strongly balanced but BBAA B|[B|AJ|A
it is not uniform within sequences. This design is strongly balanced
and uniform within sequences.
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Blocking time: Cross-over designs

Let us analyze an example with carry-over effects

Period
2
Sequence
AB A|B
BA B | A
The expected values at each one of the cells are
Period 1 5
Sequence

AB wt+tat+oag+p1 | p+te+oag+p2+ Aa
BA pttet+ogatpr | pt+tatogatpatAs

being oag and opa the effect size corresponding to the ordering block, p; and p,
the effect size corresponding to the period block and A4 and Ag the carry-over
effects for having applied first A (Aa) or B (Ag).

2. Foundations revisited October 14, 2016 74 / 90



Blocking time: Cross-over designs

Period 1 5
Sequence
AB p+tatoag+p1 | t+teg+oag+p2+Aa
BA pttet+ogatpr | pt+tatogatpatAs

The mean estimate for each one of the treatments is normally performed by
averaging the cells receiving that treatment

~ _ yaBa1tysap
ya = ——
_ (pt+tatoas+pi)+(uttatopatpt+As)
- 2
= pttatie
~ _ yaB2tysaa
yB = 2
_ (pt+tetoas+pat+Aa)+(puttatopatpe+As)
- 2
[+t + 24

Treatments are aliased with the carry-over effects.
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Blocking time: Cross-over designs

Let us repeat it with a strongly balaced design

Period fl 2 3
Sequence
ABB o+ ta +oapp T P1 wttgtoagg + P+ Aa u+tg+toagg +p3+ Ag
BAA n+tg +ogaa + pP1 1+ ta +opaa + P2+ Apg K+ ta+ogaa +P3+ A

The mean estimate for each one of the treatments is normally performed by
averaging the cells receiving that treatment

~ YABB,11+YBAA,2+YBAA,3

ya =

3
(1+tatoapp+pi)+(p+tatosaatpr+As)+(1+ttatosaatps+ia)
3

Pt ta+ 254

o YBAA,1tYABB,2+YABB,3

B
I

3
(n+te+opaa+pi)+(putte+oass+p2+Aa)+(ptte+oass+p3+As)
3

= ,u+tB+OA7333

Treatments are aliased with the treatment order effects.
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9 The basics of Experiment Design revisited

@ Split-unit designs
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Split-unit designs

We have an experiment with two factors. One of them requires large experimental
units, while the other one small ones. Additionally, the second factor can be
applied to a “small portions” of the experimental units of the first factor.

Example 47

We are investigating the effect of light and diet on the
growth of mice.

@ The experimental unit for the light factor is the
whole room, all cages receive the same treatment
(number of light hours)

@ The experimental unit for the diet is the cage, all
mice in the same cage receive the same treatment.

These designs are called split-unit designs
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Split-unit designs

Let us call P the factor applied to large units and @ the factor applied to small
units. Assume that a large unit receives the treatment p; and it is allocated to the
i-th block.

From the point of view of the large unit the observations should respond to the
model

zj = p+ b + p; +n;

Assume that a small unit receives the treatment g.
From the point of view of the small unit

Yijk = pt+ mij + qi + (Pq)jk + €ijk

where mj; contains the main effects of the blocks and the P treatments and their
interactions.
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Split-unit designs

Both models can be integrated in a single model

Yik = pu+ bi + pj + € + ak + (Pa)jk + €ijk

with
Zij = Vi
— /
Ny = €5t

mj; bi+pj+€;j
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Split-unit designs

We are investigating the effect of 5 irrigation systems

(large unit factor, P), and 3 rice variants.

Block II

Psda

Pad3

P24:

Psd1

Padz

Pad2

P2t

Psds

Psdy

PaQ1

P20

Psq2

Block IV

Pz4s

PaG1

PsQ1

Psqz

Block |
P2G1 | Psly | P29z Paly
Pz43 | Psds | P3da Paq3
P29z | Psfz | P23 PaG2
Block Il
Psly P30z | PG | Pals
Psd> P3Gy | PG | PaG2
Psds P39z | P2%1 | P4%1

P20

P4Q3

P32

Psdz

P22

Pad2

Psds

Psd1
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Split-split-unit designs

We may nest several variables requiring increasingly small experimental units like
the design in the example below.

Example 4

Block |

Block II

Block I1I
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Criss-cross designs

If both treatments require relatively large experimental units, we may apply one of

them on the columns, and another one on the rows.

Example 5

IL¢ $¥Y

Block | Block Il
P2G1 | Psty | Pada Pad1 |:> P30z | Pa92 | P29z | Psdz
P20z | PsMz | Pads Pads » Padz | Padz | P2Mz | Psds
P2qz | Ps9z2 | P22 P4l2 E> P3Gy | Pad: | P2G1 | PsOx
Block Il Block IV
Psq1 P3d: | P2G1 | P42 ‘ P20z | Pads PzQ3 | Psds
Psqz P32 | P29z | Pad2 |:> Pa0:1 | Pad1 Pzd1 | Psd:
Psds Pzds | Pols | Pals |:> P29z | Padz P32 | Psd:z
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Outline

9 The basics of Experiment Design revisited

@ Randomization
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Randomization

Example 51

8 students are divided in two groups, each student has
the same probability of being in each group. Group 1
(A,B,C,D) receives a special training program, while
Group 2 (E,F,G,H) receives the standard training. The
scores in a test are

F|A|C|H E|B|G|D
19 | 16 | 15 | 15 || 14 | 13 | 12 | 10

The probability of 4 students being at the top of the list
by chance is p-val=1/70 (= 1/C(8,4)). The fact that we
have randomly assigned students to both groups make
the results “generalizable” to the whole population.
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Randomization

Example 52

We give a test to 8 students. The scores are

F|IA|C|H E|B|G|D
19 | 16 | 15 | 15 || 14 | 13 | 12 | 10

We observe that the 4 top scores (F,A,C,H) correspond
to females, while the 4 bottom scores (E,B,G,D)
correspond to males. The fact that we have a

post-hoc observation makes the result less reliable
(case-studies). We might have found any other spurious
pattern (the 4 older people, the 4 blond people, the 4
people born from Aries to Virgo, ...)
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@ If all units are known at the beginning of the experiment, randomization can
be performed simply by a random permutation (performed by a computer,
not by a person)

[FIAJCIH]E[B[G]D]
@ If units arrive sequentially, we may assign randomly the treatment depending
on the number of already assigned units. We assign to Group 1 with
probability

_ 4-a

C8-m—a

where we will have in total 8 units, 4 assigned to Group 1 and 4 to Group 2,
and g; and g» are the number of units assigned until this moment to each
one of the groups.

p1
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Randomization

o If units arrive sequentially, more complex schemes may be followed. The
probability of being assigned to A, which initially is 0.5, is modified by the
number of subjects in treatments A and B for each one of the characteristics.

