
5: Introduction to Estimation 

Parameters and statistics 
 
Statistical inference is the act of generalizing from a sample to a population with 
calculated degree of certainty. The two forms of statistical inference are estimation and 
hypothesis testing. This chapter introduces estimation. The next chapter introduces 
hypothesis testing.  
 
A statistical population represents the set of all possible values for a variable. In practice, 
we do not study the entire population. Instead, we use data in a sample to shed light on 
the wider population. The process of generalizing from the sample to the population is 
statistical inference.  
 
The term parameter is used to refer to a numerical characteristic of a population. 
Examples of parameters include the population mean (μ) and the population standard 
deviation (σ). A numerical characteristic of the sample is a statistic. In this chapter we 
introduce a particular type of statistic called an estimate. The sample mean x  is the 
natural estimator of population mean μ. Sample standard deviation s is the natural 
estimator of population standard deviation σ.  
 
Different symbols are used to denote parameters and estimates. (e.g., μ versus x ). The 
parameter is a fixed constant. In contrast, the estimator varies from sample to sample. 
Other differences are summarized: 
 
 Parameters Estimators 
Source Population Sample 
Value known? No  Yes (calculate) 
Notation Greek (μ) Roman ( x ) 
Vary from sample to sample No  Yes 
Error-prone No Yes 
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Sampling distribution of a mean (SDM) 
 
If we had the opportunity to take repeated samples from the same population, samples 
means ( x s) would vary from sample to sample and form a sampling distribution means 
(SDM). The SDM is used to help us understand the random behavior of a sample mean. 
You must use your imagination to understand this concept.  
 
Suppose you want to estimate population mean μ. You sample the population randomly 
and repeatedly, each time using the same sample size n. From each of these repeated 
samples you calculate independent sample means. The first thing you note is that each of 
the x s differs. The sample means varies, and if your sample is a random sample, it varies 
randomly. This is not surprising, so you clarify to yourself, “any given sample mean is 
just an estimate.” 
 
Imagine taking all possible samples of size n from a population. You then calculate the 
mean of each of these samples and arrange them to form a distribution. This is the SDM 
for the variable based on n. Of course you would never do this in practice! It is a 
hypothetical model that allows us to gain an appreciation of the nature of x . Ultimately, 
it will allow us to make predictions about the value of population parameter μ. 
 
Let’s run a simulation experiment. Our simulation will be based on sampling a 
population of N = 600 age values. If you are interested, data for the population is stored 
in populati.sav. The population mean age μ = 29.5. The population standard deviation 
σ = 13.6.  
 
Keep your imagination active.  
 
Imagine taking repeated samples, each of n = 10, from populati.sav. Do this 100 times. 
In one experiment, it just so happened that the first x  was 36.4, the second x  was 30.2, 
and the third x  was 24.6. The experiment took an additional 97 SRSs, calculated the 
means, and plotted them to see their distribution. Here is what the plot looked like: 
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Some of the x s fell above the true value of μ, and some fell below. The average of the 
x s was μ: the mean of the SDM is μ. This makes x  an unbiased estimator of μ  
 
How does this SDM compare with the distribution of single observations? I randomly 
sampled 100 individuals from the population and got the following distribution: 
 

 
 
This distribution is also centered on μ. However, it is more spread-out than the SDM. 
Averages are less variable than individual observations.  
 
A third simulation experiment was carried out. Now n = 30 for each sample. Here is the 
distribution of sx  (each based on n = 30). 
 

 
 
This distribution is also centered on μ and has even less spread than the distribution of 

sx based on n = 10.  
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Here are the experimental results, one plotted on top of the other:  
 

 
 
With increasing sample size, the SDMs become increasingly Normal. This is due to 
something called the Central Limit Theorem (CLT). The CLT states that SDMs tend 
toward Normality as n gets large. This justifies use of procedures based on the Normal 
distribution even when the underlying populations is not Normal. This CLT phenomenon 
becomes increasing strong with large samples. 
 
Our experiments demonstrate: 
 

1. The sample mean x  is an unbiased estimate of μ.   
2. Averages are less variable than individual observations.  
3. The SDM becomes increasingly Normal as n increases. (the Central Limit 

Theorem). 
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Standard error of the mean 
 
How much can we expect any given sample mean to vary from μ. A way to quantify this 
variability is by determining the standard deviation of the SDM. This standard deviation 
is called the standard error of the mean (SEM). 
 
Large sample sizes produce sx  that closely cluster around the true value of μ. When 
individual values have standard deviation σ, sample mean x  based on n has deviation 
(error) σ / √n: 
 

n
SEM σ

=  

 
The SEM is inversely proportion to the square root of n. We can call this “the square root 
law.”  
 
Illustrative example.  The AGE variable in populati.sav has standard deviation σ = 
13.586.  
 

o A sample of n = 1 from this population has SEM = 13.586  / √1 = 13.586.  
o A sample of n = 10 from this population has SEM = 13.586  / √10 = 4.296 .  
o A sample of n = 30 from this population has SEM = 13.586  / √30 = 2.480.  

 
As n increases, the SEM decreases. 
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Confidence Interval for μ (σ known) 
 
Sample mean x  is the point estimator of population mean μ.  To gain insight into its 
precision, we surround the point estimate with a margin of error: 

 

 
 
This is a confidence interval. The lower end of the confidence interval is the lower 
confidence limit (LCL). The upper end is the upper confidence limit (UCL). The 
length of the confidence interval (UCL – LCL) quantifies the precision of the estimate.  
 
A 95% confidence interval for μ is given by 
 

))(96.1( SEMx ±  
 
where SEM = σ / √n. 
 
Illustrative example. A population has standard deviation σ = 13.586 and unknown 
mean μ. We take a random sample of 10 observations from this population and observe 
the following age values: {21, 42, 5, 11, 30, 50, 28, 27, 24, 52}. Based on these 10 
observations, x = 29.0. We want to estimate population mean μ with 95% confidence. 
Solution: The standard error of the mean SEM is 13.586 / √10 = 4.3. The 95% confidence 
interval for μ = 29.0 ± (1.96)(4.30) = 29.0 ± 8.4 = (20.6, 37.4). We have 95% confidence 
that the true value of population mean μ will be captured by this interval.  
 
We can calculate a confidence interval at almost any level of confidence. Let α represent 
the chance we are willing to take in not capturing μ. This is our “lack of confidence.”  
 

Lack of Confidence  
α 

Confidence  
(1−α)100% 

.01 (1−.01)100%  = 99% 

.05 (1−.05)100% = 95% 

.10 (1−.10)100% = 90% 
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A (1−α)100% confidence interval for μ is now given by:  
 

))(( 2/1 SEMzx α−±  
 
The reason we use z1-α/2 instead of z1-α in this formula is so we have α in the combined 
tails of the sampling distribution of means and 1−α area between −z1−α/2  and z1−α/2:  
 

 
 
Here are common confidence levels: 
 

(1−α)100%  α z1-α/2
90% .10 z1-.10/2 = z.95 = 1.645 
95% .05 z1-.05/2 = z.975 = 1.96 
99% .01 z1-.01/2 = z.995 = 2.58 

 
Illustrative example, 90% confidence interval.  Recall that the sample of 10 ages used previously for 
illustration has SEM = 4.30 and x  = 29.0. The critical value of 10% confidence is z1−.10/2 = z.95 = 1.645. The 
90% confidence interval for μ = 29.0 ± (1.645)(4.30) = 29.0 ± 7.1 = (21.9, 36.1).  
 
Illustrative example, 95% confidence interval. The critical z value for 95% confidence is z1−.05/2 = z.975 = 
1.96. The 95% confidence interval for μ = 29.0 ± (1.96)(4.30) = 29.0 ± 8.4 = (20.6, 37.4).  
 
Illustrative example, 99% confidence interval. Using the same data, α = .01 for 99% confidence. The 
99% confidence interval for μ = 29.0 ± (2.58)(4.30) = 29.0 ± 11.1 = (17.9, 40.1).  
 
Here are confidence interval lengths of the three intervals just calculated:  
 

Confidence Level Confidence Interval Confidence Interval Length 
90% (21.9, 36.1) 36.1 − 21.9 = 14.2 
95%  (20.6, 37.4) 37.4 − 20.6 = 16.8 
99%  (17.9, 40.1) 40.1 − 17.9 = 22.2 

 
The confidence interval length grows as the level of confidence increases from 90% to 
95% to 99%.This is because there is a trade-off between the confidence level and margin 
of error. To obtain a smaller margin of error, you must be willing to accept lower 
confidence. 
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Sample Size Requirements  
 
One of the questions a statistician often faces is “How much data should be collected?” 
Collecting too much data is a waste of time, and collecting too little data renders an 
estimate too imprecise to be useful.  
 
To address the question of sample size requirements, let d represent the margin of error 
of a confidence interval. This is half the confidence interval length and, for a 95% 
confidence interval for μ from a Normal population with known standard deviation is  
 

n
d σ2=  

 
Solve this equation for n to get the sample size requirement to achieve margin of error d 
for the 95% confidence interval: 
 
 
 

2

24
d

n σ
=  

 
Illustrative examples.  Suppose we have a variable with standard deviation σ = 15. The 

samples size required to achieve a margin of error of 5 is 2

2

2

2

5
1544 ⋅

==
d

n σ  = 36.  The 

samples size required to achieve a margin of error of 2.5 is 2

2

2

2

52
1544
.
⋅

==
d

n σ  = 144.  

 

Page 5.8 (C:\data\StatPrimer\estimation.doc, 8/1/2006) 



Student’s t Distributions 
 
Methods discussed so far have depended on knowing population standard deviation σ 
from information provided prior to the study. In practice, however, this is seldom the 
case. In such instances, we use s as our estimate σ and use a modification of the z 
distribution s known as Student’s t distribution as part of the estimate. 
 
Student’s t distributions are a family of probability models that resemble the z 
distribution. Like the z distribution, t distributions are bell-shaped and centered on 0. 
However, t distributions have broader tails than z distributions.  
 