Example 53

For instance, we are conducting a clinical trial with 2 treatments (A and B) in
which we classify patients by age, sex and occupation. Assume that a new patient
arrives with an age of 28 years, male, and occupation 1V, and that the previous
patients have been allocated as

A B
Age
oo vle —em The probability of being assigned to
50-70 4 5 -
e a |l s treatment A is
Sex
Mal 17 14 14/17
Fe?ni:le 13 16 - pA:05£Ez:019
[¢] g . .
| ccupation 5 s 10 17 9
I 9 13
(11} 7 2
v 9 7 — 7/9

2. Foundations revisited October 14, 2016 88 / 90



In clinical studies it is important that the patient
(=single blind) AND the doctor (=double blind)
do not know (cannot guess) which is the
treatment being applied, because this may bias
the results (doctors/patients tend to evaluate

8 differently if they know that they have been
given Treatment 1 instead of Treatment 2).
Doctors should not be able to distinguish which
patient is receiving which treatment.

For small number of treatments, blocks should
contain more than 1 replicate of each treatment.
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9 The basics of Experiment Design revisited
@ Experimental units
Replication
Blocking
Balanced Incomplete Block Designs (BIBD)
Multiple blocking
Split-unit designs
Randomization

2. Foundations revisited October 14, 2016 90 / 90



Chapter 3. Factorial designs

C.0.S. Sorzano

coss@cnb.csic.es

National Center of Biotechnology (CSIC)

October 14, 2016

CSIC

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

3. Factorial designs October 14, 2016 1/68


coss@cnb.csic.es

© Factorial designs
o Factorial designs
2k Factorial designs
Fractional factorial designs
Screening designs
Blocking factorial designs
Factorial designs for quantitative factors: Response Surface

3. Factorial designs October 14, 2016 2 /68



Outline

© Factorial designs
o Factorial designs

3. Factorial designs October 14, 2016 3/68



Factorial design

Example 50

We want to find the optimal combination of number of
meals and daily calories for a weight loss diet. We are
thinking of 3 or 5 meals, and 1500, 1700 or 1900 calories.
5 individuals will be given all possible combinations:

Meals Calories
Treatment 1 3 1500
Treatment 2 3 1700
Treatment 3 3 1900
Treatment 4 5 1500
Treatment 5 5 1700
Treatment 6 5 1900
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Factorial design

Set of treatments of a single type (e.g., No.
Meals or Calories)

Particular treatment from the set (e.g.,
1500, 1700, 1900)

A combination of one level from each factor
(e.g., 3 meals, 1500 calories)

Comparison between levels of a single factor
(e.g. 3 vs 5 meals)

Comparison between levels of several factors
Interaction (e.g. 3 meals and 1500 calories vs 3 meals
and 1700 calories)

Factor

Level of a factor

Experimental treatment

Main effect

Factorial designs ...

@ test the main effects of each factor with a variety of other levels improving the
relevance of the study.

@ allow estimating interactions between factors.

@ reduce the number of samples with respect to the change only one variable at
a time.
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Incomplete factorial design

Designs must not be full factorial if some combinations of treatments make no
sense. If we remove some of the combinations we increasingly loose orthogonality,
but the loss may compensate for not performing nonsensical combinations

Example 51
Factor A Factor B Factor C
el no no no
Treatment 1 no no yes
Treatment 2 no yes no
Treatment 3 no yes yes
Treatment 4 yes no no
Treatment 5 yes no yes
Treatment 6 yes yes no
Treatment 7 yes yes yes
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Factorial design + Control

There can be designs similar to factorials but with an extra replicate control. The
way we perform the control has effects on the analysis.

Example 52

Given Ny = 3 levels of Factor A and Ng = 3 of Factor B, we have two possible
designs with an extra control.

Design I: Nrepiicates = 6, (NalNg + Control) Nyepjicates = (3 X 3+ 1) X 6 = 60 units
Design Il: Nieplicates = 5, Na(Ng + Control) Nyepiicates = 3 X (3 + 1) x 5 = 60 units

Design | Design Il
Replicates Control 6 15
Replicates A 18 15
Replicates AB 6 5
Variance Control-AB %2 = 0.3302 ‘1’5 +% =0. 270>
Variance Control-A "62 "8 = 0.2202 1—52 = 0.1302
Variance A1-Az W =0.1102 2& = 0.130°
Variance AB;1-AB; % = 0.3302 QL = 0.402
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Complicated “factorial” designs

Example 53

We want to compare two chemicals (E and O) versus a control. Chemical O is an
oil requiring a surfactant (S; or S;). The application can be performed with two
different sprayers (SP; or SP,). Three concentrations of the chemicals will be
used. The anticipated comparisons will be: O vs E; O or E vs Control; Main effect
of the surfactants; Main effect of the sprayers; Concy vs Concy vs Concs. The
number of replicates could be

Chemical | Surfactant | Sprayer | Conc: | Conc, | Concs
0} S SP; x1 x1 x1
O Si SP, x1 x1 x1
(0] S SP; x1 x1 x1
0} S SP; x1 x1 x1
E SP; X2 X2 X2
E SP;, X2 X2 X2
Control SPy x5
Control SP; x5
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2% Two-level factorial designs

When each factor has only two levels, the design is called two-level k factorial
design (2).

Example 54

We want to determine the effect of a mammalian water balance
hormone in amphibia. Two species (=Factor P) are studied (toads=0,
frogs=1), at two levels of hormone (=Factor Q, control=0,
hormone=1), and two pre-experiment moisture conditions (=Factor R,
wet=0, dry=1). We measure the percentage increase in weight after
immersion in water for 2h. 2 replicates are studied for each treatment
combination. The results are

Species(P)  Moisture(Q)  Hormone(R) Results
Toad wet control 231 -1.59
Toad wet hormone 28.37 14.16
Toad dry control 17.68 25.23
Toad dry hormone 28.39 27.94
Frog wet control 0.85 2.90
Frog wet hormone 3.82 2.86
Frog dry control 247  17.72
Frog dry hormone 13.71 7.38
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2% Two-level factorial designs

Let us call
@ (1) the mean of the observations with no treatment applied
(P=Q=R=-1)
P the effect size of applying P=1
p the mean of the observations that has P=1
PQ the effect size of applying P=1 and Q=1
pq the mean of the observations that have P=1 and Q=1

We may estimate the effect size of P as the difference between those observations
with P =1 and P = —1. But this can be done in many different ways

P = p—(1)
ptpq _ l+q
2 2
_ ptpgtpr _ l4q+tr

3 3
P+PQ+4pr+pqr o 1+qzr+Qr _ %(p - 1)(q+ 1)(r + 1)
pgtpripgr _ gtrtgr

3 3
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2% Two-level factorial designs

The following table shows how to choose the signs to estimate the different effects.
It is contructed by setting the signs for P, @ and R. Then the rest of columns
(PQ, PR, QR, PQR) are simply the multiplication of the corresponding signs.

Estimate | o P Q PQ R PR QR PQR
(1) + - - + - + + -

p + + - - - + +

q + - + - + - +
pq + + + + - - - -

r + - - + + - - +
pr + + - - + + - -
qr + -  + - + - + -

pqr + + + + + + +

For instance to estimate PQR we would have

— 1
PQR = 7 (=1+p+q—pa+r—pr—ar+pqr)
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2% Two-level factorial designs

Similarly

Po= -1+ 1)(r+1)=5=(p-1(a+1)(r+1)
Q = p+1)(g-1)(r+1)

ko= lp+1(@+1)(r-1)

PQ = i(p-1)(g-1)(r+1)

QR = lp+1)(g—1)(r—1)

PR = ip-1(g+1)(r—1)

PRR = (p—1)(g—1)(r—1)

ﬂ — %(p+1)(q+1)(r+1):pqr+pq+pr+2cir+p+q+r+1

General formulas for k factor and r replicates for each treatment

—

effect = l(pl +1)(pa£1)...(p 1)
Var{effect} = (Z 5
SS{effect} = Fok- 2(effect)?
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2% Two-level factorial designs

In matrix form

ffi‘ +1 41 41 41 41 41 41 +1\ /1
2- 2 “1 41 -1 41 =1 41 -1 41| op
27Q ~1 -1 +1 +1 -1 -1 +1 +1 q
27PQ L [ 41 -1 -1 41 41 -1 -1 41| | pg
IR [ Tl —-1 -1 -1 -1 41 41 41 4l r
2k=1PR +1 =1 41 =1 —1 +1 —1 41| pr
2k—16§ +1 +1 -1 -1 -1 -1 +1 +1 qr
2,(_1,?(?7? -1 +1 41 -1 +1 -1 -1 +1 pqr

or equivalently
y = Ux
U is an orthogonal matrix (the rows and columns of U are orthogonal to each

—1_ 1 T
other, U™ = oz U"), so

1 Ta
det U

X =
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2% Two-level factorial designs

The data generation model comes from this latter equation x = deiU Uy and it
can be expressed as

Xijkl = M
+0.5 (1) 7tP 4+ (1Y 'Q + (-1)*'R)
405 ((_1)i+j*2PQ + (_1)i+k72PR + (_l)j+k72QR)
+0.5 ((—1)H k3 PQR)
+€ijki

Example 55

Xtoad,dry,control = X010 = WK

+05(—P+ Q- R)
+0.5(—PQ — PR — QR)
+0.5(+PQR)
Xtoad,dry,hormone = X011 = [

+0.5(—P+ Q+ R)
+0.5(—PQ + PR + QR)
+0.5(— PQR)
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2% Two-level factorial designs

Example 56

We are interested in testing if there is a difference due to the
hormone in toads with a dry period before getting immersed in
water

C = Xtoad,dry,hormone — Xtoad,dry,control = X011 — X010
= R-PR+QR—-PQR
= effe Cthormone
= efFeCt( toad ,hormone)
+ effeCt( dry, hormone)
— eﬁ-eCt( toad,dry ,hormone)

. . 2 2 2 .
Each effect in ¢ has a variance —7— = 55— = % So the variance of,

c depending on the model is

Full model
No 3rd order interactions (PQR = 0)
No 2nd order interactions (PQ = PR = QR = PQR = 0)

~

|QN">|QN

w

q
N~

al
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Example 56(continued)

2% Two-level factorial designs

The model we choose has consequences in the analysis results
0,

Estimate of Std.Error of 954
Model . Confidence

Xp11 — Xo10 estimate X

interval

Full model 6.7 5.88 (—6.28,20.28)
No 3rd order 10 5.09 (—1.76,21.76)
No 2nd order 7.38 2.94 (0.59,14.17)

Factorial designs allow estimating many interactions. But
the simpler the model, the better. The choice to remove interactions must
be done before the experiment, never after seeing the experiment results.
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3k, 4k .. High-level factorial designs

High-level factorial designs are possible, but the analysis gets more and more
complicated. For example for the 3?-factorial design

Aﬁ’/ %( po)(g2 + g1 + qo)
P = %(Pz - 2Pl + po)(g2 + g1 + qo)
Q’ = 3(p2+p1+ po)(q2 — o)
Q" = &P+ P+ po)(a2 — 2q1 + q0)
P'Q = %(szpo)( g2 — Qo)
P = (p2—po)(g2 — 21 + qo)
P"Q = %(Pz - 2Pl + po)(92 — qo)
P'Q = %(Pz —2p1 + po)(g2 — 2q1 + qo)
f= g(p2+p1+po)(q2 + g1+ qo)
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Replication of factorial designs

Example 57
We may replicate a factorial design by simply repeating the sequence of
experiments. However, repeating in the same order is not a good idea,
randomisation is better (to avoid the influence of the order of treatments). For
example, for a 23-factorial design we may perform:
Design run Treatment Experimental run

0 000 7

1 001 2

2 010 15

3 011 10

4 100 1

5 101 g

6 110 5

7 111 13

8 000 9

9 001 8

10 010 14

11 011 0

12 100 6

13 101 12

14 110 4

15 111 11
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Factorial designs and single replicates

High-order interactions can be assimilated to the error, and single replicate
factorial designs may be conceived.