Keep in mind that there is more than one t distribution. Each member of the t distribution 
family is identified by a parameter known as its degree of freedom (df). T distributions 
with df = 1, df = 9, and df = infinity are pictured below. 
 

 
 
Notice that t distributions become increasing Normal as the degrees of freedom rises. 
Also notice that t distributions with few degrees of freedom have relatively broad tails. 
This compensates for the additional uncertainty introduced by using s instead of σ in the 
course of our inference.  
 
A t distribution with infinite degrees of freedom is a standard Normal distribution. For all 
intensive purposes, it makes little difference whether we use a t or z once that sample size 
gets over 1000.  
 
Notation: Let tdf denote a t distribution with df degrees of freedom. For example, t9 will 
denote a t distribution with 9 degrees of freedom.  

Page 5.9 (C:\data\StatPrimer\estimation.doc, 8/1/2006) 



t Table 
 
We use a t table to determine the critical values t scores on t distributions. T table differ 
from z tables in the way they are set up.  
 
Each row in the t table contains t scores for a t distribution with  a given number of 
degrees of freedom. The cumulative probability for each landmark and the upper tail 
probability are given in the heading row of the table. The bottom row of table provides 
confidence levels, or the area under the curve between ±t scores. Here’s a portion of our t 
table:  

 
 
The t score for the 97.5th percentile (cumulative probability) for a t9 is indicated in the 
table. This is what the t score looks like on the t density curve: 
 

 
 
To aid in the process of getting probabilities from t scores, we will use the notation tdf,p to 
denote the t score with df degrees of freedom and cumulative probability p. For example, 
t9, .975 = 2.26, as shown above. Notice that  t9, .975 has a right-tail probability of .025.  
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Confidence Interval for μ (t procedure) 
 
We want to estimate μ based on a SRS of size n from the population. The population is 
assumed to be Normal or the sample is large enough to allow us to assume that the 
sampling distribution of x-bar approaches Normality (Central Limit Theorem).  
 
Since population standard deviation σ is not know, we use sample standard deviation s to 
calculate the estimated standard error of the mean (sem): 
 

n
ssem =  

 
A (1 − α)100% confidence interval for μ is given by: 
 

))(( 2/1,1 semtx n α−−±  
 
 
where x represents the sample mean, tn-1,1−α/2 represents a t score with n−1 df and 
cumulative probability 1−(α/2), and sem represents the estimated standard error of the 
mean, above. 
 
Illustrative Example (%ideal.sav). We measure body weight in a sample 18 diabetics. Each 
individual’s body weights is divided by their ideal body weight and multiplied by 100, so that the data 
represent percentage of ideal body weight. For example, a score of 100 represent 100% of ideal body 
weight. Data are {107, 119, 99, 114, 120, 104, 88, 114, 124, 116, 101, 121, 152, 100, 125, 114, 95, 117} 
(Source: Pagano & Gauvreau, 1993, p. 208; Saudek et al., 1989). We want to estimate population mean μ 
with 95% confidence. 
 
Solution: The first step is to calculate the sample mean and standard deviation: x  = 112.778 and s = 
14.424  (calculations not shown). Sample size n = 18, so sem = s / √n = 14.424 / √18 = 3.400. For 95% 
confidence, α = .05, and tn-1,1−α/2 = t18-1,1-.05/2 =  t17,.975 = 2.11 (from t table). The 95% CI for μ is 112.78 ± 
(2.11)(3.400) = 112.78 ± 7.17  = (105.61, 119.95).  
 
Comparison of confidence intervals based on the Z and t distribution. The confidence 
intervals of μ presented in this chapter both have the general form: estimate ± margin of 
error. In both instances, the estimate is provided by x .  Also, in both instances the 
margin of error = critical value × standard error. When σ is known, the critical value is 
z1−α/2 and the standard error is σ / √n. When σ is not know, the critical value is tn-1,1−α/2  
and the standard error is s / √n  
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Vocabulary 
 
Sampling distribution of the mean: the hypothetical distribution of sample means that would occur from 
repeated independent samples of size n from the population. 
 
Central Limit Theorem: an axiom that states that the sampling distribution of the mean will tend toward 
normality when n is large. 
 
Law of large numbers: the law of large numbers states that the larger the sample, the more likely it is to 
represent the population from which it was drawn -- specifically, the more likely it is that the sample mean 
will be close to the population mean. 
 
Standard error of the mean (SEM or sem): a statistic that indicates how greatly a particular sample mean 
is likely to differ from the mean of the population. 
 
Margin of error (d): the plus-or-minus wiggle-room drawn around the estimate in order to locate the 
location of the parameter; half the confidence interval width. 

Page 5.12 (C:\data\StatPrimer\estimation.doc, 8/1/2006) 


	5: Introduction to Estimation
	Parameters and statistics
	 Sampling distribution of a mean (SDM)
	 Standard error of the mean

	 Confidence Interval for μ (σ known)
	 Sample Size Requirements 
	 Student’s t Distributions
	 t Table

	 Confidence Interval for μ (t procedure)