Example 58

We are interested in the survival of Salmonella typhimurium
under 3 experimental factors: 3 levels of sorbic acid (=Factor S),
6 levels of water activity (=Factor A), and 3 levels of pH
(=Factor P). The data will be the log (density/ml) measured
after 7 days after treatment started.

We have 3 x 6 x 3 = 54 treatments, and we will use a single
replicate for each treatment.
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Factorial designs and single replicates

Example 58(continued)

The data analysis table would be
SS df MS F

Water activity (A) 81.57 5=(6-1) 16.31 473> Fp.05,5,20
Sorbic acid (S) 2.76 2=(3-1) 1.38  40>Fo.055,20
pH (P) 0.01 2:(3-1) 0.01 0.2<F0_95,2720
AS 1.32 10=(6-1)(3-1) 0.13  3.8>Fo.95,10,20
AP 0.45 10:(6-1)(3-1) 0.04 1.3<F0.95710720
SP 0.23 4:(3-1)(3—1) 0.06 1.7<F0_95,4720
ASP =~Error 0.69 20=(6-1)(3-1)(3-1) 0.03

Total 87.03 53

The problem with single replicate, factorial designs is that 1) it is difficult to
use blocking, 2) due to the lack of replication, there is no possibility to
construct an unbiased estimate of the noise.
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Fractional replication

Example 59

We are interested in a cell line as biologics bioreactor, and we
want to optimize production. We have identified 7 variables we
may control (temperature, humidity, pH, O, concentration, CO,
concentration, glucose concentration, aminoacid concentration).
For each variable we have 2 possible values. There are 27 = 128
possible treatments, but we can only afford 64. We do not foresee
3rd order interactions or higher. Can we perform this experiment?

The number of degrees of freedom needed to identify main effects
and 2nd order interactions is

df
Main effects 7
2nd Order Interactions | 21=C(7,2)=7!/(2!5!)

So we need 28 samples plus sufficient replication for estimating
the error. For instance, if we perform 64 experiments, there would
be 37 df for the noise.
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2k=1 Factorial design

Let us perform 1/2 of a full 2 factorial design. We need to find an appropriate
subset and understand its consequences. Let us consider the full factorial design
with 3 factors:

Treatment | P Q R | PQ PR QR | PQR
000 - - - + + + -
001 - -+ | + - - +
010 - 4+ - - + - +
011 e e
100 N e
101 + - 4+ - + - -
110 + + -+ - - -
111 + + + |+ o+ o+

This matrix also defines how to estimate the different contributions. For instance

~

/f = %(_YOOO — Y001 — Y010 — Yo11 + Y100 + Y101 + Y110 + y111)
PQR 7 (=000 + Yoo1 + Yo1o — Yo11 + Y100 — Y101 — Y110 + y111)
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2k=1 Factorial design

We now choose 4 (one half) treatments that preserve column orthogonality
amongst the treatments

Treatment | P Q R | PQ PR QR | PQR
001 - -+ + - - +
010 -+ - - + - +
100 + - - - - + +
111 + + + + + + +

Actually, the column for P is the same as the one for QR, meaning that when we
compute

P+ QR = —yo01 — Yo10 + Y100 + Y111

we are confounding P with QR, we cannot distinguish between the effect of boths,
but we presume that the main effect of P is larger than the QR interaction. This
is also called aliasing.

In this design there are other aliasings (Q with PR, R with PQ, and the mean (1)
with PQR).
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2k=1 Factorial design

The previous design is not the only 251 we can do with k =. Here we show other
two designs

Treatment | P Q R | PQ PR QR | PQR
000 - - -+ + + -
011 e T B
101 + - 4+ - o+ - -
110 + + -+ - - -

In the design above the aliasings are exactly the same as before (P with QR, @
with PR, R with PQ, and (1) with PQR).

Treatment | P Q R | PQ PR QR | PQR
001 e
010 e B S B
101 + -+ -+ - -
110 + + -+ - - -
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2k=1 Factorial design

Another way of constructing a 2371 design is by starting with a 22 design (2=3-1).

Treatment | P Q | PQ
00 B
01 - -
10 + - -
1 + 4+ +
The we change PQ by R, knowing that we will be confounding R with PQ
Treatment | P Q R=PQ
001 - - +
010 -+ -
100 + - -
111 + + +

Then automatically other confoundings will be caused

Treatment | P Q R=PQ | PR=Q QR=P PQR= (1)
001 - - T - - T
010 -+ - + - +
100 + - - - - +
111 + + 4+ + - +
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2k=P Factorial design

The design R = PQ can be written as 3 = +12 meaning that the third column is
the product of the first two (or minus the product of the first two). For a 2k—7
design we need p design equations, e.g., a 2873 design can be achieved with

6 = +£345
7 = =+£1245
8 = =+£1235

If we multiply again by the 6th, 7th, 8th columns, then we have the equations

(1) = 43456
(1) = +12457
(1) = +12358

That are called the generators of the design. The length of the shortest word
amongst the generators is called the resolution. In our example length(3456)=4,
so our design is of resolution IV

2?\73 design
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2k=P Factorial design and Resolution

Given the generator we may discover the rest of confounding terms associated to
that equation:

(1) = 3456,3 = 456,4 = 356,5 = 346,6 = 345,34 = 56,35 = 46,36 = 45

Resolution Ability Example

1 Not useful: an experiment of exactly one run only tests one level of a factor =1
and hence can't even distinguish between the high and low levels of that factor

1] Not useful: main effects are confounded with other main effects (1)=12

1l Estimate main effects, but these may be confounded with two-factor interactions (1)=123

v Estimate main effects unconfounded by two-factor interactions. (1)=1234
Estimate two-factor interaction effects, but these may be confounded with other two-factor interactions

Vv Estimate main effects unconfounded by three-factor (or less) interactions. (1)=12345
Estimate two-factor interaction effects unconfounded by two-factor interactions.
Estimate three-factor interaction effects, but these may be confounded with other two-factor interactions.

\ Estimate main effects unconfounded by four-factor (or less) interactions. (1)=123456
Estimate two-factor interaction effects unconfounded by three-factor (or less) interactions.
Estimate three-factor interaction effects, but these may be confounded with other three-factor interactions.

Example 59 (continued)

We have identified 7 variables we may control, but we cannot afford more than 64
experiments. We do not foresee 3rd order interactions or higher. Can we perform this
experiment?

We can do with even less (32 experiments): 2], * with generators 6 = 123 and 7 = 124
... But | can afford up to 64 experiments, and | don’t mind doing more than 32 to
increase results accuracy!!!
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Mirror-image foldover designs

Given a resolution Il design we may increase its resolution to IV by mirroring it.
All we have to do is to replicate the experiment and change the signs of all
treatments

Example 61

For a 2572 fractional factorial design we have

Xi Xo X3 Xa=XiXo Xs=XiXs Xi X X3 Xa Xs
Run 1 - - - + + Run 9 F aF + = o
Run 2 - - + + - Run 10 + + - - +
Run 3 - + - - + Run 11 + - + + -
Run 4 - + + - - Run 12 + - - + +
Run 5 a4 - - - - Run 13 - = == = ==
Run 6 = = = = “F Run 14 - + - + -
Run 7 + + - + - Run 15 - - + - +
Run 8 + + + + + Run 16 - - - - -

Original design Mirrored design
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Irregular fractions of 2% Factorial designs

We may adopt a regression approach to the analysis of 2¥ factorial designs. With
the -1 and 1 encoding, the regression model would look like

Yik = Bo+ Bppi + Bqqi + Bogpiqj + Brrk + BorpPitk + Barairk + BpgrPiqjrk
y = A6
Consider the fractional design
1 -1 -1 1 1 -1 -1 1
A— 1 -1 1 -1 -1 1 -1 1
11 -1 -1 -1 -1 1 1
1 1 1 1 1 1 1 1
Treatment 4 0 0 0 0 0 0 4
001 0 4 00 0 0 4 0
010 — 0 0 400 4 00
100 ATA — 0 00 4 4 000
111 0 004 4000
0 0 4 00 4 00
0 4 00 0 0 4 0
4 0 0 0O OO O 4
Eigenvalues: 8(4),0(4)
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Irregular fractions of 2% Factorial designs

We now add two extra measurements (000 and 011)

1 -1 -1 1 -1 1 1 -1

1 -1 -1 1 1 -1 -1 1

A 1 -1 1 -1 -1 1 -1 1

1 -1 1 -1 1 -1 1 -1

Treatment 11 -1 -1 -1 -1 1 1

000 1 1 1 1 1 1 1 1
001 6 -2 0 0 0 0 2 2
010 — -2 6 0 0 0 0 2 2
011 0 0 6 -2 2 2 0 0
100 ATA — 0 0 -2 6 2 2 0 0
111 0 0 2 2 6 -2 0 0
0 0 2 2 -2 6 0 0
2 2 0 0 0 0 6 -2
2 2 0 0 0 0 -2 6

Eigenvalues: 8(6),0(2)
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Irregular fractions of 2% Factorial designs

Finally, we may compare it to the full factorial by adding two extra measurements
(101 and 110)

1 -1 -1 1 -1 1 1 -1

1 -1 -1 1 1 -1 -1 1

1 -1 1 -1 -1 1 -1 1

A 1 -1 1 -1 1 -1 1 -1

Treatment 1 1 -1 -1 -1 -1 1 1

000 1 1 -1 -1 1 1 -1 -1

001 1 1 1 1 -1 -1 -1 -1

010 1 1 1 1 1 1 1 1
011 — 8 00 0O OO OO
100 0 8 0 0 0 0 0O
101 0 0 8 0 0 0 0O
110 ATA — 0 00 8 0 0 0O
111 0 0 0O0O 8 0 0O
0 00OO 0O 8 0 O
0 0 OO 0O O 8 0
0 0 0O0O 0O O O 8

Eigenvalues: 8(8)
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Screening designs

Example 62

We are screening drugs and we expect that most of them
do not have any effect. We also expect that there is no
interaction between compounds. Can we screen many
different compounds with as few runs as possible?

If very few effects are expected to have an effect, and we do not expect
interactions, we may opt for a Resolution Il design (they can estimate main
effects, but confounded with 2nd order interactions).
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Saturated designs

Example 63

Let us design an experiment for screening 7 factors with just 8(= 2°) treatments.
. . Block 1 2 3 4 5 6 7
1) We start from a CyC.|IC design to Treatments |1 2 3 4 5 6 7

compare 7 treatments in 7 blocks

of three units per block 2 9 4 39 6 7 4
E€ RIS PEr BIock: 4 5 6 7 1 2 3
Factor | 1 2 3 4 5 6 7
Runl | + - - -+ +
Run 2 - - - -
2) We now convert each block (1) REE 3 T i o 4
to a factor, and put +1 if the Run4 | + - + + - _ .
tr(;a:tment_/ .w;xs :Infblock i. Finally Rin§ | - + - + + - .
add a run with all factors Run6 | - - + - 4+ 1+ -
Run7 | - - - + + + +
Run8 | + + + + + + +
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Plackett-Burman designs

Example 64

Let us design an experiment for screening 16
factors with just 20 treatments.

Plackett - Burman Design

Factors: 16 Replicates: 1
Base runs: 20 Toral rums: 20
Bagse blocks: 1 Total blocks: 1

Plackett-Burman designs are also very
popular for screening a large number of
factors. They exist for a number of runs
that is a multiple of 4 (20 in the
example).

Design Table
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Blocking causes confounding

Example 65

Consider a 2* full factorial design with factors A, B, C. We need 8 runs to perform the
experiment. But we cannot run more than 4 experiments per day (and differences
between days can be expected). The day of the experiment acts as a blocking variable.

Yijk = bpjiock(ij) + Bo + Baai + Beb; + Bapaib; + Bcck + Bacaick + Becbjck + Bapcaibjck

Treatment | A B AB C AC BC ABC Day
(1) = = 4F = + + = Day 1

a + - - - - < + Day 2

b -+ = = + = IF Day 2

ab + + + = = = - Day 1

c = = + + = = 4F Day 2

ac + - - + + - - Day 1

bc = = = T+ = + = Day 1
abc + + + + + aF Day 2
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Blocking causes confounding

Example 65(continued)

We now reorganize treatments in the same block together

Treatment | A B AB C AC BC ABC Day
(1) = = + - + + - Day 1

ab S S = = - - Day 1

ac + - - + 4 - - Day 1

bc = = = + = + = Day 1

a + - - - - 4F 4k Day 2

b S = = 4+ = 4F Day 2

C - - +  + - - + Day 2

abc + + + + + + 4F Day 2

In Day 1 we only have - signs in ABC, while in Day 2 we only have + signs. This means
that the ABC effect has been confounded with the blocks. For the rest of variables, each
block contains the same number of + and - signs.

The only way of escaping from confounding is by replication.
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Blocking causes confounding

Example 66

Assume that we cannot perform more than 2 experiments per day, and we decide to
sacrifice BC interactions. Now the blocks may look like
Treatment | A B AB C AC BC ABC Day
(1) = = 4 = T T - Day 1
bc -+ = + = + - Day 1
ab F A = = - - Day 2
ac + - - + 4+ - - Day 2
a F = = = = 4F 4F Day 3
abc + + + + + + 4F Day 3
b -+ = = AF = aF Day 4
c - - 4+ 4 - - 4 Day 4
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Blocking causes confounding

Once we decide to confound a treatment, other treatments get also confound. In
the example we have decided to confound BC and ABC. However, any other
treatment that can be reached by generalized interaction also gets confounded

Given any two interactions, the generalized interaction is obtained by
multiplying the factors (in capital letters) and ignoring all the terms with an
even exponent.

ABC x BCD = AB?>C?D = AD

AB x BC x ABC = A°B3C?> =B

In our example
BC x ABC = AB?C? = A

A has also been confounded!!!
A better choice would have been AB and BC.
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Blocking 2* factorial designs

Let us show the procedure through an example

Example 67

We have an experiment with 5 two-level factors (A,B,C,D,E) and consequently there are
2% = 32 treatments to be estimated. The runs need to be allocated in 8 = 2% blocks of
size 4 = 22, We need to confound 7 = 2% — 1 treatments. But these confounded
treatments are not independent.

1) Choose 3 treatments to confound: AD, BE, ABC
2) Construct the remaining 4 treatments by generalized interaction:

AD x BE = ABDE
AD x ABC = BCD
BE x ABC = ACE
AD x BE x ABC = CDE
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Blocking 2* factorial designs

Example 67(continued)

3) Write the treatments in the standard order

(1) a b ab c ac bc abc
d ad bd abd cd acd bed abcd
e ae be abe ce ace bce abce
de ade bde abde <cde acde bcde abcde

4) Construct a principal block:

@ A treatment belongs to the principal block if it has an even number of letters in
common with the generating, confounded treatments (AD, BE, ABC).

@ If two treatments belong to the principal block, so does their generalized interaction.

The principal block is not unique. In this case we will use

Block 1
(1)
acd
bce
abde(=acd x bce)
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Blocking 2* factorial designs

Example 67(continued)

5) Construct the rest of blocks by multiplying the first block by the “head” of the
columns in the standard table
(1) a b ab c ac bc abc
d ad bd abd cd acd bed abcd
e ae be abe ce ace bce abce
de ade bde abde <cde acde bcde abcde
Block 1 | Block 2 | Block 3 | Block 4 | Block 5 | Block 6 | Block 7 | Block 8
(1) a b ab c ac bc abc
acd cd abcd bcd ad d abd bd
bce abce ce ace be abe e ae
abde bde ade de abcde bcde acde cde
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Blocking mixed-level factorial design

Example 68

We want to test the effect in maize growth of
@ 2 levels of nitrogen (N)
o 3 spatial arrangements (S)
@ 2 management systems (M)
@ 2 maize genotypes (G, if possible)

We have 4 blocks of 12 plots each. We want to estimate
all main effects and the interactions NS, NM, NSM, GN,
GS, GM.
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Blocking mixed-level factorial design

Example 68(continued)

If the 2 genotypes are not tested we have 12 treatments
that will be allocated in the 12 plots and replicated 4
times. The ANOVA table in this case would be

df

Blocks 3
Nitrogen (N) 1
Spacings (S) 2
Management (M) | 1
NS interactions 2
NM interactions 1
SM interactions 2
NSM interactions | 2
Error 33

Total 47

33 df for the error is a lot, so we try to introduce the
genotypes.

3. Factorial designs October 14, 2016 47 / 68



Blocking mixed-level factorial design

Example 68(continued)

@ To be able to estimate main effects of a factor (e.g. G), each level must
appear the same number of times in each block and appear with each of the
combinations of the rest of factors (e.g. NSM).

Block | Block Il
nsimigi nisimige
nis,mzg» nis,mzg1
nissmigi nissmige
nis1mzgo nisimagi
nis,migi nis,mige
nissmzg nissmzgi
n2s1migi n2s1migo
n2s,m2 8> ns;mzg1
n2s3migi n2s3mig»
n2s1mzgo n2s1magi
ns,mig1 ns,mig>
n2s3mzg» n2s3mzg1

2 replicates of the following design will
be performed.

It can be easily verified that N, S and M
fulfill this condition. G is the most

compromised factor and looking at the
table this condition is fulfilled.
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Blocking mixed-level factorial design

Example 68(continued)

@ To be able to estimate 2nd order interactions (e.g. GN), each combination
must appear the same number of times in each block and appear with each
of the combinations of the rest of factors (e.g. SM).

Block | Block Il
nsimigi nis1migo
nis2mzgo nis,mzg1
nissmigi ni1s3mig»
nis1mzgo nsimzgi
nis,migi nis2mige
nis3mzg» nissmzgi
n2s1migi n2s1mi g
ns,mzg» ms;mzg1
n2s3mi gy n2s3mi g2
n2s1mzgo n2s1mag
ns,mig1 nms,mi g
n2s3mz g2 n2s3mzg1

n1g and ny g fulfill this condition as has
been highlighted. nogi, nog» also do as
can be easily verified.

NS, NM, SM, GS and GM interactions
also fulfill this criterion.
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Blocking mixed-level factorial design

Example 68(continued)

@ To be able to estimate 3rd order interactions (e.g. NSM), each combination
must appear the same number of times in each block and appear with each
of the combinations of the rest of factors (e.g. G).

Block | Block Il
nsimigi nis1mige
ns;m:g nis;mzg1
ni1s3migi nissmig2
nis1mago nisimzgi
ns,mig ns,mige
n1S3mzg» nis3smzgy
n2s1migi n2s1mi g
ns,mzg» ms;mzg1
n2s3mi 81 n2s3mig2
n2s1mzgo n2s1mag
ns,mig1 nms,mi g
n2s3mz g2 n2s3mzg1

nysymy fulfills this condition as has been
highlighted. The rest of NSM
combinations also do as can be easily
verified.

But s3m;g; does not.
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Blocking mixed-level factorial design

Example 68(continued)

df

Blocks 3

Nitrogen (N) 1

Spacings (S) 2

Management (M) | 1

NS interactions 2

NM interactions 1

SM interactions 2

GN interactions 1

GS interactions 1

24 df for the error is enough and we have GM interactions 1
gain much analytical capabilities. NSM interactions | 2
NSG interactions | 2

SMG interactions | 2

Error 24

Total 47
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Incompletely confounded designs

Classical designs have concentrated in completely confounded (e.g. NSM in the
example above) or completely unconfouded effects (e.g. SMG in the example
above). However, with computers we may have partially confounded parameters

Example 69(continued)

With the same experiment as above

Block | Block Il
nmsimigi nisimige
nis;mzg ns;mzg1
ni183mi 82 niS3migi
nsimagi nisimago
nis,migi ns,mig
nis3mzg» nissmzgi
n2s1mi g n2s1migi
nsxmeg1 ns,m2g»
n2Ss3mi g1 n2s3msi g2
n2s1MmMz g n2s1ma g1
n2s,mi g2 ns,mig1
n2s3Mmz g1 n283Mmz 82

The GNM effect is estimated as
GNM (&2 — g1)(m2 — m)(m2 — my)(s1 + s2 + s3)

+(nmiga + mmagi + n2migi + namagz)(s1 + 52 + s3)

—(mmig1 + nimago + n2migr + namagi)(s1 + s2 + s3)

GNM is not totally confounded with the blocks, it is only:
partially confounded.
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Completely confounded mixed-level factorials

Consider an experiment with k factors. There is no restriction on the number of
levels of each factor (2, 3, 4, ...). If the number of experiments is restricted to 1
full replicate of the factorial, then some interactions must be confounded with the
blocks and will be inestimable.

The model of a blocked factorial experiment can be written as
y=X0+2B+¢€

where 6 is the vector of estimable treatment effects, and 3 is the vector of block
effects (confounded with the inestimable treatment effects).

The goal of the Ds-optimal design is to minimize the covariance matrix of the LS
estimator, or equivalently maximize the determinant of

X*,Z* =argmax X" (1 - 2(2" 271 2))X
X,Z

Lawson, Schaalje, Collings. Blocking Mixed-Level Factorials with SAS. J. Statistical Software, 32, 1 (2009)
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Outline

© Factorial designs

@ Factorial designs for quantitative factors: Response Surface
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Factorial designs for quantitative factors

Example 69

We are preparing a formulation for a drug that must be
delivered as an emulsion. We may dissolve the drug in 3
compounds simltaneously. The goal is to determine the
optimal concentration of each of the three compounds
such that the amount released is maximized. We will
study 3 levels of each of the 3 compounds.

First we need to choose which function will be used to model the data

Y = By + B1 X1 + 2Xo + ¢ | Plane: Allows linear estimation
Y = fo+ f1X1 + B2 Xo +
B1X? + L1 X1 Xo 12 X3 + €
Y = A(1—e AXi=FX2) ¢ | Asymptotic response high

Y = e AXi=FRX 4 ¢ Asymptotic response low
Y = m + € | Logistic function
% =By + % + € Michaelis-Menten

Quadratic: Allows linear estimation
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Factorial designs for quantitative factors

Example 70

The goal of the experimental design is to distribute the samples in X; and X; such
that the observations, Y, obtained at this locations allow estimating with the
“maximum precision” the coefficients describing the response surface.
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Optimal designs

Our regression model, in general, will be of the form
Y =1(X,0)+¢€

The regression will find the © that better fits the experimental data, and we
should have an expected value of the covariance matrix of @

P
The inverse of this matrix is called Fisher’s Information Matrix
lp=%,*

This inverse depends solely on X (fixed by our experimental design) and o2 (the
experimental noise). So, by judiciously choosing the X values we should be able to
minimize the uncertainty about the regression parameters.

3. Factorial designs October 14, 2016 57 / 68



Optimal designs

For linear models

Y = X0+¢€
Yo = o?(XTX)!
lo = %XTX

The covariance of the predictions is given by
Yy = XTEeX

There are several optimization criteria

D-optimal Maximize the determinant of /g
A-optimal Minimize the trace of Ly

T-optimal Maximize the trace of Ig

E-optimal Maximize the minimum eigenvalue of Iy
G-optimal Minimize the maximum entry of Xy
I-optimal Minimize the trace of Xy

None of them is necessarily better than the rest and it depends on our
experimental objectives.
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(Nelder) Systematic designs

Systematic designs aim at minimizing the effect of a gradient of an interfering
variable. They are used in agricultural experiments.
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Linear models and 2% factorial designs

If the model to be estimated includes only main effects and second order
interactions

Y = Bo+Bi X1+ B Xo+Bri XP 4812 X1 Xo+ 822 X5+ B3 X3+ B13 X1 X3+ B23 Xo X3+ B33 X3

then pure 2% factorial designs cannot estimate the quadratic terms of the form
X?. Extra samples need to be added, converting each factor into a 3-level factor
(3*-factorial design).
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Linear models and 2% factorial designs

Centerpoints are added for
@ To provide a measure of process stability and inherent variability.
@ To check for curvature.

Centerpoint runs should begin and end the experiment, ...

@ ... and should be dispersed as evenly as possible throughout the design
matrix.

@ The centerpoint runs are not randomized! There would be no reason to
randomize them as they are there as guardians against process instability and
the best way to find instability is to sample the process on a regular basis.

As a rough guide, you should generally add approximately 3 to 5 centerpoint runs
to a full or fractional factorial design.

(NIST Engineering statistics handbook)
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Linear models and 2% factorial designs

The full 3*-factorial design allows estimating 3rd order interactions

Y = ﬁo =+ ,81X1 + ,82X2 + 53X3 (main efFects)
+B1X? + B12 X1 Xo 4 Boa X3 + B13X1. X5 + B23Xo Xz + B33 X3 (2nd order)
+B111 X3 4 Br12XEXo + B113XE Xz + B12o X1 X + B123 X1 X2 X3 (3rd order)
+B133X1X3 + B222X3 + B223 X3 X3 + B333X3 (3rd order)

But the full factorial experimental quickly calls for many experiments, we may stay
at the level of the quadratic function

k | Full 3*  Quadratic terms
2 9 6
3 27 10
4 81 15
5 243 21
6 729 28

A fractional design is required. Typical designs are Box-Wilson central composite
designs (CCC, CCl, or CCF) or Box-Behnken designs.
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Box-Wilson Central Composite Designs

Central composite design complements a full 2 design with middle point, with a

star (axial observations).
The distance from the points in

N -1 +1 the star to the center is
* + *‘"“i’""* cce p \ o= (zk)l/4
* /J' An example with kK = 2 blocks.
I —
X1 X2
1 1
b CCF -1 1
* * 1 -1
1 1
ke 0 0
0 0
. . . -2 0
CCC=Circumscribed ca b 5 0
CCl=Inscribed d 0o -2
CCF=Face centered = 8 ‘?
0 0
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Box-Behnken Designs

These designs are like the full 2% factorial with a middle sample, but the samples
are at the edges of the cube (hypercube).

The advantage is that it requires fewer runs than the
Box-Wilson designs.

CCF Box-Behnken
Xi X2 X3 X1 X2 X3
N _ _ 0 _ _
‘ - - + 0 - +
| - + - 0 + -
PN -+ o+ o+ o+
® + - - - 0 -
! + - + - 0 +
I @ + + - + 0 -
e | “ + o+ o+ + 0 +
e 0 0 - - - 0
. 0 0 + - + 0
BEEPN 0 - 0 + - 0
0 + 0 + + 0
- 0 0 0 0 0 (3 repl)
+ 0 0
0 0 0(6 repl)
20 runs 15 runs
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Blocking Response Surface Designs

o CCC allows blocking
@ CCF does not. Box-Behnken allows blocking only in limited circumstances.

For a CCC design, b = 2 blocks are easily obtained by separating the full factorial
design and the axial design

Block X1 Xa
1 1 1
1 -1 1
1 1 -1
1 1 1
1 0 0
1 0 0
2 -2 0
2 V2 0
2 0 -2
2 0 V2
2 0 0
2 0 0
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Blocking Response Surface Designs

For a CCC design, b = 3 blocks the full factorial design is split in two and the
axial design is not split.

Block X1 X2 X3
1 1 1 1
2 -1 -1 1
2 1 1 1
1 1 1 1
2 1 -1 -1
1 1 -1 1
1 1 1 -1
2 1 1 1
1 0 0 0
1 0 0 0
2 0 0 0
2 0 0 0
3 —2%/4 0 0
3 23/4 0 0
3 0 —2%/4 0
3 0 23/4 0
3 0 0 —23/4
3 0 0 23/4
3 0 0 0
3 0 0 0
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Experiment selection key

TABLE 3.1: Design Selection Guideline

% Comparative Screening %{iﬁ
Fac_tors Objective Objective me
1-factor
1 completely
randomized - -
design
2-4 Randomieed ﬁ%tlilu(:al cur(rfgegtsliﬂ?i or
block design factorial Box-Behnken
Fractional
5or Randomized factorial or Screeniisii
more block design Plackett- e D My
— of factors
Burman

NIST Handbook of Statistics
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Experiment selection key

Experimental Design Selection Key

21.po you want to test for differences among treatment means?
» Yes:
>> | know my ANOVA design, or
>> |f you want help choosing your ANOVA design, go to red arrow 2 below.
» No, | want to explore relationships among variables:
>> | know my Regression design, or
>> | want help choosing my Regression design (these pages under construction)

For ANOVA, you may choose among seven experimental designs via this key. The choice you make below will lead you to
pages that enable you to then choose among seven treatment designs, with the choice to further refine the analysis with
any combination of three specialized features (or no specialized features).

3 2. Are you blocking on a factor?
» Yes >> Go to red arrow 3 below.
» No >> You have a Completely Randomized Design (What is CRD?)

2 3. Is your block too small to contain all treatments?
» Yes >> Go to red arrow 4 below.
» No >> You have a Randomized Complete Block Design (What is RCBD?)

2 4. Does each block contain one and only one treatment?
» Yes >> Go to red arrow 5 below.
» No >> You have an Incomplete Block Design (What is Incomplete Block Design?)

http://dawg.utk.edu/choose.htm
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Experiment selection key

120 oy v v T v r
3" full factorial /
central composite
| —= 2* full factorial 4
100 _ k| : .
== 2% fractional factorial
Box-Behnken /
—o— Plackett-Burman
80 Taguchi 1
Z 60 - ; . ]
40 + 1
20 + 1
-
0 b - n i i A i L
2 3 4 5 6 7 8 9

Number of experiments required by the DOE techniques

Cavazzutti, M. Optimization methods: From theory to design. Chap. 2
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Experiment selection key

Table 2.14 DOE methods synoptic table

Method Number of experiments

Suitability

RCBD N (L) =t Li
Latin squares N(L)y= 12
Full factorial N(L,ky=LF

Fractional factorial N(L,k, p)= Lk=r
Nk =28 +2k4+1

N (k) from tables

N (k) =k+4—mod (%)

Central composite
Box-Behnken
Plackett-Burman

Taguchi N (kin, kout, LY = NinNout,
N!fi (k!fh L)! N{JMF (kmnv L)
from tables

Random chosen by the experimenter

Halton, Faure, Sobol
Latin hypercube
Optimal design

chosen by the experimenter
chosen by the experimenter
chosen by the experimenter

Focusing on a primary factor using
blocking techniques

Focusing on a primary factor cheaply

Computing the main and the interaction
effects, building response surfaces

Estimating the main and the interaction
effects

Building response surfaces

Building quadratic response surfaces

Estimating the main effects

Addressing the influence of noise
variables

Building response surfaces
Building response surfaces
Building response surfaces
Building response surfaces

Cavazzutti, M. Optimization methods: From theory to design. Chap. 2
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Conclusions

@ Define the objectives of the experiment.

o lIdentify all sources of variation, including:

e treatment factors and their levels
e experimental units
e blocking factors, noise factors, and covariates

Choose appropriate rule for assigning the experimental units to the
treatments. Remind:

Randomization

Orthogonality

Replication

Blocking

Specify the measurements to be made.
Run a pilot study if possible.

Specify the model.

Outline the analysis.

Calculate the number of observations that need to be taken.
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